201
|
Di Fazio P, Lingelbach S, Schobert R, Biersack B. 4,5-Diaryl imidazoles with hydroxamic acid appendages as anti-hepatoma agents. Invest New Drugs 2015; 33:104-108. [PMID: 25410728 DOI: 10.1007/s10637-014-0188-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the most abundant tumour of the liver with rising patient numbers in the Western world countries. Despite newly approved drugs like protein kinase inhibitors the survival rate is still poor. METHODS In order to identify potential new drugs for the treatment of HCC we investigated the real-time cell viability, apoptosis induction (sub-G1 cells), and HDAC (histone deacetylase) activity of two hepatocellular cancer cell lines HepG2 and Hep3B treated with new imidazole-tethered hydroxamates. RESULTS The tested cinnamyl hydroxamates exhibited significant antiproliferative and cytotoxic activity in HCC cells as apparent from high sub-G1 cell levels in flow cytometric cell cycle analyses. In Hep3B cells HDAC inhibition was observed comparable in magnitude to that induced by the clinically applied HDAC inhibitor SAHA (Zolinza, Vorinostat). CONCLUSIONS The new imidazolyl hydroxamic acids lend themselves as a possible alternative to SAHA in the therapy of HCC. Even more so since similar 4,5-diarylimidazoles lacking only the hydroxamate functionality were previously shown in animal studies to be well tolerated and orally applicable.
Collapse
Affiliation(s)
- Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, 35043, Marburg, Germany
| | | | | | | |
Collapse
|
202
|
Biological evaluation of 4,5-diarylimidazoles with hydroxamic acid appendages as novel dual mode anticancer agents. Cancer Chemother Pharmacol 2015; 75:691-700. [PMID: 25618416 DOI: 10.1007/s00280-015-2685-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/16/2015] [Indexed: 01/24/2023]
Abstract
PURPOSE New (4-aryl-1-methylimidazol-5-yl)cinnamoylhydroxamic acids were prepared as potential dual mode anticancer agents combining the antivascular effect of the 4,5-diarylimidazole moiety and the histone deacetylases (HDAC) inhibition by the cinnamoyl hydroxamate. METHODS Their antiproliferative activity against a panel of primary cells and cancer cell lines was determined by MTT assays and their apoptosis induction by caspase-3 activation. Their ability to reduce the activity of HDAC was measured by enzymatic assays and Western blot analyses of cellular HDAC substrates. Additional effects on cancer cell migration were ascertained via immunofluorescence staining of cytoskeleton components and three-dimensional migration assays. The chorioallantoic membrane assay was used as an in vivo model to assess their antiangiogenic properties. RESULTS The 4-phenyl- and 4-(p-methoxyphenyl)-imidazole derivatives had a greater antiproliferative and apoptosis inducing effect in a variety of cancer cell lines when compared with the approved HDAC inhibitor SAHA, and most distinctly so in non-malignant human umbilical vein endothelial cells. Like SAHA, both compounds acted as pan-HDAC inhibitors. In 518A2 melanoma cells, they led to hyperacetylation of histones and of the cytoplasmic HDAC6 substrate alpha-tubulin. As a consequence, they inhibited the migration and invasion of these cells in transwell invasion assays. In keeping with its pronounced impact on endothelial cells, the 4-phenyl-imidazole derivative also inhibited the growth and sprouting of blood vessels in the chorioallantoic membrane of fertilized hen eggs. CONCLUSIONS The 4-phenyl- and 4-(p-methoxyphenyl)-imidazole compounds combine the antivascular effects of 4,5-diarylimidazoles with HDAC inhibition by cinnamoyl hydroxamates and show additional antimetastatic activity. They are promising candidates for pleiotropic HDAC inhibitors.
Collapse
|
203
|
Hainsworth JD, Daugaard G, Lesimple T, Hübner G, Greco FA, Stahl MJ, Büschenfelde CMZ, Allouache D, Penel N, Knoblauch P, Fizazi KS. Paclitaxel/carboplatin with or without belinostat as empiric first-line treatment for patients with carcinoma of unknown primary site: A randomized, phase 2 trial. Cancer 2015; 121:1654-61. [DOI: 10.1002/cncr.29229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 01/15/2023]
Affiliation(s)
- John D. Hainsworth
- Sarah Cannon Research Institute and Tennessee Oncology PLLC; Nashville Tennessee
| | - Gedske Daugaard
- Department of Oncology, Rigshospitalet; University of Copenhagen; Denmark
| | - Thierry Lesimple
- Department of Medical Oncology; Eugene Marquis Center; Rennes France
| | - Gerdt Hübner
- Ostholstein Oncology-ohO; Oldenburg in Holstein; Germany
| | - F. Anthony Greco
- Sarah Cannon Research Institute and Tennessee Oncology PLLC; Nashville Tennessee
| | - Michael J. Stahl
- Department of Medical Oncology and Hematology; Essen Mitte Clinic; Essen Germany
| | | | - Djelila Allouache
- Department of Medical Oncology; Francois Baclesse Regional Center for the Fight Against Cancer; Caen France
| | - Nicolas Penel
- Department of General Oncology; Oscar Lambret Center; Lille France
| | - Poul Knoblauch
- Topotarget A/S; Symbion Science Park; Copenhagen Denmark
| | - Karim S. Fizazi
- Gustave Roussy Institute; University of Paris South; Villejuif France
| |
Collapse
|
204
|
Abstract
Photoaffinity labeling (PAL) using a chemical probe to covalently bind its target in response to activation by light has become a frequently used tool in drug discovery for identifying new drug targets and molecular interactions, and for probing the location and structure of binding sites. Methods to identify the specific target proteins of hit molecules from phenotypic screens are highly valuable in early drug discovery. In this review, we summarize the principles of PAL including probe design and experimental techniques for in vitro and live cell investigations. We emphasize the need to optimize and validate probes and highlight examples of the successful application of PAL across multiple disease areas.
Collapse
Affiliation(s)
- Ewan Smith
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, London, UK
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, London, UK
| |
Collapse
|
205
|
50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 2014; 16:258-64. [PMID: 25549891 DOI: 10.1038/nrm3931] [Citation(s) in RCA: 617] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 1964, Vincent Allfrey and colleagues reported the identification of histone acetylation and with deep insight proposed a regulatory role for this protein modification in transcription regulation. Subsequently, histone acetyltransferases (HATs), histone deacetylases (HDACs) and acetyl-Lys-binding proteins were identified as transcription regulators, thereby providing compelling evidence for his daring hypothesis. During the past 15 years, reversible protein acetylation and its modifying enzymes have been implicated in many cellular functions beyond transcription regulation. Here, we review the progress accomplished during the past 50 years and discuss the future of protein acetylation.
Collapse
|
206
|
Zhang L, Xu W. Histone deacetylase inhibitors for enhancing activity of antifungal agent: a patent evaluation of WO2014041424(A1). Expert Opin Ther Pat 2014; 25:237-40. [PMID: 25381141 DOI: 10.1517/13543776.2014.981256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Novel histone deacetylase inhibitors have been developed for the antifungal therapy. Molecule 8 exhibited potent antifungal activities with MIC values of 0.25/0.25, 0.12/0.25, 0.12/0.12 µg/ml against Candida albicans, C. parapsilosis and C. glabrata after 24/48 h incubation, respectively. Most of the synthesized compound showed significantly synergistic effects with fluconazole in the biological assay. The discovery of these molecules makes positive contributions to the development of potent and safe antifungal drugs.
