201
|
Abstract
An ab initio theoretical study at the CASPT2 level is reported on minimum energy reaction paths, state minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of two tautomers of adenine: 9H- and 7H-adenine. The obtained results led to a complete interpretation of the photophysics of adenine and derivatives, both under jet-cooled conditions and in solution, within a three-state model. The ultrafast subpicosecond fluorescence decay measured in adenine is attributed to the low-lying conical intersection (gs/pipi* La)(CI), reached from the initially populated 1(pipi* La) state along a path which is found to be barrierless only in 9H-adenine, while for the 7H tautomer the presence of an intermediate plateau corresponding to an NH2-twisted conformation may explain the absence of ultrafast decay in 7-substituted compounds. A secondary picosecond decay is assigned to a path involving switches towards two other states, 1(pipi* Lb) and 1(npi*), ultimately leading to another conical intersection with the ground state, (gs/npi*), with a perpendicular disposition of the amino group. The topology of the hypersurfaces and the state properties explain the absence of secondary decay in 9-substituted adenines in water in terms of the higher position of the 1(npi*) state and also that the 1(pipi* Lb) state of 7H-adenine is responsible for the observed fluorescence in water. A detailed discussion comparing recent experimental and theoretical findings is given. As for other nucleobases, the predominant role of a pipi*-type state in the ultrafast deactivation of adenine is confirmed.
Collapse
Affiliation(s)
- Luis Serrano-Andrés
- Instituto de Ciencia Molecular, Universitat de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain.
| | | | | |
Collapse
|
202
|
Gunner MR, Mao J, Song Y, Kim J. Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1757:942-68. [PMID: 16905113 PMCID: PMC2760439 DOI: 10.1016/j.bbabio.2006.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 06/07/2006] [Accepted: 06/13/2006] [Indexed: 11/15/2022]
Abstract
A protein structure should provide the information needed to understand its observed properties. Significant progress has been made in developing accurate calculations of acid/base and oxidation/reduction reactions in proteins. Current methods and their strengths and weaknesses are discussed. The distribution and calculated ionization states in a survey of proteins is described, showing that a significant minority of acidic and basic residues are buried in the protein and that most of these remain ionized. The electrochemistry of heme and quinones are considered. Proton transfers in bacteriorhodopsin and coupled electron and proton transfers in photosynthetic reaction centers, 5-coordinate heme binding proteins and cytochrome c oxidase are highlighted as systems where calculations have provided insight into the reaction mechanism.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
203
|
Lenz MO, Huber R, Schmidt B, Gilch P, Kalmbach R, Engelhard M, Wachtveitl J. First steps of retinal photoisomerization in proteorhodopsin. Biophys J 2006; 91:255-62. [PMID: 16603495 PMCID: PMC1479053 DOI: 10.1529/biophysj.105.074690] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The early steps (<1 ns) in the photocycle of the detergent solubilized proton pump proteorhodopsin are analyzed by ultrafast spectroscopic techniques. A comparison to the first primary events in reconstituted proteorhodopsin as well as to the well known archaeal proton pump bacteriorhodopsin is given. A dynamic Stokes shift observed in fs-time-resolved fluorescence experiments allows a direct observation of early motions on the excited state potential energy surface. The initial dynamics is dominated by sequentially emerging stretching (<150 fs) and torsional (approximately 300 fs) modes of the retinal. The different protonation states of the primary proton acceptor Asp-97 drastically affect the reaction rate and the overall quantum efficiencies of the isomerization reactions, mainly evidenced for time scales above 1 ps. However, no major influence on the fast time scales (approximately 150 fs) could be seen, indicating that the movement out of the Franck-Condon region is fairly robust to electrostatic changes in the retinal binding pocket. Based on fs-time-resolved absorption and fluorescence spectra, ground and exited state contributions can be disentangled and allow to construct a reaction model that consistently explains pH-dependent effects in solubilized and reconstituted proteorhodopsin.
Collapse
Affiliation(s)
- Martin O Lenz
- Institut für Physikalische und Theoretische Chemie, Johann-Wolfgang-Goethe-Universität, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
204
|
Schenkl S, van Mourik F, Friedman N, Sheves M, Schlesinger R, Haacke S, Chergui M. Insights into excited-state and isomerization dynamics of bacteriorhodopsin from ultrafast transient UV absorption. Proc Natl Acad Sci U S A 2006; 103:4101-6. [PMID: 16537491 PMCID: PMC1449653 DOI: 10.1073/pnas.0506303103] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A visible-pump/UV-probe transient absorption is used to characterize the ultrafast dynamics of bacteriorhodopsin with 80-fs time resolution. We identify three spectral components in the 265- to 310-nm region, related to the all-trans retinal, tryptophan (Trp)-86 and the isomerized photoproduct, allowing us to map the dynamics from reactants to products, along with the response of Trp amino acids. The signal of the photoproduct appears with a time delay of approximately 250 fs and is characterized by a steep rise ( approximately 150 fs), followed by additional rise and decay components, with time scales characteristic of the J intermediate. The delayed onset and the steep rise point to an impulsive formation of a transition state on the way to isomerization. We argue that this impulsive formation results from a splitting of a wave packet of torsional modes on the potential surface at the branching between the all-trans and the cis forms. Parallel to these dynamics, the signal caused by Trp response rises in approximately 200 fs, because of the translocation of charge along the conjugate chain, and possible mechanisms are presented, which trigger isomerization.
Collapse
Affiliation(s)
- S. Schenkl
- *Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingeniérie Chimiques, Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
| | - F. van Mourik
- *Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingeniérie Chimiques, Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
| | - N. Friedman
- Departments of Organic Chemistry and Chemical Services, The Weizmann Institute of Sciences, Rehovot 76100, Israel; and
| | - M. Sheves
- Departments of Organic Chemistry and Chemical Services, The Weizmann Institute of Sciences, Rehovot 76100, Israel; and
| | - R. Schlesinger
- Institute for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - S. Haacke
- *Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingeniérie Chimiques, Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
| | - M. Chergui
- *Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingeniérie Chimiques, Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
205
|
Nielsen IB, Lammich L, Andersen LH. S1 and S2 excited States of gas-phase Schiff-base retinal chromophores. PHYSICAL REVIEW LETTERS 2006; 96:018304. [PMID: 16486529 DOI: 10.1103/physrevlett.96.018304] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Indexed: 05/06/2023]
Abstract
Photoabsorption studies of 11-cis and all-trans Schiff-base retinal chromophore cations in the gas phase have been performed at the electrostatic ion storage ring in Aarhus. A broad absorption band due to the optically allowed excitation to the first electronically excited singlet state (S1) is observed at around 600 nm. A second "dark" excited state (S2) just below 400 nm is reported for the first time. It is located approximately 1.2 eV above S1 for both chromophores. The S2 state was not visible in a solution measurement where only one highly blueshifted absorption band corresponding to the first excited state was visible. Knowledge of the position of the excited states in retinal is essential for the understanding of the fast photoisomerization in, for example, visual pigments.
