201
|
Matsubara T, Tanaka N, Sato M, Kang DW, Krausz KW, Flanders KC, Ikeda K, Luecke H, Wakefield LM, Gonzalez FJ. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury. J Lipid Res 2012; 53:2698-2707. [PMID: 23034213 PMCID: PMC3494264 DOI: 10.1194/jlr.m031773] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/01/2012] [Indexed: 01/13/2023] Open
Abstract
Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury.
Collapse
Affiliation(s)
- Tsutomu Matsubara
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan; and
| | - Naoki Tanaka
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Misako Sato
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dong Wook Kang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Kristopher W. Krausz
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kathleen C. Flanders
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan; and
| | - Hans Luecke
- Laboratory of Bioorganic Chemistry, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Lalage M. Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
202
|
Warner DJ, Chen H, Cantin LD, Kenna JG, Stahl S, Walker CL, Noeske T. Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification. Drug Metab Dispos 2012; 40:2332-41. [PMID: 22961681 DOI: 10.1124/dmd.112.047068] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human bile salt export pump (BSEP) is a membrane protein expressed on the canalicular plasma membrane domain of hepatocytes, which mediates active transport of unconjugated and conjugated bile salts from liver cells into bile. BSEP activity therefore plays an important role in bile flow. In humans, genetically inherited defects in BSEP expression or activity cause cholestatic liver injury, and many drugs that cause cholestatic drug-induced liver injury (DILI) in humans have been shown to inhibit BSEP activity in vitro and in vivo. These findings suggest that inhibition of BSEP activity by drugs could be one of the mechanisms that initiate human DILI. To gain insight into the chemical features responsible for BSEP inhibition, we have used a recently described in vitro membrane vesicle BSEP inhibition assay to quantify transporter inhibition for a set of 624 compounds. The relationship between BSEP inhibition and molecular physicochemical properties was investigated, and our results show that lipophilicity and molecular size are significantly correlated with BSEP inhibition. This data set was further used to build predictive BSEP classification models through multiple quantitative structure-activity relationship modeling approaches. The highest level of predictive accuracy was provided by a support vector machine model (accuracy = 0.87, κ = 0.74). These analyses highlight the potential value that can be gained by combining computational methods with experimental efforts in early stages of drug discovery projects to minimize the propensity of drug candidates to inhibit BSEP.
Collapse
Affiliation(s)
- Daniel J Warner
- Department of Medicinal Chemistry, AstraZeneca R&D Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
203
|
Trdan Lušin T, Mrhar A, Stieger B, Kullak-Ublick GA, Marc J, Ostanek B, Zavratnik A, Kristl A, Berginc K, Delić K, Trontelj J. Influence of hepatic and intestinal efflux transporters and their genetic variants on the pharmacokinetics and pharmacodynamics of raloxifene in osteoporosis treatment. Transl Res 2012; 160:298-308. [PMID: 22683417 DOI: 10.1016/j.trsl.2012.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 01/26/2023]
Abstract
Raloxifene exhibits a large and unexplained interindividual variability in its pharmacokinetics and pharmacodynamics. The aim of our study was to identify transporters involved in the efflux of raloxifene and its glucuronide metabolites by various in vitro models and by an in vivo study to explore the possible involvement of P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP)1, MRP2, MRP3, and breast cancer resistance protein in the observed high interindividual variability. Experiments with the parallel artificial membrane permeability assay showed the highest passive permeability for raloxifene, followed by raloxifene-6-β-glucuronide (M1), raloxifene-4'-β-glucuronide (M2), and raloxifene-6,4'-diglucuronide (M3). Caco-2 cell monolayer experiments indicated an interaction of raloxifene with Pgp. The ATPase assay confirmed the raloxifene interaction with Pgp and indicated interactions of all raloxifene species with MRP1, MRP2, MRP3, and breast cancer resistance protein, except for M1, which did not show any interactions with MRP2. Furthermore, the vesicular experiments confirmed the interaction of M2 and M3 with MRP2. Although the in vivo study on osteoporotic postmenopausal women on raloxifene could not confirm a significant influence of ABCB1 and ABCC2 genetic polymorphisms on its pharmacokinetics, a clear trend toward higher total raloxifene concentrations was observed in carriers of at least 1 ABCB1 c.3435T allele. Moreover, the same polymorphism effect was also observed as a significant increase in total hip bone mineral density after 1 year of treatment. The results of our study support the involvement of efflux transporters in disposition of raloxifene and its metabolites and may partially explain the observed raloxifene variability by the influence of the ABCB1 c.3435C>T polymorphism.
Collapse
Affiliation(s)
- Tina Trdan Lušin
- Department of Biopharmacy and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Abstract
Detailed knowledge regarding the influence of hepatic transport proteins on drug disposition has advanced at a rapid pace over the past decade. Efflux transport proteins located in the basolateral and apical (canalicular) membranes of hepatocytes play an important role in the hepatic elimination of many endogenous and exogenous compounds, including drugs and metabolites. This review focuses on the role of these efflux transporters in hepatic drug excretion. The impact of these proteins as underlying factors for disease is highlighted, and the importance of hepatic efflux proteins in the efficacy and toxicity of drugs is discussed. In addition, a brief overview of methodology to evaluate the function of hepatic efflux transport proteins is provided. Current challenges in predicting the impact of altered efflux protein function on systemic, intestinal, and hepatocyte exposure to drugs and metabolites are highlighted.
Collapse
|
205
|
Chan J, Sharkey FE, Kushwaha RS, VandeBerg JF, VandeBerg JL. Steatohepatitis in laboratory opossums exhibiting a high lipemic response to dietary cholesterol and fat. Am J Physiol Gastrointest Liver Physiol 2012; 303:G12-9. [PMID: 22556142 PMCID: PMC3404580 DOI: 10.1152/ajpgi.00415.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plasma VLDL and LDL cholesterol were markedly elevated (>40-fold) in high-responding opossums, but moderately elevated (6-fold) in low-responding opossums after they had consumed a high-cholesterol and high-fat diet for 24 wk. In both high- and low-responding opossums, plasma triglycerides were slightly elevated, threefold and twofold, respectively. Dietary challenge also induced fatty livers in high responders, but not in low responders. We studied the lipid composition, histopathological features, and gene expression patterns of the fatty livers. Free cholesterol (2-fold), esterified cholesterol (11-fold), and triglycerides (2-fold) were higher in the livers of high responders than those in low responders, whereas free fatty acid levels were similar. The fatty livers of high responders showed extensive lobular disarray by histology. Inflammatory cells and ballooned hepatocytes were also present, as were perisinusoidal fibrosis and ductular proliferation. In contrast, liver histology was normal in low responders. Hepatic gene expression revealed differences associated with the development of steatohepatitis in high responders. The accumulation of hepatic cholesterol was concomitant with upregulation of the HMGCR gene and downregulation of the CYP27A1, ABCG8, and ABCB4 genes. Genes involved in inflammation (TNF, NFKB1, and COX2) and in oxidative stress (CYBA and NCF1) were upregulated. Upregulation of the growth factor genes (PDGF and TGFB1) and collagen genes (Col1A1, Col3A1, and Col4A1) was consistent with fibrosis. Some of the histological characteristics of the fatty livers of high-responding opossums imitate those in the livers of humans with nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Jeannie Chan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245, USA.
| | - Francis E. Sharkey
- 3Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Rampratap S. Kushwaha
- 1Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas;
| | - Jane F. VandeBerg
- 1Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas; ,2Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas;
| | - John L. VandeBerg
- 1Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas; ,2Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas;
| |
Collapse
|
206
|
Delous M, Yin C, Shin D, Ninov N, Debrito Carten J, Pan L, Ma TP, Farber SA, Moens CB, Stainier DYR. Sox9b is a key regulator of pancreaticobiliary ductal system development. PLoS Genet 2012; 8:e1002754. [PMID: 22719264 PMCID: PMC3375260 DOI: 10.1371/journal.pgen.1002754] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/23/2012] [Indexed: 01/19/2023] Open
Abstract
The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9b(fh313), to dissect its function in the morphogenesis of this structure. Strikingly, sox9b(fh313) homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9b(fh313) mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9b(fh313) mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9b(fh313) mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene for pancreaticobiliary duct malformation-related pathologies.
