201
|
Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol Lett 2016; 13:738-746. [PMID: 28356953 PMCID: PMC5351310 DOI: 10.3892/ol.2016.5478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/05/2016] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme is an invasive malignant glial brain tumor with a poor prognosis for patients. The primary reasons that lead to the development of treatment resistance are associated with tumor cells infiltrating the brain parenchyma and the specific properties of tumor stem cells. A crucial research area in medical science is the search for effective agents that are able to act on these targets. Fascaplysin alkaloids possess potent antitumor activity. Modern methods for the targeted delivery of drugs reveal extensive possibilities in terms of the clinical use of these compounds. The aim of the present study was to establish effective concentrations of fascaplysin that inhibit the growth and kill the cells of glial tumors, as well as to perform a comparative analysis of fascaplysin's effectiveness in relation to other chemotherapy drugs. C6 glioma cells were utilized as an optimal model of glioblastoma. It was established that fascaplysin at 0.5 µM has a strong cytotoxic effect, which is subsequently replaced by tumor cell death via apoptosis as the length of drug exposure time is increased. Fascaplysin kills glioma cells at a dose higher than 0.5 µM. The efficiency of fascaplysin was observed to significantly exceed that of temozolomide. Therefore, a significant feature of fascaplysin is its ability to inhibit the growth of and kill multipotent tumor cells.
Collapse
|
202
|
Cote DJ, Bredenoord AL, Smith TR, Ammirati M, Brennum J, Mendez I, Ammar AS, Balak N, Bolles G, Esene IN, Mathiesen T, Broekman ML. Ethical clinical translation of stem cell interventions for neurologic disease. Neurology 2016; 88:322-328. [PMID: 27927932 DOI: 10.1212/wnl.0000000000003506] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
The application of stem cell transplants in clinical practice has increased in frequency in recent years. Many of the stem cell transplants in neurologic diseases, including stroke, Parkinson disease, spinal cord injury, and demyelinating diseases, are unproven-they have not been tested in prospective, controlled clinical trials and have not become accepted therapies. Stem cell transplant procedures currently being carried out have therapeutic aims, but are frequently experimental and unregulated, and could potentially put patients at risk. In some cases, patients undergoing such operations are not included in a clinical trial, and do not provide genuinely informed consent. For these reasons and others, some current stem cell interventions for neurologic diseases are ethically dubious and could jeopardize progress in the field. We provide discussion points for the evaluation of new stem cell interventions for neurologic disease, based primarily on the new Guidelines for Stem Cell Research and Clinical Translation released by the International Society for Stem Cell Research in May 2016. Important considerations in the ethical translation of stem cells to clinical practice include regulatory oversight, conflicts of interest, data sharing, the nature of investigation (e.g., within vs outside of a clinical trial), informed consent, risk-benefit ratios, the therapeutic misconception, and patient vulnerability. To help guide the translation of stem cells from the laboratory into the neurosurgical clinic in an ethically sound manner, we present an ethical discussion of these major issues at stake in the field of stem cell clinical research for neurologic disease.
Collapse
Affiliation(s)
- David J Cote
- From Cushing Neurosurgery Outcomes Center, Department of Neurosurgery (D.J.C., T.R.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Humanities, Julius Center (A.L.B.), and Department of Neurosurgery (M.L.B.), University Medical Center, Utrecht, the Netherlands; Department of Neurosurgery (M.A.), Ohio State University, Columbus; Copenhagen Neurosurgery, Neuroscience Centre (J.B.), Rigshospitalet, University of Copenhagen, Denmark; University of Saskatchewan and Saskatoon Health Region, Department of Surgery (I.M.), and Royal University Hospital, Saskatoon, Canada; Department of Neurosurgery (A.S.A.), University of Dammam College of Medicine, Saudi Arabia; Department of Neurosurgery (N.B.), Göztepe Education and Research Hospital, Istanbul, Turkey; Department of Neurosurgery (G.B.), Denver Health Medical Center, University of Colorado School of Medicine; Department of Neurosurgery (I.N.E.), Ain Shams University, Cairo, Egypt; Department of Neurosurgery (T.M.), Karolinska Hospital and Institute, Stockholm, Sweden; and Department of Neurology (M.L.B.), Massachusetts General Hospital, Boston
| | - Annelien L Bredenoord
- From Cushing Neurosurgery Outcomes Center, Department of Neurosurgery (D.J.C., T.R.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Humanities, Julius Center (A.L.B.), and Department of Neurosurgery (M.L.B.), University Medical Center, Utrecht, the Netherlands; Department of Neurosurgery (M.A.), Ohio State University, Columbus; Copenhagen Neurosurgery, Neuroscience Centre (J.B.), Rigshospitalet, University of Copenhagen, Denmark; University of Saskatchewan and Saskatoon Health Region, Department of Surgery (I.M.), and Royal University Hospital, Saskatoon, Canada; Department of Neurosurgery (A.S.A.), University of Dammam College of Medicine, Saudi Arabia; Department of Neurosurgery (N.B.), Göztepe Education and Research Hospital, Istanbul, Turkey; Department of Neurosurgery (G.B.), Denver Health Medical Center, University of Colorado School of Medicine; Department of Neurosurgery (I.N.E.), Ain Shams University, Cairo, Egypt; Department of Neurosurgery (T.M.), Karolinska Hospital and Institute, Stockholm, Sweden; and Department of Neurology (M.L.B.), Massachusetts General Hospital, Boston
| | - Timothy R Smith
- From Cushing Neurosurgery Outcomes Center, Department of Neurosurgery (D.J.C., T.R.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Humanities, Julius Center (A.L.B.), and Department of Neurosurgery (M.L.B.), University Medical Center, Utrecht, the Netherlands; Department of Neurosurgery (M.A.), Ohio State University, Columbus; Copenhagen Neurosurgery, Neuroscience Centre (J.B.), Rigshospitalet, University of Copenhagen, Denmark; University of Saskatchewan and Saskatoon Health Region, Department of Surgery (I.M.), and Royal University Hospital, Saskatoon, Canada; Department of Neurosurgery (A.S.A.), University of Dammam College of Medicine, Saudi Arabia; Department of Neurosurgery (N.B.), Göztepe Education and Research Hospital, Istanbul, Turkey; Department of Neurosurgery (G.B.), Denver Health Medical Center, University of Colorado School of Medicine; Department of Neurosurgery (I.N.E.), Ain Shams University, Cairo, Egypt; Department of Neurosurgery (T.M.), Karolinska Hospital and Institute, Stockholm, Sweden; and Department of Neurology (M.L.B.), Massachusetts General Hospital, Boston
| | - Mario Ammirati
- From Cushing Neurosurgery Outcomes Center, Department of Neurosurgery (D.J.C., T.R.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Humanities, Julius Center (A.L.B.), and Department of Neurosurgery (M.L.B.), University Medical Center, Utrecht, the Netherlands; Department of Neurosurgery (M.A.), Ohio State University, Columbus; Copenhagen Neurosurgery, Neuroscience Centre (J.B.), Rigshospitalet, University of Copenhagen, Denmark; University of Saskatchewan and Saskatoon Health Region, Department of Surgery (I.M.), and Royal University Hospital, Saskatoon, Canada; Department of Neurosurgery (A.S.A.), University of Dammam College of Medicine, Saudi Arabia; Department of Neurosurgery (N.B.), Göztepe Education and Research Hospital, Istanbul, Turkey; Department of Neurosurgery (G.B.), Denver Health Medical Center, University of Colorado School of Medicine; Department of Neurosurgery (I.N.E.), Ain Shams University, Cairo, Egypt; Department of Neurosurgery (T.M.), Karolinska Hospital and Institute, Stockholm, Sweden; and Department of Neurology (M.L.B.), Massachusetts General Hospital, Boston
| | - Jannick Brennum
- From Cushing Neurosurgery Outcomes Center, Department of Neurosurgery (D.J.C., T.R.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Humanities, Julius Center (A.L.B.), and Department of Neurosurgery (M.L.B.), University Medical Center, Utrecht, the Netherlands; Department of Neurosurgery (M.A.), Ohio State University, Columbus; Copenhagen Neurosurgery, Neuroscience Centre (J.B.), Rigshospitalet, University of Copenhagen, Denmark; University of Saskatchewan and Saskatoon Health Region, Department of Surgery (I.M.), and Royal University Hospital, Saskatoon, Canada; Department of Neurosurgery (A.S.A.), University of Dammam College of Medicine, Saudi Arabia; Department of Neurosurgery (N.B.), Göztepe Education and Research Hospital, Istanbul, Turkey; Department of Neurosurgery (G.B.), Denver Health Medical Center, University of Colorado School of Medicine; Department of Neurosurgery (I.N.E.), Ain Shams University, Cairo, Egypt; Department of Neurosurgery (T.M.), Karolinska Hospital and Institute, Stockholm, Sweden; and Department of Neurology (M.L.B.), Massachusetts General Hospital, Boston
| | - Ivar Mendez
- From Cushing Neurosurgery Outcomes Center, Department of Neurosurgery (D.J.C., T.R.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Humanities, Julius Center (A.L.B.), and Department of Neurosurgery (M.L.B.), University Medical Center, Utrecht, the Netherlands; Department of Neurosurgery (M.A.), Ohio State University, Columbus; Copenhagen Neurosurgery, Neuroscience Centre (J.B.), Rigshospitalet, University of Copenhagen, Denmark; University of Saskatchewan and Saskatoon Health Region, Department of Surgery (I.M.), and Royal University Hospital, Saskatoon, Canada; Department of Neurosurgery (A.S.A.), University of Dammam College of Medicine, Saudi Arabia; Department of Neurosurgery (N.B.), Göztepe Education and Research Hospital, Istanbul, Turkey; Department of Neurosurgery (G.B.), Denver Health Medical Center, University of Colorado School of Medicine; Department of Neurosurgery (I.N.E.), Ain Shams University, Cairo, Egypt; Department of Neurosurgery (T.M.), Karolinska Hospital and Institute, Stockholm, Sweden; and Department of Neurology (M.L.B.), Massachusetts General Hospital, Boston