Collapse
Affiliation(s)
- I B Nielsen
- Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
206
|
|
207
|
Yokoyama S, Starmer WT, Takahashi Y, Tada T. Tertiary structure and spectral tuning of UV and violet pigments in vertebrates. Gene 2006; 365:95-103. [PMID: 16343816 PMCID: PMC2810422 DOI: 10.1016/j.gene.2005.09.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/04/2005] [Accepted: 09/07/2005] [Indexed: 11/16/2022]
Abstract
Many vertebrate species use ultraviolet (UV) vision for such behaviors as mating, foraging, and communication. UV vision is mediated by UV-sensitive visual pigments, which have the wavelengths of maximal absorption (lambda max) at approximately 360 nm, whereas violet (or blue) vision is mediated by orthologous pigments with lambda max values of 390-440 nm. It is widely believed that amino acids in transmembrane (TM) I-III are solely responsible for the spectral tuning of these SWS1 pigments. Recent molecular analyses of SWS1 pigments, however, show that amino acids in TM IV-VII are also involved in the spectral tuning of these pigments through synergistic interactions with those in TM I-III. Comparisons of the tertiary structures of UV and violet pigments reveal that the distance between the counterion E113 in TM III and amino acid sites 87-93 in TM II is narrower for UV pigments than for violet pigments, which may restrict the access of water molecules to the Schiff base pocket and deprotonate the Schiff base nitrogen. Both mutagenesis analyses of E113Q and quantum chemical calculations strongly suggest that unprotonated Schiff base-linked chromophore is responsible for detecting UV light.
Collapse
Affiliation(s)
- Shozo Yokoyama
- Department of Biology, Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
208
|
Kistler KA, Matsika S. The Fluorescence Mechanism of 5-Methyl-2-Pyrimidinone: An Ab Initio Study of a Fluorescent Pyrimidine Analog. Photochem Photobiol 2006; 83:611-24. [PMID: 16780393 DOI: 10.1562/2006-04-03-ra-866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The photophysically important potential energy surfaces of the fluorescent pyrimidine analog 5-methyl-2-pyrimidinone have been explored using multireference configuration-interaction ab initio methods at three levels of dynamical correlation, all of which support a fluorescence mechanism. At vertical excitation S1 (dark, n(N)pi*) and S2 (bright, pipi*) are almost degenerate at 4.4 eV, with S3 (dark, n(O)pi*) at 5.1 eV. The excited system can follow the S1-S2 seam of conical intersections, accessible from the Franck-Condon region, to its minimum and then evolve from this conical intersection on the S1 (pipi*) surface to a global minimum. At lower levels of correlation, the S1 surface shows two minima separated by a barrier of up to 0.18 eV. The secondary minimum found at the lower levels of correlation becomes the global minimum with higher correlation. The S1 population at this minimum can be trapped from accessing the lowest energy S0-S1 (pipi*/gs) conical intersection by an energy gap at least 0.3-0.4 eV higher than the S1 minimum. The calculated emission energy from this minimum is 2.80 eV. Gradient pathways connecting important S1 geometries are presented, as well as other excited state conical intersections.
Collapse
Affiliation(s)
- Kurt A Kistler
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
209
|
Durbeej B, Eriksson LA. Protein-bound chromophores astaxanthin and phytochromobilin: excited state quantum chemical studies. Phys Chem Chem Phys 2006; 8:4053-71. [PMID: 17028694 DOI: 10.1039/b605682b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an overview of excited state quantum chemical calculations aimed at elucidating controversial issues regarding the photochemistry of the protein-bound chromophores astaxanthin and phytochromobilin. In particular, we show how the application of time-dependent density functional theory and other single-reference quantum chemical excited state methods have contributed to shed new light on the origin of the >0.5 eV bathochromic shift of the electronic absorption by the carotenoid astaxanthin in the protein macromolecular complex crustacyanin, and the mechanism for C15-Z,syn --> C15-E,anti isomerization of the tetrapyrrole phytochromobilin that underlies the photoactivation of the plant photoreceptor phytochrome. Within the approximation that exciton coupling is neglected, the calculations on astaxanthin provide support for the notion that the bathochromic shift, which is responsible for the slate-blue coloration of lobster shell, is due to polarization rather than a conformational change of the chromophore in the protein-bound state. Furthermore, the polarization is attributed to a hydrogen-bonded protonated histidine residue. The calculations on phytochromobilin, in turn, suggest that a stepwise C15-Z,syn --> C15-E,syn (photochemical), C15-E,syn --> C15-E,anti (thermal) mechanism is much more favorable than a concerted, fully photochemical mechanism, and that neutral forms of the chromophore are much less likely to photoisomerize than the parent, protonated form. Accordingly, the calculations indirectly support the view that the photoactivation of phytochrome does not involve a proton transfer from the chromophore to the surrounding protein.
Collapse
Affiliation(s)
- Bo Durbeej
- Department of Chemistry, University of Siena, Via Aldo Moro 2, I-53100, Siena, Italy.
| | | |
Collapse
|
210
|
Durbeej B, Borg OA, Eriksson LA. Computational evidence in favor of a protonated chromophore in the photoactivation of phytochrome. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.09.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
211
|
Abstract
Two rhodopsins with intrinsic ion conductance have been identified recently in Chlamydomonas reinhardtii. They were named "channelrhodopsins" ChR1 and ChR2. Both were expressed in Xenopus laevis oocytes, and their properties were studied qualitatively by two electrode voltage clamp techniques. ChR1 is specific for H+, whereas ChR2 conducts Na+, K+, Ca2+, and guanidinium. ChR2 responds to the onset of light with a peak conductance, followed by a smaller steady-state conductance. Upon a second stimulation, the peak is smaller and recovers to full size faster at high external pH. ChR1 was reported to respond with a steady-state conductance only but is demonstrated here to have a peak conductance at high light intensities too. We analyzed quantitatively the light-induced conductance of ChR1 and developed a reaction scheme that describes the photocurrent kinetics at various light conditions. ChR1 exists in two dark states, D1 and D2, that photoisomerize to the conducting states M1 and M2, respectively. Dark-adapted ChR1 is completely arrested in D1. M1 converts into D1 within milliseconds but, in addition, equilibrates with the second conducting state M2 that decays to the second dark state D2. Thus, light-adapted ChR1 represents a mixture of D1 and D2. D2 thermally reconverts to D1 in minutes, i.e., much slower than any reaction of the two photocycles.
Collapse
Affiliation(s)
- Peter Hegemann
- Experimentelle Biophysik, Fachbereich für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | | | | |
Collapse
|
212
|
Yamazaki S, Kato S. Locating the lowest free-energy point on conical intersection in polar solvent: Reference interaction site model self-consistent field study of ethylene and CH2NH2+. J Chem Phys 2005; 123:114510. [PMID: 16392576 DOI: 10.1063/1.2038867] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a theoretical method for locating the lowest free-energy points on conical intersections (CIs) in solution using the reference interaction site model self-consistent field (RISM-SCF) theory. Based on the linear-response theory, the nonequilibrium free energy is defined as a quadratic function of solvation coordinates, the parameters in which are directly obtained by ab initio RISM-SCF calculations. This free energy is easily incorporated into an efficient CI optimization procedure in gas phase. The present method is applied to the cis-trans photoisomerizations of ethylene and methaniminium cation (CH2NH2(+)) in polar solvents. We show that the geometries and energies of CIs are largely affected by the solute-solvent electrostatic interaction. In particular, the hydrogen migration of ethylene observed at CIs in the gas phase disappears in protic solvents due to the large stabilization of the zwitterionic state.