Collapse
Affiliation(s)
- Marion Delous
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Chunyue Yin
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Donghun Shin
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Nikolay Ninov
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Juliana Debrito Carten
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Embryology, The Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Luyuan Pan
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Taylur P. Ma
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steven A. Farber
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Embryology, The Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Cecilia B. Moens
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
207
|
Müllenbach R, Weber SN, Krawczyk M, Zimmer V, Sarrazin C, Lammert F, Grünhage F. A frequent variant in the human bile salt export pump gene ABCB11 is associated with hepatitis C virus infection, but not liver stiffness in a German population. BMC Gastroenterol 2012; 12:63. [PMID: 22681771 PMCID: PMC3457846 DOI: 10.1186/1471-230x-12-63] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 05/17/2012] [Indexed: 12/13/2022] Open
Abstract
Background The human ATP-binding cassette, subfamily B, member 11 (ABCB11) gene encodes the bile salt export pump, which is exclusively expressed at the canalicular membrane of hepatocytes. A frequent variant in the coding region, c.1331 T > C, leading to the amino acid exchange p.V444A, has been associated with altered serum bile salt levels in healthy individuals and predisposes homozygous carriers of the [C] allele for obstetric cholestasis. Recently, elevated bile salt levels were shown to be significantly associated with rates and risk of cirrhosis in patients with chronic hepatitis C virus (HCV) infection treated with pegylated interferon-α2 and ribavirin, suggesting a potential role for bile salt levels in HCV treatment outcomes and in the fibrogenic evolution of HCV-related liver disease. The aim of this study was to investigate a possible association of ABCB11 c.1331 T > C with hepatitis C virus (HCV) infection and fibrosis stages as assessed by non-invasive transient elastography in a German cohort of patients. Methods ABCB11 c.1331 T > C genotype was determined by allelic discrimination assay in 649 HCV infected cases and 413 controls. Overall, 444 cases were staged for fibrotic progression by measurement of liver stiffness. Results Homo- or heterozygous presence of the frequent [C] allele was associated with HCV positivity (OR = 1.41, CI = 1.02 - 1.95, p = 0.037). No association was detectable between the ABCB11 c.1331 T > C genotype and increased liver stiffness. Conclusions Our data confirm that homozygous presence of the major [C] allele of ABCB11 c.1331 T > C is a genetic susceptibility factor for HCV infection, but not for liver fibrosis.
Collapse
Affiliation(s)
- Roman Müllenbach
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
208
|
Hayashi H, Inamura K, Aida K, Naoi S, Horikawa R, Nagasaka H, Takatani T, Fukushima T, Hattori A, Yabuki T, Horii I, Sugiyama Y. AP2 adaptor complex mediates bile salt export pump internalization and modulates its hepatocanalicular expression and transport function. Hepatology 2012; 55:1889-1900. [PMID: 22262466 DOI: 10.1002/hep.25591] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED The bile salt export pump (BSEP) mediates the biliary excretion of bile salts and its dysfunction induces intrahepatic cholestasis. Reduced canalicular expression of BSEP resulting from the promotion of its internalization is one of the causes of this disease state. However, the molecular mechanism underlying BSEP internalization from the canalicular membrane (CM) remains unknown. We have shown previously that 4-phenylbutyrate (4PBA), a drug used for ornithine transcarbamylase deficiency (OTCD), inhibited internalization and subsequent degradation of cell-surface-resident BSEP. The current study found that 4PBA treatment decreased significantly the expression of α- and μ2-adaptin, both of which are subunits of the AP2 adaptor complex (AP2) that mediates clathrin-dependent endocytosis, in liver specimens from rats and patients with OTCD, and that BSEP has potential AP2 recognition motifs in its cytosolic region. Based on this, the role of AP2 in BSEP internalization was explored further. In vitro analysis with 3×FLAG-human BSEP-expressing HeLa cells and human sandwich-culture hepatocytes indicates that the impairment of AP2 function by RNA interference targeting of α-adaptin inhibits BSEP internalization from the plasma membrane and increases its cell-surface expression and transport function. Studies using immunostaining, coimmunoprecipitation, glutathione S-transferase pulldown assay, and time-lapse imaging show that AP2 interacts with BSEP at the CM through a tyrosine motif at the carboxyl terminus of BSEP and mediates BSEP internalization from the CM of hepatocytes. CONCLUSION AP2 mediates the internalization and subsequent degradation of CM-resident BSEP through direct interaction with BSEP and thereby modulates the canalicular expression and transport function of BSEP. This information should be useful for understanding the pathogenesis of severe liver diseases associated with intrahepatic cholestasis.
Collapse
Affiliation(s)
- Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Misawa T, Hayashi H, Makishima M, Sugiyama Y, Hashimoto Y. E297G mutated bile salt export pump (BSEP) function enhancers derived from GW4064: Structural development study and separation from farnesoid X receptor-agonistic activity. Bioorg Med Chem Lett 2012; 22:3962-6. [DOI: 10.1016/j.bmcl.2012.04.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 04/21/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
|
210
|
4-Phenylbutyrate modulates ubiquitination of hepatocanalicular MRP2 and reduces serum total bilirubin concentration. J Hepatol 2012; 56:1136-1144. [PMID: 22245901 DOI: 10.1016/j.jhep.2011.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/25/2011] [Accepted: 11/28/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Multidrug resistance-associated protein 2 (in humans, MRP2; in rodents, Mrp2) mediates biliary excretion of bilirubin glucuronides. Therefore, upregulation of MRP2/Mrp2 expression may improve hyperbilirubinemia. We investigated the effects of 4-phenylbutyrate (4PBA), a drug used to treat ornithine transcarbamylase deficiency (OTCD), on the cell surface expression and transport function of MRP2/Mrp2 and serum T-Bil concentration. METHODS MRP2-expressing MDCKII (MRP2-MDCKII) cells and rats were studied to explore the change induced by 4PBA treatment in the cell surface expression and transport function of MRP2/Mrp2 and its underlying mechanism. Serum and liver specimens from OTCD patients were analyzed to examine the effect of 4PBA on hepatic MRP2 expression and serum T-Bil concentration in humans. RESULTS In MRP2-MDCKII cells and the rat liver, 4PBA increased the cell surface expression and transport function of MRP2/Mrp2. In patients with OTCD, hepatic MRP2 expression increased and serum T-Bil concentration decreased significantly after 4PBA treatment. In vitro studies designed to explore the mechanism underlying this drug action suggested that cell surface-resident MRP2/Mrp2 is degraded via ubiquitination-mediated targeting to the endosomal/lysosomal degradation pathway and that 4PBA inhibits the degradation of cell surface-resident MRP2/Mrp2 by reducing its susceptibility to ubiquitination. CONCLUSIONS 4PBA activates MRP2/Mrp2 function through increased expression of MRP2/Mrp2 at the hepatocanalicular membrane by modulating its ubiquitination, and thereby decreases serum T-Bil concentration. 4PBA has thus therapeutic potential for improving hyperbilirubinemia.
Collapse
|
211
|
Costa J, Reis-Henriques MA, Castro LFC, Ferreira M. Gene expression analysis of ABC efflux transporters, CYP1A and GSTα in Nile tilapia after exposure to benzo(a)pyrene. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:469-82. [PMID: 22227637 DOI: 10.1016/j.cbpc.2011.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 01/06/2023]
Abstract
The aim of this study was to evaluate the response of ABC transporters, CYP1A and class alpha (α) GST genes, upon water and dietary exposures to benzo(a)pyrene (BaP) in Oreochromis niloticus. Partial mRNA sequences of ABC transporters (ABCB1b, ABCB11, ABCC1, ABCC2 and ABCG2) were identified, and their tissue distribution patterns evaluated in liver, gill and intestine, showing similarities with other fish and mammals. After 14 days of water exposure to BaP, ABC transporters mRNA expression was up-regulated, namely ABCC2 in gill (up to 16-fold) and ABCG2 in liver (up to 2-fold) and proximal intestine (up to 7-fold). CYP1A mRNA expression was up-regulated in water exposed animals, with maximum fold inductions of 5, 35 and 155, respectively in liver, gill and proximal intestine. After dietary exposure, intestinal CYP1A mRNA showed a 13-fold increase in exposed animals. No significant changes were seen in ABCB1b, ABCC1 and GSTα mRNA expression after both routes of exposure to BaP. In conclusion, this study has shown that transcriptional expression of some ABC transporters and CYP1A respond to the presence of BaP, indicating a possible involvement and cooperation in the detoxification process in Nile tilapia.