Collapse
Affiliation(s)
- Lei Zhang
- Qingdao University , Qingdao , China
| | | |
Collapse
|
207
|
Castellano S, Milite C, Feoli A, Viviano M, Mai A, Novellino E, Tosco A, Sbardella G. Identification of structural features of 2-alkylidene-1,3-dicarbonyl derivatives that induce inhibition and/or activation of histone acetyltransferases KAT3B/p300 and KAT2B/PCAF. ChemMedChem 2014; 10:144-57. [PMID: 25333655 DOI: 10.1002/cmdc.201402371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 12/23/2022]
Abstract
Dysregulation of the activity of lysine acetyltransferases (KATs) is related to a variety of diseases and/or pathological cellular states; however, their role remains unclear. Therefore, the development of selective modulators of these enzymes is of paramount importance, because these molecules could be invaluable tools for assessing the importance of KATs in several pathologies. We recently found that diethyl pentadecylidenemalonate (SPV106) possesses a previously unobserved inhibitor/activator activity profile against protein acetyltransferases. Herein, we report that manipulation of the carbonyl functions of a series of analogues of SPV106 yielded different activity profiles against KAT2B and KAT3B (pure KAT2B activator, pan-inhibitor, or mixed KAT2B activator/KAT3B inhibitor). Among the novel compounds, a few derivatives may be useful chemical tools for studying the mechanism of lysine acetylation and its implications in physiological and/or pathological processes.
Collapse
Affiliation(s)
- Sabrina Castellano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA) (Italy)
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Tiernan AR, Champion JA, Sambanis A. Trichostatin A affects the secretion pathways of beta and intestinal endocrine cells. Exp Cell Res 2014; 330:212-21. [PMID: 25305500 DOI: 10.1016/j.yexcr.2014.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023]
Abstract
Histone deacetylase inhibitors (HDACi) were recently identified as having significant clinical potential in reversing β-cell functional inhibition caused by inflammation, a shared precursor of Type 1 and Type 2 diabetes. However, HDACi are highly complex and little is known of their direct effect on important cell secretion pathways for blood glucose regulation. The aims of the present study were to investigate the effect of HDACi on insulin secretion from β-cells, GLP-1 secretion from L-cells, and recombinant insulin secretion from engineered L-cells. The β-cell line βTC-tet, L-cell line GLUTag, or recombinant insulin-secreting L-cell lines were exposed to Trichostatin A for 24h. Effects on insulin or GLP-1 mRNA, intracellular protein content, processing efficiency, and secretion were measured by real-time PCR, ELISA, and radioimmunoassay. HDACi increased secretion per viable cell in a dose-dependent manner for all cell types. Effects on mRNA levels were variable, but enhanced intracellular polypeptide content and secretion were comparable among cell types. Enhanced recombinant insulin secretion was sustained for seven days in alginate microencapsulated L-cells. HDACi enhances β- and L-cell secretion fluxes in a way that could significantly improve blood glucose regulation in diabetes patients and holds potential as a novel method for enhancing insulin-secreting non-β or β-cell grafts.
Collapse
Affiliation(s)
- Aubrey R Tiernan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, GA 30332, United States
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, GA 30332, United States
| | - Athanassios Sambanis
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, GA 30332, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, GA, United States.
| |
Collapse
|
209
|
Current trends in the development of histone deacetylase inhibitors: a review of recent patent applications. Pharm Pat Anal 2014; 1:75-90. [PMID: 24236715 DOI: 10.4155/ppa.11.3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Histone deacetylases (HDACs) have become an important target for the treatment of cancer and other diseases. Currently, more than ten HDAC inhibitors have entered clinical studies and two of them have already reached the market. The hydroxamic acid derivative SAHA (also known as vorinostat or Zolinza®) and the cyclic depsipeptide FK228 (romidepsin or Istodax®) have gained approval from the US FDA for the treatment of cutaneous T-cell lymphoma. Nevertheless, there has been a continuous effort aimed at discovering a new generation of clinical candidates with improved pharmaceutical properties. This review provides a summary of the most recent patents published from mid-2009 to mid-2011.
Collapse
|
210
|
Di Costanzo A, Del Gaudio N, Migliaccio A, Altucci L. Epigenetic drugs against cancer: an evolving landscape. Arch Toxicol 2014; 88:1651-68. [DOI: 10.1007/s00204-014-1315-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/17/2014] [Indexed: 02/08/2023]
|
211
|
Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis. Biochim Biophys Acta Rev Cancer 2014; 1846:524-38. [PMID: 25072962 DOI: 10.1016/j.bbcan.2014.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022]
Abstract
Histone deacetylase 2 (HDAC2) regulates biological processes by deacetylation of histones and non-histone proteins. HDAC2 is overexpressed in numerous cancer types, suggesting general cancer-relevant functions of HDAC2. In human tumors the TP53 gene encoding p53 is frequently mutated and wild-type p53 is often disarmed. Molecular pathways inactivating wild-type p53 often remain to be defined and understood. Remarkably, current data link HDAC2 to the regulation of the tumor suppressor p53 by deacetylation and to the maintenance of genomic stability. Here, we summarize recent findings on HDAC2 overexpression in solid and hematopoietic cancers with a focus on mechanisms connecting HDAC2 and p53 in vitro and in vivo. In addition, we present an evidence-based model that integrates molecular pathways and feedback loops by which p53 and further transcription factors govern the expression and the ubiquitin-dependent proteasomal degradation of HDAC2 and of p53 itself. Understanding the interactions between p53 and HDAC2 might aid in the development of new therapeutic approaches against cancer.
Collapse
|
212
|
Rossi A. Potential role of histone deacetylase inhibitors in the treatment of advanced non-small-cell lung cancer. Lung Cancer Manag 2014. [DOI: 10.2217/lmt.14.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Histones are highly alkaline proteins of cell nuclei that package and order DNA into structural units called nucleosomes. The balance between the acetylation and deacetylation of hystones is mediated by two different sets of enzymes: histone acetyltransferases and histone deacetylases (HDACs). HDAC inhibitors, a novel class of anticancer agents, acting by regulating chromatin structure and function, induce acetylation of histones, which ultimately results in apoptosis and cell cycle arrest, modulate anticancer immunity and inhibition of angiogenesis. HDAC inhibitors are being clinically investigated for the treatment of several hematological and solid tumors. The potential role of HDAC inhibitors in the treatment of advanced non-small-cell lung cancer patients, including their clinical effectiveness and future developments, is discussed here.
Collapse
|
213
|
Wang XJ, Zhang XR, Zhang L, Li QH, Wang L, Shi LH, Fang CY. A new cell counting method to evaluate anti-tumor compound activity. Asian Pac J Cancer Prev 2014; 15:3397-401. [PMID: 24870728 DOI: 10.7314/apjcp.2014.15.8.3397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Determining cell quantity is a common problem in cytology research and anti-tumor drug development. A simple and low-cost method was developed to determine monolayer and adherent-growth cell quantities. The cell nucleus is located in the cytoplasm, and is independent. Thus, the nucleus cannot make contact even if the cell density is heavy. This phenomenon is the foundation of accurate cell-nucleus recognition. The cell nucleus is easily recognizable in images after fluorescent staining because it is independent. A one-to-one relationship exists between the nucleus and the cell; therefore, this method can be used to determine the quantity of proliferating cells. Results indicated that the activity of the histone deacetylase inhibitor Z1 was effective after this method was used. The nude-mouse xenograft model also revealed the potent anti-tumor activity of Z1. This research presents a new anti-tumor-drug evaluation method.
Collapse
Affiliation(s)
- Xue-Jian Wang
- School of Pharmacy and Biology Science, Weifang Medical University, Weifang, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
214
|
Aburai N, Esumi Y, Koshino H, Nishizawa N, Kimura KI. Inhibitory Activity of Linoleic Acid Isolated from Proso and Japanese Millet toward Histone Deacetylase. Biosci Biotechnol Biochem 2014; 71:2061-4. [PMID: 17690455 DOI: 10.1271/bbb.70068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Linoleic acid was isolated from both the methanol extracts of proso and Japanese millet as a histone deacetylase inhibitor. It showed uncompetitive inhibitory activity toward histone deacetylase (IC(50)=0.51 mM) and potent cytotoxicity toward human leukemia K562 (IC(50)=68 microM) and prostate cancer LNCaP cells (IC(50)=193 microM). Millet containing linoleic acid might have anti-tumor activity.