Collapse
Affiliation(s)
- Shohei Yamazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Japan
| | | |
Collapse
|
213
|
Schenkl S, van Mourik F, van der Zwan G, Haacke S, Chergui M. Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin. Science 2005; 309:917-20. [PMID: 16081732 DOI: 10.1126/science.1111482] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The ultrafast evolution of the electric field within bacteriorhodopsin was measured by monitoring the absorption changes of a tryptophan residue after excitation of retinal. The Trp absorption decreases within the first 200 femtoseconds and then recovers on time scales typical for retinal isomerization and vibrational relaxation. A model of excitonic coupling between retinal and tryptophans shows that the signal reflects a gradual rise of the retinal difference dipole moment, which precedes and probably drives isomerization. The results suggest an intimate connection between the progressive dipole moment change and the retinal skeletal changes reported over the same time scale.
Collapse
Affiliation(s)
- S Schenkl
- Ecole Polytechnique Fédérale de Lausanne, Laboratory of Ultrafast Spectroscopy, Institut de Sciences et Ingéniérie Chimiques, FSB-BSP, CH-1015 Lausanne-Dorigny, Switzerland
| | | | | | | | | |
Collapse
|
214
|
Zgrablić G, Voïtchovsky K, Kindermann M, Haacke S, Chergui M. Ultrafast excited state dynamics of the protonated Schiff base of all-trans retinal in solvents. Biophys J 2005; 88:2779-88. [PMID: 15792984 PMCID: PMC1305373 DOI: 10.1529/biophysj.104.046094] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a comparative study of the ultrafast photophysics of all-trans retinal in the protonated Schiff base form in solvents with different polarities and viscosities. Steady-state spectra of retinal in the protonated Schiff base form show large absorption-emission Stokes shifts (6500-8100 cm(-1)) for both polar and nonpolar solvents. Using a broadband fluorescence up-conversion experiment, the relaxation kinetics of fluorescence is investigated with 120 fs time resolution. The time-zero spectra already exhibit a Stokes-shift of approximately 6000 cm(-1), indicating depopulation of the Franck-Condon region in < or =100 fs. We attribute it to relaxation along skeletal stretching. A dramatic spectral narrowing is observed on a 150 fs timescale, which we assign to relaxation from the S(2) to the S(1) state. Along with the direct excitation of S(1), this relaxation populates different quasistationary states in S(1), as suggested from the existence of three distinct fluorescence decay times with different decay associated spectra. A 0.5-0.65 ps decay component is observed, which may reflect the direct repopulation of the ground state, in line with the small isomerization yield in solvents. Two longer decay components are observed and are attributed to torsional motion leading to photo-isomerization. The various decay channels show little or no dependence with respect to the viscosity or dielectric constant of the solvents. This suggests that in the protein, the bond selectivity of isomerization is mainly governed by steric effects.
Collapse
Affiliation(s)
- Goran Zgrablić
- Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, FSB-BSP, CH-1015 Lausanne-Dorigny, Switzerland
| | | | | | | | | |
Collapse
|
215
|
Andersen LH, Nielsen IB, Kristensen MB, El Ghazaly MOA, Haacke S, Nielsen MB, Petersen MA. Absorption of Schiff-Base Retinal Chromophores in Vacuo. J Am Chem Soc 2005; 127:12347-50. [PMID: 16131214 DOI: 10.1021/ja051638j] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The absorption spectrum of the all-trans retinal chromophore in the protonated Schiff-base form, that is, the biologically relevant form, has been measured in vacuo, and a maximum is found at 610 nm. The absorption of retinal proteins has hitherto been compared to that of protonated retinal in methanol, where the absorption maximum is at 440 nm. In contrast, the new gas-phase absorption data constitute a well-defined reference for spectral tuning in rhodopsins in an environment devoid of charges and dipoles. They replace the misleading comparison with absorption properties in solvents and lay the basis for reconsidering the molecular mechanisms of color tuning in the large family of retinal proteins. Indeed, our measurement directly shows that protein environments in rhodopsins are blue- rather than red shifting the absorption. The absorption of a retinal model chromophore with a neutral Schiff base is also studied. The data explain the significant blue shift that occurs when metharhodopsin I becomes deprotonated as well as the purple-to-blue transition of bacteriorhodopsin upon acidification.
Collapse
Affiliation(s)
- Lars H Andersen
- Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
216
|
Olivucci M, Lami A, Santoro F. A Tiny Excited-State Barrier Can Induce a Multiexponential Decay of the Retinal Chromophore: A Quantum Dynamics Investigation. Angew Chem Int Ed Engl 2005; 44:5118-21. [PMID: 16035016 DOI: 10.1002/anie.200501236] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Massimo Olivucci
- Dipartimento di Chimica, Università degli Studi di Siena, via Aldo Moro, 53100 Siena, Italy.
| | | | | |
Collapse
|
217
|
Olivucci M, Lami A, Santoro F. A Tiny Excited-State Barrier Can Induce a Multiexponential Decay of the Retinal Chromophore: A Quantum Dynamics Investigation. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
218
|
Cembran A, Gonzalez-Luque R, Altoè P, Merchan M, Bernardi F, Olivucci M, Garavelli M. Structure, Spectroscopy, and Spectral Tuning of the Gas-Phase Retinal Chromophore: The β-Ionone “Handle” and Alkyl Group Effect. J Phys Chem A 2005; 109:6597-605. [PMID: 16834008 DOI: 10.1021/jp052068c] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The low-lying singlet states (i.e. S0, S1, and S2) of the chromophore of rhodopsin, the protonated Schiff base of 11-cis-retinal (PSB11), and of its all-trans photoproduct have been studied in isolated conditions by using ab initio multiconfigurational second-order perturbation theory. The computed spectroscopic features include the vertical excitation, the band origin, and the fluorescence maximum of both isomers. On the basis of the S0-->S1 vertical excitation, the gas-phase absorption maximum of PSB11 is predicted to be 545 nm (2.28 eV). Thus, the predicted absorption maximum appears to be closer to that of the rhodopsin pigment (2.48 eV) and considerably red-shifted with respect to that measured in solution (2.82 eV in methanol). In addition, the absorption maxima associated with the blue, green, and red cone visual pigments are tentatively rationalized in terms of the spectral changes computed for PSB11 structures featuring differently twisted beta-ionone rings. More specifically, a blue-shifted absorption maximum is explained in terms of a large twisting of the beta-ionone ring (with respect to the main conjugated chain) in the visual S-cone (blue) pigment chromophore. In contrast, the chromophore of the visual L-cone (red) pigment is expected to have a nearly coplanar beta-ionone ring yielding a six double bond fully conjugated framework. Finally, the M-cone (green) chromophore is expected to feature a twisting angle between 10 and 60 degrees. The spectroscopic effects of the alkyl substituents on the PSB11 spectroscopic properties have also been investigated. It is found that they have a not negligible stabilizing effect on the S1-S0 energy gap (and, thus, cause a red shift of the absorption maximum) only when the double bond of the beta-ionone ring conjugates significantly with the rest of the conjugated chain.
