201
|
Somers DE, Schultz TF, Milnamow M, Kay SA. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 2000; 101:319-29. [PMID: 10847686 DOI: 10.1016/s0092-8674(00)80841-7] [Citation(s) in RCA: 391] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have conducted genetic screens for period length mutants in Arabidopsis using a transgenic bioluminescence phenotype. This screen identified mutations at a locus, ZEITLUPE (ZTL), that lengthen the free-running period of clock-controlled gene transcription and cell expansion, and alter the timing of the daylength-dependent transition from vegetative to floral development. Map-based cloning of ZTL identified a novel 609 amino acid polypeptide consisting of an amino-terminal PAS domain, an F box and six carboxy-terminal kelch repeats. The PAS region is highly similar to the PAS domain of the Arabidopsis blue-light receptor NPH1, and the Neurospora circadian-associated protein WHITE COLLAR-1 (WC-1). The striking fluence rate-dependent effect of the ztl mutations suggests that ZTL plays a primary role in the photocontrol of circadian period in higher plants.
Collapse
Affiliation(s)
- D E Somers
- The Scripps Research Institute, Department of Cell Biology, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
202
|
Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 2000; 101:331-40. [PMID: 10847687 DOI: 10.1016/s0092-8674(00)80842-9] [Citation(s) in RCA: 304] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plant reproduction requires precise control of flowering in response to environmental cues. We isolated a late-flowering Arabidopsis mutant, fkf1, that is rescued by vemalization or gibberellin treatment. We positionally cloned FKF1, which encodes a novel protein with a PAS domain similar to the flavin-binding region of certain photoreceptors, an F box characteristic of proteins that direct ubiquitin-mediated degradation, and six kelch repeats predicted to fold into a beta propeller. FKF1 mRNA levels oscillate with a circadian rhythm, and deletion of FKF1 alters the waveform of rhythmic expression of two clock-controlled genes, implicating FKF1 in modulating the Arabidopsis circadian clock.
Collapse
Affiliation(s)
- D C Nelson
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | | | |
Collapse
|
203
|
|
204
|
Abstract
The components of the circadian system that have recently been discovered in plants share some characteristics with those from cyanobacterial, fungal and animal circadian clocks. Light input signals to the clock are contributed by multiple photoreceptors: some of these have now been shown to function specifically in response to light of defined wavelength and fluence rate. New reports of clock-controlled processes and genes are highlighting the importance of time management for plant development.
Collapse
Affiliation(s)
- G Murtas
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
205
|
Reeves PH, Coupland G. Response of plant development to environment: control of flowering by daylength and temperature. CURRENT OPINION IN PLANT BIOLOGY 2000; 3:37-42. [PMID: 10679453 DOI: 10.1016/s1369-5266(99)00041-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The transition from vegetative growth to flowering is often controlled by environmental conditions and influenced by the age of the plant. Intensive genetic analysis has identified pathways that regulate flowering time of Arabidopsis in response to daylength or low temperature (vernalization). These pathways are proposed to converge to regulate the expression of genes that act within the floral primordium and promote floral development. In the past year, genes that confer the responses to daylength or vernalization have been cloned and have enabled aspects of the genetic models to be tested at the molecular level.
Collapse
Affiliation(s)
- P H Reeves
- John Innes Centre, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
206
|
Abstract
Many plants are adapted to flower at particular times of year, to ensure optimal pollination and seed maturation. In these plants flowering is controlled by environmental signals that reflect the changing seasons, particularly daylength and temperature. The response to daylength varies, so that plants isolated at higher latitudes tend to flower in response to long daylengths of spring and summer, while plants from lower latitudes avoid the extreme heat of summer by responding to short days. Such responses require a mechanism for measuring time, and the circadian clock that regulates daily rhythms in behaviour also acts as the timer in the measurement of daylength. Plants from high latitudes often also show an extreme response to temperature called vernalisation in which flowering is repressed until the plant is exposed to winter temperatures for an extended time. Genetic approaches in Arabidopsis have identified a number of genes that control vernalisation and daylength responses. These genes are described and models presented for how daylength might regulate flowering by controlling their expression by the circadian clock. BioEssays 22:38-47, 2000.