Collapse
Affiliation(s)
- Nobuhiro Aburai
- Department of Agro-Bioscience, Faculty of Agriculture, Iwate University, Morioka, Japan
| | | | | | | | | |
Collapse
|
215
|
Li X, Zhang Y, Zhang L, Xu Y, Xu W. 3D QSAR and docking studies of a series of histone deacetylase inhibitors. Med Chem Res 2014; 23:2229-2241. [DOI: 10.1007/s00044-013-0816-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
216
|
Zhang L, Han Y, Jiang Q, Wang C, Chen X, Li X, Xu F, Jiang Y, Wang Q, Xu W. Trend of histone deacetylase inhibitors in cancer therapy: isoform selectivity or multitargeted strategy. Med Res Rev 2014; 35:63-84. [PMID: 24782318 DOI: 10.1002/med.21320] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pharmacological inhibition of histone deacetylases (HDACs) has been successfully applied in the treatment of a wide range of disorders, including Parkinson's disease, infection, cardiac diseases, inflammation, and especially cancer. HDAC inhibitors (HDACIs) have been proved to be effective antitumor agents by various stages of investigation. At present, there are two opposite focuses of HDACI design in the cancer therapy, highly selective inhibitor strategy and dual- or multitargeted inhibitors. The former method, which is supposed to elucidate the function of individual HDAC and provide candidate inhibitors with fewer side effects, has been widely accepted by the inhibitor developer. The latter approach, though less practiced, has promising potential for the antitumor therapy based on HDACIs. Effective HDACIs, some of which are in clinic anticancer research, have been developed by both methods. In order to gain insight into HDACI design, the strategies and achievements of the two diverse methods are reviewed.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Vorinostat as a radiosensitizer for brain metastasis: a phase I clinical trial. J Neurooncol 2014; 118:313-319. [PMID: 24728831 DOI: 10.1007/s11060-014-1433-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
Perform a phase I study to evaluate the safety, and tolerability of vorinostat, an HDAC inhibitor, when combined with whole brain radiation treatment (WBRT) in patients with brain metastasis. A multi-institutional phase I clinical trial enrolled patients with a histological diagnosis of malignancy and radiographic evidence of brain metastasis. WBRT was 37.5 Gy in 2.5 Gy fractions delivered over 3 weeks. Vorinostat was administrated by mouth, once daily, Monday through Friday, concurrently with radiation treatment. The vorinostat dose was escalated from 200 to 400 mg daily using a 3+3 trial design. Seventeen patients were enrolled, 4 patients were excluded from the analysis due to either incorrect radiation dose (n = 1), or early treatment termination due to disease progression (n = 3). There were no treatment related grade 3 or higher toxicities in the 200 and 300 mg dose levels. In the 400 mg cohort there was a grade 3 pulmonary embolus and one death within 30 days of treatment. Both events were most likely related to disease progression rather than treatment; nonetheless, we conservatively classified the death as a dose limiting toxicity. We found Vorinostat administered with concurrent WBRT to be well tolerated to a dose of 300 mg once daily. This is the recommended dose for phase II study.
Collapse
|
218
|
Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 2014; 6:a018713. [PMID: 24691964 DOI: 10.1101/cshperspect.a018713] [Citation(s) in RCA: 1388] [Impact Index Per Article: 126.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD(+)-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases.
Collapse
Affiliation(s)
- Edward Seto
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | | |
Collapse
|
219
|
Zhang L, Zhang Y, Chou CJ, Inks ES, Wang X, Li X, Hou J, Xu W. Histone deacetylase inhibitors with enhanced enzymatic inhibition effects and potent in vitro and in vivo antitumor activities. ChemMedChem 2014; 9:638-648. [PMID: 24227760 PMCID: PMC3947464 DOI: 10.1002/cmdc.201300297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/13/2013] [Indexed: 11/08/2022]
Abstract
In the present work, a series of small molecules were designed and synthesized based on structural optimization. A significant improvement in the enzyme inhibitory activity of these compounds was discovered. Moreover, the tested compounds have moderate preference for class I HDACs over HDAC6, as demonstrated by enzyme selectivity assays. In vitro antiproliferation assay results show that representative compounds can selectively inhibit the growth of non-solid lymphoma and leukemic cells such as U937, K562, and HL60. In the in vivo antitumor assay, (S)-4-(2-(5-(dimethylamino)naphthalene-1-sulfonamido)-2-phenylacetamido)-N-hydroxybenzamide (D17) showed better performance than SAHA in blocking U937 tumor growth. Western blot analysis revealed that representative molecules can block the function of both class I HDACs and HDAC6. More importantly, our western blot results reveal that the levels of some oncogenic proteins (p-Akt in the PI3K/AKT/mTOR signal pathway, c-Raf and p-Erk in the MAPK signal pathway) were dramatically down-regulated by our compounds in the U937 cell line rather than MDA-MB-231 cells. This distinction in cellular mechanism might be an important reason why the U937 cell line was found to more sensitive to our HDAC inhibitors than the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacy, School of Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - C. James Chou
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Elizabeth S. Inks
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Xuejian Wang
- School of Pharmacy and Biology Science, Weifang Medicinal University, Weifang, Shandong 261042, China
| | - Xiaoguang Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Jinning Hou
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
220
|
Trichostatin A suppresses EGFR expression through induction of microRNA-7 in an HDAC-independent manner in lapatinib-treated cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:168949. [PMID: 24707474 PMCID: PMC3950925 DOI: 10.1155/2014/168949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 12/11/2022]
Abstract
Lapatinib, a dual EGFR/HER2 tyrosine kinase inhibitor, has been shown to improve the survival rate of patients with advanced HER2-positive breast cancers. However, the off-target activity of lapatinib in inducing EGFR expression without tyrosine kinase activity was demonstrated to render HER2-negative breast cancer cells more metastatic, suggesting a limitation to the therapeutic effectiveness of this dual inhibitor in HER2-heterogeneous tumors. Therefore, targeting EGFR expression may be a feasible approach to improve the anticancer efficiency of lapatinib-based therapy. Inhibition of HDAC has been previously reported to epigenetically suppress EGFR protein expression. In this study, however, our data indicated that treatment with HDAC inhibitors trichostatin A (TSA), but not suberoylanilide hydroxamic acid (SAHA) or HDAC siRNA, can attenuate both protein and mRNA expressions of EGFR in lapatinib-treated triple-negative breast cancer cells, suggesting that TSA may suppress EGFR expression independently of HDAC inhibition. Nevertheless, TSA reduced EGFR 3′UTR activity and induced the gene expression of microRNA-7, a known EGFR-targeting microRNA. Furthermore, treatment with microRNA-7 inhibitor attenuated TSA-mediated EGFR suppression. These results suggest that TSA induced microRNA-7 expression to downregulate EGFR expression in an HDAC-independent manner.
Collapse
|
221
|
Manson McManamy ME, Hakre S, Verdin EM, Margolis DM. Therapy for latent HIV-1 infection: the role of histone deacetylase inhibitors. Antivir Chem Chemother 2014; 23:145-9. [PMID: 24318952 DOI: 10.3851/imp2551] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2013] [Indexed: 01/06/2023] Open
Abstract
Persistence of HIV-1 in latently infected CD4(+) T-cells prevents eradication in HIV-infected treated patients. Latency is characterized by a reversible silencing of transcription of integrated HIV-1. Several molecular mechanisms have been described which contribute to latency, including the establishment and maintenance of repressive chromatin on the HIV-1 promoter. Histone deacetylation is a landmark modification associated with transcriptional repression of the HIV-1 promoter and inhibition of histone deacetylase enzymes (HDACs) reactivates latent HIV-1. Here, we review the different HDAC inhibitors that have been studied in HIV-1 latency and their therapeutic potential in reactivating latent HIV-1.