Collapse
Affiliation(s)
- Alessandro Cembran
- Dipartimento di Chimica G. Ciamician, Università di Bologna, via Selmi 2, Bologna, I-40126 Italy
| | | | | | | | | | | | | |
Collapse
|
219
|
Cembran A, Bernardi F, Olivucci M, Garavelli M. The retinal chromophore/chloride ion pair: structure of the photoisomerization path and interplay of charge transfer and covalent states. Proc Natl Acad Sci U S A 2005; 102:6255-60. [PMID: 15855270 PMCID: PMC1088357 DOI: 10.1073/pnas.0408723102] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ab initio multi-reference second-order perturbation theory computations are used to explore the photochemical behavior of two ion pairs constituted by a chloride counterion interacting with either a rhodopsin or bacteriorhodopsin chromophore model (i.e., the 4-cis-gamma-methylnona-2,4,6,8-tetraeniminium and all-trans-nona-2,4,6,8-tetraeniminium cations, respectively). Significant counterion effects on the structure of the photoisomerization paths are unveiled by comparison with the paths of the same chromophores in vacuo. Indeed, we demonstrate that the counterion (i) modulates the relative stability of the S0, S1, and S2 energy surfaces leading to an S1 isomerization energy profile where the S1 and S2 states are substantially degenerate; (ii) leads to the emergence of significant S1 energy barriers along all of the isomerization paths except the one mimicking the 11-cis --> all-trans isomerization of the rhodopsin chromophore model; and (iii) changes the nature of the S1 --> S0 decay funnel that becomes a stable excited state minimum when the isomerizing double bond is located at the center of the chromophore moiety. We show that these (apparently very different) counterion effects can be rationalized on the basis of a simple qualitative electrostatic model, which also provides a crude basis for understanding the behavior of retinal protonated Schiff bases in solution.
Collapse
Affiliation(s)
- Alessandro Cembran
- Dipartimento di Chimica G. Ciamician, Università di Bologna, Via Selmi 2, I-40126 Bologna, Italy
| | | | | | | |
Collapse
|
220
|
Blomgren F, Larsson S. Primary Photoprocess in Vision: Minimal Motion to Reach the Photo- and Bathorhodopsin Intermediates. J Phys Chem B 2005; 109:9104-10. [PMID: 16852083 DOI: 10.1021/jp040693w] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
According to time-resolved spectroscopic measurements, the initial step of the photoreaction of rhodopsin occurs with a time constant of approximately 200 fs. The whole or a part of the retinal molecule cannot move any significant distance in such a short time. In this paper, we propose instead a minimal motion that accomplishes the important task of guiding the molecule to a configuration where it can decay to the ground-state surface, with a minimal loss of strain energy. This motion is proposed to involve a -90 degrees twisting of the C11=C12 double bond and a simultaneous twisting around two other double bonds in retinal to minimize the geometrical changes along the reaction path. The ONIOM method (complete active space self-consistent field for retinal and AMBER for the peptides) is used in a chromophore-cavity model to elucidate and confirm important features of the mechanism. The potential energy surface (PES) obtained according to the proposed mechanism show all of the characteristics of a fast photoreaction, meaning a downhill reaction path from the Franck-Condon point to an avoided crossing between S(1) and S(0). In this motion, only a few carbon and hydrogen atoms move more than 0.3 A, and the retinal structure is conserved in the protein cavity. We propose that the photorhodopsin intermediate is a retinal molecule formed on the excited-state PES. Bathorhodopsin, however, is a ground-state intermediate, still located inside the protein cavity.
Collapse
Affiliation(s)
- Fredrik Blomgren
- Department of Chemistry and Bioscience, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | | |
Collapse
|
221
|
Schmidt B, Sobotta C, Heinz B, Laimgruber S, Braun M, Gilch P. Excited-state dynamics of bacteriorhodopsin probed by broadband femtosecond fluorescence spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:165-73. [PMID: 15620377 DOI: 10.1016/j.bbabio.2004.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 10/04/2004] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
The impact of varying excitation densities (approximately 0.3 to approximately 40 photons per molecule) on the ultrafast fluorescence dynamics of bacteriorhodopsin has been studied in a wide spectral range (630-900 nm). For low excitation densities, the fluorescence dynamics can be approximated biexponentially with time constants of <0.15 and approximately 0.45 ps. The spectrum associated with the fastest time constant peaks at 650 nm, while the 0.45 ps component is most prominent at 750 nm. Superimposed on these kinetics is a shift of the fluorescence maximum with time (dynamic Stokes shift). Higher excitation densities alter the time constants and their amplitudes. These changes are assigned to multi-photon absorptions.
Collapse
Affiliation(s)
- B Schmidt
- Department für Physik, Ludwig-Maximilians-Universität, Oettingenstr. 67, D-80538 Munich, Germany
| | | | | | | | | | | |
Collapse
|
222
|
Tavernelli * I, Röhrig UF, Rothlisberger U. Molecular dynamics in electronically excited states using time-dependent density functional theory. Mol Phys 2005. [DOI: 10.1080/00268970512331339378] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
223
|
Vengris M, van der Horst MA, Zgrablic G, van Stokkum IHM, Haacke S, Chergui M, Hellingwerf KJ, van Grondelle R, Larsen DS. Contrasting the excited-state dynamics of the photoactive yellow protein chromophore: protein versus solvent environments. Biophys J 2005; 87:1848-57. [PMID: 15345563 PMCID: PMC1304589 DOI: 10.1529/biophysj.104.043224] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wavelength- and time-resolved fluorescence experiments have been performed on the photoactive yellow protein, the E46Q mutant, the hybrids of these proteins containing a nonisomerizing "locked" chromophore, and the native and locked chromophores in aqueous solution. The ultrafast dynamics of these six systems is compared and spectral signatures of isomerization and solvation are discussed. We find that the ultrafast red-shifting of fluorescence is associated mostly with solvation dynamics, whereas isomerization manifests itself as quenching of fluorescence. The observed multiexponential quenching of the protein samples differs from the single-exponential lifetimes of the chromophores in solution. The locked chromophore in the protein environment decays faster than in solution. This is due to additional channels of excited-state energy dissipation via the covalent and hydrogen bonds with the protein environment. The observed large dispersion of quenching timescales observed in the protein samples that contain the native pigment favors both an inhomogeneous model and an excited-state barrier for isomerization.