| | - Ahmed S Ammar
- From Cushing Neurosurgery Outcomes Center, Department of Neurosurgery (D.J.C., T.R.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Humanities, Julius Center (A.L.B.), and Department of Neurosurgery (M.L.B.), University Medical Center, Utrecht, the Netherlands; Department of Neurosurgery (M.A.), Ohio State University, Columbus; Copenhagen Neurosurgery, Neuroscience Centre (J.B.), Rigshospitalet, University of Copenhagen, Denmark; University of Saskatchewan and Saskatoon Health Region, Department of Surgery (I.M.), and Royal University Hospital, Saskatoon, Canada; Department of Neurosurgery (A.S.A.), University of Dammam College of Medicine, Saudi Arabia; Department of Neurosurgery (N.B.), Göztepe Education and Research Hospital, Istanbul, Turkey; Department of Neurosurgery (G.B.), Denver Health Medical Center, University of Colorado School of Medicine; Department of Neurosurgery (I.N.E.), Ain Shams University, Cairo, Egypt; Department of Neurosurgery (T.M.), Karolinska Hospital and Institute, Stockholm, Sweden; and Department of Neurology (M.L.B.), Massachusetts General Hospital, Boston
| | - Naci Balak
- From Cushing Neurosurgery Outcomes Center, Department of Neurosurgery (D.J.C., T.R.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Humanities, Julius Center (A.L.B.), and Department of Neurosurgery (M.L.B.), University Medical Center, Utrecht, the Netherlands; Department of Neurosurgery (M.A.), Ohio State University, Columbus; Copenhagen Neurosurgery, Neuroscience Centre (J.B.), Rigshospitalet, University of Copenhagen, Denmark; University of Saskatchewan and Saskatoon Health Region, Department of Surgery (I.M.), and Royal University Hospital, Saskatoon, Canada; Department of Neurosurgery (A.S.A.), University of Dammam College of Medicine, Saudi Arabia; Department of Neurosurgery (N.B.), Göztepe Education and Research Hospital, Istanbul, Turkey; Department of Neurosurgery (G.B.), Denver Health Medical Center, University of Colorado School of Medicine; Department of Neurosurgery (I.N.E.), Ain Shams University, Cairo, Egypt; Department of Neurosurgery (T.M.), Karolinska Hospital and Institute, Stockholm, Sweden; and Department of Neurology (M.L.B.), Massachusetts General Hospital, Boston
| | - Gene Bolles
- From Cushing Neurosurgery Outcomes Center, Department of Neurosurgery (D.J.C., T.R.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Humanities, Julius Center (A.L.B.), and Department of Neurosurgery (M.L.B.), University Medical Center, Utrecht, the Netherlands; Department of Neurosurgery (M.A.), Ohio State University, Columbus; Copenhagen Neurosurgery, Neuroscience Centre (J.B.), Rigshospitalet, University of Copenhagen, Denmark; University of Saskatchewan and Saskatoon Health Region, Department of Surgery (I.M.), and Royal University Hospital, Saskatoon, Canada; Department of Neurosurgery (A.S.A.), University of Dammam College of Medicine, Saudi Arabia; Department of Neurosurgery (N.B.), Göztepe Education and Research Hospital, Istanbul, Turkey; Department of Neurosurgery (G.B.), Denver Health Medical Center, University of Colorado School of Medicine; Department of Neurosurgery (I.N.E.), Ain Shams University, Cairo, Egypt; Department of Neurosurgery (T.M.), Karolinska Hospital and Institute, Stockholm, Sweden; and Department of Neurology (M.L.B.), Massachusetts General Hospital, Boston
| | - Ignatius Ngene Esene
- From Cushing Neurosurgery Outcomes Center, Department of Neurosurgery (D.J.C., T.R.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Humanities, Julius Center (A.L.B.), and Department of Neurosurgery (M.L.B.), University Medical Center, Utrecht, the Netherlands; Department of Neurosurgery (M.A.), Ohio State University, Columbus; Copenhagen Neurosurgery, Neuroscience Centre (J.B.), Rigshospitalet, University of Copenhagen, Denmark; University of Saskatchewan and Saskatoon Health Region, Department of Surgery (I.M.), and Royal University Hospital, Saskatoon, Canada; Department of Neurosurgery (A.S.A.), University of Dammam College of Medicine, Saudi Arabia; Department of Neurosurgery (N.B.), Göztepe Education and Research Hospital, Istanbul, Turkey; Department of Neurosurgery (G.B.), Denver Health Medical Center, University of Colorado School of Medicine; Department of Neurosurgery (I.N.E.), Ain Shams University, Cairo, Egypt; Department of Neurosurgery (T.M.), Karolinska Hospital and Institute, Stockholm, Sweden; and Department of Neurology (M.L.B.), Massachusetts General Hospital, Boston
| | - Tiit Mathiesen
- From Cushing Neurosurgery Outcomes Center, Department of Neurosurgery (D.J.C., T.R.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Humanities, Julius Center (A.L.B.), and Department of Neurosurgery (M.L.B.), University Medical Center, Utrecht, the Netherlands; Department of Neurosurgery (M.A.), Ohio State University, Columbus; Copenhagen Neurosurgery, Neuroscience Centre (J.B.), Rigshospitalet, University of Copenhagen, Denmark; University of Saskatchewan and Saskatoon Health Region, Department of Surgery (I.M.), and Royal University Hospital, Saskatoon, Canada; Department of Neurosurgery (A.S.A.), University of Dammam College of Medicine, Saudi Arabia; Department of Neurosurgery (N.B.), Göztepe Education and Research Hospital, Istanbul, Turkey; Department of Neurosurgery (G.B.), Denver Health Medical Center, University of Colorado School of Medicine; Department of Neurosurgery (I.N.E.), Ain Shams University, Cairo, Egypt; Department of Neurosurgery (T.M.), Karolinska Hospital and Institute, Stockholm, Sweden; and Department of Neurology (M.L.B.), Massachusetts General Hospital, Boston
| | - Marike L Broekman
- From Cushing Neurosurgery Outcomes Center, Department of Neurosurgery (D.J.C., T.R.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Medical Humanities, Julius Center (A.L.B.), and Department of Neurosurgery (M.L.B.), University Medical Center, Utrecht, the Netherlands; Department of Neurosurgery (M.A.), Ohio State University, Columbus; Copenhagen Neurosurgery, Neuroscience Centre (J.B.), Rigshospitalet, University of Copenhagen, Denmark; University of Saskatchewan and Saskatoon Health Region, Department of Surgery (I.M.), and Royal University Hospital, Saskatoon, Canada; Department of Neurosurgery (A.S.A.), University of Dammam College of Medicine, Saudi Arabia; Department of Neurosurgery (N.B.), Göztepe Education and Research Hospital, Istanbul, Turkey; Department of Neurosurgery (G.B.), Denver Health Medical Center, University of Colorado School of Medicine; Department of Neurosurgery (I.N.E.), Ain Shams University, Cairo, Egypt; Department of Neurosurgery (T.M.), Karolinska Hospital and Institute, Stockholm, Sweden; and Department of Neurology (M.L.B.), Massachusetts General Hospital, Boston.
| |
Collapse
|
203
|
Banskota S, Yousefpour P, Chilkoti A. Cell-Based Biohybrid Drug Delivery Systems: The Best of the Synthetic and Natural Worlds. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600361] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/18/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Samagya Banskota
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Parisa Yousefpour
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| |
Collapse
|
204
|
Fliervoet LAL, Mastrobattista E. Drug delivery with living cells. Adv Drug Deliv Rev 2016; 106:63-72. [PMID: 27129442 DOI: 10.1016/j.addr.2016.04.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
The field of drug delivery has grown tremendously in the past few decades by developing a wide range of advanced drug delivery systems. An interesting category is cell-based drug delivery, which includes encapsulation of drugs inside cells or attached to the surface and subsequent transportation through the body. Another approach involves genetic engineering of cells to secrete therapeutic molecules in a controlled way. The next-generation systems integrate expertise from synthetic biology to generate therapeutic gene networks for highly advanced sensory and output devices. These developments are very exciting for the drug delivery field and could radically change the way we administer biological medicines to chronically ill patients. This review is covering the use of living cells, either as transport system or production-unit, to deliver therapeutic molecules and bioactive proteins inside the body. It describes a wide range of approaches in cell-based drug delivery and highlights exceptional examples.
Collapse
Affiliation(s)
- Lies A L Fliervoet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| |
Collapse
|
205
|
Targeted Inhibition of the miR-199a/214 Cluster by CRISPR Interference Augments the Tumor Tropism of Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells under Hypoxic Condition. Stem Cells Int 2016; 2016:3598542. [PMID: 27965712 PMCID: PMC5124688 DOI: 10.1155/2016/3598542] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/15/2016] [Accepted: 10/25/2016] [Indexed: 12/30/2022] Open
Abstract
The human induced pluripotent stem cell (hiPSC) provides a breakthrough approach that helps overcoming ethical and allergenic challenges posed in application of neural stem cells (NSCs) in targeted cancer gene therapy. However, the tumor-tropic capacity of hiPSC-derived NSCs (hiPS-NSCs) still has much room to improve. Here we attempted to promote the tumor tropism of hiPS-NSCs by manipulating the activity of endogenous miR-199a/214 cluster that is involved in regulation of hypoxia-stimulated cell migration. We first developed a baculovirus-delivered CRISPR interference (CRISPRi) system that sterically blocked the E-box element in the promoter of the miR-199a/214 cluster with an RNA-guided catalytically dead Cas9 (dCas9). We then applied this CRISPRi system to hiPS-NSCs and successfully suppressed the expression of miR-199a-5p, miR-199a-3p, and miR-214 in the microRNA gene cluster. Meanwhile, the expression levels of their targets related to regulation of hypoxia-stimulated cell migration, such as HIF1A, MET, and MAPK1, were upregulated. Further migration assays demonstrated that the targeted inhibition of the miR-199a/214 cluster significantly enhanced the tumor tropism of hiPS-NSCs both in vitro and in vivo. These findings suggest a novel application of CRISPRi in NSC-based tumor-targeted gene therapy.