Collapse
|
222
|
Wambua MK, Nalawansha DA, Negmeldin AT, Pflum MKH. Mutagenesis studies of the 14 Å internal cavity of histone deacetylase 1: insights toward the acetate-escape hypothesis and selective inhibitor design. J Med Chem 2014; 57:642-50. [PMID: 24405391 PMCID: PMC3983352 DOI: 10.1021/jm401837e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Histone
deacetylase (HDAC) proteins are promising targets for cancer
treatment, as shown by the approval of two HDAC inhibitors for the
treatment of cutaneous T-cell lymphoma. HDAC1 in particular has been
linked to cell growth and cell cycle regulation and is therefore an
attractive target for anticancer drugs. The HDAC1 active site contains
a hydrophobic 11 Å active-site channel, with a 14 Å internal
cavity at the bottom of the active site. Several computational and
biochemical studies have proposed an acetate-escape hypothesis where
the acetate byproduct of the deacetylation reaction escapes via the
14 Å internal cavity. Selective HDAC inhibitors that bind to
the 14 Å cavity have also been created. To understand the influence
of amino acids lining the HDAC1 14 Å cavity in acetate escape
and inhibitor binding, we used mutagenesis coupled with acetate competition
assays. The results indicate that amino acids lining the 14 Å
cavity are critical for catalytic activity and acetate competition,
confirming the role of the cavity in acetate escape. In addition,
these mutagenesis studies will aid in HDAC1-inhibitor design that
exploits the 14 Å cavity.
Collapse
Affiliation(s)
- Magdalene K Wambua
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | | | | | | |
Collapse
|
223
|
García-Sanz R, Ocio EM. Novel treatment regimens for Waldenström’s macroglobulinemia. Expert Rev Hematol 2014; 3:339-50. [DOI: 10.1586/ehm.10.19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
224
|
Woo JE, Park WC, Yoo YH, Kim SW. The Efficacy of Co-Treatment with Suberoylanilide Hydroxamic Acid and Mitomycin C on Corneal Scarring after Therapeutic Keratectomy: An Animal Study. Curr Eye Res 2014; 39:348-58. [DOI: 10.3109/02713683.2013.859272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
225
|
Axelrod M, Gordon VL, Conaway M, Tarcsafalvi A, Neitzke DJ, Gioeli D, Weber MJ. Combinatorial drug screening identifies compensatory pathway interactions and adaptive resistance mechanisms. Oncotarget 2013; 4:622-35. [PMID: 23599172 PMCID: PMC3720609 DOI: 10.18632/oncotarget.938] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Constitutively activated signaling molecules are often the primary drivers of malignancy, and are favored targets for therapeutic intervention. However, the effectiveness of targeted inhibition of cell signaling can be blunted by compensatory signaling which generates adaptive resistance mechanisms and reduces therapeutic responses. Therefore, it is important to identify and target these compensatory pathways with combinations of targeted agents to achieve durable clinical benefit. In this report, we demonstrate the use of high-throughput combinatorial drug screening as a discovery tool to identify compensatory pathways that generate resistance to the cytotoxic effects of targeted therapy. We screened 420 drug combinations in 14 different cell lines representing three cancer lineages, and assessed the ability of each combination to cause synergistic cytotoxicity. Drug substitution studies were used to validate the functionally important drug targets. Of the 84 combinations that caused robust synergy in multiple cell lines, none were synergistic in more than half of the lines tested, and we observed no pattern of lineage specificity in the observed synergies. This reflects the plasticity of cell signaling networks, even among cell lines of the same tissue of origin. Mechanistic analysis of one novel synergistic combination identified in the screen, the multi-kinase inhibitor Ro31-8220 and lapatinib, demonstrated compensatory crosstalk between the p70S6 kinase and EGF receptor pathways. In addition, we identified BAD as a node of convergence between these two pathways that may be playing a role in the enhanced apoptosis observed upon combination treatment.
Collapse
Affiliation(s)
- Mark Axelrod
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, USA
| | | | | | | | | | | | | |
Collapse
|
226
|
Kinase control of latent HIV-1 infection: PIM-1 kinase as a major contributor to HIV-1 reactivation. J Virol 2013; 88:364-76. [PMID: 24155393 DOI: 10.1128/jvi.02682-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the clinical relevance of latent HIV-1 infection as a block to HIV-1 eradication, the molecular biology of HIV-1 latency remains incompletely understood. We recently demonstrated the presence of a gatekeeper kinase function that controls latent HIV-1 infection. Using kinase array analysis, we here expand on this finding and demonstrate that the kinase activity profile of latently HIV-1-infected T cells is altered relative to that of uninfected T cells. A ranking of altered kinases generated from these kinome profile data predicted PIM-1 kinase as a key switch involved in HIV-1 latency control. Using genetic and pharmacologic perturbation strategies, we demonstrate that PIM-1 activity is indeed required for HIV-1 reactivation in T cell lines and primary CD4 T cells. The presented results thus confirm that kinases are key contributors to HIV-1 latency control. In addition, through mutational studies we link the inhibitory effect of PIM-1 inhibitor IV (PIMi IV) on HIV-1 reactivation to an AP-1 motif in the CD28-responsive element of the HIV-1 long terminal repeat (LTR). The results expand our conceptual understanding of the dynamic interactions of the host cell and the latent HIV-1 integration event and position kinome profiling as a research tool to reveal novel molecular mechanisms that can eventually be targeted to therapeutically trigger HIV-1 reactivation.
Collapse
|
227
|
Seidel C, Schnekenburger M, Dicato M, Diederich M. Antiproliferative and proapoptotic activities of 4-hydroxybenzoic acid-based inhibitors of histone deacetylases. Cancer Lett 2013; 343:134-46. [PMID: 24080339 DOI: 10.1016/j.canlet.2013.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/14/2013] [Accepted: 09/23/2013] [Indexed: 01/18/2023]
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate cellular processes by modifying the acetylation status of many proteins. Pathologically altered HDAC activity contributes to cancer development and thus characterization of novel acetylation modulators is important for future anti-cancer therapies. In this study, we identified three novel 4-hydroxybenzoic acid derivatives as pan-HDAC inhibitors that increased protein acetylation levels, arrested cell cycle progression and triggered apoptotic cell death, without affecting viability of normal cells. Our data support the potential of 4-hydroxybenzoic acid derivatives as pan-HDAC inhibitors with anticancer properties.