Collapse
Affiliation(s)
- Joana Costa
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal.
| | | | | | | |
Collapse
|
212
|
|
213
|
Gender-divergent profile of bile acid homeostasis during aging of mice. PLoS One 2012; 7:e32551. [PMID: 22403674 PMCID: PMC3293819 DOI: 10.1371/journal.pone.0032551] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/01/2012] [Indexed: 12/25/2022] Open
Abstract
Aging is a physiological process with a progressive decline of adaptation and functional capacity of the body. Bile acids (BAs) have been recognized as signaling molecules regulating the homeostasis of glucose, lipid, and energy. The current study characterizes the age-related changes of individual BA concentrations by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) in serum and liver of male and female C57BL/6 mice from 3 to 27 months of age. Total BA concentrations in serum increased 340% from 3 to 27 months in female mice, whereas they remained relatively constant with age in male mice. During aging, male and female mice shared the following changes: (1) BA concentrations in liver remained relatively constant; (2) the proportions of beta-muricholic acid (βMCA) increased and deoxycholic acid (DCA) decreased between 3 and 27 months in serum and liver; and (3) total BAs in serum and liver became more hydrophilic between 3 and 27 months. In female mice, (1) the mRNAs of hepatic BA uptake transporters, the Na+/taurocholate cotransporting polypeptide (Ntcp) and the organic anion transporting polypeptide 1b2 (Oatp1b2), decreased after 12 months, and similar trends were observed for their proteins; (2) the mRNA of the rate-limiting enzyme for BA synthesis, cholesterol 7α-hydroxylase (Cyp7a1), increased from 3 to 9 months and remained high thereafter. However, in male mice, Ntcp, Oatp1b2, and Cyp7a1 mRNAs remained relatively constant with age. In summary, the current study shows gender-divergent profiles of BA concentrations and composition in serum and liver of mice during aging, which is likely due to the gender-divergent expression of BA transporters Ntcp and Oatp1b2 as well as the synthetic enzyme Cyp7a1.
Collapse
|
214
|
Heumann J, Carmichael S, Bron JE, Tildesley A, Sturm A. Molecular cloning and characterisation of a novel P-glycoprotein in the salmon louse Lepeophtheirus salmonis. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:198-205. [PMID: 21867772 DOI: 10.1016/j.cbpc.2011.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 11/30/2022]
Abstract
The salmon louse, Lepeophtheirus salmonis, is a crustacean ectoparasite of salmonid fish. At present, sea louse control on salmon farms relies heavily upon chemical treatments. Drug efflux transport, mediated by ABC transporters such as P-glycoprotein (Pgp), represents a major mechanism for drug resistance in parasites. We report here the molecular cloning of a new Pgp from the salmon louse, called SL-PGY1. A partial Pgp sequence was obtained by searching sea louse ESTs, and extended by rapid amplification of cDNA ends (RACE). The open reading frame of SL-PGY1 encodes a protein of 1438 amino acids that possesses typical structural traits of P-glycoproteins, and shows a high degree of sequence homology to invertebrate and vertebrate P-glycoproteins. In the absence of drug exposure, SL-PGY1 mRNA expression levels did not differ between a drug-susceptible strain of L. salmonis and a strain showing a ~7-fold decrease in sensitivity against emamectin benzoate, the active component of the in-feed sea louse treatment SLICE (Merck Animal Health). Aqueous exposure of the hyposensitive salmon louse strain to emamectin benzoate (24h, 410 μg/L) provoked a 2.9-fold upregulation of SL-PGY1. Adult male lice of both strains showed a greater abundance of SL-PGY1 mRNA than adult females.
Collapse
Affiliation(s)
- Jan Heumann
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
215
|
Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes. Toxicol Appl Pharmacol 2012; 261:1-9. [PMID: 22342602 DOI: 10.1016/j.taap.2012.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/10/2012] [Accepted: 02/02/2012] [Indexed: 01/08/2023]
Abstract
Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR® technology, BAs were measured in cells+bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells+bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3±5.9 μM in CTL rat and 183±56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16±0.21 μM in CTL rat SCH and 9.61±6.36 μM in CTL human SCH. Treatment of cells for 24h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na⁺-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account.
Collapse
|
216
|
Blazquez AG, Briz O, Romero MR, Rosales R, Monte MJ, Vaquero J, Macias RIR, Cassio D, Marin JJG. Characterization of the role of ABCG2 as a bile acid transporter in liver and placenta. Mol Pharmacol 2012; 81:273-83. [PMID: 22096226 DOI: 10.1124/mol.111.075143] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
ABCG2 is involved in epithelial transport/barrier functions. Here, we have investigated its ability to transport bile acids in liver and placenta. Cholylglycylamido fluorescein (CGamF) was exported by WIF-B9/R cells, which do not express the bile salt export pump (BSEP). Sensitivity to typical inhibitors suggested that CGamF export was mainly mediated by ABCG2. In Chinese hamster ovary (CHO cells), coexpression of rat Oatp1a1 and human ABCG2 enhanced the uptake and efflux, respectively, of CGamF, cholic acid (CA), glycoCA (GCA), tauroCA, and taurolithocholic acid-3-sulfate. The ability of ABCG2 to export these bile acids was confirmed by microinjecting them together with inulin in Xenopus laevis oocytes expressing this pump. ABCG2-mediated bile acid transport was inhibited by estradiol 17β-d-glucuronide and fumitremorgin C. Placental barrier for bile acids accounted for <2-fold increase in fetal cholanemia despite >14-fold increased maternal cholanemia induced by obstructive cholestasis in pregnant rats. In rat placenta, the expression of Abcg2, which was much higher than that of Bsep, was not affected by short-term cholestasis. In pregnant rats, fumitremorgin C did not affect uptake/secretion of GCA by the liver but inhibited its fetal-maternal transfer. Compared with wild-type mice, obstructive cholestasis in pregnant Abcg2(-/-) knockout mice induced similar bile acid accumulation in maternal serum but higher accumulation in placenta, fetal serum, and liver. In conclusion, ABCG2 is able to transport bile acids. The importance of this function depends on the relative expression in the same epithelium of other bile acid exporters. Thus, ABCG2 may play a key role in bile acid transport in placenta, as BSEP does in liver.