Collapse
|
206
|
Nanoparticle engineered TRAIL-overexpressing adipose-derived stem cells target and eradicate glioblastoma via intracranial delivery. Proc Natl Acad Sci U S A 2016; 113:13857-13862. [PMID: 27849590 DOI: 10.1073/pnas.1615396113] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most intractable of human cancers, principally because of the highly infiltrative nature of these neoplasms. Tracking and eradicating infiltrating GBM cells and tumor microsatellites is of utmost importance for the treatment of this devastating disease, yet effective strategies remain elusive. Here we report polymeric nanoparticle-engineered human adipose-derived stem cells (hADSCs) overexpressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as drug-delivery vehicles for targeting and eradicating GBM cells in vivo. Our results showed that polymeric nanoparticle-mediated transfection led to robust up-regulation of TRAIL in hADSCs, and that TRAIL-expressing hADSCs induced tumor-specific apoptosis. When transplanted in a mouse intracranial xenograft model of patient-derived glioblastoma cells, hADSCs exhibited long-range directional migration and infiltration toward GBM tumor. Importantly, TRAIL-overexpressing hADSCs inhibited GBM growth, extended survival, and reduced the occurrence of microsatellites. Repetitive injection of TRAIL-overexpressing hADSCs significantly prolonged animal survival compared with single injection of these cells. Taken together, our data suggest that nanoparticle-engineered TRAIL-expressing hADSCs exhibit the therapeutically relevant behavior of "seek-and-destroy" tumortropic migration and could be a promising therapeutic approach to improve the treatment outcomes of patients with malignant brain tumors.
Collapse
|
207
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
208
|
Sui CJ, Xu M, Li WQ, Yang JM, Yan HZ, Liu HM, Xia CY, Yu HY. Co-culture of hepatoma cells with hepatocytic precursor (stem-like) cells inhibits tumor cell growth and invasion by downregulating Akt/NF-κB expression. Oncol Lett 2016; 12:4054-4060. [PMID: 27895771 PMCID: PMC5104234 DOI: 10.3892/ol.2016.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 08/05/2015] [Indexed: 11/10/2022] Open
Abstract
Hepatocytic stem cells (HSCs) have inhibitory effects on hepatocarcinoma cells. The present study investigated the effects of HSC activity in hepatocarcinoma cells in vitro. A Transwell co-culture system of hepatocytic precursor (stem-like) WB-F344 cells and hepatoma CBRH-7919 cells was used to assess HSC activity in metastasized hepatoma cells in vitro. Nude mouse xenografts were used to assess HSC activity in vivo. Co-culture of hepatoma CBRH-7919 cells with WB-F344 cells suppressed the growth and colony formation, tumor cell migration and invasion capacity of CBRH-7919 cells. The nude mouse xenograft assay demonstrated that the xenograft size of CBRH-7919 cells following co-culture with WB-F344 cells was significantly smaller compared with that of control cells. Furthermore, the expression levels of the epithelial markers E-cadherin and β-catenin were downregulated, while the mesenchymal markers α-SMA and vimentin were upregulated. Co-culture of CBRH-7919 cells with WB-F344 cells downregulated NF-κB and phospho-Akt expression. In conclusion, hepatocytic precursor (stem-like) WB-F344 cells inhibited the growth, colony formation and invasion capacity of metastasized hepatoma CBRH-7919 cells in vitro and in vivo by downregulating Akt/NF-κB signaling.
Collapse
Affiliation(s)
- Cheng-Jun Sui
- Department of Special Medical Care Unit I and Liver Transplantation, The Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Miao Xu
- Department of Geratology, Changhai Hospital, Shanghai 200438, P.R. China
| | - Wei-Qing Li
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Jia-Mei Yang
- Department of Special Medical Care Unit I and Liver Transplantation, The Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Hong-Zhu Yan
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Hui-Min Liu
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Chun-Yan Xia
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Hong-Yu Yu
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
- Correspondence to: Dr Hong-Yu Yu, Department of Pathology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, Shanghai 200003, P.R. China, E-mail:
| |
Collapse
|
209
|
Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, Bal-Price A, Hogberg HT, Quinones-Hinojosa A, Guerrero-Cazares H, Levchenko A. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. LAB ON A CHIP 2016; 16:4152-4162. [PMID: 27722368 DOI: 10.1039/c6lc00946h] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Migration of neural progenitors in the complex tissue environment of the central nervous system is not well understood. Progress in this area has the potential to drive breakthroughs in neuroregenerative therapies, brain cancer treatments, and neurodevelopmental studies. To a large extent, advances have been limited due to a lack of controlled environments recapitulating characteristics of the central nervous system milieu. Reductionist cell culture models are frequently too simplistic, and physiologically more relevant approaches such as ex vivo brain slices or in situ experiments provide little control and make information extraction difficult. Here, we present a brain-on-chip model that bridges the gap between cell culture and ex vivo/in vivo conditions through recapitulation of self-organized neural differentiation. We use a new multi-layer silicone elastomer device, over the course of four weeks to differentiate pluripotent human (NTERA2) cells into neuronal clusters interconnected with thick axonal bundles and interspersed with astrocytes, resembling the brain parenchyma. Neurons within the device express the neurofilament heavy (NF200) mature axonal marker and the microtubule-associated protein (MAP2ab) mature dendritic marker, demonstrating that the devices are sufficiently biocompatible to allow neuronal maturation. This neuronal-glial environment is interfaced with a layer of human brain microvascular endothelial cells showing characteristics of the blood-brain barrier including the expression of zonula occludens (ZO1) tight junctions and increased trans-endothelial electrical resistance. We used this device to model migration of human neural progenitors in response to chemotactic cues within a brain-tissue setting. We show that in the presence of an environment mimicking brain conditions, neural progenitor cells show a significantly enhanced chemotactic response towards shallow gradients of CXCL12, a key chemokine expressed during embryonic brain development and in pathological tissue regions of the central nervous system. Our brain-on-chip model thus provides a convenient and scalable model of neural differentiation and maturation extensible to analysis of complex cell and tissue behaviors.
Collapse
Affiliation(s)
- Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Emily Lavell
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Paula Schiapparelli
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yun Feng
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. and Department of Pharmacology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA and CAAT-Europe, University of Konstanz, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hugo Guerrero-Cazares
- Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
210
|
Bryukhovetskiy IS, Dyuizen IV, Shevchenko VE, Bryukhovetskiy AS, Mischenko PV, Milkina EV, Khotimchenko YS. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep 2016; 14:4511-4520. [PMID: 27748891 PMCID: PMC5101999 DOI: 10.3892/mmr.2016.5852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/29/2016] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma multiforme is an aggressive malignant brain tumor with terminal consequences. A primary reason for its resistance to treatment is associated with cancer stem cells (CSCs), of which there are currently no effective ways to destroy. It remains unclear what cancer cells become a target of stem cell migration, what the role of this process is in oncogenesis and what stem cell lines should be used in developing antitumor technologies. Using modern post‑genome technologies, the present study investigated the migration of human stem cells to cancer cells in vitro, the comparative study of cell proteomes of certain stem cells (including CSCs) was conducted and stem cell migration in vivo was examined. Of all glioblastoma cells, CSCs have the stability to attract normal stem cells. Critical differences in cell proteomes allow the consideration of hematopoietic stem cells (HSCs) as an instrument for interaction with glioblastoma CSCs. Following injection into the bloodstream of animals with glioblastoma, the majority of HSCs migrated to the tumor‑containing brain hemisphere and penetrated the tumor tissue. HSCs therefore are of potential use in the development of methods to target CSCs.
Collapse
Affiliation(s)
| | - Inessa V Dyuizen
- Far Eastern Federal University, School of Biomedicine, Vladivostok 690091, Russia
| | - Valeriy E Shevchenko
- Far Eastern Federal University, School of Biomedicine, Vladivostok 690091, Russia
| | | | - Polina V Mischenko
- Far Eastern Federal University, School of Biomedicine, Vladivostok 690091, Russia
| | - Elena V Milkina
- Far Eastern Federal University, School of Biomedicine, Vladivostok 690091, Russia
| | - Yuri S Khotimchenko
- Far Eastern Federal University, School of Biomedicine, Vladivostok 690091, Russia
| |
Collapse
|
211
|
Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis. J Neurooncol 2016; 131:125-133. [PMID: 27644688 DOI: 10.1007/s11060-016-2278-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/03/2016] [Indexed: 02/07/2023]
Abstract
The ventricular-subventricular zone (V-SVZ), which lies in the walls of the lateral ventricles (LV), is the largest neurogenic niche within the adult brain. Whether radiographic contact with the LV influences survival in glioblastoma (GBM) patients remains unclear. We assimilated and analyzed published data comparing survival in GBM patients with (LV+GBM) and without (LV-GBM) radiographic LV contact. PubMed, EMBASE, and Cochrane electronic databases were searched. Fifteen studies with survival data on LV+GBM and LV-GBM patients were identified. Their Kaplan-Meier survival curves were digitized and pooled for generation of median overall (OS) and progression free (PFS) survivals and log-rank hazard ratios (HRs). The log-rank and reported multivariate HRs after accounting for the common predictors of GBM survival were analyzed separately by meta-analyses. The calculated median survivals (months) from pooled data were 12.95 and 16.58 (OS), and 4.54 and 6.25 (PFS) for LV+GBMs and LV-GBMs, respectively, with an overall log-rank HRs of 1.335 [1.204-1.513] (OS) and 1.387 [1.225-1.602] (PFS). Meta-analysis of log-rank HRs resulted in summary HRs of 1.58 [1.35-1.85] (OS, 10 studies) and 1.41 [1.22-1.64] (PFS, 5 studies). Meta-analysis of multivariate HRs resulted in summary HRs of 1.35 [1.14-1.58] (OS, 6 studies) and 1.64 [0.88-3.05] (PFS, 3 studies). Patients with GBM contacting the LV have lower survival. This effect may be independent of the common predictors of GBM survival, suggesting a clinical influence of V-SVZ contact on GBM biology.
