201
|
Ollagnier-de-Choudens S, Mattioli T, Takahashi Y, Fontecave M. Iron-sulfur cluster assembly: characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem 2001; 276:22604-7. [PMID: 11319236 DOI: 10.1074/jbc.m102902200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synthesis of iron-sulfur clusters in Escherichia coli is believed to require a complex protein machinery encoded by the isc (iron-sulfur cluster) operon. The product of one member of this operon, IscA, has been overexpressed, purified, and characterized. It can assemble an air-sensitive [2Fe-2S] cluster as shown by UV-visible and resonance Raman spectroscopy. The metal form but not the apoform of IscA binds ferredoxin, another member of the isc operon, selectively, allowing transfer of iron and sulfide from IscA to ferredoxin and formation of the [2Fe-2S] holoferredoxin. These results thus suggest that IscA is involved in ferredoxin cluster assembly and activation. This is an important function because a functional ferredoxin is required for maturation of other cellular Fe-S proteins.
Collapse
Affiliation(s)
- S Ollagnier-de-Choudens
- Laboratoire de Chimie et Biochimie des Centres Rédox Biologiques, DBMS-CB, CEA/CNRS/Université Joseph Fourier, UMR 5047, 17 Avenue des Martyrs, 38054 Grenoble Cedex 09, France
| | | | | | | |
Collapse
|
202
|
Abstract
In contrast to bacteria, mitochondria contain only a few ATP binding cassette (ABC) transporters in their inner membrane. The known mitochondrial ABC proteins fall into two major classes that, in the yeast Saccharomyces cerevisiae, are represented by the half-transporter Atm1p and the two closely homologous proteins Mdl1p and Mdl2p. In humans two Atm1p orthologues (ABC7 and MTABC3) and two proteins homologous to Mdll/2p have been localized to mitochondria. The Atm1p-like proteins perform an important function in mitochondrial iron homeostasis and in the maturation of Fe/S proteins in the cytosol. Mutations in ABC7 are causative of hereditary X-linked sideroblastic anemia and cerebellar ataxia (XLSA/A). MTABC3 may be a candidate gene for the lethal neonatal syndrome. The function of the mitochondrial Mdl1/2p-like proteins is not clear at present with the notable exception of murine ABC-me that may transport intermediates of heme biosynthesis from the matrix to the cytosol in erythroid tissues.
Collapse
Affiliation(s)
- R Lill
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Germany.
| | | |
Collapse
|
203
|
Barros MH, Carlson CG, Glerum DM, Tzagoloff A. Involvement of mitochondrial ferredoxin and Cox15p in hydroxylation of heme O. FEBS Lett 2001; 492:133-8. [PMID: 11248251 DOI: 10.1016/s0014-5793(01)02249-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cox15p is essential for the biogenesis of cytochrome oxidase [Glerum et al., J. Biol. Chem. 272 (1997) 19088-19094]. We show here that cox15 mutants are blocked in heme A but not heme O biosynthesis. In Schizosaccharomyces pombe COX15 is fused to YAH1, the yeast gene for mitochondrial ferredoxin (adrenodoxin). A fusion of Cox15p and Yah1p in Saccharomyces cerevisiae rescued both cox15 and yah1 null mutants. This suggests that Yah1p functions in concert with Cox15p. We propose that Cox15p functions together with Yah1p and its putative reductase (Arh1p) in the hydroxylation of heme O.
Collapse
Affiliation(s)
- M H Barros
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
204
|
Vollmer M, Thomsen N, Wiek S, Seeber F. Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J Biol Chem 2001; 276:5483-90. [PMID: 11056177 DOI: 10.1074/jbc.m009452200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In searching for nuclear-encoded, apicoplast-localized proteins we have cloned ferredoxin-NADP(+) reductase from Toxoplasma gondii and a [2Fe-2S] ferredoxin from Plasmodium falciparum. This chloroplast-localized redox system has been extensively studied in photosynthetic organisms and is responsible for the electron transfer from photosystem I to NADP+. Besides this light-dependent reaction in nonphotosynthetic plastids (e.g. from roots), electrons can also flow in the reverse direction, from NADPH to ferredoxin, which then serves as an important reductant for various plastid-localized enzymes. These plastids possess related, but distinct, ferredoxin-NADP+ reductase and ferredoxin isoforms for this purpose. We provide phylogenetic evidence that the T. gondii reductase is similar to such nonphotosynthetic isoforms. Both the P. falciparum [2Fe-2S] ferredoxin and the T. gondii ferredoxin-NADP+ reductase possess an N-terminal bipartite transit peptide domain typical for apicoplast-localized proteins. The recombinant proteins were obtained in active form, and antibodies raised against the reductase recognized two bands on Western blots of T. gondii tachyzoite lysates, indicative of the unprocessed and native form, respectively. We propose that the role of this redox system is to provide reduced ferredoxin, which might then be used for fatty acid desaturation or other biosynthetic processes yet to be defined. Thus, the interaction of these two proteins offers an attractive target for drug intervention.