Collapse
Affiliation(s)
- Mikas Vengris
- Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Vengris M, Larsen DS, van der Horst MA, Larsen OFA, Hellingwerf KJ, van Grondelle R. Ultrafast Dynamics of Isolated Model Photoactive Yellow Protein Chromophores: “Chemical Perturbation Theory” in the Laboratory. J Phys Chem B 2005; 109:4197-208. [PMID: 16851482 DOI: 10.1021/jp045763d] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pump-probe and pump-dump probe experiments have been performed on several isolated model chromophores of the photoactive yellow protein (PYP). The observed transient absorption spectra are discussed in terms of the spectral signatures ascribed to solvation, excited-state twisting, and vibrational relaxation. It is observed that the protonation state has a profound effect on the excited-state lifetime of p-coumaric acid. Pigments with ester groups on the coumaryl tail end and charged phenolic moieties show dynamics that are significantly different from those of other pigments. Here, an unrelaxed ground-state intermediate could be observed in pump-probe signals. A similar intermediate could be identified in the sinapinic acid and in isomerization-locked chromophores by means of pump-dump probe spectroscopy; however, in these compounds it is less pronounced and could be due to ground-state solvation and/or vibrational relaxation. Because of strong protonation-state dependencies and the effect of electron donor groups, it is argued that charge redistribution upon excitation determines the twisting reaction pathway, possibly through interaction with the environment. It is suggested that the same pathway may be responsible for the initiation of the photocycle in native PYP.
Collapse
Affiliation(s)
- Mikas Vengris
- Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
225
|
De Vico L, Garavelli M, Bernardi F, Olivucci M. Photoisomerization Mechanism of 11-cis-Locked Artificial Retinal Chromophores: Acceleration and Primary Photoproduct Assignment. J Am Chem Soc 2005; 127:2433-42. [PMID: 15724998 DOI: 10.1021/ja045747u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CASPT2//CASSCF/6-31G photochemical reaction path computations for two 4-cis-nona-2,4,6,8-tetraeniminium cation derivatives, with the 4-cis double bond embedded in a seven- and eight-member ring, are carried out to model the reactivity of the corresponding ring-locked retinal chromophores. The comparison of the excited state branches of the two reaction paths with that of the native chromophore, is used to unveil the factors responsible for the remarkably short (60 fs) excited state (S(1)) lifetime observed when an artificial rhodopsin containing an eight member ring-locked retinal is photoexcited. Indeed, it is shown that the strain imposed by the eight-member ring on the chromophore backbone leads to a dramatic change in the shape of the S(1) energy surface. Our models are also used to investigate the nature of the primary photoproducts observed in different artificial rhodopsins. It is seen that only the eight member ring-locked retinal model can access a shallow energy minimum on the ground state. This result implies that the primary, photorhodopsin-like, transient observed in artificial rhodopsins could correspond to a shallow excited state minimum. Similarly, the second, bathorhodopsin-like, transient species could be assigned to a ground state structure displaying a nearly all-trans conformation.
Collapse
Affiliation(s)
- Luca De Vico
- Dipartimento di Chimica, Università di Siena, via De Gasperi 2 Siena, I-53100 Italy
| | | | | | | |
Collapse
|
226
|
|
227
|
Computation of Photochemical Reaction Mechanisms in Organic Chemistry. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1380-7323(05)80023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
228
|
Andruniów T, Ferré N, Olivucci M. Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Proc Natl Acad Sci U S A 2004; 101:17908-13. [PMID: 15604139 PMCID: PMC539762 DOI: 10.1073/pnas.0407997101] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We demonstrate that a "brute force" quantum chemical calculation based on an ab initio multiconfigurational second order perturbation theory approach implemented in a quantum mechanics/molecular mechanics strategy can be applied to the investigation of the excited state of the visual pigment rhodopsin (Rh) with a computational error <5 kcal.mol(-1). As a consequence, the simulation of the absorption and fluorescence of Rh and its retinal chromophore in solution allows for a nearly quantitative analysis of the factors determining the properties of the protein environment. More specifically, we demonstrate that the Rh environment is more similar to the "gas phase" than to the solution environment and that the so-called "opsin shift" originates from the inability of the solvent to effectively "shield" the chromophore from its counterion. The same strategy is used to investigate three transient structures involved in the photoisomerization of Rh under the assumption that the protein cavity does not change shape during the reaction. Accordingly, the analysis of the initially relaxed excited-state structure, the conical intersection driving the excited-state decay, and the primary isolable bathorhodopsin intermediate supports a mechanism where the photoisomerization coordinate involves a "motion" reminiscent of the so-called bicycle-pedal reaction coordinate. Most importantly, it is shown that the mechanism of the approximately 30 kcal.mol(-1) photon energy storage observed for Rh is not consistent with a model based exclusively on the change of the electrostatic interaction of the chromophore with the protein/counterion environment.
Collapse
Affiliation(s)
- Tadeusz Andruniów
- Dipartimento di Chimica, Università di Siena, Via Aldo Moro I-53100 Siena, Italy
| | | | | |
Collapse
|
229
|
Sampedro D, Soldevilla A, Rodríguez MA, Campos PJ, Olivucci M. Mechanism of the N-Cyclopropylimine-1-pyrroline Photorearrangement. J Am Chem Soc 2004; 127:441-8. [PMID: 15631495 DOI: 10.1021/ja0467566] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present here a combined experimental and computational investigation into the photorearrangement of N-cyclopropylimines to yield pyrrolines. We show that the photochemistry, regiochemistry, and stereochemistry of the reaction can be understood in terms of a mechanism involving barrierless evolution in three different (S(2), S(1), S(0)) singlet states and sequential decay through two different (S(2)/S(1), and S(1)/S(0)) conical intersection funnels. We provide evidence that the reaction mechanism involves the generation of a nonequilibrated (i.e., transient) excited state diradical, whose decay can lead not only to pyrrolines but also to cyclopropylimine isomers. It is concluded that the reaction outcome depends on the details of the structure of such transient diradical and on the nature of the dynamics of its decay through the S(1)/S(0) conical intersection.
Collapse
Affiliation(s)
- Diego Sampedro
- Departamento de Química, Universidad de La Rioja, Grupo de Síntesis Química de La Rioja, Unidad Asociada al C.S.I.C., Madre de Dios, 51, E-26006 Logroño, Spain.
| | | | | | | | | |
Collapse
|
230
|
Cembran A, Bernardi F, Olivucci M, Garavelli M. Counterion Controlled Photoisomerization of Retinal Chromophore Models: a Computational Investigation. J Am Chem Soc 2004; 126:16018-37. [PMID: 15584736 DOI: 10.1021/ja048782+] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CASPT2//CASSCF photoisomerization path computations have been used to unveil the effects of an acetate counterion on the photochemistry of two retinal protonated Schiff base (PSB) models: the 2-cis-penta-2,4-dieniminium and the all-trans-epta-2,4,6-trieniminium cations. Different positions/orientations of the counterion have been investigated and related to (i) the spectral tuning and relative stability of the S0, S1, and S2 singlet states; (ii) the selection of the photochemically relevant excited state; (iii) the control of the radiationless decay and photoisomerization rates; and, finally, (iv) the control of the photoisomerization stereospecificity. A rationale for the results is given on the basis of a simple (electrostatic) qualitative model. We show that the model readily explains the computational results providing a qualitative explanation for different aspects of the experimentally observed "environment" dependent PSB photochemistry. Electrostatic effects likely involved in controlling retinal photoisomerization stereoselectivity in the protein are also discussed under the light of these results, and clues for a stereocontrolled electrostatically driven photochemical process are presented. These computations provide a rational basis for the formulation of a mechanistic model for photoisomerization electrostatic catalysis.