Collapse
Affiliation(s)
- Carole Seidel
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg; Department of Pharmacy, College of Pharmacy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
228
|
Marek M, Kannan S, Hauser AT, Moraes Mourão M, Caby S, Cura V, Stolfa DA, Schmidtkunz K, Lancelot J, Andrade L, Renaud JP, Oliveira G, Sippl W, Jung M, Cavarelli J, Pierce RJ, Romier C. Structural basis for the inhibition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosoma mansoni. PLoS Pathog 2013; 9:e1003645. [PMID: 24086136 PMCID: PMC3784479 DOI: 10.1371/journal.ppat.1003645] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/04/2013] [Indexed: 11/19/2022] Open
Abstract
The treatment of schistosomiasis, a disease caused by blood flukes parasites of the Schistosoma genus, depends on the intensive use of a single drug, praziquantel, which increases the likelihood of the development of drug-resistant parasite strains and renders the search for new drugs a strategic priority. Currently, inhibitors of human epigenetic enzymes are actively investigated as novel anti-cancer drugs and have the potential to be used as new anti-parasitic agents. Here, we report that Schistosoma mansoni histone deacetylase 8 (smHDAC8), the most expressed class I HDAC isotype in this organism, is a functional acetyl-L-lysine deacetylase that plays an important role in parasite infectivity. The crystal structure of smHDAC8 shows that this enzyme adopts a canonical α/β HDAC fold, with specific solvent exposed loops corresponding to insertions in the schistosome HDAC8 sequence. Importantly, structures of smHDAC8 in complex with generic HDAC inhibitors revealed specific structural changes in the smHDAC8 active site that cannot be accommodated by human HDACs. Using a structure-based approach, we identified several small-molecule inhibitors that build on these specificities. These molecules exhibit an inhibitory effect on smHDAC8 but show reduced affinity for human HDACs. Crucially, we show that a newly identified smHDAC8 inhibitor has the capacity to induce apoptosis and mortality in schistosomes. Taken together, our biological and structural findings define the framework for the rational design of small-molecule inhibitors specifically interfering with schistosome epigenetic mechanisms, and further support an anti-parasitic epigenome targeting strategy to treat neglected diseases caused by eukaryotic pathogens. Schistosomiasis, a neglected parasitic disease caused by flatworms of the genus Schistosoma, is responsible for hundreds of thousands of deaths yearly. Its treatment currently depends on a single drug, praziquantel, with reports of drug-resistant parasites. Human epigenetic enzymes, in particular histone deacetylases (HDACs), are predominantly attractive inhibitory targets for anti-cancer therapies. Validated scaffolds against these enzymes could also be used as leads in the search for novel specific drugs against schistosomiasis. In our study, we show that Schistosoma mansoni histone deacetylase 8 (smHDAC8) is a functional acetyl-L-lysine deacetylase that plays an important role in parasite infectivity and is therefore a relevant target for drug discovery. The determination of the atomic structures of smHDAC8 in complex with generic HDAC inhibitors revealed that the architecture of the smHDAC8 active site pocket differed significantly from its human counterparts and provided a framework for the development of inhibitors selectively interfering with schistosome epigenetic mechanisms. In agreement, this information enabled us to identify several small-molecule scaffolds that possess specific inhibitory effects on smHDAC8 and cause mortality in schistosomes. Our results provide the proof of concept that targeting epigenetic enzymes is a valid approach to treat neglected diseases caused by eukaryotic pathogens.
Collapse
Affiliation(s)
- Martin Marek
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, Illkirch, France
| | | | - Alexander-Thomas Hauser
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Marina Moraes Mourão
- Genomics and Computational Biology Group, Center for Excellence in Bioinformatics, National Institute of Science and Technology in Tropical Diseases, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Stéphanie Caby
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Vincent Cura
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, Illkirch, France
| | - Diana A. Stolfa
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Karin Schmidtkunz
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Julien Lancelot
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Luiza Andrade
- Genomics and Computational Biology Group, Center for Excellence in Bioinformatics, National Institute of Science and Technology in Tropical Diseases, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Jean-Paul Renaud
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, Illkirch, France
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, Center for Excellence in Bioinformatics, National Institute of Science and Technology in Tropical Diseases, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Wolfgang Sippl
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
- Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Manfred Jung
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Jean Cavarelli
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, Illkirch, France
| | - Raymond J. Pierce
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
- * E-mail: (RJP); (CR)
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, Illkirch, France
- * E-mail: (RJP); (CR)
| |
Collapse
|
229
|
Zhang L, Wang X, Li X, Zhang L, Xu W. Discovery of a series of hydroximic acid derivatives as potent histone deacetylase inhibitors. J Enzyme Inhib Med Chem 2013; 29:582-9. [DOI: 10.3109/14756366.2013.827678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lei Zhang
- Department of Pharmacy, School of Medicine, Qingdao University
Qingdao, ShandongChina
| | - Xuejian Wang
- School of Pharmacy and Biology Science, Weifang Medicinal University
Weifang, ShandongChina
| | - Xiaoguang Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University
Jinan, ShandongChina
| | - Lihui Zhang
- Department of Stomatology, Jiaotong Hospital
Qingdao, ShandongChina
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University
Jinan, ShandongChina
| |
Collapse
|
230
|
Reactivation of estrogen receptor α by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor. PLoS One 2013; 8:e74525. [PMID: 24058584 PMCID: PMC3772827 DOI: 10.1371/journal.pone.0074525] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/05/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Aminoflavone (AF) acts as a ligand of the aryl hydrocarbon receptor (AhR). Expression of estrogen receptor α (ERα) and AhR-mediated transcriptional induction of CYP1A1 can sensitize breast cancer cells to AF. The objective of this study was to investigate the combined antitumor effect of AF and the histone deacetylase inhibitor vorinostat for treating mesenchymal-like triple-negative breast cancer (TNBC) as well as the underlying mechanisms of such treatment. METHODS In vitro antiproliferative activity of AFP464 (AF prodrug) in breast cancer cell lines was evaluated by MTS assay. In vitro, the combined effect of AFP464 and vorinostat on cell proliferation was assessed by the Chou-Talalay method. In vivo, antitumor activity of AFP464, given alone and in combination with vorinostat, was studied using TNBC xenograft models. Knockdown of ERα was performed using specific, small-interfering RNA. Western blot, quantitative RT-PCR, immunofluorescence, and immunohistochemical staining were performed to study the mechanisms underlying the combined antitumor effect. RESULTS Luminal and basal A subtype breast cancer cell lines were sensitive to AFP464, whereas basal B subtype or mesenchymal-like TNBC cells were resistant. Vorinostat sensitized mesenchymal-like TNBC MDA-MB-231 and Hs578T cells to AFP464. It also potentiated the antitumor activity of AFP464 in a xenograft model using MDA-MB-231 cells. In vitro and in vivo mechanistic studies suggested that vorinostat reactivated ERα expression and restored AhR-mediated transcriptional induction of CYP1A1. CONCLUSION The response of breast cancer cells to AF or AFP464 was associated with their gene expression profile. Vorinostat sensitized mesenchymal-like TNBC to AF, at least in part, by reactivating ERα expression and restoring the responsiveness of AhR to AF.
Collapse
|
231
|
Microbial natural products: molecular blueprints for antitumor drugs. J Ind Microbiol Biotechnol 2013; 40:1181-210. [PMID: 23999966 DOI: 10.1007/s10295-013-1331-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/07/2013] [Indexed: 12/18/2022]
Abstract
Microbes from two of the three domains of life, the Prokarya, and Eukarya, continue to serve as rich sources of structurally complex chemical scaffolds that have proven to be essential for the development of anticancer therapeutics. This review describes only a handful of exemplary natural products and their derivatives as well as those that have served as elegant blueprints for the development of novel synthetic structures that are either currently in use or in clinical or preclinical trials together with some of their earlier analogs in some cases whose failure to proceed aided in the derivation of later compounds. In every case, a microbe has been either identified as the producer of secondary metabolites or speculated to be involved in the production via symbiotic associations. Finally, rapidly evolving next-generation sequencing technologies have led to the increasing availability of microbial genomes. Relevant examples of genome mining and genetic manipulation are discussed, demonstrating that we have only barely scratched the surface with regards to harnessing the potential of microbes as sources of new pharmaceutical leads/agents or biological probes.
Collapse
|
232
|
Zhang M, Luo G, Zhou Y, Wang S, Zhong Z. Phenotypic screens targeting neurodegenerative diseases. ACTA ACUST UNITED AC 2013; 19:1-16. [PMID: 23958650 DOI: 10.1177/1087057113499777] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases affect millions of people worldwide, and the incidences increase as the population ages. Disease-modifying therapy that prevents or slows disease progression is still lacking, making neurodegenerative diseases an area of high unmet medical need. Target-based drug discovery for disease-modifying agents has been ongoing for many years, without much success due to incomplete understanding of the molecular mechanisms underlying neurodegeneration. Phenotypic screening, starting with a disease-relevant phenotype to screen for compounds that change the outcome of biological pathways rather than activities at certain specific targets, offers an alternative approach to find small molecules or targets that modulate the key characteristics of neurodegeneration. Phenotypic screens that focus on amelioration of disease-specific toxins, protection of neurons from degeneration, or promotion of neuroregeneration could be potential fertile grounds for discovering therapeutic agents for neurodegenerative diseases. In this review, we will summarize the progress of compound screening using these phenotypic-based strategies for this area, with a highlight on unique considerations for disease models, assays, and screening methodologies. We will further provide our perspectives on how best to use phenotypic screening to develop drug leads for neurodegenerative diseases.