Collapse
|
212
|
Dey M, Yu D, Kanojia D, Li G, Sukhanova M, Spencer DA, Pituch KC, Zhang L, Han Y, Ahmed AU, Aboody KS, Lesniak MS, Balyasnikova IV. Intranasal Oncolytic Virotherapy with CXCR4-Enhanced Stem Cells Extends Survival in Mouse Model of Glioma. Stem Cell Reports 2016; 7:471-482. [PMID: 27594591 PMCID: PMC5032402 DOI: 10.1016/j.stemcr.2016.07.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
The challenges to effective drug delivery to brain tumors are twofold: (1) there is a lack of non-invasive methods of local delivery and (2) the blood-brain barrier limits systemic delivery. Intranasal delivery of therapeutics to the brain overcomes both challenges. In mouse model of malignant glioma, we observed that a small fraction of intranasally delivered neural stem cells (NSCs) can migrate to the brain tumor site. Here, we demonstrate that hypoxic preconditioning or overexpression of CXCR4 significantly enhances the tumor-targeting ability of NSCs, but without altering their phenotype only in genetically modified NSCs. Modified NSCs deliver oncolytic virus to glioma more efficiently and extend survival of experimental animals in the context of radiotherapy. Our findings indicate that intranasal delivery of stem cell-based therapeutics could be optimized for future clinical applications, and allow for safe and repeated administration of biological therapies to brain tumors and other CNS disorders. Intranasal delivery of NSCs is a promising platform for glioma therapy Hypoxia or CXCR4 overexpression enhances NSC migration to glioma Oncolytic viruses loaded in CXCR4-enhanced NSCs improve animal survival Non-invasive intranasal NSC-based therapies warrant clinical translation
Collapse
Affiliation(s)
- Mahua Dey
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Dou Yu
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deepak Kanojia
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gina Li
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Madina Sukhanova
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Drew A Spencer
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katatzyna C Pituch
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lingjiao Zhang
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA
| | - Yu Han
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Atique U Ahmed
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karen S Aboody
- Division of Neurosurgery, Department of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Irina V Balyasnikova
- The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA; Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
213
|
Heo JR, Kim NH, Cho J, Choi KC. Current treatments for advanced melanoma and introduction of a promising novel gene therapy for melanoma (Review). Oncol Rep 2016; 36:1779-86. [PMID: 27573048 DOI: 10.3892/or.2016.5032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/24/2016] [Indexed: 11/06/2022] Open
Abstract
Metastatic melanoma is a fatal form of skin cancer that has a tendency to proliferate more rapidly than any other solid tumor. Since 2010, treatment options for metastatic melanoma have been developed including chemotherapies, checkpoint inhibition immunotherapies, e.g., anti‑cytotoxic T‑lymphocyte antigen‑4 (CTLA‑4) and anti‑programmed death‑1 (PD‑1), and molecular-targeted therapies, e.g., BRAF and MEK inhibitors. These treatments have shown not only high response rates yet also side‑effects and limitations. Notwithstanding its limitations, stem cell therapy has emerged as a new auspicious therapy for various tumor types. Since stem cells possess the ability to serve as a novel vehicle for delivering therapeutic or suicide genes to primary or metastatic cancer sites, these cells can function as part of gene‑directed enzyme prodrug therapy (GDEPT). This review focuses on introducing engineered neural stem cells (NSCs), which have tumor‑tropic behavior that allows NSCs to selectively approach primary and invasive tumor foci, as a potential gene therapy for melanoma. Therapy using engineered NSCs with cytotoxic agents resulted in markedly reduced tumor volumes and significantly prolonged survival rates in preclinical models of various tumor types. This review elucidates current treatment options for metastatic melanoma and introduces a promising NSC therapy.
Collapse
Affiliation(s)
- Jae-Rim Heo
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
214
|
Wierdl M, Tsurkan L, Hatfield MJ, Potter PM. Tumour-selective targeting of drug metabolizing enzymes to treat metastatic cancer. Br J Pharmacol 2016; 173:2811-8. [PMID: 27423046 DOI: 10.1111/bph.13553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 11/28/2022] Open
Abstract
Carboxylesterases (CEs) are ubiquitous enzymes responsible for the detoxification of ester-containing xenobiotics. This hydrolysis reaction results in the formation of the corresponding carboxylic acid and alcohol. Due to their highly plastic active site, CEs can hydrolyze structurally very distinct and complex molecules. Because ester groups significantly increase the water solubility of compounds, they are frequently used in the pharmaceutical industry to make relatively insoluble compounds more bioavailable. By default, this results in CEs playing a major role in the distribution and metabolism of these esterified drugs. However, this can be exploited to selectively improve compound hydrolysis, and using specific in vivo targeting techniques can be employed to generate enhanced drug activity. Here, we seek to detail the human CEs involved in esterified molecule hydrolysis, compare and contrast these with CEs present in small mammals and describe novel methods to improve drug therapy by specific delivery of CEs to cells in vivo. Finally, we will discuss the development of such approaches for their potential application towards malignant disease.
Collapse
Affiliation(s)
- Monika Wierdl
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lyudmila Tsurkan
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Jason Hatfield
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Philip M Potter
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
215
|
Vaccarino FM, Fagel DM, Ganat Y, Maragnoli ME, Ment LR, Ohkubo Y, Schwartz ML, Silbereis J, Smith KM. Astroglial Cells in Development, Regeneration, and Repair. Neuroscientist 2016; 13:173-85. [PMID: 17404377 DOI: 10.1177/1073858406298336] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three main cellular components have been described in the CNS: neurons, astrocytes, and oligodendrocytes. In the past 10 years, lineage studies first based on retroviruses in the embryonic CNS and then by genetic fate mapping in both the prenatal and postnatal CNS have proposed that astroglial cells can be progenitors for neurons and oligodendrocytes. Hence, the population of astroglial cells is increasingly recognized as heterogeneous and diverse, encompassing cell types performing widely different roles in development and plasticity. Astroglial cells populating the neurogenic niches increase their proliferation after perinatal injury and in young mice can differentiate into neurons and oligodendrocytes that migrate to the cerebral cortex, replacing the cells that are lost. Although much remains to be learned about this process, it appears that the up-regulation of the Fibroblast growth factor receptor is critical for mediating the injury-induced increase in cell division and perhaps for the neuronal differentiation of astroglial cells. NEUROSCIENTIST 13(2):173—185, 2007.
Collapse
Affiliation(s)
- Flora M Vaccarino
- Child Study Center, Department of Neurobiology, Yale University Medical School, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Chung T, Na J, Kim YI, Chang DY, Kim YI, Kim H, Moon HE, Kang KW, Lee DS, Chung JK, Kim SS, Suh-Kim H, Paek SH, Youn H. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas. Theranostics 2016; 6:1477-90. [PMID: 27446484 PMCID: PMC4955049 DOI: 10.7150/thno.14158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/06/2016] [Indexed: 12/23/2022] Open
Abstract
We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy.
Collapse
|
217
|
Okolie O, Bago JR, Schmid RS, Irvin DM, Bash RE, Miller CR, Hingtgen SD. Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro Oncol 2016; 18:1622-1633. [PMID: 27298311 DOI: 10.1093/neuonc/now117] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/04/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Surgical resection is a universal component of glioma therapy. Little is known about the postoperative microenvironment due to limited preclinical models. Thus, we sought to develop a glioma resection and recurrence model in syngeneic immune-competent mice to understand how surgical resection influences tumor biology and the local microenvironment. METHODS We genetically engineered cells from a murine glioma mouse model to express fluorescent and bioluminescent reporters. Established allografts were resected using image-guided microsurgery. Postoperative tumor recurrence was monitored by serial imaging, and the peritumoral microenvironment was characterized by histopathology and immunohistochemistry. Coculture techniques were used to explore how astrocyte injury influences tumor aggressiveness in vitro. Transcriptome and secretome alterations in injured astrocytes was examined by RNA-seq and Luminex. RESULTS We found that image-guided resection achieved >90% reduction in tumor volume but failed to prevent both local and distant tumor recurrence. Immunostaining for glial fibrillary acidic protein and nestin showed that resection-induced injury led to temporal and spatial alterations in reactive astrocytes within the peritumoral microenvironment. In vitro, we found that astrocyte injury induced transcriptome and secretome alterations and promoted tumor proliferation, as well as migration. CONCLUSIONS This study demonstrates a unique syngeneic model of glioma resection and recurrence in immune-competent mice. Furthermore, this model provided insights into the pattern of postsurgical tumor recurrence and changes in the peritumoral microenvironment, as well as the impact of injured astrocytes on glioma growth and invasion. A better understanding of the postsurgical tumor microenvironment will allow development of targeted anticancer agents that improve surgery-mediated effects on tumor biology.
Collapse
Affiliation(s)
- Onyinyechukwu Okolie
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| | - Juli R Bago
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| | - Ralf S Schmid
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| | - David M Irvin
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| | - Ryan E Bash
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| | - C Ryan Miller
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| | - Shawn D Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (O.O., J.R.B., S.D.H.); Division of Neuropathology, Department of Pathology and Laboratory Medicine, Department of Neurology, and Neuroscience Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.R.M.); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.S.S., D.M.I., R.E.B., C.R.M., S.D.H.); Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (S.D.H.)
| |
Collapse
|
218
|
Shah K. Stem cell-based therapies for tumors in the brain: are we there yet? Neuro Oncol 2016; 18:1066-78. [PMID: 27282399 DOI: 10.1093/neuonc/now096] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation.