Collapse
Affiliation(s)
- A Samach
- John Innes Centre, Colney Lane, Norwich, UK
| | | |
Collapse
|
207
|
Abstract
Thanks to genetic and biochemical advances on the molecular mechanism of circadian rhythms in Drosophila, theoretical models closely related to experimental observations can be considered for the regulatory mechanism of the circadian clock in this organism. Modeling is based on the autoregulatory negative feedback exerted by a complex between PER and TIM proteins on the expression of per and tim genes. The model predicts the occurrence of sustained circadian oscillations in continuous darkness. When incorporating light-induced TIM degradation, the model accounts for damping of oscillations in constant light, entrainment of the rhythm by light-dark cycles of varying period or photoperiod, and phase shifting by light pulses. The model further provides a molecular dynamical explanation for the permanent or transient suppression of circadian rhythmicity triggered in a variety of organisms by a critical pulse of light. Finally, the model shows that to produce a robust rhythm the various clock genes must be expressed at the appropriate levels since sustained oscillations only occur in a precise range of parameter values. BioEssays 22:84-93, 2000.
Collapse
Affiliation(s)
- J C Leloup
- Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine, Brussels, Belgium
| | | |
Collapse
|
208
|
Bognár LK, Hall A, Adám E, Thain SC, Nagy F, Millar AJ. The circadian clock controls the expression pattern of the circadian input photoreceptor, phytochrome B. Proc Natl Acad Sci U S A 1999; 96:14652-7. [PMID: 10588760 PMCID: PMC24491 DOI: 10.1073/pnas.96.25.14652] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Developmental and physiological responses are regulated by light throughout the entire life cycle of higher plants. To sense changes in the light environment, plants have developed various photoreceptors, including the red/far-red light-absorbing phytochromes and blue light-absorbing cryptochromes. A wide variety of physiological responses, including most light responses, also are modulated by circadian rhythms that are generated by an endogenous oscillator, the circadian clock. To provide information on local time, circadian clocks are synchronized and entrained by environmental time cues, of which light is among the most important. Light-driven entrainment of the Arabidopsis circadian clock has been shown to be mediated by phytochrome A (phyA), phytochrome B (phyB), and cryptochromes 1 and 2, thus affirming the roles of these photoreceptors as input regulators to the plant circadian clock. Here we show that the expression of PHYB::LUC reporter genes containing the promoter and 5' untranslated region of the tobacco NtPHYB1 or Arabidopsis AtPHYB genes fused to the luciferase (LUC) gene exhibit robust circadian oscillations in transgenic plants. We demonstrate that the abundance of PHYB RNA retains this circadian regulation and use a PHYB::Luc fusion protein to show that the rate of PHYB synthesis is also rhythmic. The abundance of bulk PHYB protein, however, exhibits only weak circadian rhythmicity, if any. These data suggest that photoreceptor gene expression patterns may be significant in the daily regulation of plant physiology and indicate an unexpectedly intimate relationship between the components of the input pathway and the putative circadian clock mechanism in higher plants.
Collapse
Affiliation(s)
- L K Bognár
- Plant Biology Institute, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
209
|
Ciceri P, Locatelli F, Genga A, Viotti A, Schmidt RJ. The activity of the maize Opaque2 transcriptional activator is regulated diurnally. PLANT PHYSIOLOGY 1999; 121:1321-8. [PMID: 10594119 PMCID: PMC59499 DOI: 10.1104/pp.121.4.1321] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/1999] [Accepted: 09/09/1999] [Indexed: 05/22/2023]
Abstract
The maize (Zea mays L.) Opaque2 (O2) protein is an endosperm-specific transcriptional activator whose DNA-binding activity is regulated diurnally by a phosphorylation/dephosphorylation mechanism. We show that the O2 transcript undergoes pronounced oscillations during the day-night cycle. The highest level of the O2 message is present at midday and the lowest level at midnight. The level of O2 transcript follows a diurnal rhythm that appears controlled by the circadian clock. Two different endosperm-expressed DNA-binding proteins, PBF (prolamin box-binding factor) and OHP1 (O2-heterodimerizing protein 1), were also analyzed. While the PBF message levels oscillate diurnally, the steady-state levels of OHP1 transcript were constant through the day and night. We present data showing that the seed is not directly involved in the perception of the light signal, but presumably responds to diurnal fluxes of nutrients into the endosperm. Moreover, we show that the O2 protein is not involved in the regulation of its own transcript levels. These data indicate that O2 activity is down-regulated at night by both a reduction in O2 transcript and by hyperphosphorylation of residual O2 protein, and suggest that regulatory gene activity during endosperm development may be acutely sensitive to a diurnal signal(s) emanating from the plant and passing into the developing seeds.