Collapse
Affiliation(s)
- Minhua Zhang
- 1GlaxoSmithKline (China) R&D Company Limited, Neurodegeneration DPU, Shanghai, China
| | | | | | | | | |
Collapse
|
233
|
Suzuki T, Kasuya Y, Itoh Y, Ota Y, Zhan P, Asamitsu K, Nakagawa H, Okamoto T, Miyata N. Identification of highly selective and potent histone deacetylase 3 inhibitors using click chemistry-based combinatorial fragment assembly. PLoS One 2013; 8:e68669. [PMID: 23874714 PMCID: PMC3713009 DOI: 10.1371/journal.pone.0068669] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/02/2013] [Indexed: 12/27/2022] Open
Abstract
To find histone deacetylase 3 (HDAC3)-selective inhibitors, a series of 504 candidates was assembled using "click chemistry", by reacting nine alkynes bearing a zinc-binding group with 56 azide building blocks in the presence of Cu(I) catalyst. Screening of the 504-member triazole library against HDAC3 and other HDAC isozymes led to the identification of potent and selective HDAC3 inhibitors T247 and T326. These compounds showed potent HDAC3 inhibition with submicromolar IC50s, whereas they did not strongly inhibit other isozymes. Compounds T247 and T326 also induced a dose-dependent selective increase of NF-κB acetylation in human colon cancer HCT116 cells, indicating selective inhibition of HDAC3 in the cells. In addition, these HDAC3-selective inhibitors induced growth inhibition of cancer cells, and activated HIV gene expression in latent HIV-infected cells. These findings indicate that HDAC3-selective inhibitors are promising candidates for anticancer drugs and antiviral agents. This work also suggests the usefulness of the click chemistry approach to find isozyme-selective HDAC inhibitors.
Collapse
Affiliation(s)
- Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama, Japan
- * E-mail: (TS); (NM)
| | - Yuki Kasuya
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Ota
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Peng Zhan
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kaori Asamitsu
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takashi Okamoto
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Naoki Miyata
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- * E-mail: (TS); (NM)
| |
Collapse
|
234
|
Cabrera SM, Colvin SC, Tersey SA, Maier B, Nadler JL, Mirmira RG. Effects of combination therapy with dipeptidyl peptidase-IV and histone deacetylase inhibitors in the non-obese diabetic mouse model of type 1 diabetes. Clin Exp Immunol 2013; 172:375-82. [PMID: 23600825 DOI: 10.1111/cei.12068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2013] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes (T1D) results from T helper type 1 (Th1)-mediated autoimmune destruction of insulin-producing β cells. Novel experimental therapies for T1D target immunomodulation, β cell survival and inflammation. We examined combination therapy with the dipeptidyl peptidase-IV inhibitor MK-626 and the histone deacetylase inhibitor vorinostat in the non-obese diabetic (NOD) mouse model of T1D. We hypothesized that combination therapy would ameliorate T1D by providing protection from β cell inflammatory destruction while simultaneously shifting the immune response towards immune-tolerizing regulatory T cells (T(regs)). Although neither mono- nor combination therapies with MK-626 and vorinostat caused disease remission in diabetic NOD mice, the combination of MK-626 and vorinostat increased β cell area and reduced the mean insulitis score compared to diabetic control mice. In prediabetic NOD mice, MK-626 monotherapy resulted in improved glucose tolerance, a reduction in mean insulitis score and an increase in pancreatic lymph node T(reg) percentage, and combination therapy with MK-626 and vorinostat increased pancreatic lymph node T(reg) percentage. We conclude that neither single nor combination therapies using MK-626 and vorinostat induce diabetes remission in NOD mice, but combination therapy appears to have beneficial effects on β cell area, insulitis and T(reg) populations. Combinations of vorinostat and MK-626 may serve as beneficial adjunctive therapy in clinical trials for T1D prevention or remission.
Collapse
Affiliation(s)
- S M Cabrera
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
235
|
Summers AR, Fischer MA, Stengel KR, Zhao Y, Kaiser JF, Wells CE, Hunt A, Bhaskara S, Luzwick JW, Sampathi S, Chen X, Thompson MA, Cortez D, Hiebert SW. HDAC3 is essential for DNA replication in hematopoietic progenitor cells. J Clin Invest 2013; 123:3112-23. [PMID: 23921131 DOI: 10.1172/jci60806] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) contributes to the regulation of gene expression, chromatin structure, and genomic stability. Because HDAC3 associates with oncoproteins that drive leukemia and lymphoma, we engineered a conditional deletion allele in mice to explore the physiological roles of Hdac3 in hematopoiesis. We used the Vav-Cre transgenic allele to trigger recombination, which yielded a dramatic loss of lymphoid cells, hypocellular bone marrow, and mild anemia. Phenotypic and functional analysis suggested that Hdac3 was required for the formation of the earliest lymphoid progenitor cells in the marrow, but that the marrow contained 3-5 times more multipotent progenitor cells. Hdac3(-/-) stem cells were severely compromised in competitive bone marrow transplantation. In vitro, Hdac3(-/-) stem and progenitor cells failed to proliferate, and most cells remained undifferentiated. Moreover, one-third of the Hdac3(-/-) stem and progenitor cells were in S phase 2 hours after BrdU labeling in vivo, suggesting that these cells were impaired in transit through the S phase. DNA fiber-labeling experiments indicated that Hdac3 was required for efficient DNA replication in hematopoietic stem and progenitor cells. Thus, Hdac3 is required for the passage of hematopoietic stem/progenitor cells through the S phase, for stem cell functions, and for lymphopoiesis.
Collapse
Affiliation(s)
- Alyssa R Summers
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Bhatt S, Ashlock BM, Toomey NL, Diaz LA, Mesri EA, Lossos IS, Ramos JC. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma. J Clin Invest 2013; 123:2616-28. [PMID: 23635777 DOI: 10.1172/jci64503] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 02/28/2013] [Indexed: 12/26/2022] Open
Abstract
Primary effusion lymphoma (PEL) is a rare form of aggressive B cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Current chemotherapy approaches result in dismal outcomes, and there is an urgent need for new PEL therapies. Previously, we established, in a direct xenograft model of PEL-bearing immune-compromised mice, that treatment with the proteasome inhibitor, bortezomib (Btz), increased survival relative to that after treatment with doxorubicin. Herein, we demonstrate that the combination of Btz with the histone deacetylase (HDAC) inhibitor suberoylanilidehydroxamic acid (SAHA, also known as vorinostat) potently reactivates KSHV lytic replication and induces PEL cell death, resulting in significantly prolonged survival of PEL-bearing mice. Importantly, Btz blocked KSHV late lytic gene expression, terminally inhibiting the full lytic cascade and production of infectious virus in vivo. Btz treatment led to caspase activation and induced DNA damage, as evidenced by the accumulation of phosphorylated γH2AX and p53. The addition of SAHA to Btz treatment was synergistic, as SAHA induced early acetylation of p53 and reduced interaction with its negative regulator MDM2, augmenting the effects of Btz. The eradication of KSHV-infected PEL cells without increased viremia in mice provides a strong rationale for using the proteasome/HDAC inhibitor combination therapy in PEL.