Collapse
Affiliation(s)
- Alba G Blazquez
- Laboratory of Experimental Hepatology and Drug Targeting, National Institute for the Study of Liver and Gastrointestinal Diseases, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Takada T, Yamanashi Y, Suzuki H. [Transportsome in biliary cholesterol secretion]. Nihon Yakurigaku Zasshi 2012; 139:56-60. [PMID: 22322928 DOI: 10.1254/fpj.139.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
218
|
Cantore M, Reinehr R, Sommerfeld A, Becker M, Häussinger D. The Src family kinase Fyn mediates hyperosmolarity-induced Mrp2 and Bsep retrieval from canalicular membrane. J Biol Chem 2011; 286:45014-29. [PMID: 22057277 PMCID: PMC3247936 DOI: 10.1074/jbc.m111.292896] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/23/2011] [Indexed: 12/17/2022] Open
Abstract
In perfused rat liver, hyperosmolarity induces Mrp2- (Kubitz, R., D'urso, D., Keppler, D., and Häussinger, D. (1997) Gastroenterology 113, 1438-1442) and Bsep retrieval (Schmitt, M., Kubitz, R., Lizun, S., Wettstein, M., and Häussinger, D. (2001) Hepatology 33, 509-518) from the canalicular membrane leading to cholestasis. The aim of this study was to elucidate the underlying signaling events. Hyperosmolarity-induced retrieval of Mrp2 and Bsep from the canalicular membrane in perfused rat liver was accompanied by an activating phosphorylation of the Src kinases Fyn and Yes but not of c-Src. Both hyperosmotic transporter retrieval and Src kinase activation were sensitive to apocynin (300 μmol/liter), N-acetylcysteine (NAC; 10 mmol/liter), and SU6656 (1 μmol/liter). Also PP-2 (250 nmol/liter), which inhibited hyperosmotic Fyn but not Yes activation, prevented hyperosmotic transporter retrieval from the canalicular membrane, suggesting that Fyn but not Yes mediates hyperosmotic Bsep and Mrp2 retrieval. Neither hyperosmotic Fyn activation nor Bsep/Mrp2 retrieval was observed in livers from p47(phox) knock-out mice. Hyperosmotic activation of JNKs was sensitive to apocynin and NAC but insensitive to SU6656 and PP-2, indicating that JNKs are not involved in transporter retrieval, as also evidenced by experiments using the JNK inhibitors L-JNKI-1 and SP6001255, respectively. Hyperosmotic transporter retrieval was accompanied by a NAC and Fyn knockdown-sensitive inhibition of biliary excretion of the glutathione conjugate of 1-chloro-2,4-dinitrobenzene in perfused rat liver and of cholyl-L-lysyl-fluorescein secretion into the pseudocanaliculi formed by hepatocyte couplets. Hyperosmolarity triggered an association between Fyn and cortactin and increased the amount of phosphorylated cortactin underneath the canalicular membrane. It is concluded that the hyperosmotic cholestasis is triggered by a NADPH oxidase-driven reactive oxygen species formation that mediates Fyn-dependent retrieval of the Mrp2 and Bsep from the canalicular membrane, which may involve an increased cortactin phosphorylation.
Collapse
Affiliation(s)
- Miriam Cantore
- From the Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Roland Reinehr
- From the Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Annika Sommerfeld
- From the Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Martin Becker
- From the Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Dieter Häussinger
- From the Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
219
|
Effect of penicillin G on the biliary excretion of cholephilic compounds in rats. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2011; 18:684-8. [PMID: 21431887 DOI: 10.1007/s00534-011-0378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIM Penicillin G is reported to increase bile flow by increasing biliary glutathione excretion, as well as the biliary excretion of penicillin G itself. In order to study the effect of penicillin G on the hepatic excretory pathway, the effect of colchicine and genipin on the increase of biliary glutathione excretion induced by penicillin G was studied in rats. The effect of penicillin G on the biliary excretion of sulfobromophthalein and erythromycin was also studied, together with the effect of penicillin G on cholestasis induced by estradiol-17β-glucuronide. METHODS After bile duct cannulation, penicillin G was administered to rats at the rate of 0.5 μmol/min/100 g. The effect was examined of colchicine pretreatment (0.2 mg/100 g) and genipin administration (0.5 μmol/min/100 g) on biliary glutathione excretion increased by penicillin G infused at the rate of 0.5 μmol/min/100 g. The effect of penicillin G on the biliary excretion of sulfobromophthalein and erythromycin (0.2 and 0.1 μmol/min/100 g for 90 min, respectively) was studied, together with the effect of penicillin G on cholestasis induced by estradiol-17β-glucuronide (0.075 μmol/min/100 g for 20 min). RESULTS Penicillin G increased bile flow and biliary glutathione excretion, which were not inhibited by colchicine or genipin. Biliary penicillin G excretion was markedly reduced in Eisai hyperbilirubinemic rats (EHBR) and Mrp2-deficient rats. Biliary sulfobromophthalein and erythromycin excretion was unchanged by penicillin G. Cholestasis induced by estradiol-17β-glucuronide was not relieved by penicillin G. CONCLUSIONS It was shown that colchicine-sensitive vesicular transport has no role on the penicillin G-induced insertion of Mrp2 into the canalicular membrane, as has been observed with genipin. Although the choleresis of penicillin G is thought to be due to the increased biliary excretion of glutathione and penicillin G itself by Mrp2, the mechanism of Mrp2 insertion by penicillin G is thought to be partly different from that by genipin.
Collapse
|
220
|
Nicolaou M, Andress EJ, Zolnerciks JK, Dixon PH, Williamson C, Linton KJ. Canalicular ABC transporters and liver disease. J Pathol 2011; 226:300-15. [DOI: 10.1002/path.3019] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
221
|
Kis E, Ioja E, Rajnai Z, Jani M, Méhn D, Herédi-Szabó K, Krajcsi P. BSEP inhibition: in vitro screens to assess cholestatic potential of drugs. Toxicol In Vitro 2011; 26:1294-9. [PMID: 22120137 DOI: 10.1016/j.tiv.2011.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/26/2011] [Accepted: 11/09/2011] [Indexed: 12/17/2022]
Abstract
Bile salt export pump (BSEP, ABC11) is a membrane protein that is localized in the cholesterol-rich canalicular membrane of hepatocytes. Its function is to eliminate unconjugated and conjugated bile acids/salts from hepatocyte into the bile. In humans there is no compensatory mechanism for the loss of this transporter. Mutations of BSEP result in a genetic disease, called progressive familial intrahepatic cholestasis type 2 (PFIC2), that is characterized with decreased biliary bile salt secretion, leading to decreased bile flow and accumulation of bile salts inside the hepatocyte, inflicting damage. BSEP inhibitor drugs produce similar bile salt retention that may lead to severe cholestasis and liver damage. Drug-induced liver injury is a relevant clinical issue, in severe cases ending in liver transplantation. Therefore, measurement of BSEP inhibition by candidate drugs has high importance in drug discovery and development. Although several methods are suitable to detect BSEP-drug interactions, due to interspecies differences in bile acid composition, differences in hepatobiliary transporter modulation, they have limitations. This review summarizes appropriate in vitro methods that could be able to predict BSEP-drug candidate interactions in humans before the start of clinical phases.
Collapse
|
222
|
Kruglov EA, Gautam S, Guerra MT, Nathanson MH. Type 2 inositol 1,4,5-trisphosphate receptor modulates bile salt export pump activity in rat hepatocytes. Hepatology 2011; 54:1790-9. [PMID: 21748767 PMCID: PMC3205211 DOI: 10.1002/hep.24548] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/26/2011] [Indexed: 12/16/2022]
Abstract
UNLABELLED Bile salt secretion is mediated primarily by the bile salt export pump (Bsep), a transporter on the canalicular membrane of the hepatocyte. However, little is known about the short-term regulation of Bsep activity. Ca(2+) regulates targeting and insertion of transporters in many cell systems, and Ca(2+) release near the canalicular membrane is mediated by the type II inositol 1,4,5-trisphosphate receptor (InsP3R2), so we investigated the possible role of InsP3R2 in modulating Bsep activity. The kinetics of Bsep activity were monitored by following secretion of the fluorescent Bsep substrate cholylglycylamido-fluorescein (CGamF) in rat hepatocytes in collagen sandwich culture, an isolated cell system in which structural and functional polarity is preserved. CGamF secretion was nearly eliminated in cells treated with Bsep small interfering RNA (siRNA), demonstrating specificity of this substrate for Bsep. Secretion was also reduced after chelating intracellular calcium, inducing redistribution of InsP3R2 by depleting the cell membrane of cholesterol, or reducing InsP3R function by either knocking down InsP3R2 expression using siRNA or pharmacologic inhibition using xestospongin C. Confocal immunofluorescence showed that InsP3R2 and Bsep are in close proximity in the canalicular region, both in rat liver and in hepatocytes in sandwich culture. However, after knocking down InsP3R2 or inducing its dysfunction with cholesterol depletion, Bsep redistributed intracellularly. Finally, InsP3R2 was lost from the pericanalicular region in animal models of estrogen- and endotoxin-induced cholestasis. CONCLUSION These data provide evidence that pericanalicular calcium signaling mediated by InsP3R2 plays an important role in maintaining bile salt secretion through posttranslational regulation of Bsep, and suggest that loss or redistribution of InsP3R2 may contribute to the pathophysiology of intrahepatic cholestasis.