Collapse
Affiliation(s)
- Khalid Shah
- Stem Cell Therapeutics and Imaging Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts (K.S.)
| |
Collapse
|
219
|
Neural Stem Cell Therapy and Rehabilitation in the Central Nervous System: Emerging Partnerships. Phys Ther 2016; 96:734-42. [PMID: 26847015 PMCID: PMC6281018 DOI: 10.2522/ptj.20150063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022]
Abstract
The goal of regenerative medicine is to restore function through therapy at levels such as the gene, cell, tissue, or organ. For many disorders, however, regenerative medicine approaches in isolation may not be optimally effective. Rehabilitation is a promising adjunct therapy given the beneficial impact that physical activity and other training modalities can offer. Accordingly, "regenerative rehabilitation" is an emerging concentration of study, with the specific goal of improving positive functional outcomes by enhancing tissue restoration following injury. This article focuses on one emerging example of regenerative rehabilitation-namely, the integration of clinically based protocols with stem cell technologies following central nervous system injury. For the purposes of this review, the state of stem cell technologies for the central nervous system is summarized, and a rationale for a synergistic benefit of carefully orchestrated rehabilitation protocols in conjunction with cellular therapies is provided. An overview of practical steps to increase the involvement of physical therapy in regenerative rehabilitation research also is provided.
Collapse
|
220
|
Anatomical Involvement of the Subventricular Zone Predicts Poor Survival Outcome in Low-Grade Astrocytomas. PLoS One 2016; 11:e0154539. [PMID: 27120204 PMCID: PMC4847798 DOI: 10.1371/journal.pone.0154539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/14/2016] [Indexed: 01/01/2023] Open
Abstract
The subventricular zone (SVZ) has been implicated in the origination, development, and biological behavior of gliomas. Tumor-SVZ contact is also postulated to be a poor prognostic factor in glioblastomas. We aimed to evaluate the prognostic consequence of the anatomical involvement of low-grade gliomas with the SVZ. To that end, we reviewed 143 patients with diffuse astrocytomas, and tumor lesions were manually delineated on magnetic resonance images. We initially investigated the prognostic role of SVZ contact in all patients. Additionally, we investigated the influence of the anatomical proximity of the tumor lesion centroids to the SVZ in the SVZ-involved patient cohorts, as well as location within the SVZ. We found SVZ contact with tumors to be a significant prognostic factor of overall survival in all patients with diffuse astrocytomas (p = 0.027). In the SVZ-involved cohort, a shorter distance from the tumor centroid to the SVZ (≤30 mm) correlated with shorter overall survival (p = 0.022) on univariate analysis. However, there was no significant difference in overall survival with respect to the SVZ region involved with the tumor (p = 0.930). Multivariate analysis showed that a shorter distance between the tumor centroid and the SVZ (p = 0.039) was significantly associated with poor overall survival in SVZ-involved patients. Hence, this study helps establish the prognostic role of the anatomical interaction of tumors with the SVZ in low-grade astrocytomas.
Collapse
|
221
|
Abstract
Clinical investigations using stem cell products in regenerative medicine are addressing a wide spectrum of conditions using a variety of stem cell types. To date, there have been few reports of safety issues arising from autologous or allogeneic transplants. Many cells administered show transient presence for a few days with trophic influences on immune or inflammatory responses. Limbal stem cells have been registered as a product for eye burns in Europe and mesenchymal stem cells have been approved for pediatric graft versus host disease in Canada and New Zealand. Many other applications are progressing in trials, some with early benefits to patients.
Collapse
Affiliation(s)
- Alan Trounson
- Hudson Institute for Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia.
| | - Courtney McDonald
- Hudson Institute for Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
| |
Collapse
|
222
|
Liu H, Zhang J, Chen X, Du XS, Zhang JL, Liu G, Zhang WG. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. NANOSCALE 2016; 8:7808-7826. [PMID: 27029509 DOI: 10.1039/c6nr00147e] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gliomas are the most common primary brain tumors and have a very dismal prognosis. However, recent advancements in nanomedicine and nanotechnology provide opportunities for personalized treatment regimens to improve the poor prognosis of patients suffering from glioma. This comprehensive review starts with an outline of the current status facing glioma. It then provides an overview of the state-of-the-art applications of iron oxide nanoparticles (IONPs) to glioma diagnostics and therapeutics, including MR contrast enhancement, drug delivery, cell labeling and tracking, magnetic hyperthermia treatment and magnetic particle imaging. It also addresses current challenges associated with the biological barriers and IONP design with an emphasis on recent advances and innovative approaches for glioma targeting strategies. Opportunities for future development are highlighted.
Collapse
Affiliation(s)
- Heng Liu
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China and State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China. and Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong 637007, China
| | - Xiao Chen
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xue-Song Du
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jin-Long Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Wei-Guo Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China and The State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
223
|
Kumar MD, Dravid A, Kumar A, Sen D. Gene therapy as a potential tool for treating neuroblastoma-a focused review. Cancer Gene Ther 2016; 23:115-24. [PMID: 27080224 DOI: 10.1038/cgt.2016.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/12/2022]
Abstract
Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged <5 years. Several approaches and strategies developed and tested to cure neuroblastoma have met with limited success due to different reasons. Many oncogenes are deregulated during the onset and development of neuroblastoma and thus offer an opportunity to circumvent this disease if the expression of these genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma.
Collapse
Affiliation(s)
- M D Kumar
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - A Dravid
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - A Kumar
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| | - D Sen
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India.,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology University, Vellore, Tamil Nadu, India
| |
Collapse
|
224
|
Heiss WD. Hybrid PET/MR Imaging in Neurology: Present Applications and Prospects for the Future. J Nucl Med 2016; 57:993-5. [PMID: 27056615 DOI: 10.2967/jnumed.116.175208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023] Open
|
225
|
Xu G, Liu Y, Zhang YI, Yang Q, Diao BO. Study on the therapeutic effect of neural progenitor cells in mice of a glioma murine model. Oncol Lett 2016; 11:2067-2070. [PMID: 26998123 PMCID: PMC4777880 DOI: 10.3892/ol.2016.4158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/28/2016] [Indexed: 11/05/2022] Open
Abstract
Glioma is a common malignacy of the brain that affects elderly patients in particular. Despite treatment, however, the survival rate is 12 months. The aim of the present study was to examine the therapeutic effect of neural progenitor cells (NPCs) on a glioma murine model, and to determine the possible mechanism of action. A glioma murine model was constructed and the tumor volume and tumor growth rate were measured. The therapeutic effect of cell injection on the glioma mouse model mice was confirmed. The quantitative polymerase chain reaction method was used to detect the expression of proto-oncogene and tumor suppressor gene. Intracranial injection of NPCs was performed to determine cell apoptosis. Preliminary results showed the mechanism of cell therapy effect at the transcription and cellular level. Compared with the model group, the tumor volume of the mice of the cell therapy group was significantly reduced from the 6th to 8th week, and the tumor growth rate was downregulated. The mechanism of action identified that NPCs regulate gene expression in tumor tissues, increase the expression of tumor suppressor gene, downregulate the gene expression of tumor cells, and reverse the proto-oncogene and imbalance of gene expression in gliomas. In conclusion, the new type of cell injection method can regulate the proto-oncogene of tumor tissue and tumor suppressor gene, improve the function phenotype of the cell, and effectively improve the clinical symptoms of mice with gliomas.
Collapse
Affiliation(s)
- Guozheng Xu
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei 430070, P.R. China; Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei 430070, P.R. China
| | - Ying Liu
- Department of Clinical Laboratory, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei 430070, P.R. China
| | - Y I Zhang
- Department of Clinical Experiment, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei 430070, P.R. China
| | - Qian Yang
- Department of Clinical Experiment, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei 430070, P.R. China
| | - B O Diao
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command, Wuhan, Hubei 430070, P.R. China; Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
226
|
Gabashvili AN, Baklaushev VP, Grinenko NF, Mel'nikov PA, Cherepanov SA, Levinsky AB, Chehonin VP. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells. Bull Exp Biol Med 2016; 160:519-524. [PMID: 26902362 DOI: 10.1007/s10517-016-3211-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 10/22/2022]
Abstract
The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas.
Collapse
Affiliation(s)
- A N Gabashvili
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia.
| | - V P Baklaushev
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia
- Federal Research-and-Clinical Center, Federal Medico-Biological Agency, Moscow, Russia
| | - N F Grinenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - P A Mel'nikov
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia
| | - S A Cherepanov
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia
| | - A B Levinsky
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia
| | - V P Chehonin
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
227
|
Monitoring the Bystander Killing Effect of Human Multipotent Stem Cells for Treatment of Malignant Brain Tumors. Stem Cells Int 2016; 2016:4095072. [PMID: 26880961 PMCID: PMC4736564 DOI: 10.1155/2016/4095072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023] Open
Abstract
Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683) in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI) and magnetic resonance imaging (MRI). Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1) outliers can be detected earlier, (2) GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3) a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents.
Collapse
|
228
|
Hulou MM, Cho CF, Chiocca EA, Bjerkvig R. Experimental therapies: gene therapies and oncolytic viruses. HANDBOOK OF CLINICAL NEUROLOGY 2016; 134:183-197. [PMID: 26948355 DOI: 10.1016/b978-0-12-802997-8.00011-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glioblastoma is the most common and aggressive primary brain tumor in adults. Over the past three decades, the overall survival time has only improved by a few months, therefore novel alternative treatment modalities are needed to improve clinical management strategies. Such strategies should ultimately extend patient survival. At present, the extensive insight into the molecular biology of gliomas, as well as into genetic engineering techniques, has led to better decision processes when it comes to modifying the genome to accommodate suicide genes, cytokine genes, and tumor suppressor genes that may kill cancer cells, and boost the host defensive immune system against neoantigenic cytoplasmic and nuclear targets. Both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment. Stem cells, microRNAs, nanoparticles, and viruses have also been designed. These have been armed with transgenes or peptides, and have been used both in laboratory-based experiments as well as in clinical trials, with the aim of improving selective killing of malignant glioma cells while sparing normal brain tissue. This chapter reviews the current status of gene therapies for malignant gliomas and highlights the most promising viral and cell-based strategies under development.