Collapse
Affiliation(s)
- Shruti Bhatt
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
237
|
CAO HUI, CHENG YIZHI, YOU LIANGSHUN, QIAN JIEJING, QIAN WENBIN. Homoharringtonine and SAHA synergistically enhance apoptosis in human acute myeloid leukemia cells through upregulation of TRAIL and death receptors. Mol Med Rep 2013; 7:1838-44. [DOI: 10.3892/mmr.2013.1440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/11/2013] [Indexed: 11/06/2022] Open
|
238
|
Zhang L, Wang X, Li X, Xu W. Discovery of a series of small molecules as potent histone deacetylase inhibitors. J Enzyme Inhib Med Chem 2013; 29:333-7. [PMID: 23534931 DOI: 10.3109/14756366.2013.780237] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A series of small molecules were designed and synthesized based on our previous virtual screening approach, which was performed to discover potent histone deacetylase inhibitors (HDACIs) with novel structures. The derived compounds were tested by Hela cell nucleus extract for enzyme inhibition assay. Tumor cell growth inhibition assays were performed using a series of tumor cell lines. Molecule 4h has the best performance among these compounds with enzyme inhibition IC₅₀ of 0.14 μM and tumor cell growth inhibition IC₅₀ of 1.85 (U937), 2.02 (HL60), 2.67 (K562). Docking studies showed that multiple H-bonds and hydrophobic interactions make 4h binding to the active site of HDAC. 4h has the advantage of low molecular weight, so a variety of structural modifications can be performed in our further studies.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University , Jinan, Shandong , China and
| | | | | | | |
Collapse
|
239
|
Shirakawa K, Chavez L, Hakre S, Calvanese V, Verdin E. Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol 2013; 21:277-85. [PMID: 23517573 DOI: 10.1016/j.tim.2013.02.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 12/31/2022]
Abstract
Latent HIV persists in CD4(+) T cells in infected patients under antiretroviral therapy (ART). Latency is associated with transcriptional silencing of the integrated provirus and driven, at least in part, by histone deacetylases (HDACs), a family of chromatin-associated proteins that regulate histone acetylation and the accessibility of DNA to transcription factors. Remarkably, inhibition of HDACs is sufficient to reactivate a fraction of latent HIV in a variety of experimental systems. This basic observation led to the shock and kill idea that forcing the transcriptional activation of HIV might lead to virus expression, to virus- or host-induced cell death of the reactivated cells, and to the eradication of the pool of latently infected cells. Such intervention might possibly lead to a cure for HIV-infected patients. Here, we review the basic biology of HDACs and their inhibitors, the role of HDACs in HIV latency, and recent efforts to use HDAC inhibitors to reactivate latent HIV in vitro and in vivo.
Collapse
Affiliation(s)
- Kotaro Shirakawa
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
240
|
Duverger A, Wolschendorf F, Zhang M, Wagner F, Hatcher B, Jones J, Cron RQ, van der Sluis RM, Jeeninga RE, Berkhout B, Kutsch O. An AP-1 binding site in the enhancer/core element of the HIV-1 promoter controls the ability of HIV-1 to establish latent infection. J Virol 2013; 87:2264-77. [PMID: 23236059 PMCID: PMC3571467 DOI: 10.1128/jvi.01594-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 12/01/2012] [Indexed: 12/13/2022] Open
Abstract
Following integration, HIV-1 in most cases produces active infection events; however, in some rare instances, latent infection events are established. The latter have major clinical implications, as latent infection allows the virus to persist despite antiretroviral therapy. Both the cellular factors and the viral elements that potentially determine whether HIV-1 establishes active or latent infection events remain largely elusive. We detail here the contribution of different long terminal repeat (LTR) sequences for the establishment of latent HIV-1 infection. Using a panel of full-length replication-competent virus constructs that reflect naturally occurring differences of HIV-1 subtype-specific LTRs and targeted LTR mutants, we found the primary ability of HIV-1 to establish latent infection in this system to be controlled by a four-nucleotide (nt) AP-1 element just upstream of the NF-κB element in the viral promoter. Deletion of this AP-1 site mostly deprived HIV-1 of the ability to establish latent HIV-1 infection. Extension of this site to a 7-nt AP-1 sequence massively promoted latency establishment, suggesting that this promoter region represents a latency establishment element (LEE). Given that these minimal changes in a transcription factor binding site affect latency establishment to such large extent, our data support the notion that HIV-1 latency is a transcription factor restriction phenomenon.
Collapse
Affiliation(s)
| | | | | | | | - Brandon Hatcher
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Renee M. van der Sluis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Rienk E. Jeeninga
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
241
|
Wilson PM, Labonte MJ, Martin SC, Kuwahara ST, El-Khoueiry A, Lenz HJ, Ladner RD. Sustained inhibition of deacetylases is required for the antitumor activity of the histone deactylase inhibitors panobinostat and vorinostat in models of colorectal cancer. Invest New Drugs 2013; 31:845-57. [PMID: 23299388 DOI: 10.1007/s10637-012-9914-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/06/2012] [Indexed: 12/20/2022]
Abstract
Despite compelling preclinical data in colorectal cancer (CRC), the efficacy of HDACIs has been disappointing in the clinic. The goal of this study was to evaluate the effectiveness of vorinostat and panobinostat in a dose- and exposure-dependent manner in order to better understand the dynamics of drug action and antitumor efficacy. In a standard 72 h drug exposure MTS assay, notable concentration-dependent antiproliferative effects were observed in the IC50 range of 1.2-2.8 μmol/L for vorinostat and 5.1-17.5 nmol/L for panobinostat. However, shorter clinically relevant exposures of 3 or 6 h failed to elicit any significant growth inhibition and in most cases a >24 h exposure to vorinostat or panobinostat was required to induce a sigmoidal dose-response. Similar results were observed in colony formation assays where ≥ 24 h of exposure was required to effectively reduce colony formation. Induction of acetyl-H3, acetyl-H4 and p21 by vorinostat were transient and rapidly reversed within 12 h of drug removal. In contrast, panobinostat-induced acetyl-H3, acetyl-H4, and p21 persisted for 48 h after an initial 3 h exposure. Treatment of HCT116 xenografts with panobinostat induced significant increases in acetyl-H3 and downregulation of thymidylate synthase after treatment. Although HDACIs exert both potent growth inhibition and cytotoxic effects when CRC cells were exposed to drug for ≥ 24 h, these cells demonstrate an inherent ability to survive HDACI concentrations and exposure times that exceed those clinically achievable. Continued efforts to develop novel HDACIs with improved pharmacokinetics/phamacodynamics, enhanced intratumoral delivery and class/isoform-specificity are needed to improve the therapeutic potential of HDACIs and HDACI-based combination regimens in solid tumors.
Collapse
Affiliation(s)
- Peter M Wilson
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | |
Collapse
|
242
|
Van Beneden K, Mannaerts I, Pauwels M, Van den Branden C, van Grunsven LA. HDAC inhibitors in experimental liver and kidney fibrosis. FIBROGENESIS & TISSUE REPAIR 2013; 6:1. [PMID: 23281659 PMCID: PMC3564760 DOI: 10.1186/1755-1536-6-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/29/2012] [Indexed: 02/08/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have been extensively studied in experimental models of cancer, where their inhibition of deacetylation has been proven to regulate cell survival, proliferation, differentiation and apoptosis. This in turn has led to the use of a variety of HDAC inhibitors in clinical trials. In recent years the applicability of HDAC inhibitors in other areas of disease has been explored, including the treatment of fibrotic disorders. Impaired wound healing involves the continuous deposition and cross-linking of extracellular matrix governed by myofibroblasts leading to diseases such as liver and kidney fibrosis; both diseases have high unmet medical needs which are a burden on health budgets worldwide. We provide an overview of the potential use of HDAC inhibitors against liver and kidney fibrosis using the current understanding of these inhibitors in experimental animal models and in vitro models of fibrosis.