Collapse
Affiliation(s)
| | | | | | - Michael H. Nathanson
- Address for correspondence: Michael H. Nathanson, Section of Digestive Diseases, Yale University School of Medicine, 333 Cedar Street, TAC S241D, New Haven, CT. 06520-8019, Phone: (203) 785-7312. Fax: (203) 785-7273
| |
Collapse
|
223
|
Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation. J Lipids 2011; 2012:547643. [PMID: 22132343 PMCID: PMC3206498 DOI: 10.1155/2012/547643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 08/10/2011] [Indexed: 12/23/2022] Open
Abstract
Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition.
Collapse
|
224
|
Vanwijngaerden YM, Wauters J, Langouche L, Vander Perre S, Liddle C, Coulter S, Vanderborght S, Roskams T, Wilmer A, Van den Berghe G, Mesotten D. Critical illness evokes elevated circulating bile acids related to altered hepatic transporter and nuclear receptor expression. Hepatology 2011; 54:1741-52. [PMID: 21800341 DOI: 10.1002/hep.24582] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UNLABELLED Hyperbilirubinemia is common during critical illness and is associated with adverse outcome. Whether hyperbilirubinemia reflects intensive care unit (ICU) cholestasis is unclear. Therefore, the aim of this study was to analyze hyperbilirubinemia in conjunction with serum bile acids (BAs) and the key steps in BA synthesis, transport, and regulation by nuclear receptors (NRs). Serum BA and bilirubin levels were determined in 130 ICU and 20 control patients. In liver biopsies messenger RNA (mRNA) expression of BA synthesis enzymes, BA transporters, and NRs was assessed. In a subset (40 ICU / 10 controls) immunohistochemical staining of the transporters and receptors together with a histological evaluation of cholestasis was performed. BA levels were much more elevated than bilirubin in ICU patients. Conjugated cholic acid (CA) and chenodeoxycholic acid (CDCA) were elevated, with an increased CA/CDCA ratio. Unconjugated BA did not differ between controls and patients. Despite elevated serum BA levels, CYP7A1 protein, the rate-limiting enzyme in BA synthesis, was not lowered in ICU patients. Also, protein expression of the apical bile salt export pump (BSEP) was decreased, whereas multidrug resistance-associated protein (MRP) 3 was strongly increased at the basolateral side. This reversal of BA transport toward the sinusoidal blood compartment is in line with the increased serum conjugated BA levels. Immunostaining showed marked down-regulation of nuclear farnesoid X receptor, retinoid X receptor alpha, constitutive androstane receptor, and pregnane X receptor nuclear protein levels. CONCLUSION Failure to inhibit BA synthesis, up-regulate canalicular BA export, and localize pivotal NR in the hepatocytic nuclei may indicate dysfunctional feedback regulation by increased BA levels. Alternatively, critical illness may result in maintained BA synthesis (CYP7A1), reversal of normal BA transport (BSEP/MRP3), and inhibition of the BA sensor (FXR/RXRα) to increase serum BA levels.
Collapse
Affiliation(s)
- Yoo-Mee Vanwijngaerden
- Laboratory and Department of Intensive Care Medicine, University Hospitals KU Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Cheung ID, Bagnat M, Ma TP, Datta A, Evason K, Moore JC, Lawson ND, Mostov KE, Moens CB, Stainier DYR. Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b. Dev Biol 2011; 361:68-78. [PMID: 22020048 DOI: 10.1016/j.ydbio.2011.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 02/06/2023]
Abstract
The intrahepatic biliary ducts transport bile produced by the hepatocytes out of the liver. Defects in biliary cell differentiation and biliary duct remodeling cause a variety of congenital diseases including Alagille Syndrome and polycystic liver disease. While the molecular pathways regulating biliary cell differentiation have received increasing attention (Lemaigre, 2010), less is known about the cellular behavior underlying biliary duct remodeling. Here, we have identified a novel gene, claudin 15-like b (cldn15lb), which exhibits a unique and dynamic expression pattern in the hepatocytes and biliary epithelial cells in zebrafish. Claudins are tight junction proteins that have been implicated in maintaining epithelial polarity, regulating paracellular transport, and providing barrier function. In zebrafish cldn15lb mutant livers, tight junctions are observed between hepatocytes, but these cells show polarization defects as well as canalicular malformations. Furthermore, cldn15lb mutants show abnormalities in biliary duct morphogenesis whereby biliary epithelial cells remain clustered together and form a disorganized network. Our data suggest that Cldn15lb plays an important role in the remodeling process during biliary duct morphogenesis. Thus, cldn15lb mutants provide a novel in vivo model to study the role of tight junction proteins in the remodeling of the biliary network and hereditary cholestasis.
Collapse
Affiliation(s)
- Isla D Cheung
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, and Institute for Regeneration Medicine, University of California, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Lyoumi S, Abitbol M, Rainteau D, Karim Z, Bernex F, Oustric V, Millot S, Lettéron P, Heming N, Guillmot L, Montagutelli X, Berdeaux G, Gouya L, Poupon R, Deybach JC, Beaumont C, Puy H. Protoporphyrin retention in hepatocytes and Kupffer cells prevents sclerosing cholangitis in erythropoietic protoporphyria mouse model. Gastroenterology 2011; 141:1509-19, 1519.e1-3. [PMID: 21762662 DOI: 10.1053/j.gastro.2011.06.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 06/14/2011] [Accepted: 06/28/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Chronic, progressive hepatobiliary disease is the most severe complication of erythropoietic protoporphyria (EPP) and can require liver transplantation, although the mechanisms that lead to liver failure are unknown. We characterized protoporphyrin-IX (PPIX)-linked hepatobiliary disease in BALB/c and C57BL/6 (Fechm1Pas) mice with mutations in ferrochelatase as models for EPP. METHODS Fechm1Pas and wild-type (control) mice were studied at 12-14 weeks of age. PPIX was quantified; its distribution in the liver, serum levels of lipoprotein-X, liver histology, contents of bile salt and cholesterol phospholipids, and expression of genes were compared in mice of the BALB/c and C57BL/6 backgrounds. The in vitro binding affinity of PPIX for bile components was determined. RESULTS Compared with mice of the C57BL/6 background, BALB/c Fechm1Pas mice had a more severe pattern of cholestasis, fibrosis with portoportal bridging, bile acid regurgitation, sclerosing cholangitis, and hepatolithiasis. In C57BL/6 Fechm1Pas mice, PPIX was sequestrated mainly in the cytosol of hepatocytes and Kupffer cells, whereas, in BALB/c Fechm1Pas mice, PPIX was localized within enlarged bile canaliculi. Livers of C57BL/6 Fechm1Pas mice were protected through a combination of lower efflux of PPIX and reduced synthesis and export of bile acid. CONCLUSIONS PPIX binds to bile components and disrupts the physiologic equilibrium of phospholipids, bile acids, and cholesterol in bile. This process might be involved in pathogenesis of sclerosing cholangitis from EPP; a better understanding might improve diagnosis and development of reagents to treat or prevent liver failure in patients with EPP.