Collapse
Affiliation(s)
- M Vollmer
- Fachbereich Biologie/Parasitologie, Philipps-Universität Marburg, Karl-von-Frisch-Strasse, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
205
|
Voisine C, Cheng YC, Ohlson M, Schilke B, Hoff K, Beinert H, Marszalek J, Craig EA. Jac1, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S clusters in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2001; 98:1483-8. [PMID: 11171977 PMCID: PMC29283 DOI: 10.1073/pnas.98.4.1483] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2000] [Indexed: 11/18/2022] Open
Abstract
A minor Hsp70 chaperone of the mitochondrial matrix of Saccharomyces cerevisiae, Ssq1, is involved in the formation or repair of Fe/S clusters and/or mitochondrial iron metabolism. Here, we report evidence that Jac1, a J-type chaperone of the mitochondrial matrix, is the partner of Ssq1 in this process. Reduced activity of Jac1 results in a decrease in activity of Fe/S containing mitochondrial proteins and an accumulation of iron in mitochondria. Fe/S enzyme activities remain low in both jac1 and ssq1 mutant mitochondria even if normal mitochondrial iron levels are maintained. Therefore, the low activities observed are not solely due to oxidative damage caused by excess iron. Rather, these molecular chaperones likely play a direct role in the normal assembly process of Fe/S clusters.
Collapse
Affiliation(s)
- C Voisine
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Li J, Saxena S, Pain D, Dancis A. Adrenodoxin reductase homolog (Arh1p) of yeast mitochondria required for iron homeostasis. J Biol Chem 2001; 276:1503-9. [PMID: 11035018 DOI: 10.1074/jbc.m007198200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arh1p is an essential mitochondrial protein of yeast with reductase activity. Here we show that this protein is involved in iron metabolism. A yeast strain was constructed in which the open reading frame was placed under the control of a galactose-regulated promoter. Protein expression was induced by galactose and repressed to undetectable levels in the absence of galactose, although cells grew quite well in the absence of inducer. Under noninducing conditions, cellular iron uptake was dysregulated, exhibiting a failure to repress in response to medium iron. Iron trafficking within the cell was also disturbed. Exposure of Arh1p-depleted cells to increasing iron concentrations during growth led to drastic increases in mitochondrial iron, indicating a loss of homeostatic control. Activity of aconitase, a prototype Fe-S protein, was deficient at all concentrations of mitochondrial iron, although the protein level was unaltered. Heme protein deficiencies were exacerbated in the iron-loaded mitochondria, suggesting a toxic side effect of accumulated iron. Finally, a time course correlated the cellular depletion of Arh1p with the coordinated appearance of various mutant phenotypes including dysregulated cellular iron uptake, deficiency of Fe-S protein activities in mitochondria and cytoplasm, and deficiency of hemoproteins. Thus, Arh1p is required for control of cellular and mitochondrial iron levels and for the activities of Fe-S cluster proteins.
Collapse
Affiliation(s)
- J Li
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
207
|
Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 2000. [DOI: 10.1182/blood.v96.9.3256.h8003256_3256_3264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human protein ABC7 belongs to the adenosine triphosphate-binding cassette transporter superfamily, and its yeast orthologue, Atm1p, plays a central role in the maturation of cytosolic iron-sulfur (Fe/S) cluster-containing proteins. Previously, a missense mutation in the human ABC7 gene was shown to be the defect in members of a family affected with X-linked sideroblastic anemia with cerebellar ataxia (XLSA/A). Here, the promoter region and the intron/exon structure of the human ABC7 gene were characterized, and the function of wild-type and mutant ABC7 in cytosolic Fe/S protein maturation was analyzed. The gene contains 16 exons, all with intron/exon boundaries following the AG/GT rule. A single missense mutation was found in exon 10 of the ABC7gene in 2 affected brothers with XLSA/A. The mutation was a G-to-A transition at nucleotide 1305 of the full-length cDNA, resulting in a charge inversion caused by the substitution of lysine for glutamate at residue 433 C-terminal to the putative sixth transmembrane domain of ABC7. Expression of normal ABC7 almost fully complemented the defect in the maturation of cytosolic Fe/S proteins in a yeast strain in which the ATM1 gene had been deleted (Δatm1 cells). Thus, ABC7 is a functional orthologue of Atm1p. In contrast, the expression of mutated ABC7 (E433K) or Atm1p (D398K) proteins in Δatm1 cells led to a low efficiency of cytosolic Fe/S protein maturation. These data demonstrate that both the molecular defect in XLSA/A and the impaired maturation of a cytosolic Fe/S protein result from an ABC7 mutation in the reported family.