Collapse
Affiliation(s)
- Katrien Van Beneden
- Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inge Mannaerts
- Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marina Pauwels
- Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Leo A van Grunsven
- Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
243
|
Cea M, Cagnetta A, Gobbi M, Patrone F, Richardson PG, Hideshima T, Anderson KC. New insights into the treatment of multiple myeloma with histone deacetylase inhibitors. Curr Pharm Des 2013; 19:734-744. [PMID: 23016853 PMCID: PMC4171085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/25/2012] [Indexed: 06/01/2023]
Abstract
Multiple Myeloma (MM) is a common hematologic malignancy of plasma cells representing an excellent model of epigenomics dysregulation in human disease. Importantly, these findings, in addition to providing a better understanding of the underlying molecular changes leading to this malignance, furnish the basis for an innovative therapeutic approach. Histone deacetylase inhibitors (HDACIs), including Vorinostat and Panobinostat, represent a novel class of drugs targeting enzymes involved in epigenetic regulation of gene expression, which have been evaluated also for the treatment of multiple myeloma. Although the clinical role in this setting is evolving and their precise utility remains to be determined, to date that single-agent anti-MM activity is modest. More importantly, HDACIs appear to be synergistic both in vitro and in vivo when combined with other anti-MM agents, mainly proteasome inhibitors including bortezomib. The molecular basis underlying this synergism seems to be multifactorial and involves interference with protein degradation as well as the interaction of myeloma cells with microenvironment. Here we review molecular events underling antitumor effects of HDACIs and the most recent results of clinical trials in relapsed and refractory MM.
Collapse
Affiliation(s)
- Michele Cea
- Department of Medical Oncology, Dana-Farber Cancer Institute, M551, 450 Brookline Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
244
|
Itoh Y, Suzuki T, Miyata N. Small-molecular modulators of cancer-associated epigenetic mechanisms. MOLECULAR BIOSYSTEMS 2013; 9:873-96. [DOI: 10.1039/c3mb25410k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
245
|
Selvi BR, Chatterjee S, Modak R, Eswaramoorthy M, Kundu TK. Histone acetylation as a therapeutic target. Subcell Biochem 2013; 61:567-596. [PMID: 23150268 DOI: 10.1007/978-94-007-4525-4_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The recent developments in the field of epigenetics have changed the way the covalent modifications were perceived from mere chemical tags to important biological recruiting platforms as well as decisive factors in the process of transcriptional regulation and gene expression. Over the years, the parallel investigations in the area of epigenetics and disease have also shown the significance of the epigenetic modifications as important regulatory nodes that exhibit dysfunction in disease states. In the present scenario where epigenetic therapy is also being considered at par with the conventional therapeutic strategies, this article reviews the role of histone acetylation as an epigenetic mark involved in different biological processes associated with normal as well as abnormal gene expression states, modulation of this acetylation by small molecules and warrants the possibility of acetylation as a therapeutic target.
Collapse
Affiliation(s)
- B Ruthrotha Selvi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, P.O., Bangalore, 560 064, India
| | | | | | | | | |
Collapse
|
246
|
Design, synthesis and bioevalution of novel benzamides derivatives as HDAC inhibitors. Bioorg Med Chem Lett 2013. [DOI: 10.1016/j.bmcl.2012.10.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
247
|
Abstract
The use of low dose hypomethylating agents for patients with myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (AML) has had made a significant impact. In the past, therapies for these diseases were limited and patients who elected to receive treatment were subject to highly toxic, inpatient chemotherapeutics, which were often ineffective. In the era of hypomethylating agents (azacitidine and decitabine), a patient with high grade MDS or AML with multilineage dysplasia can be offered the alternative of outpatient, relatively low-toxicity therapy. Despite the fact that CR (CR) rates to such agents remain relatively low at 15-20%, a much larger percentage of patients will have clinically significant improvements in hemoglobin, platelet, and neutrophil counts while maintaining good outpatient quality of life. As our clinical experience with azanucleotides expands, questions regarding patient selection, optimal dosing strategy, latency to best response and optimal duration of therapy following disease progression remain, but there is no question that for some patients these agents offer, for a time, an almost miraculous clinical benefit. Ongoing clinical trials in combination and in sequence with conventional therapeutics, with other epigenetically active agents, or in conjunction with bone marrow transplantation continue to provide promise for optimization of these agents for patients with myeloid disease. Although the mechanism(s) responsible for the proven efficacy of these agents remain a matter of some controversy, activity is thought to stem from induction of DNA hypomethylation, direct DNA damage, or possibly even immune modulation; there is no question that they have become a permanent part of the armamentarium against myeloid neoplasms.
Collapse
|
248
|
Brilli LL, Swanhart LM, de Caestecker MP, Hukriede NA. HDAC inhibitors in kidney development and disease. Pediatr Nephrol 2013; 28:1909-21. [PMID: 23052657 PMCID: PMC3751322 DOI: 10.1007/s00467-012-2320-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/13/2022]
Abstract
The discovery that histone deacetylase inhibitors (HDACis) can attenuate acute kidney injury (AKI)-mediated damage and reduce fibrosis in kidney disease models has opened the possibility of utilizing HDACis as therapeutics for renal injury. Studies to date have made it abundantly clear that HDACi treatment results in a plethora of molecular changes, which are not always linked to histone acetylation, and that there is an essential need to understand the specific target(s) of any HDACi of interest. New lines of investigation are beginning to delve more deeply into target identification of specific HDACis and to address the relative toxicity of different HDACi classes. This review will focus on the utilization of HDACis during kidney organogenesis, injury, and disease, as well as on the development of these compounds as therapeutics.
Collapse
Affiliation(s)
- Lauren L. Brilli
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Ave., 5061 BST3, Pittsburgh, PA 15213 USA
| | - Lisa M. Swanhart
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Ave., 5061 BST3, Pittsburgh, PA 15213 USA
| | - Mark P. de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, 3501 5th Ave., 5061 BST3, Pittsburgh, PA 15213 USA
| |
Collapse
|
249
|
Suzuki T, Ota Y, Ri M, Bando M, Gotoh A, Itoh Y, Tsumoto H, Tatum PR, Mizukami T, Nakagawa H, Iida S, Ueda R, Shirahige K, Miyata N. Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries. J Med Chem 2012; 55:9562-75. [PMID: 23116147 DOI: 10.1021/jm300837y] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To find HDAC8-selective inhibitors, we designed a library of HDAC inhibitor candidates, each containing a zinc-binding group that coordinates with the active-site zinc ion, linked via a triazole moiety to a capping structure that interacts with residues on the rim of the active site. These compounds were synthesized by using click chemistry. Screening identified HDAC8-selective inhibitors including C149 (IC(50) = 0.070 μM), which was more potent than PCI-34058 (6) (IC(50) = 0.31 μM), a known HDAC8 inhibitor. Molecular modeling suggested that the phenylthiomethyl group of C149 binds to a unique hydrophobic pocket of HDAC8, and the orientation of the phenylthiomethyl and hydroxamate moieties (fixed by the triazole moiety) is important for the potency and selectivity. The inhibitors caused selective acetylation of cohesin in cells and exerted growth-inhibitory effects on T-cell lymphoma and neuroblastoma cells (GI(50) = 3-80 μM). These findings suggest that HDAC8-selective inhibitors have potential as anticancer agents.
Collapse
Affiliation(s)
- Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 13 Taishogun Nishitakatsukasa-Cho, Kita-ku, Kyoto 403-8334, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Seidel C, Florean C, Schnekenburger M, Dicato M, Diederich M. Chromatin-modifying agents in anti-cancer therapy. Biochimie 2012; 94:2264-79. [DOI: 10.1016/j.biochi.2012.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/14/2012] [Indexed: 01/12/2023]
|