Collapse
Affiliation(s)
- Saïd Lyoumi
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Université Paris Diderot, site Bichat, Centre de reference des maladies inflammatoires des voies biliaires, service d’Hépatologie-Gastroentérologie, Hôpital Saint Antoine, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Kolouchova G, Brcakova E, Hirsova P, Sispera L, Tomsik P, Cermanova J, Hyspler R, Slanarova M, Fuksa L, Lotkova H, Micuda S. Pravastatin modulates liver bile acid and cholesterol homeostasis in rats with chronic cholestasis. J Gastroenterol Hepatol 2011; 26:1544-51. [PMID: 21501227 DOI: 10.1111/j.1440-1746.2011.06748.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM The administration of pravastatin to patients with cholestatic liver disease has suggested the potential of the drug with regard to reducing raised plasma cholesterol and bile acid levels. Information about the mechanisms associated with this effect is lacking. Thus, the aim of the present study is to evaluate pravastatin effects on the liver bile acid and cholesterol homeostasis in healthy and cholestatic rats. METHODS Control sham-operated and reversibly bile duct-obstructed (BDO) rats were treated with pravastatin (1 or 5 mg/kg) or the vehicle alone for 7 days after surgery. RESULTS Lower doses of pravastatin reduced bile acid plasma concentrations in cholestatic animals. The effect was associated with reduced liver mRNA expression of Cyp7a1, Cyp8b1, Mrp2, Ugt1a1 and the increased expression of Bsep. In addition, BDO-induced increase in the liver content of cholesterol was normalized by pravastatin. The change was accompanied by the reduced liver expression of Hmg-CoA reductase, LDL receptor, and Acat2, and induced the expression of Abca1 and Mdr2. These changes corresponded with the upregulation of nuclear receptors LXRα and PPARα, and the downregulation of FXR, CAR, SREBP-2 and HNF1α. High doses of pravastatin lacked any positive effects on bile acids and cholesterol homeostasis, and blocked bile formation through the reduction of the biliary excretion of bile acids. CONCLUSIONS Pravastatin rendered a positive reduction in BDO-induced increases in plasma bile acid concentrations and cholesterol liver content, mainly through the transcriptionally-mediated downregulation of genes involved in the synthesis of these compounds in the liver.
Collapse
|
228
|
Time-course activities of Oct1, Mrp3, and cytochrome P450s in cultures of cryopreserved rat hepatocytes. Eur J Pharm Sci 2011; 44:427-36. [DOI: 10.1016/j.ejps.2011.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/13/2011] [Accepted: 09/05/2011] [Indexed: 11/23/2022]
|
229
|
Domanova O, Borbe S, Mühlfeld S, Becker M, Kubitz R, Häussinger D, Berlage T. Toponomics method for the automated quantification of membrane protein translocation. BMC Bioinformatics 2011; 12:370. [PMID: 21929784 PMCID: PMC3230911 DOI: 10.1186/1471-2105-12-370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 09/19/2011] [Indexed: 01/30/2023] Open
Abstract
Background Intra-cellular and inter-cellular protein translocation can be observed by microscopic imaging of tissue sections prepared immunohistochemically. A manual densitometric analysis is time-consuming, subjective and error-prone. An automated quantification is faster, more reproducible, and should yield results comparable to manual evaluation. The automated method presented here was developed on rat liver tissue sections to study the translocation of bile salt transport proteins in hepatocytes. For validation, the cholestatic liver state was compared to the normal biological state. Results An automated quantification method was developed to analyze the translocation of membrane proteins and evaluated in comparison to an established manual method. Firstly, regions of interest (membrane fragments) are identified in confocal microscopy images. Further, densitometric intensity profiles are extracted orthogonally to membrane fragments, following the direction from the plasma membrane to cytoplasm. Finally, several different quantitative descriptors were derived from the densitometric profiles and were compared regarding their statistical significance with respect to the transport protein distribution. Stable performance, robustness and reproducibility were tested using several independent experimental datasets. A fully automated workflow for the information extraction and statistical evaluation has been developed and produces robust results. Conclusions New descriptors for the intensity distribution profiles were found to be more discriminative, i.e. more significant, than those used in previous research publications for the translocation quantification. The slow manual calculation can be substituted by the fast and unbiased automated method.
Collapse
Affiliation(s)
- Olga Domanova
- Fraunhofer Institute for Applied Information Technology FIT, Schloss Birlinghoven, Sankt Augustin, Germany.
| | | | | | | | | | | | | |
Collapse
|
230
|
Zinchuk V, Grossenbacher‐Zinchuk O. Quantitative Colocalization Analysis of Confocal Fluorescence Microscopy Images. ACTA ACUST UNITED AC 2011; Chapter 4:Unit4.19. [DOI: 10.1002/0471143030.cb0419s52] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vadim Zinchuk
- Department of Anatomy and Cell Biology, Kochi University Faculty of Medicine Japan
| | | |
Collapse
|
231
|
Miura T, Kimura N, Yamada T, Shimizu T, Nanashima N, Yamana D, Hakamada K, Tsuchida S. Sustained repression and translocation of Ntcp and expression of Mrp4 for cholestasis after rat 90% partial hepatectomy. J Hepatol 2011; 55:407-14. [PMID: 21167233 DOI: 10.1016/j.jhep.2010.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/05/2010] [Accepted: 11/12/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS To clarify the mechanism of persistent cholestasis after massive hepatectomy, the relationship between such cholestasis and the expression and localization of organic anion transporters for bile acids was examined in a rat model. METHODS Male Sprague-Dawley rats were subjected to 90% hepatectomy, and tissues were harvested at 0, 1, 3, and 7 days for microarray analysis, quantitative real-time polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemistry to examine the expression of multidrug resistance protein 4 (Mrp4), bile salt export pump (Bsep), and sodium-dependent taurocholate cotransporting polypeptide (Ntcp). RESULTS Persistently elevated levels of serum bile acids were observed at days 3 and 7. RT-PCR and Western blotting indicated that the expression of Mrp4, a bile acid export pump located in the basolateral membrane, was increased at day 3. The expression of Ntcp, a transporter used to uptake bile acids from the sinusoids, was significantly decreased throughout the period. The levels of Bsep, an export pump localized to the canalicular membrane, were unchanged. Immunohistochemistry revealed the localization of Mrp4 and Bsep in the basolateral and canalicular membranes, respectively. On the other hand, at days 3 and 7, Ntcp was localized in the cytoplasm and was hardly detected in the basolateral membrane. CONCLUSIONS These results suggested that the sustained repression and translocation of Ntcp and the expression of Mrp4 at the basolateral membrane seem to be responsible for the high blood bile acids levels after massive hepatectomy.
Collapse
Affiliation(s)
- Takuya Miura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:867-78. [DOI: 10.1016/j.bbadis.2010.12.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 12/12/2022]
|
233
|
Diaz GJ. Basolateral and canalicular transport of xenobiotics in the hepatocyte: A review. Cytotechnology 2011; 34:225-35. [PMID: 19003398 DOI: 10.1023/a:1008152205697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular and functional characterization of severalproteins involved in the uptake and excretion of xenobioticsand endogenous compounds in the hepatocyte has been achievedthrough intensive research conducted in the past few years.These studies have lead to the identification of specificmembrane transporters located in the basolateral andcanalicular membrane domains of the hepatocyte. The organicanion-transporting polypeptide (OATP), present in thebasolateral membrane of the hepatocyte, is responsible for thetranslocation of xenobiotics from the sinusoidal space into thehepatocyte. Once inside the cell, unconjugated neutral, anionicand cationic xenobiotics can be secreted into bile by themultidrug-resistance P-glycoprotein 1 (MDR1). Conjugatedxenobiotics (e.g. glucuronides and glutathione conjugates) aresecreted into bile by the canalicular multispecific organicanion transporter (cMOAT). Other transporters play keyphysiological roles, including the basolateral uptake of bilesalts (sodium-taurocholate cotransporter, NTCP) and thesecretion into bile of conjugated and unconjugated bile salts(bile salt export pump, BSEP) and phospholipids (MDR2).Experimental approaches used to investigate the role of thebasolateral and canalicular transporters in the hepatocyte haveincluded both in vivo and in vitro models. Animalmodels lacking canalicular transporters include the;hyperbilirubinemic' rats (Groningen-Yellow (GY), Eisaihyperbilirubinemic (EHB) and TR(-) rats), which aredeficient in the cMOAT protein, and ;knock-out' mice, lackingeither the MDR1 or MDR2 transporter. Although no animal modelsare currently available for the study of basolateraltransporters, their function has been conveniently investigatedthrough heterologous expression in Xenopus laevis oocytesand also with basolateral membrane vesicles isolated fromhepatocytes. The total number of basolateral and canaliculartransport proteins present in the hepatocyte is still unknown,but current knowledge indicates that there are at least fourpresent in the basolateral membrane and five in the canaliculardomain. The present review focuses on the current knowledgeabout the most relevant hepatocyte transporters involved in theuptake of foreign and endogenous compounds from the sinusoidalspace and in their active secretion into bile. The first partof the review deals with the basolateral (sinusoidal) transportof organic anions, and the major basolateral transporters (e.g.NTCP, OATP) are described here, both in terms of their knownbiochemistry and physiology. In the second part of the review,the canalicular (apical) transport of organic anions isdiscussed and the biochemistry and physiological role of MDR1,MDR2, cMOAT and BSEP is described in detail. The concludingremarks point out areas of research that need to be addressedin order to answer important questions that still remainunanswered in this important field of study.