Collapse
Affiliation(s)
- M Maher Hulou
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Choi-Fong Cho
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rolf Bjerkvig
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg; Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
229
|
Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim AJ. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 2016; 22:1177-1193. [PMID: 26685681 PMCID: PMC4900538 DOI: 10.2174/1381612822666151221150733] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/18/2015] [Indexed: 01/10/2023]
Abstract
The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Graeme F. Woodworth
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| | - Anthony J. Kim
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| |
Collapse
|
230
|
NAMBA HIROKI, KAWAJI HIROSHI, YAMASAKI TOMOHIRO. Use of genetically engineered stem cells for glioma therapy. Oncol Lett 2016; 11:9-15. [PMID: 26870161 PMCID: PMC4726949 DOI: 10.3892/ol.2015.3860] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma, the most common and most malignant type of primary brain tumor, is associated with poor prognosis, even when treated using combined therapies, including surgery followed by concomitant radiotherapy with temozolomide-based chemotherapy. The invasive nature of this type of tumor is a major reason underlying treatment failure. The tumor-tropic ability of neural and mesenchymal stem cells offers an alternative therapeutic approach, where these cells may be used as vehicles for the invasion of tumors. Stem cell-based therapy is particularly attractive due to its tumor selectivity, meaning that the stem cells are able to target tumor cells without harming healthy brain tissue, as well as the extensive tumor tropism of stem cells when delivering anti-tumor substances, even to distant tumor microsatellites. Stem cells have previously been used to deliver cytokine genes, suicide genes and oncolytic viruses. The present review will summarize current trends in experimental studies of stem cell-based gene therapy against gliomas, and discuss the potential concerns for translating these promising strategies into clinical use.
Collapse
Affiliation(s)
- HIROKI NAMBA
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - HIROSHI KAWAJI
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - TOMOHIRO YAMASAKI
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
231
|
Ropper AE, Zeng X, Haragopal H, Anderson JE, Aljuboori Z, Han I, Abd-El-Barr M, Lee HJ, Sidman RL, Snyder EY, Viapiano MS, Kim SU, Chi JH, Teng YD. Targeted Treatment of Experimental Spinal Cord Glioma With Dual Gene-Engineered Human Neural Stem Cells. Neurosurgery 2015; 79:481-91. [DOI: 10.1227/neu.0000000000001174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND
There are currently no satisfactory treatments or experimental models showing autonomic dysfunction for intramedullary spinal cord gliomas (ISCG).
OBJECTIVE
To develop a rat model of ISCG and investigate whether genetically engineered human neural stem cells (F3.hNSCs) could be developed into effective therapies for ISCG.
METHODS
Immunodeficient/Rowett Nude rats received C6 implantation of G55 human glioblastoma cells (10K/each). F3.hNSCs engineered to express either cytosine deaminase gene only (i.e., F3.CD) or dual genes of CD and thymidine kinase (i.e., F3.CD-TK) converted benign 5-fluorocytosine and ganciclovir into oncolytic 5-fluorouracil and ganciclovir-triphosphate, respectively. ISCG rats received injection of F3.CD-TK, F3.CD, or F3.CD-TK debris near the tumor epicenter 7 days after G55 seeding, followed with 5-FC (500 mg/kg/5 mL) and ganciclovir administrations (25 mg/kg/1 mL/day × 5/each repeat, intraperitoneal injection). Per humane standards for animals, loss of weight-bearing stepping in the hindlimb was used to determine post-tumor survival. Also evaluated were autonomic functions and tumor growth rate in vivo.
RESULTS
ISCG rats with F3.CD-TK treatment survived significantly longer (37.5 ± 4.78 days) than those receiving F3.CD (21.5 ± 1.75 days) or F3.CD-TK debris (19.3 ± 0.85 days; n = 4/group; P <.05, median rank test), with significantly improved autonomic function and reduced tumor growth rate. F3.DC-TK cells migrated diffusively into ISCG clusters to mediate oncolytic effect.
CONCLUSION
Dual gene-engineered human neural stem cell regimen markedly prolonged survival in a rat model that emulates somatomotor and autonomic dysfunctions of human cervical ISCG. F3.CD-TK may provide a novel approach to treating clinical ISCG.
Collapse
Affiliation(s)
- Alexander E. Ropper
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Xiang Zeng
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Hariprakash Haragopal
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Jamie E. Anderson
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Zaid Aljuboori
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Inbo Han
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Muhammad Abd-El-Barr
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hong Jun Lee
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Richard L. Sidman
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Evan Y. Snyder
- Stem Cell Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Mariano S. Viapiano
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Seung U. Kim
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John H. Chi
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Yang D. Teng
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Department of PM&R, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
232
|
Krasikova LS, Karshieva SS, Cheglakov IB, Belyavsky AV. Mesenchymal stem cells expressing cytosine deaminase inhibit growth of murine melanoma B16F10 in vivo. Mol Biol 2015. [DOI: 10.1134/s0026893315060126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
233
|
Ottoboni L, De Feo D, Merlini A, Martino G. Commonalities in immune modulation between mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs). Immunol Lett 2015; 168:228-39. [DOI: 10.1016/j.imlet.2015.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
|
234
|
Kim J, Hall RR, Lesniak MS, Ahmed AU. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions. Viruses 2015; 7:6200-17. [PMID: 26633462 PMCID: PMC4690850 DOI: 10.3390/v7122921] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis—all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting.
Collapse
Affiliation(s)
- Janice Kim
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Robert R Hall
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Maciej S Lesniak
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Atique U Ahmed
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
235
|
Kane JR, Miska J, Young JS, Kanojia D, Kim JW, Lesniak MS. Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. Neuro Oncol 2015; 17 Suppl 2:ii24-ii36. [PMID: 25746089 DOI: 10.1093/neuonc/nou355] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gene therapy offers a multidimensional set of approaches intended to treat and cure glioblastoma (GBM), in combination with the existing standard-of-care treatment (surgery and chemoradiotherapy), by capitalizing on the ability to deliver genes directly to the site of neoplasia to yield antitumoral effects. Four types of gene therapy are currently being investigated for their potential use in treating GBM: (i) suicide gene therapy, which induces the localized generation of cytotoxic compounds; (ii) immunomodulatory gene therapy, which induces or augments an enhanced antitumoral immune response; (iii) tumor-suppressor gene therapy, which induces apoptosis in cancer cells; and (iv) oncolytic virotherapy, which causes the lysis of tumor cells. The delivery of genes to the tumor site is made possible by means of viral and nonviral vectors for direct delivery of therapeutic gene(s), tumor-tropic cell carriers expressing therapeutic gene(s), and "intelligent" carriers designed to increase delivery, specificity, and tumoral toxicity against GBM. These vehicles are used to carry genetic material to the site of pathology, with the expectation that they can provide specific tropism to the desired site while limiting interaction with noncancerous tissue. Encouraging preclinical results using gene therapies for GBM have led to a series of human clinical trials. Although there is limited evidence of a therapeutic benefit to date, a number of clinical trials have convincingly established that different types of gene therapies delivered by various methods appear to be safe. Due to the flexibility of specialized carriers and genetic material, the technology for generating new and more effective therapies already exists.
Collapse
Affiliation(s)
- J Robert Kane
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Jason Miska
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Jacob S Young
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Deepak Kanojia
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Julius W Kim
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Maciej S Lesniak
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
236
|
BRYUKHOVETSKIY IGOR, BRYUKHOVETSKIY ANDREY, KHOTIMCHENKO YURI, MISCHENKO POLINA. Novel cellular and post-genomic technologies in the treatment of glioblastoma multiforme (Review). Oncol Rep 2015; 35:639-48. [DOI: 10.3892/or.2015.4404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/17/2015] [Indexed: 11/05/2022] Open
|
237
|
MMP14 as a novel downstream target of VEGFR2 in migratory glioma-tropic neural stem cells. Stem Cell Res 2015; 15:598-607. [PMID: 26513555 DOI: 10.1016/j.scr.2015.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/06/2015] [Accepted: 10/13/2015] [Indexed: 12/18/2022] Open
Abstract
Neural stem cell (NSC)-based carriers have been presented as promising therapeutic tools for the treatment of infiltrative brain tumors due to their intrinsic tumor homing property. They have demonstrated the ability to migrate towards distant tumor microsatellites and effectively deliver the therapeutic payload, thus significantly improving survival in experimental animal models for brain tumor. Despite such optimistic results, the efficacy of NSC-based anti-cancer therapy has been limited due to the restricted tumor homing ability of NSCs. To examine this issue, we investigated the mechanisms of tumor-tropic migration of an FDA-approved NSC line, HB1.F3.CD, by performing a gene expression analysis. We identified vascular endothelial growth factor-A (VEGFA) and membrane-bound matrix metalloproteinase (MMP14) as molecules whose expression are significantly elevated in migratory NSCs. We observed increased expression of VEGF receptor 2 (VEGFR2) in the focal adhesion complexes of migratory NSCs, with downstream activation of VEGFR2-dependent kinases such as p-PLCγ, p-FAK, and p-Akt, a signaling cascade reported to be required for cellular migration. In an in vivo orthotopic glioma xenograft model, analysis of the migratory trail showed that NSCs maintained expression of VEGFR2 and preferentially migrated within the perivascular space. Knockdown of VEGFR2 via shRNAs led to significant downregulation of MMP14 expression, which resulted in inhibited tumor-tropic migration. Overall, our results suggest, the involvement of VEGFR2-regulated MMP14 in the tumor-tropic migratory behavior of NSCs. Our data warrant investigation of MMP14 as a target for enhancing the migratory properties of NSC carriers and optimizing the delivery of therapeutic payloads to disseminated tumor burdens.
Collapse
|
238
|
Li C, Ruan J, Yang M, Pan F, Gao G, Qu S, Shen YL, Dang YJ, Wang K, Jin WL, Cui DX. Human induced pluripotent stem cells labeled with fluorescent magnetic nanoparticles for targeted imaging and hyperthermia therapy for gastric cancer. Cancer Biol Med 2015; 12:163-74. [PMID: 26487961 PMCID: PMC4607817 DOI: 10.7497/j.issn.2095-3941.2015.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. Methods Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly. Results iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field. Conclusion FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer.