Collapse
Affiliation(s)
- Alessandro Cembran
- Dipartimento di Chimica G. Ciamician, Università di Bologna, via Selmi 2, Bologna, I-40126 Italy
| | | | | | | |
Collapse
|
231
|
Schautz F, Buda F, Filippi C. Excitations in photoactive molecules from quantum Monte Carlo. J Chem Phys 2004; 121:5836-44. [PMID: 15367010 DOI: 10.1063/1.1777212] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite significant advances in electronic structure methods for the treatment of excited states, attaining an accurate description of the photoinduced processes in photoactive biomolecules is proving very difficult. For the prototypical photosensitive molecules, formaldimine, formaldehyde, and a minimal protonated Schiff base model of the retinal chromophore, we investigate the performance of various approaches generally considered promising for the computation of excited potential energy surfaces. We show that quantum Monte Carlo can accurately estimate the excitation energies of the studied systems if one constructs carefully the trial wave function, including in most cases the reoptimization of its determinantal part within quantum Monte Carlo. While time-dependent density functional theory and quantum Monte Carlo are generally in reasonable agreement, they yield a qualitatively different description of the isomerization of the Schiff base model. Finally, we find that the restricted open shell Kohn-Sham method is at variance with quantum Monte Carlo in estimating the lowest-singlet excited state potential energy surface for low-symmetry molecular structures.
Collapse
Affiliation(s)
- Friedemann Schautz
- Instituut-Lorentz, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | | | | |
Collapse
|
232
|
Gascon JA, Batista VS. QM/MM study of energy storage and molecular rearrangements due to the primary event in vision. Biophys J 2004; 87:2931-41. [PMID: 15339806 PMCID: PMC1304767 DOI: 10.1529/biophysj.104.048264] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The energy storage and the molecular rearrangements due to the primary photochemical event in rhodopsin are investigated by using quantum mechanics/molecular mechanics hybrid methods in conjunction with high-resolution structural data of bovine visual rhodopsin. The analysis of the reactant and product molecular structures reveals the energy storage mechanism as determined by the detailed molecular rearrangements of the retinyl chromophore, including rotation of the (C11-C12) dihedral angle from -11 degrees in the 11-cis isomer to -161 degrees in the all-trans product, where the preferential sense of rotation is determined by the steric interactions between Ala-117 and the polyene chain at the C13 position, torsion of the polyene chain due to steric constraints in the binding pocket, and stretching of the salt bridge between the protonated Schiff base and the Glu-113 counterion by reorientation of the polarized bonds that localize the net positive charge at the Schiff-base linkage. The energy storage, computed at the ONIOM electronic-embedding approach (B3LYP/6-31G*:AMBER) level of theory and the S0-->S1 electronic-excitation energies for the dark and product states, obtained at the ONIOM electronic-embedding approach (TD-B3LYP/6-31G*//B3LYP/6-31G*:AMBER) level of theory, are in very good agreement with experimental data. These results are particularly relevant to the development of a first-principles understanding of the structure-function relations in prototypical G-protein-coupled receptors.
Collapse
Affiliation(s)
- Jose A Gascon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
233
|
Martin ME, Negri F, Olivucci M. Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution. J Am Chem Soc 2004; 126:5452-64. [PMID: 15113217 DOI: 10.1021/ja037278m] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ab initio CASPT2//CASSCF relaxation path computations are employed to determine the intrinsic (e.g., in vacuo) mechanism underlying the rise and decay of the luminescence of the anionic form of the green fluorescent protein (GFP) fluorophore. Production and decay of the fluorescent state occur via a two-mode reaction coordinate. Relaxation along the first (totally symmetric) mode leads to production of the fluorescent state that corresponds to a planar species. The second (out-of-plane) mode controls the fluorescent state decay and mainly corresponds to a barrierless twisting of the fluorophore phenyl moiety. While a "space-saving" hula-twist conical intersection decay channel is found to lie only 5 kcal mol(-1) above the fluorescent state, the direct involvement of a hula-twist deformation in the decay is not supported by our data. The above results indicate that the ultrafast fluorescence decay observed for the GFP chromophore in solution is likely to have an intrinsic origin. The possible effects of the GFP protein cavity on the fluorescence lifetime of the investigated chromophore model are discussed.
Collapse
Affiliation(s)
- María Elena Martin
- Dipartimento di Chimica, Università di Siena, via Aldo Moro I-53100 Siena, Italy
| | | | | |
Collapse
|
234
|
Helbing J, Bregy H, Bredenbeck J, Pfister R, Hamm P, Huber R, Wachtveitl J, De Vico L, Olivucci M. A Fast Photoswitch for Minimally Perturbed Peptides: Investigation of the trans → cis Photoisomerization of N-Methylthioacetamide. J Am Chem Soc 2004; 126:8823-34. [PMID: 15250736 DOI: 10.1021/ja049227a] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thio amino acids can be integrated into the backbone of peptides without significantly perturbing their structure. In this contribution we use ultrafast infrared and visible spectroscopy as well as state-of-the-art ab initio computations to investigate the photoisomerization of the trans form of N-methylthioacetamide (NMTAA) as a model conformational photoswitch. Following the S2 excitation of trans-NMTAA in water, the return of the molecule into the trans ground state and the formation of the cis isomer is observed on a dual time scale, with a fast component of 8-9 ps and a slow time constant of approximately 250 ps. On both time scales the probability of isomerization to the cis form is found to be 30-40%, independently of excitation wavelength. Ab initio CASPT2//CASSCF photochemical reaction path calculations indicate that, in vacuo, the trans-->cis isomerization event takes place on the S1 and/or T1 triplet potential energy surfaces and is controlled by very small energy barriers, in agreement with the experimentally observed picosecond time scale. Furthermore, the calculations identify one S2/S1 and four nearly isoenergetic S1/S0 conical intersection decay channels. In line with the observed isomerization probability, only one of the S1/S0 conical intersections yields the cis conformation upon S1-->S0 decay. A substantially equivalent excited-state relaxation results from four T1/S0 intersystem crossing points.