Collapse
Affiliation(s)
- G J Diaz
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Apartado Aéreo 76948, Santafé de Bogotá, D.C., Colombia;,
| |
Collapse
|
234
|
Kramer W. Transporters, Trojan horses and therapeutics: suitability of bile acid and peptide transporters for drug delivery. Biol Chem 2011; 392:77-94. [PMID: 21194371 DOI: 10.1515/bc.2011.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane transporters are major determinants for the pharmacokinetic, safety and efficacy behavior of drugs. Available technologies to study function and structure of transport proteins has strongly stimulated research in transporter biology and uncovered their importance for the drug discovery and development process, especially for drug absorption and disposition. Physiological transport systems are investigated as potential ferries to improve drug absorption and membrane permeation and to achieve organ-specific drug action. In particular, the bile acid transport systems in the liver and the small intestine and the oligopeptide transporters are of significant importance for molecular drug delivery.
Collapse
Affiliation(s)
- Werner Kramer
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Gebäude G 879, Frankfurt/Main, Germany.
| |
Collapse
|
235
|
Abstract
AIM Urinary bile acids are mainly conjugated with sulfuric acid. In a previous work, we demonstrated that the levels of urinary sulfated bile acids (USBA) and serum total bile acids (TBA) were correlated very well and also that USBA was considered to be a more useful indicator of hepatic fibrosis than TBA in patients with hepatitis C virus (HCV)-related liver diseases. In the current study we aimed to confirm these finding in patients with primary biliary cirrhosis (PBC), a prototypic cholestatic liver disease. METHODS Urinary sulfated bile acids were measured using an automatic assay kit in 50 patients with PBC, of whom 11 were diagnosed as having cirrhosis. We obtained specimens before ursodeoxycholic acid (UDCA) administration in four patients, and during UDCA in 46 patients. The correlations between USBA and various laboratory tests were studied. RESULTS The median USBA level was 67.9 µmol/g creatinine in PBC; 27.7 without cirrhosis and 210.3 with cirrhosis (P = 0.001). The number of PBC patients with elevated USBA was significantly higher than those with elevated TBA (82% vs. 56%). This significance was remarkable especially in early stages, non-cirrhotic patients (77% vs. 49%). USBA level was well correlated with TBA (r(s) = 0.72), and negatively correlated with platelet (r(s) = -0.34) and albumin (r(s) = -0.31). CONCLUSION Urinary sulfated bile acids and TBA are well correlated, and together with the findings that USBA is not affected by meals, USBA is considered to be more beneficial and convenient than TBA for earlier detection of fibrosis in PBC.
Collapse
Affiliation(s)
- Ryo Miura
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
236
|
Abstract
LKB1 is a 'master' protein kinase implicated in the regulation of metabolism, cell proliferation, cell polarity and tumorigenesis. However, the long-term role of LKB1 in hepatic function is unknown. In the present study, it is shown that hepatic LKB1 plays a key role in liver cellular architecture and metabolism. We report that liver-specific deletion of LKB1 in mice leads to defective canaliculi and bile duct formation, causing impaired bile acid clearance and subsequent accumulation of bile acids in serum and liver. Concomitant with this, it was found that the majority of BSEP (bile salt export pump) was retained in intracellular pools rather than localized to the canalicular membrane in hepatocytes from LLKB1KO (liver-specific Lkb1-knockout) mice. Together, these changes resulted in toxic accumulation of bile salts, reduced liver function and failure to thrive. Additionally, circulating LDL (low-density lipoprotein)-cholesterol and non-esterified cholesterol levels were increased in LLKB1KO mice with an associated alteration in red blood cell morphology and development of hyperbilirubinaemia. These results indicate that LKB1 plays a critical role in bile acid homoeostasis and that lack of LKB1 in the liver results in cholestasis. These findings indicate a novel key role for LKB1 in the development of hepatic morphology and membrane targeting of canalicular proteins.
Collapse
|
237
|
Martin IV, Schmitt J, Minkenberg A, Mertens JC, Stieger B, Mullhaupt B, Geier A. Bile acid retention and activation of endogenous hepatic farnesoid-X-receptor in the pathogenesis of fatty liver disease in ob/ob-mice. Biol Chem 2011; 391:1441-9. [PMID: 20868235 DOI: 10.1515/bc.2010.141] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The nuclear bile acid receptor FXR (farnesoid-X-receptor) has recently been implicated in the pathophysiology of non-alcoholic fatty liver disease because selective FXR-agonists improve glucose and lipid metabolism in rodent models of obesity. However, the regulation of FXR and other relevant nuclear receptors as well as their lipogenic target genes in fatty liver is still not revealed in detail. Livers were harvested from 14-week-old male ob/ob mice and wild-type controls. Serum bile acids were quantified by radioimmunoassay. mRNA and protein expression of transporters and nuclear receptors was analyzed by reverse transcriptase-polymerase chain reaction and Western blotting, whereas DNA binding to the IR-1 element was examined by electrophoretic mobility shift assay. In this study we show: (i) bile acid retention in ob/ob mice, (ii) a resulting FXR upregulation and binding to the IR-1 element in ob/ob animals and (iii) concomitant activation of the fatty acid synthase as a potential lipogenic FXR target gene in vivo. The present study suggests a potential role of hepatic bile acid retention and FXR activation in the induction of lipogenic target genes. Differences between intestinal and hepatic FXR could explain apparent contradictory information regarding its effects on fatty liver disease.
Collapse
Affiliation(s)
- Ina V Martin
- Department of Internal Medicine III, University Hospital Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
238
|
Abstract
Human MDR1, a multi-drug transporter gene, was isolated as the first of the eukaryote ATP Binding Cassette (ABC) proteins from a multidrug-resistant carcinoma cell line in 1986. To date, over 25 years, many ABC proteins have been found to play important physiological roles by transporting hydrophobic compounds. Defects in their functions cause various diseases, indicating that endogenous hydrophobic compounds, as well as water-soluble compounds, are properly transported by transmembrane proteins. MDR1 transports a large number of structurally unrelated drugs and is involved in their pharmacokinetics, and thus is a key factor in drug interaction. ABCA1, an ABC protein, eliminates excess cholesterol in peripheral cells by generating HDL. Because ABCA1 is a key molecule in cholesterol homeostasis, its function and expression are highly regulated. Eukaryote ABC proteins function on the body surface facing the outside and in organ pathways to adapt to the extracellular environment and protect the body to maintain optimal health.
Collapse
|
239
|
Stieger B, Geier A. Genetic variations of bile salt transporters as predisposing factors for drug-induced cholestasis, intrahepatic cholestasis of pregnancy and therapeutic response of viral hepatitis. Expert Opin Drug Metab Toxicol 2011; 7:411-25. [PMID: 21320040 DOI: 10.1517/17425255.2011.557067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug-induced cholestasis, intrahepatic cholestasis of pregnancy and viral hepatitis are acquired forms of liver disease. Cholestasis is a pathophysiologic state with impaired bile formation and subsequent accumulation of bile salts in hepatocytes. The bile salt export pump (BSEP) (ABCB11) is the key export system for bile salts from hepatocytes. AREAS COVERED This article provides an introduction into the physiology of bile formation followed by a summary of the current knowledge on the key bile salt transporters, namely, the sodium-taurocholate co-transporting polypeptide NTCP, the organic anion transporting polypeptides (OATPs), BSEP and the multi-drug resistance protein 3. The pathophysiologic consequences of altered functions of these transporters, with an emphasis on molecular and genetic aspects, are then discussed. EXPERT OPINION Knowledge of the role of hepatocellullar transporters, especially BSEP, in acquired cholestasis is continuously increasing. A common variant of BSEP (p.V444A) is now a well-established susceptibility factor for acquired cholestasis and recent evidence suggests that the same variant also influences the therapeutic response and disease progression of viral hepatitis C. Studies in large independent cohorts are now needed to confirm the relevance of p.V444A. Genome-wide association studies should lead to the identification of additional genetic factors underlying cholestatic liver disease.