Collapse
|
208
|
Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 2000. [DOI: 10.1182/blood.v96.9.3256] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe human protein ABC7 belongs to the adenosine triphosphate-binding cassette transporter superfamily, and its yeast orthologue, Atm1p, plays a central role in the maturation of cytosolic iron-sulfur (Fe/S) cluster-containing proteins. Previously, a missense mutation in the human ABC7 gene was shown to be the defect in members of a family affected with X-linked sideroblastic anemia with cerebellar ataxia (XLSA/A). Here, the promoter region and the intron/exon structure of the human ABC7 gene were characterized, and the function of wild-type and mutant ABC7 in cytosolic Fe/S protein maturation was analyzed. The gene contains 16 exons, all with intron/exon boundaries following the AG/GT rule. A single missense mutation was found in exon 10 of the ABC7gene in 2 affected brothers with XLSA/A. The mutation was a G-to-A transition at nucleotide 1305 of the full-length cDNA, resulting in a charge inversion caused by the substitution of lysine for glutamate at residue 433 C-terminal to the putative sixth transmembrane domain of ABC7. Expression of normal ABC7 almost fully complemented the defect in the maturation of cytosolic Fe/S proteins in a yeast strain in which the ATM1 gene had been deleted (Δatm1 cells). Thus, ABC7 is a functional orthologue of Atm1p. In contrast, the expression of mutated ABC7 (E433K) or Atm1p (D398K) proteins in Δatm1 cells led to a low efficiency of cytosolic Fe/S protein maturation. These data demonstrate that both the molecular defect in XLSA/A and the impaired maturation of a cytosolic Fe/S protein result from an ABC7 mutation in the reported family.
Collapse
|
209
|
Abstract
Recent progress in a number of areas of biochemistry and biology has drawn attention to the critical importance of sulfur in the biosynthesis of vital cofactors and active sites in proteins, and in the complex reaction mechanisms often involved. This brief review is intended as a broad overview of this currently rapidly moving field of sulfur biochemistry, for those who are interested or are involved in one or the other aspect of it, a synopsis by one who has stumbled into this field from several directions in the course of time. Only for iron are metal-sulfur relationships discussed in detail, as the iron-sulfur subfield is one of the most active areas.
Collapse
Affiliation(s)
- H Beinert
- Institute for Enzyme Research and Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 53705-4098, USA.
| |
Collapse
|
210
|
Mühlenhoff U, Lill R. Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:370-82. [PMID: 11004453 DOI: 10.1016/s0005-2728(00)00174-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fe/S clusters are co-factors of numerous proteins with important functions in metabolism, electron transport and regulation of gene expression. Presumably, Fe/S proteins have occurred early in evolution and are present in cells of virtually all species. Biosynthesis of these proteins is a complex process involving numerous components. In mitochondria, this process is accomplished by the so-called ISC (iron-sulfur cluster assembly) machinery which is derived from the bacterial ancestor of the organelles and is conserved from lower to higher eukaryotes. The mitochondrial ISC machinery is responsible for biogenesis iron-sulfur proteins both within and outside the organelle. Maturation of the latter proteins involves the ABC transporter Atm1p which presumably exports iron-sulfur clusters from the organelle. This review summarizes recent developments in our understanding of the biogenesis of iron-sulfur proteins both within bacteria and eukaryotes.
Collapse
Affiliation(s)
- U Mühlenhoff
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Germany
| | | |
Collapse
|
211
|
Abstract
Iron-sulfur (Fe-S) cluster-containing proteins perform important tasks in catalysis, electron transfer and regulation of gene expression. In eukaryotes, mitochondria are the primary site of cluster formation of most Fe-S proteins. Assembly of the Fe-S clusters is mediated by the iron-sulphate cluster assembly (ISC) machinery consisting of some ten proteins.