Collapse
Affiliation(s)
- Jan Helbing
- Physikalisch-Chemisches Institut, Winterthurerstrasse 190, Universität Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Abramczyk H. Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: Revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle. J Chem Phys 2004; 120:11120-32. [PMID: 15268142 DOI: 10.1063/1.1737731] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Femtosecond primary events in bacteriorhodopsin (BR) and its retinal modified analogs are discussed. Ultrafast time resolved electronic spectra of the primary intermediates induced in the BR photocycle are discussed along with spectral and kinetic inconsistencies of the previous models proposed in the literature. The theoretical model proposed in this paper based on vibrational coupling between the electronic transition of the chromophore and intramolecular vibrational modes allows us to calculate the equilibrium electronic absorption band shape and the hole burning profiles. The model is able to rationalize the complex pattern of behavior for the primary events in BR and explain the origin of the apparent inconsistencies between the experiment and the previous theoretical models. The model presented in the paper is based on the anharmonic coupling assumption in the adiabatic approximation using the canonical transformation method for diagonalization of the vibrational Hamiltonian instead of the commonly used perturbation theory. The electronic transition occurs between the Born-Oppenheimer potential energy surfaces with the electron involved in the transition being coupled to the intramolecular vibrational modes of the molecule (chromophore). The relaxation of the excited state occurs by indirect damping (dephasing) mechanisms. The indirect dephasing is governed by the time evolution of the anharmonic coupling constant driven by the resonance energy exchange between the intramolecular vibrational mode and the bath. The coupling with the intramolecular vibrational modes results in the Franck-Condon progression of bands that are broadened due to the vibrational dephasing mechanisms. The electronic absorption line shape has been calculated based on the linear response theory whereas the third order nonlinear response functions have been used to analyze the hole burning profiles obtained from the pump-probe time-resolved measurements. The theoretical treatment proposed in this paper provides a basis for a substantial revision of the commonly accepted interpretation of the primary events in the BR photocycle that exists in the literature.
Collapse
Affiliation(s)
- Halina Abramczyk
- Technical University, Department of Chemistry, Laboratory of Molecular Laser Spectroscopy at IARC, Wroblewskiego 15 Street, 93-590 Lodz, Poland.
| |
Collapse
|
236
|
Yamada A, Ishikura T, Yamato T. Role of protein in the primary step of the photoreaction of yellow protein. Proteins 2004; 55:1063-9. [PMID: 15146503 DOI: 10.1002/prot.20006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We show the unexpectedly important role of the protein environment in the primary step of the photoreaction of the yellow protein after light illumination. The driving force of the trans-to-cis isomerization reaction was analyzed by a computational method. The force was separated into two different components: the term due to the protein-chromophore interaction and the intrinsic term of the chromophore itself. As a result, we found that the contribution from the interaction term was much greater than that coming from the intrinsic term. This accounts for the efficiency of the isomerization reaction in the protein environment in contrast to that in solution environments. We then analyzed the relaxation process of the chromophore on the excited-state energy surface and compared the process in the protein environment and that in a vacuum. Based on this analysis, we found that the bond-selectivity of the isomerization reaction also comes from the interaction between the chromophore and the protein environment.
Collapse
Affiliation(s)
- Atsushi Yamada
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | | | | |
Collapse
|
237
|
Carravetta M, Zhao X, Johannessen OG, Lai WC, Verhoeven MA, Bovee-Geurts PHM, Verdegem PJE, Kiihne S, Luthman H, de Groot HJM, deGrip WJ, Lugtenburg J, Levitt MH. Protein-Induced Bonding Perturbation of the Rhodopsin Chromophore Detected by Double-Quantum Solid-State NMR. J Am Chem Soc 2004; 126:3948-53. [PMID: 15038749 DOI: 10.1021/ja039390q] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have obtained carbon-carbon bond length data for the functional retinylidene chromophore of rhodopsin, with a spatial resolution of 3 pm. The very high resolution was obtained by performing double-quantum solid-state NMR on a set of noncrystalline isotopically labelled bovine rhodopsin samples. We detected localized perturbations of the carbon-carbon bond lengths of the retinylidene chromophore. The observations are consistent with a model in which the positive charge of the protonated Schiff base penetrates into the polyene chain and partially concentrates around the C13 position. This coincides with the proximity of a water molecule located between the glutamate-181 and serine-186 residues of the second extracellular loop, which is folded back into the transmembrane region. These measurements support the hypothesis that the polar residues of the second extracellular loop and the associated water molecule assist the rapid selective photoisomerization of the retinylidene chromophore by stabilizing a partial positive charge in the center of the polyene chain.
Collapse
Affiliation(s)
- Marina Carravetta
- Physical Chemistry Division, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Wanko M, Garavelli M, Bernardi F, Niehaus TA, Frauenheim T, Elstner M. A global investigation of excited state surfaces within time-dependent density-functional response theory. J Chem Phys 2004; 120:1674-92. [PMID: 15268299 DOI: 10.1063/1.1635798] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work investigates the capability of time-dependent density functional response theory to describe excited state potential energy surfaces of conjugated organic molecules. Applications to linear polyenes, aromatic systems, and the protonated Schiff base of retinal demonstrate the scope of currently used exchange-correlation functionals as local, adiabatic approximations to time-dependent Kohn-Sham theory. The results are compared to experimental and ab initio data of various kinds to attain a critical analysis of common problems concerning charge transfer and long range (nondynamic) correlation effects. This analysis goes beyond a local investigation of electronic properties and incorporates a global view of the excited state potential energy surfaces.
Collapse
Affiliation(s)
- M Wanko
- Department of Theoretical Physics, University of Paderborn, D-33098 Paderborn, Germany
| | | | | | | | | | | |
Collapse
|
239
|
Papper V, Kharlanov V, Schädel S, Maretzki D, Rettig W. New fluorescent probes for visual proteins. Part II. 5-(Oxo)penta-2,4-dienyl-p-(N,N-dimethylamino)benzoate. Photochem Photobiol Sci 2004; 2:1272-86. [PMID: 14717221 DOI: 10.1039/b306235j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new dual-fluorescent compound, 5-(oxo)penta-2,4-dienyl-p-(N,N-dimethylamino)benzoate (1), a derivative of dimethylaminobenzoic acid, has been synthesised and studied photophysically. This compound continues the series of potential fluorescent probes for visual and proton-pumping opsin proteins. The photophysical behaviour of this molecule, including charge-transfer interaction in the ground state and dual-fluorescence emission, is similar to that of the previously studied analogue cis-3-(oxo)propenyl-p-(N,N-dimethylamino)benzoate (cis-2). The presence of several theoretically calculated conformers of compound 2 was suggested to be responsible for the observed strongly red-shifted absorption and excitation wavelength dependence. These photophysical anomalies were also observed for molecule 1, though the models put forward to explain them in the cases of 1 and 2 are rather different. Based on theoretical calculations and experimental results, we propose that some of the stable conformers might be connected with either a charge-transfer complex or mesomeric interactions in the ground state. Upon changing the electronic nature of the oxo-pentadienyl acceptor moiety, e.g. protonation, chemical or biochemical reaction, the charge-transfer absorption disappears, which leads to a dramatic increase in the fluorescence quantum yield.
Collapse
Affiliation(s)
- Vladislav Papper
- Institute of Chemistry, Humboldt University, Brook-Taylor Strasse 2, D-12489 Berlin, Germany
| | | | | | | | | |
Collapse
|
240
|
Andersen LH, Bluhme H, Boyé S, Jørgensen TJD, Krogh H, Nielsen IB, Brøndsted Nielsen S, Svendsen A. Experimental studies of the photophysics of gas-phase fluorescent protein chromophores. Phys Chem Chem Phys 2004. [DOI: 10.1039/b315763f] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
241
|
Migani A, Sinicropi A, Ferré N, Cembran A, Garavelli M, Olivucci M. Structure of the intersection space associated with Z/E photoisomerization of retinal in rhodopsin proteins. Faraday Discuss 2004; 127:179-91. [PMID: 15471346 DOI: 10.1039/b315217k] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this paper we employ a CASSCF/AMBER quantum-mechanics/molecular-mechanics tool to map the intersection space (IS) of a protein. In particular, we provide evidence that the S1 excited-state potential-energy surface of the visual photoreceptor rhodopsin is spanned by an IS segment located right at the bottom of the surface. Analysis of the molecular structures of the protein chromophore (a protonated Schiff base of retinal) along IS reveals a type of geometrical deformation not observed in vacuo. Such a structure suggests that conical intersections mediating different photochemical reactions reside along the same intersection space. This conjecture is investigated by mapping the intersection space of the rhodopsin chromophore model 2-Z-hepta-2,4,6-trieniminium cation and of the conjugated hydrocarbon 3-Z-deca-1,3,5,6,7-pentaene.