Collapse
Affiliation(s)
- Chao Li
- 1 Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China ; 2 Basic Medical Sciences Department of Biochemistry & Molecular Biology Key Laboratory of Molecular Medicine, Fudan University, Shanghai 200032, China ; 3 Department of Imaging and Nuclear Medicine, Shanghai Sixth People's Hospital, Shanghai 20006, China
| | - Jing Ruan
- 1 Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China ; 2 Basic Medical Sciences Department of Biochemistry & Molecular Biology Key Laboratory of Molecular Medicine, Fudan University, Shanghai 200032, China ; 3 Department of Imaging and Nuclear Medicine, Shanghai Sixth People's Hospital, Shanghai 20006, China
| | - Meng Yang
- 1 Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China ; 2 Basic Medical Sciences Department of Biochemistry & Molecular Biology Key Laboratory of Molecular Medicine, Fudan University, Shanghai 200032, China ; 3 Department of Imaging and Nuclear Medicine, Shanghai Sixth People's Hospital, Shanghai 20006, China
| | - Fei Pan
- 1 Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China ; 2 Basic Medical Sciences Department of Biochemistry & Molecular Biology Key Laboratory of Molecular Medicine, Fudan University, Shanghai 200032, China ; 3 Department of Imaging and Nuclear Medicine, Shanghai Sixth People's Hospital, Shanghai 20006, China
| | - Guo Gao
- 1 Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China ; 2 Basic Medical Sciences Department of Biochemistry & Molecular Biology Key Laboratory of Molecular Medicine, Fudan University, Shanghai 200032, China ; 3 Department of Imaging and Nuclear Medicine, Shanghai Sixth People's Hospital, Shanghai 20006, China
| | - Su Qu
- 1 Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China ; 2 Basic Medical Sciences Department of Biochemistry & Molecular Biology Key Laboratory of Molecular Medicine, Fudan University, Shanghai 200032, China ; 3 Department of Imaging and Nuclear Medicine, Shanghai Sixth People's Hospital, Shanghai 20006, China
| | - You-Lan Shen
- 1 Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China ; 2 Basic Medical Sciences Department of Biochemistry & Molecular Biology Key Laboratory of Molecular Medicine, Fudan University, Shanghai 200032, China ; 3 Department of Imaging and Nuclear Medicine, Shanghai Sixth People's Hospital, Shanghai 20006, China
| | - Yong-Jun Dang
- 1 Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China ; 2 Basic Medical Sciences Department of Biochemistry & Molecular Biology Key Laboratory of Molecular Medicine, Fudan University, Shanghai 200032, China ; 3 Department of Imaging and Nuclear Medicine, Shanghai Sixth People's Hospital, Shanghai 20006, China
| | - Kan Wang
- 1 Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China ; 2 Basic Medical Sciences Department of Biochemistry & Molecular Biology Key Laboratory of Molecular Medicine, Fudan University, Shanghai 200032, China ; 3 Department of Imaging and Nuclear Medicine, Shanghai Sixth People's Hospital, Shanghai 20006, China
| | - Wei-Lin Jin
- 1 Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China ; 2 Basic Medical Sciences Department of Biochemistry & Molecular Biology Key Laboratory of Molecular Medicine, Fudan University, Shanghai 200032, China ; 3 Department of Imaging and Nuclear Medicine, Shanghai Sixth People's Hospital, Shanghai 20006, China
| | - Da-Xiang Cui
- 1 Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China ; 2 Basic Medical Sciences Department of Biochemistry & Molecular Biology Key Laboratory of Molecular Medicine, Fudan University, Shanghai 200032, China ; 3 Department of Imaging and Nuclear Medicine, Shanghai Sixth People's Hospital, Shanghai 20006, China
| |
Collapse
|
239
|
Agirre M, Ojeda E, Zarate J, Puras G, Grijalvo S, Eritja R, García del Caño G, Barrondo S, González-Burguera I, López de Jesús M, Sallés J, Pedraz JL. New Insights into Gene Delivery to Human Neuronal Precursor NT2 Cells: A Comparative Study between Lipoplexes, Nioplexes, and Polyplexes. Mol Pharm 2015; 12:4056-66. [DOI: 10.1021/acs.molpharmaceut.5b00496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mireia Agirre
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Edilberto Ojeda
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Jon Zarate
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Gustavo Puras
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Santiago Grijalvo
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- Institute of Advanced Chemistry of Catalonia, IQAC−CSIC, Barcelona, Spain
| | - Ramón Eritja
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- Institute of Advanced Chemistry of Catalonia, IQAC−CSIC, Barcelona, Spain
| | - Gontzal García del Caño
- Department
of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Sergio Barrondo
- Department
of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Imanol González-Burguera
- Department
of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maider López de Jesús
- Department
of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Joan Sallés
- Department
of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - José Luis Pedraz
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
240
|
Cheng LS, Hotta R, Graham HK, Nagy N, Goldstein AM, Belkind-Gerson J. Endoscopic delivery of enteric neural stem cells to treat Hirschsprung disease. Neurogastroenterol Motil 2015; 27:1509-14. [PMID: 26190543 PMCID: PMC4600089 DOI: 10.1111/nmo.12635] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/18/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transplantation of enteric neural stem cells (ENSC) holds promise as a potential therapy for enteric neuropathies, including Hirschsprung disease. Delivery of transplantable cells via laparotomy has been described, but we propose a novel, minimally invasive endoscopic method of cell delivery. METHODS Enteric neural stem cells for transplantation were cultured from dissociated gut of postnatal donor mice. Twelve recipient mice, including Ednrb(-/-) mice with distal colonic aganglionosis, underwent colonoscopic injection of ENSC under direct vision using a 30-gauge Hamilton needle passed through a rigid cystoureteroscope. Cell engraftment, survival, and neuroglial differentiation were studied 1-4 weeks after the procedure. KEY RESULTS All recipient mice tolerated the procedure without complications and survived to sacrifice. Transplanted cells were found within the colonic wall in 9 of 12 recipient mice with differentiation into enteric neurons and glia. CONCLUSIONS & INFERENCES Endoscopic injection of ENSC is a safe and reliable method for cell delivery, and can be used to deliver a large number of cells to a specific area of disease. This minimally invasive endoscopic approach may prove beneficial to future human applications of cell therapy for neurointestinal disease.
Collapse
Affiliation(s)
- Lily S. Cheng
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah K. Graham
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Semmelweis University, Budapest, Hungary
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Pediatric Neurogastroenterology Program, MassGeneral Hospital for Children, Boston, MA, USA
| | - Jaime Belkind-Gerson
- Pediatric Neurogastroenterology Program, MassGeneral Hospital for Children, Boston, MA, USA,Department of Pediatric Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
241
|
A New Approach in Gene Therapy of Glioblastoma Multiforme: Human Olfactory Ensheathing Cells as a Novel Carrier for Suicide Gene Delivery. Mol Neurobiol 2015; 53:5118-28. [DOI: 10.1007/s12035-015-9412-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/27/2015] [Indexed: 12/23/2022]
|
242
|
Zhu M, Feng Y, Dangelmajer S, Guerrero-Cázares H, Chaichana KL, Smith CL, Levchenko A, Lei T, Quiñones-Hinojosa A. Human cerebrospinal fluid regulates proliferation and migration of stem cells through insulin-like growth factor-1. Stem Cells Dev 2015; 24:160-71. [PMID: 25265906 DOI: 10.1089/scd.2014.0076] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) and neural progenitor cells (NPCs) have been regarded for their clinical therapeutic potential for central nervous system (CNS) pathologies. Their potential utility is a result of their intrinsic ability to repair damaged tissues, deliver therapeutic proteins, and migrate to sites of pathology within the brain. However, it remains unclear whether the CNS promotes any changes in these potential therapeutic cells, which would be critical to understand before clinical application. A major component of the CNS is cerebrospinal fluid (CSF). Therefore, the aim of this study was to evaluate the influence that human CSF has on the function of human adipose-derived MSCs (hAMSCs) and human fetal-derived NPCs (hfNPCs) in regard to cell proliferation, survival, and migration. This study demonstrated that human noncancerous CSF promoted proliferation and inhibited apoptosis of hAMSCs and hfNPCs. Preculturing these stem cells in human CSF also increased their migratory speed and distance traveled. Furthermore, insulin-like growth factor-1 (IGF-1) in human CSF enhanced the migration capacity and increased the expression of C-X-C chemokine receptor type 4 (CXCR4) in both stem cell types. These current findings highlight a simple and natural way in which human CSF can enhance the proliferation, migration, and viability of human exogenous primary hAMSCs and hfNPCs. This study may provide insight into improving the clinical efficacy of stem cells for the treatment of CNS pathologies.
Collapse
Affiliation(s)
- Mingxin Zhu
- 1 Department of Neurosurgery and Oncology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
|
244
|
Li Y, Pan E, Wang Y, Zhu X, Wei A. Flk-1⁺Sca-1⁻ mesenchymal stem cells: functional characteristics in vitro and regenerative capacity in vivo. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9875-9888. [PMID: 26617697 PMCID: PMC4637782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/21/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) represent a powerful tool in regenerative medicine because of their differentiation and migration capacities. We aimed to investigate the possibility of Flk-1(+)Sca-1(-) mesenchymal stem cells (Flk-1(+)Sca-1(-) MSCs) transplantation to repair erectile function in patients suffering from diabetes mellitus (DM)-associated erectile dysfunction (ED). METHODS In this study, we isolated Flk-1(+)Sca-1(-) MSCs from bone marrow (bMSCs). Then, newborn male rats were intraperitoneally injected with 5-ethynyl-2-deoxyuridine for the purpose of tracking endogenous Flk-1(+)Sca-1(-) MSCs. Eight weeks later, 8 of these rats were randomly chosen to serve as normal control (N group). The remaining rats were injected intraperitoneally with 60 mg/kg of streptozotocin (STZ) to induce DM. Eight of these rats were randomly chosen to serve as DM control (DM group) while another 8 rats were subject to Flk-1(+)Sca-1(-) MSCs treatment (DM+MSC group). All rats were evaluated for erectile function by intracavernous pressure (ICP) measurement. Afterward, their penile tissues were examined by histology. RESULTS Flk-1(+)Sca-1(-) MSCs could differentiate into skeletal muscle cells and endothelial cells in vivo and in vitro. Engrafted Flk-1(+)Sca-1(-) MSCs were shown to home to injured muscle, participate in myofibers repair and could partially reconstitute the sarcolemmal expression of myocardin and ameliorate the level of related specific pathological markers. CONCLUSION Flk-1(+)Sca-1(-) MSCs could be used in the treatment erectile function in diabetes mellitus associated erectile dysfunction by promoting regeneration of nNOS-positive nerves, endothelium, and smooth muscle in the penis.