Collapse
Affiliation(s)
- R Lill
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Robert-Koch-Str. 5, 35033 Marburg, Germany
| | | |
Collapse
|
212
|
Abstract
Iron-sulfur proteins are present in a wide variety of organisms and are known to play important physiological roles, not only in electron transfer and metabolic reactions, but also in transcriptional regulation. However, little is known about how iron-sulfur clusters themselves are synthesized and assembled within polypeptides. Here we show that a [2Fe-2S] cluster-containing NifU of cyanobacterium Synechocystis PCC6803, SyNifU, possesses the ability to deliver its [2Fe-2S] cluster to an apoferredoxin without the aid of other proteinaceous or nonproteinaceous factor(s). Upon delivery the reconstituted holoferredoxin regained electron transfer ability. The [2Fe-2S] cluster contained within SyNifU was labile upon exposure to the iron-chelating reagent EDTA, suggesting that the iron-sulfur cluster is abnormally exposed to solvent. We propose that NifU serves as a scaffold for iron-sulfur cluster assembly and functions as a mediator for iron-sulfur cluster delivery.
Collapse
Affiliation(s)
- K Nishio
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
213
|
Pelzer W, Mühlenhoff U, Diekert K, Siegmund K, Kispal G, Lill R. Mitochondrial Isa2p plays a crucial role in the maturation of cellular iron-sulfur proteins. FEBS Lett 2000; 476:134-9. [PMID: 10913600 DOI: 10.1016/s0014-5793(00)01711-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The assembly of iron-sulfur (Fe/S) clusters in a living cell is mediated by a complex machinery which, in eukaryotes, is localised within mitochondria. Here, we report on a new component of this machinery, the protein Isa2p of the yeast Saccharomyces cerevisiae. The protein shares sequence similarity with yeast Isa1p and the bacterial IscA proteins which recently have been shown to perform a function in Fe/S cluster biosynthesis. Like the Isa1p homologue, Isa2p is localised in the mitochondrial matrix as a soluble protein. Deletion of the ISA2 gene results in the loss of mitochondrial DNA and a strong growth defect. Simultaneous deletion of the ISA1 gene does not further exacerbate this growth phenotype suggesting that the Isa proteins perform a non-essential function. When Isa2p was depleted by regulated gene expression, mtDNA was maintained, but cells grew slowly on non-fermentable carbon sources. The maturation of both mitochondrial and cytosolic Fe/S proteins was strongly impaired in the absence of Isa2p. Thus, Isa2p is a new member of the Fe/S cluster biosynthesis machinery of the mitochondrial matrix and may be involved in the binding of an intermediate of Fe/S cluster assembly.
Collapse
Affiliation(s)
- W Pelzer
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Germany
| | | | | | | | | | | |
Collapse
|
214
|
Hoff KG, Silberg JJ, Vickery LE. Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc Natl Acad Sci U S A 2000; 97:7790-5. [PMID: 10869428 PMCID: PMC16623 DOI: 10.1073/pnas.130201997] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The iscU gene in bacteria is located in a gene cluster encoding proteins implicated in iron-sulfur cluster assembly and an hsc70-type (heat shock cognate) molecular chaperone system, iscSUA-hscBA. To investigate possible interactions between these systems, we have overproduced and purified the IscU protein from Escherichia coli and have studied its interactions with the hscA and hscB gene products Hsc66 and Hsc20. IscU and its iron-sulfur complex (IscU-Fe/S) stimulated the basal steady-state ATPase activity of Hsc66 weakly in the absence of Hsc20 but, in the presence of Hsc20, increased the ATPase activity up to 480-fold. Hsc20 also decreased the apparent K(m) for IscU stimulation of Hsc66 ATPase activity, and surface plasmon resonance studies revealed that Hsc20 enhances binding of IscU to Hsc66. Surface plasmon resonance and isothermal titration calorimetry further showed that IscU and Hsc20 form a complex, and Hsc20 may thereby aid in the targeting of IscU to Hsc66. These results establish a direct and specific role for the Hsc66/Hsc20 chaperone system in functioning with isc gene components for the assembly of iron-sulfur cluster proteins.
Collapse
Affiliation(s)
- K G Hoff
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
215
|
Abstract
Iron homeostasis is regulated with respect to uptake, storage and utilization. Newer work is presented that defines proteins responsible for iron transport, sequestration and sensing, and that addresses their regulation at the cellular and organismal levels by ambient iron concentrations, demand for erythropoiesis, body iron burden, and redox stimuli.