Collapse
Affiliation(s)
- P Ciceri
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | |
Collapse
|
210
|
Sugano S, Andronis C, Ong MS, Green RM, Tobin EM. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc Natl Acad Sci U S A 1999; 96:12362-6. [PMID: 10535927 PMCID: PMC22922 DOI: 10.1073/pnas.96.22.12362] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A wide range of processes in plants, including expression of certain genes, is regulated by endogenous circadian rhythms. The circadian clock-associated 1 (CCA1) and the late elongated hypocotyl (LHY) proteins have been shown to be closely associated with clock function in Arabidopsis thaliana. The protein kinase CK2 can interact with and phosphorylate CCA1, but its role in the regulation of the circadian clock remains unknown. Here we show that plants overexpressing CKB3, a regulatory subunit of CK2, display increased CK2 activity and shorter periods of rhythmic expression of CCA1 and LHY. CK2 is also able to interact with and phosphorylate LHY in vitro. Additionally, overexpression of CKB3 shortened the periods of four known circadian clock-controlled genes with different phase angles, demonstrating that many clock outputs are affected. This overexpression also reduced phytochrome induction of an Lhcb gene. Finally, we found that the photoperiodic flowering response, which is influenced by circadian rhythms, was diminished in the transgenic lines, and that the plants flowered earlier on both long-day and short-day photoperiods. These data demonstrate that CK2 is involved in regulation of the circadian clock in Arabidopsis.
Collapse
Affiliation(s)
- S Sugano
- Department of Molecular Biology, University of California, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
211
|
Chaudhury A, Okada K, Raikhel NV, Shinozaki K, Sundaresan V. A weed reaches new heights down under. THE PLANT CELL 1999; 11:1817-1826. [PMID: 10521514 PMCID: PMC1464678 DOI: 10.1105/tpc.11.10.1817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- A Chaudhury
- CSIRO Plant Industry, P.O. Box 1600, Canberra ACT, 2601 Australia
| | | | | | | | | |
Collapse
|
212
|
Sai J, Johnson CH. Different circadian oscillators control Ca(2+) fluxes and lhcb gene expression. Proc Natl Acad Sci U S A 1999; 96:11659-63. [PMID: 10500233 PMCID: PMC18090 DOI: 10.1073/pnas.96.20.11659] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/1999] [Indexed: 11/18/2022] Open
Abstract
Circadian biological clocks control many biological events, but the pathways by which these events are controlled are largely unknown. Based on a model suggesting that cytosolic-free calcium levels control the expression of the Lhcb gene in plants, we tested whether the circadian oscillation of free calcium is responsible for driving the rhythm of Lhcb expression. We found that these rhythms free-run with different periods in tobacco seedlings in constant conditions. Moreover, robust oscillations of Lhcb promoter activity continued in undifferentiated tobacco calli in the absence of Ca(2+) oscillations. Therefore, these two circadian rhythms are not linked hierarchically. These data provide evidence for separate circadian pacemakers controlling molecular events in plants.
Collapse
Affiliation(s)
- J Sai
- Department of Biology, Box 1812-B, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
213
|
Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 1999; 285:1579-82. [PMID: 10477524 DOI: 10.1126/science.285.5433.1579] [Citation(s) in RCA: 374] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Photoperiodic responses in plants include flowering that is day-length-dependent. Mutations in the Arabidopsis thaliana GIGANTEA (GI) gene cause photoperiod-insensitive flowering and alteration of circadian rhythms. The GI gene encodes a protein containing six putative transmembrane domains. Circadian expression patterns of the GI gene and the clock-associated genes, LHY and CCA1, are altered in gi mutants, showing that GI is required for maintaining circadian amplitude and appropriate period length of these genes. The gi-1 mutation also affects light signaling to the clock, which suggests that GI participates in a feedback loop of the plant circadian system.
Collapse
Affiliation(s)
- D H Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Somers DE. The physiology and molecular bases of the plant circadian clock. PLANT PHYSIOLOGY 1999; 121:9-20. [PMID: 10482655 PMCID: PMC1539225 DOI: 10.1104/pp.121.1.9] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- D E Somers
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|