Collapse
Affiliation(s)
- Annapaola Migani
- Dipartimento di Chimica, Università di Siena, Via Aldo Moro, I-53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
242
|
Mandal D, Tahara T, Meech SR. Excited-State Dynamics in the Green Fluorescent Protein Chromophore. J Phys Chem B 2003. [DOI: 10.1021/jp035816b] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debabrata Mandal
- Molecular Spectroscopy Laboratory, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako 351-0198, Japan, and School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako 351-0198, Japan, and School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Stephen R. Meech
- Molecular Spectroscopy Laboratory, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako 351-0198, Japan, and School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
243
|
Schreiber M, Buß V, Sugihara M. Exploring the Opsin shift withab initiomethods: Geometry and counterion effects on the electronic spectrum of retinal. J Chem Phys 2003. [DOI: 10.1063/1.1632898] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
244
|
Cembran A, Bernardi F, Olivucci M, Garavelli M. Excited-state singlet manifold and oscillatory features of a nonatetraeniminium retinal chromophore model. J Am Chem Soc 2003; 125:12509-19. [PMID: 14531695 DOI: 10.1021/ja030215j] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper we use ab initio multireference Møller-Plesset second-order perturbation theory computations to map the first five singlet states (S(0), S(1), S(2), S(3), and S(4)) along the initial part of the photoisomerization coordinate for the isolated rhodopsin chromophore model 4-cis-gamma-methylnona-2,4,6,8-tetraeniminium cation. We show that this information not only provides an explanation for the spectral features associated to the chromophore in solution but also, subject to a tentative hypothesis on the effect of the protein cavity, may be employed to explain/assign the ultrafast near-IR excited-state absorption, stimulated emission, and transient excited-state absorption bands observed in rhodopsin proteins (e.g. rhodopsin and bacteriorhodopsin). We also show that the results of vibrational frequency computations reveal a general structure for the first (S(1)) excited-state energy surface of PSBs that is consistent with the existence of the coherent oscillatory motions observed both in solution and in bacteriorhodopsin.
Collapse
Affiliation(s)
- Alessandro Cembran
- Dipartimento di Chimica, Università di Siena, via Aldo Moro, Siena, I-53100 Italy
| | | | | | | |
Collapse
|
245
|
Hayashi S, Tajkhorshid E, Schulten K. Molecular dynamics simulation of bacteriorhodopsin's photoisomerization using ab initio forces for the excited chromophore. Biophys J 2003; 85:1440-9. [PMID: 12944261 PMCID: PMC1303320 DOI: 10.1016/s0006-3495(03)74576-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Retinal proteins are photoreceptors found in many living organisms. They possess a common chromophore, retinal, that upon absorption of light isomerizes and thereby triggers biological functions ranging from light energy conversion to phototaxis and vision. The photoisomerization of retinal is extremely fast, highly selective inside the protein matrix, and characterized through optimal sensitivity to incoming light. This article describes the first report of an ab initio quantum mechanical description of the in situ isomerization dynamics of retinal in bacteriorhodopsin, a microbial retinal protein that functions as a light-driven proton pump. The description combines ab initio multi-electronic state molecular dynamics of a truncated retinal chromophore model (N-methyl-gamma-methylpenta-2,4-dieniminium cation fragment) with molecular mechanics of the protein motion and unveils in complete detail the photoisomerization process. The results illustrate the essential role of the protein for the characteristic kinetics and high selectivity of the photoisomerization: the protein arrests inhomogeneous photoisomerization paths and funnels them into a single path that initiates the functional process. Supported by comparison with dynamic spectral modulations observed in femtosecond spectroscopy, the results identify the principal molecular motion during photoisomerization.
Collapse
Affiliation(s)
- Shigehiko Hayashi
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
246
|
Mazzoni M, Agati G, Troup GJ, Pratesi R. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands. ACTA ACUST UNITED AC 2003. [DOI: 10.1088/1464-4258/5/5/395] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
247
|
Climent T, González-Luque R, Merchán M. Theoretical Analysis of the Excited States in Maleimide. J Phys Chem A 2003. [DOI: 10.1021/jp0225572] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Teresa Climent
- Departamento de Química Física, Instituto de Ciencia Molecular, Universitat de València, Dr. Moliner 50, Burjassot, ES-46100 Valencia, Spain
| | - Remedios González-Luque
- Departamento de Química Física, Instituto de Ciencia Molecular, Universitat de València, Dr. Moliner 50, Burjassot, ES-46100 Valencia, Spain
| | - Manuela Merchán
- Departamento de Química Física, Instituto de Ciencia Molecular, Universitat de València, Dr. Moliner 50, Burjassot, ES-46100 Valencia, Spain
| |
Collapse
|
248
|
Blomgren F, Larsson S. Initial step of the photoprocess leading to vision only requires minimal atom displacements in the retinal molecule. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(03)01062-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
249
|
Dugave C, Demange L. Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem Rev 2003; 103:2475-532. [PMID: 12848578 DOI: 10.1021/cr0104375] [Citation(s) in RCA: 784] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christophe Dugave
- CEA/Saclay, Département d'Ingénierie et d'Etudes des Protéines (DIEP), Bâtiment 152, 91191 Gif-sur-Yvette, France.
| | | |
Collapse
|
250
|
Ferré N, Olivucci M. Probing the rhodopsin cavity with reduced retinal models at the CASPT2//CASSCF/AMBER level of theory. J Am Chem Soc 2003; 125:6868-9. [PMID: 12783530 DOI: 10.1021/ja035087d] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show that the ab initio CASPT2//CASSCF strategy previously used to investigate the ground and excited states of the chromophore of the vision receptor rhodopsin (Rh) in vacuo can be successfully implemented in a QM/MM scheme allowing for CASPT2//CASSCF/AMBER geometry optimization and excited state property evaluation in proteins. Two receptor models (Rh-1 and Rh-2) incorporating different reduced chromophores are investigated. It is shown that Rh-2 features a chromophore equilibrium structure with the correct helicity and a lambdamax that is only 52 nm blue-shifted from the observed value. This result should open the way to a qualitatively correct ab initio QM/MM modeling of the early excited state transient species involved in the vision process.
Collapse
Affiliation(s)
- Nicolas Ferré
- Dipartimento di Chimica, Università di Siena, via Aldo Moro I-53100 Siena, Italy
| | | |
Collapse
|