Collapse
Affiliation(s)
- B D Schneider
- Department of Internal Medicine, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
216
|
Abstract
The budding yeast Saccharomyces cerevisiae contains two homologues of bacterial IscA proteins, designated Isa1p and Isa2p. Bacterial IscA is a product of the isc (iron-sulfur cluster) operon and has been suggested to participate in Fe-S cluster formation or repair. To test the function of yeast Isa1p and Isa2p, single or combinatorial disruptions were introduced in ISA1 and ISA2. The resultant isaDelta mutants were viable but exhibited a dependency on lysine and glutamate for growth and a respiratory deficiency due to an accumulation of mutations in mitochondrial DNA. As with other yeast genes proposed to function in Fe-S cluster assembly, mitochondrial iron concentration was significantly elevated in the isa mutants, and the activities of the Fe-S cluster-containing enzymes aconitase and succinate dehydrogenase were dramatically reduced. An inspection of Isa-like proteins from bacteria to mammals revealed three invariant cysteine residues, which in the case of Isa1p and Isa2p are essential for function and may be involved in iron binding. As predicted, Isa1p is targeted to the mitochondrial matrix. However, Isa2p is present within the intermembrane space of the mitochondria. Our deletion analyses revealed that Isa2p harbors a bipartite N-terminal leader sequence containing a mitochondrial import signal linked to a second sequence that targets Isa2p to the intermembrane space. Both signals are needed for Isa2p function. A model for the nonredundant roles of Isa1p and Isa2p in delivering iron to sites of the Fe-S cluster assembly is discussed.
Collapse
Affiliation(s)
- L T Jensen
- Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
217
|
Abstract
The synthesis of holocytochromes in plastids is a catalyzed process. Several proteins, including plastid CcsA, Ccs1, possibly CcdA and a thioredoxin, plus at least two additional Ccs factors, are required in sub-stoichiometric amounts for the conversion of apocytochromes f and c(6) to their respective holoforms. CcsA, proposed to be a heme delivery factor, and Ccs1, an apoprotein chaperone, are speculated to interact physically in vivo. The formation of holocytochrome b(6) is a multi-step pathway in which at least four, as yet unidentified, Ccb factors are required for association of the b(H) heme. The specific requirement of reduced heme for in vitro synthesis of a cytochrome b(559)-derived holo-beta(2) suggests that cytochrome b synthesis in PSII might also be catalyzed in vivo.
Collapse
Affiliation(s)
- S S Nakamoto
- Department of Chemistry and Biochemistry, University of California, Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
218
|
Kaut A, Lange H, Diekert K, Kispal G, Lill R. Isa1p is a component of the mitochondrial machinery for maturation of cellular iron-sulfur proteins and requires conserved cysteine residues for function. J Biol Chem 2000; 275:15955-61. [PMID: 10748136 DOI: 10.1074/jbc.m909502199] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, mitochondria execute a central task in the assembly of cellular iron-sulfur (Fe/S) proteins. The organelles synthesize their own set of Fe/S proteins, and they initiate the generation of extramitochondrial Fe/S proteins. In the present study, we identify the mitochondrial matrix protein Isa1p of Saccharomyces cerevisiae as a new member of the Fe/S cluster biosynthesis machinery. Isa1p belongs to a family of homologous proteins present in prokaryotes and eukaryotes. Deletion of the ISA1 gene results in the loss of mitochondrial DNA precluding the use of the Deltaisa1 strain for functional analysis. Cells in which Isa1p was depleted by regulated gene expression maintained the mitochondrial DNA, yet the cells displayed retarded growth on nonfermentable carbon sources. This finding indicates the importance of Isa1p for mitochondrial function. Deficiency of Isa1p caused a defect in mitochondrial Fe/S protein assembly. Moreover, Isa1p was required for maturation of cytosolic Fe/S proteins. Two cysteine residues in a conserved sequence motif characterizing the Isa1p protein family were found to be essential for Isa1p function in the biogenesis of both intra- and extramitochondrial Fe/S proteins. Our findings suggest a function for Isa1p in the binding of iron or an intermediate of Fe/S cluster assembly.
Collapse
Affiliation(s)
- A Kaut
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Robert-Koch-Strasse 5, 35033 Marburg, Germany
| | | | | | | | | |
Collapse
|