Collapse
Affiliation(s)
- Yugang Li
- Hospital of Integrated Traditional Chinese Medicine & Western Medicine, Southern Medical UniversityGuangzhou 510315, China
| | - Enshan Pan
- Hospital of Integrated Traditional Chinese Medicine & Western Medicine, Southern Medical UniversityGuangzhou 510315, China
| | - Yu Wang
- Hospital of Integrated Traditional Chinese Medicine & Western Medicine, Southern Medical UniversityGuangzhou 510315, China
| | - Xiaoguang Zhu
- Hospital of Integrated Traditional Chinese Medicine & Western Medicine, Southern Medical UniversityGuangzhou 510315, China
| | - Anyang Wei
- Department of Urology, Medical Center for Overseas Patients, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, China
| |
Collapse
|
245
|
Xiong X, Sun Y, Sattiraju A, Jung Y, Mintz A, Hayasaka S, Li KCP. Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier. J Control Release 2015; 217:113-20. [PMID: 26334482 DOI: 10.1016/j.jconrel.2015.08.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB), comprised of brain endothelial cells with tight junctions (TJ) between them, regulates the extravasation of molecules and cells into and out of the central nervous system (CNS). Overcoming the difficulty of delivering therapeutic agents to specific regions of the brain presents a major challenge to treatment of a broad range of brain disorders. Current strategies for BBB opening are invasive, not specific, and lack precise control over the site and timing of BBB opening, which may limit their clinical translation. In the present report, we describe a novel approach based on a combination of stem cell delivery, heat-inducible gene expression and mild heating with high-intensity focused ultrasound (HIFU) under MRI guidance to remotely permeabilize BBB. The permeabilization of the BBB will be controlled with, and limited to where selected pro-inflammatory factors will be secreted secondary to HIFU activation, which is in the vicinity of the engineered stem cells and consequently both the primary and secondary disease foci. This therapeutic platform thus represents a non-invasive way for BBB opening with unprecedented spatiotemporal precision, and if properly and specifically modified, can be clinically translated to facilitate delivery of different diagnostic and therapeutic agents which can have great impact in treatment of various disease processes in the central nervous system.
Collapse
Affiliation(s)
- Xiaobing Xiong
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem 27157, USA
| | - Yao Sun
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem 27157, USA
| | - Anirudh Sattiraju
- Comprehensive Cancer Center, Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem 27157, USA
| | - Youngkyoo Jung
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem 27157, USA; Comprehensive Cancer Center, Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem 27157, USA; Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem 27157, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem 27157, USA; Comprehensive Cancer Center, Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem 27157, USA
| | - Satoru Hayasaka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem 27157, USA; Department of Biostatistics Sciences, Wake Forest School of Medicine, Winston-Salem 27157, USA
| | - King C P Li
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem 27157, USA.
| |
Collapse
|
246
|
Verma V, Samanthapudi K, Raviprakash R. Classic Studies on the Potential of Stem Cell Neuroregeneration. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2015; 25:123-141. [PMID: 26308908 DOI: 10.1080/0964704x.2015.1039904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The 1990s and 2000s were the beginning of an exciting time period for developmental neuroscience and neural stem cell research. By better understanding brain plasticity and the birth of new neurons in the adult brain, contrary to established dogma, hope for therapy from devastating neurological diseases was generated. The potential for stem cells to provide functional recovery in humans remains to be further tested and to further move into the clinical trial realm. The future certainly has great promise on stem cells to assist in alleviation of difficult-to-treat neurologic disorders. This article reviews classic studies of the 1990s and 2000s that paved the way for the advances of today, which can in turn lead to tomorrow's therapies.
Collapse
Affiliation(s)
- Vivek Verma
- a Department of Neuroscience , University of Pittsburgh , Pittsburgh , PA , USA
| | | | - Ratujit Raviprakash
- a Department of Neuroscience , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
247
|
Neural stem cell therapy for cancer. Methods 2015; 99:37-43. [PMID: 26314280 DOI: 10.1016/j.ymeth.2015.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/07/2015] [Accepted: 08/23/2015] [Indexed: 12/13/2022] Open
Abstract
Cancers of the brain remain one of the greatest medical challenges. Traditional surgery and chemo-radiation therapy are unable to eradicate diffuse cancer cells and tumor recurrence is nearly inevitable. In contrast to traditional regenerative medicine applications, engineered neural stem cells (NSCs) are emerging as a promising new therapeutic strategy for cancer therapy. The tumor-homing properties allow NSCs to access both primary and invasive tumor foci, creating a novel delivery platform. NSCs engineered with a wide array of cytotoxic agents have been found to significantly reduce tumor volumes and markedly extend survival in preclinical models. With the recent launch of new clinical trials, the potential to successfully manage cancer in human patients with cytotoxic NSC therapy is moving closer to becoming a reality.
Collapse
|
248
|
Jung JH, Kim AA, Chang DY, Park YR, Suh-Kim H, Kim SS. Three-dimensional assessment of bystander effects of mesenchymal stem cells carrying a cytosine deaminase gene on glioma cells. Am J Cancer Res 2015; 5:2686-2696. [PMID: 26609476 PMCID: PMC4633898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/23/2015] [Indexed: 06/05/2023] Open
Abstract
Stem cells carrying a suicide gene have emerged as therapeutic candidates for their cytotoxic bystander effects on neighboring cancers, while being non-toxic to other parts of the body. However, traditional cytotoxicity assays are unable to adequately assess the therapeutic effects of bystander cells. Here, we report a method to assess bystander effects of therapeutic stem cells against 3-dimensionally grown glioma cells in real time. U87 glioma cells were stably transduced to express a green fluorescence protein and co-cultivated with mesenchymal stem cells engineered to carry a bacterial cytosine deaminase gene (MSC/CD). Following addition of a 5-fluorocytine (5-FC) prodrug to the co-culture, fluorescence from U87 cells was obtained and analyzed in real time. Notably, the IC50 of 5-FC was higher when U87 cells were grown 3-dimensionally in soft agar medium for 3 weeks, as compared to those grown for one week in two-dimensional monolayer cultures. Additionally, more MSC/CD cells were required to maintain a similar level of efficacy. Since three-dimensional growth of glioma cells under our co-culture condition mimics the long-term expansion of cancer cells in vivo, our method can extend to an in vitro assay system to assess stem cell-mediated anti-cancer effects before advancing into preclinical animal studies.
Collapse
Affiliation(s)
- Jin Hwa Jung
- Department of Biomedical Sciences, Ajou Graduate SchoolSuwon, South Korea
| | | | - Da-Young Chang
- Department of Anatomy, Ajou University School of MedicineSuwon Korea
| | | | - Haeyoung Suh-Kim
- Department of Biomedical Sciences, Ajou Graduate SchoolSuwon, South Korea
- Department of Anatomy, Ajou University School of MedicineSuwon Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of MedicineSuwon Korea
| |
Collapse
|
249
|
|
250
|
Krůpa P, Řehák S, Diaz-Garcia D, Filip S. NANOTECHNOLOGY - NEW TRENDS IN THE TREATMENT OF BRAIN TUMOURS. ACTA MEDICA (HRADEC KRÁLOVÉ) 2015; 57:142-50. [PMID: 25938897 DOI: 10.14712/18059694.2015.79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
High grade gliomas are some of the deadliest human tumours. Conventional treatments such as surgery, radiotherapy and chemotherapy have only a limited effect. Nowadays, resection is the common treatment of choice and although new approaches, such as perioperative magnetic resonance imaging or fluorescent microscopy have been developed, the survival rate of diagnosed patients is still very low. The inefficacy of conventional methods has led to the development of new strategies and the significant progress of nanotechnology in recent years. These platforms can be used either as novel imaging tools or to improve anticancer drug delivery into tumours while minimizing its distribution and toxicity in healthy tissues. Amongst the new nanotechnology platforms used for delivery into the brain tissue are: polymeric nanoparticles, liposomes, dendrimers, nanoshells, carbon nanotubes, superparamagnetic nanoparticles and nucleic acid based nanoparticles (DNA, RNA interference [RNAi] and antisense oligonucleotides [ASO]). These nanoparticles have been applied in the delivery of small molecular weight drugs as well as macromolecules - proteins, peptides and genes. The unique properties of these nanoparticles, such as surface charge, particle size, composition and ability to modify their surface with tissue recognition ligands and antibodies, improve their biodistribution and pharmacokinetics. All of the above mentioned characteristics make of nanoplatforms a very suitable tool for its use in targeted, personalized medicine, where they could possibly carry large doses of therapeutic agents specifically into malignant cells while avoiding healthy cells. This review poses new possibilities in the large field of nanotechnology with special interest in the treatment of high grade brain tumours.
Collapse
Affiliation(s)
- Petr Krůpa
- Charles University in Prague, Department of Neurosurgery, Faculty of Medicine in Hradec Králové, and University Hospital Hradec Králové, Czech Republic.
| | - Svatopluk Řehák
- Charles University in Prague, Department of Neurosurgery, Faculty of Medicine in Hradec Králové, and University Hospital Hradec Králové, Czech Republic
| | - Daniel Diaz-Garcia
- Charles University in Prague, Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, and University Hospital Hradec Králové, Czech Republic
| | - Stanislav Filip
- Charles University in Prague, Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Králové, and University Hospital Hradec Králové, Czech Republic
| |
Collapse
|