Collapse
Affiliation(s)
- Bruno Stieger
- University Hospital Zurich, Division of Clinical Pharmacology and Toxicology, 8091 Zurich, Switzerland.
| | | |
Collapse
|
240
|
Yoshikado T, Takada T, Yamamoto T, Yamaji H, Ito K, Santa T, Yokota H, Yatomi Y, Yoshida H, Goto J, Tsuji S, Suzuki H. Itraconazole-induced cholestasis: involvement of the inhibition of bile canalicular phospholipid translocator MDR3/ABCB4. Mol Pharmacol 2011; 79:241-50. [PMID: 21056966 DOI: 10.1124/mol.110.067256] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biliary secretion of bile acids and phospholipids, both of which are essential components of biliary micelles, are mediated by the bile salt export pump (BSEP/ABCB11) and multidrug resistance 3 P-glycoprotein (MDR3/ABCB4), respectively, and their genetic dysfunction leads to the acquisition of severe cholestatic diseases. In the present study, we found two patients with itraconazole (ITZ)-induced cholestatic liver injury with markedly high serum ITZ concentrations. To characterize the effect of ITZ on bile formation in vivo, biliary bile acids and phospholipids were analyzed in ITZ-treated rats, and it was revealed that biliary phospholipids, rather than bile acids, were drastically reduced in the presence of clinically relevant concentrations of ITZ. Moreover, by using MDR3-expressing LLC-PK1 cells, we found that MDR3-mediated efflux of [¹⁴C]phosphatidylcholine was significantly reduced by ITZ. In contrast, BSEP-mediated transport of [³H]taurocholate was not significantly affected by ITZ, which is consistent with our in vivo observations. In conclusion, this study suggests the involvement of the inhibition of MDR3-mediated biliary phospholipids secretion in ITZ-induced cholestasis. Our approach may be useful for analyzing mechanisms of drug-induced cholestasis and evaluating the cholestatic potential of clinically used drugs and drug candidates.
Collapse
Affiliation(s)
- Takashi Yoshikado
- Department of Pharmacy, University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Fischer S, Loncar J, Zaja R, Schnell S, Schirmer K, Smital T, Luckenbach T. Constitutive mRNA expression and protein activity levels of nine ABC efflux transporters in seven permanent cell lines derived from different tissues of rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:438-446. [PMID: 21216355 DOI: 10.1016/j.aquatox.2010.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/11/2010] [Accepted: 11/20/2010] [Indexed: 05/30/2023]
Abstract
Permanent fish cell lines have become common model systems for determining ecotoxicological effects of pollutants. For these cell lines little is known on the cellular active transport mechanisms that control the amount of a compound entering the cell, such as the MXR (multixenobiotic resistance) system mediated by ATP binding cassette (ABC) transport proteins. Therefore, for toxic evaluation of chemicals with those cells information on MXR is important. We here present data on constitutive mRNA expression and protein activity levels of a series of ABC efflux transporters in seven permanent cell lines derived from liver (RTL-W1; R1) and liver hepatoma (RTH-149), gill (RTgill-W1), gonad (RTG-2), gut (RTgutGC) and brain (RTbrain) of rainbow trout (Oncorhynchus mykiss). In addition to known transporters abcb1 (designated here abcb1a), abcb11, abcc1-3, abcc5 and abcg2, we quantified expression levels of a newly identified abcb1 isoform (abcb1b) and abcc4, previously unknown in trout. Quantitative real time PCR (qPCR) indicated that mRNA of the examined ABC transporters was constitutively expressed in all cell lines. Transporter mRNA expression patterns were similar in all cell lines, with expression levels of abcc transporters being 80 to over 1000 fold higher than for abcg2, abcb1a/b and abcb11 (abcc1-5>abcg2>abcb1a/b, 11). Transporter activity in the cell lines was determined by measuring uptake of transporter type specific fluorescent substrates in the presence of activity inhibitors. The combination of the ABCB1 and ABCC transporter substrate calcein-AM with inhibitors cyclosporine A, PSC833 and MK571 resulted in a concentration-dependent fluorescence increase of up to 3-fold, whereas reversin 205 caused a slight, but not concentration-dependent fluorescence increase. Accumulation of the dyes Hoechst 33342 and 2',7'-dichlorodihydrofluorescein diacetate was basically unchanged in the presence of Ko134 and taurocholate, respectively, indicating low Abcg2 and Abcb11 activities, in accordance with low abcg2 and abcb11 transcript levels. Our data indicate that transporter expression and activity patterns in the different trout cell lines are irrespective of the tissue of origin, but are determined by factors of cell cultivation.
Collapse
Affiliation(s)
- Stephan Fischer
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
242
|
Marion TL, Perry CH, St Claire RL, Yue W, Brouwer KLR. Differential disposition of chenodeoxycholic acid versus taurocholic acid in response to acute troglitazone exposure in rat hepatocytes. Toxicol Sci 2011; 120:371-80. [PMID: 21262925 DOI: 10.1093/toxsci/kfr014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inhibition of bile acid (BA) transport may contribute to the hepatotoxicity of troglitazone (TRO), a peroxisome proliferator-activated receptor gamma agonist. Typically, studies use taurocholic acid (TCA) as a model substrate to investigate effects of xenobiotics on BA disposition. However, TRO may differentially affect the transport of individual BAs, potentially causing hepatocyte accumulation of more cytotoxic BAs. The effects of TRO on the disposition of [(14)C]-labeled chenodeoxycholic acid ([(14)C]CDCA), an unconjugated cytotoxic BA, were determined in suspended hepatocytes and sandwich-cultured hepatocytes (SCH) from rats. (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571), a multidrug resistance-associated protein (MRP) inhibitor, was included to evaluate involvement of MRPs in CDCA disposition. Accumulation in cells + bile of total [(14)C]CDCA species in SCH was sixfold greater than [(3)H]TCA and unaffected by 1 and 10μM TRO; 100μM TRO and 50μM MK571 ablated biliary excretion and significantly increased intracellular accumulation of total [(14)C]CDCA species. Results were similar in Mrp2-deficient TR(-) rat hepatocytes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that taurine- and glycine-conjugated CDCA, in addition to unconjugated CDCA, accumulated in hepatocytes during the 10-min incubation. In suspended rat hepatocytes, initial [(14)C]CDCA uptake was primarily Na(+)-independent, whereas initial [(3)H]TCA uptake was primarily Na(+)-dependent; TRO and MK571 decreased [(14)C]CDCA uptake to a lesser extent than [(3)H]TCA. Unexpectedly, MK571 inhibited Na(+)-taurocholate cotransporting polypeptide and bile salt export pump. Differential effects on uptake and efflux of individual BAs may contribute to TRO hepatotoxicity. Although TCA is the prototypic BA used to investigate the effects of xenobiotics on BA transport, it may not be reflective of other BAs.
Collapse
Affiliation(s)
- Tracy L Marion
- Curriculum in Toxicology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7270, USA
| | | | | | | | | |
Collapse
|
243
|
Stieger B. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol 2011:205-59. [PMID: 21103971 DOI: 10.1007/978-3-642-14541-4_5] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bile formation is an important function of the liver. Bile salts are a major constituent of bile and are secreted by hepatocytes into bile and delivered into the small intestine, where they assist in fat digestion. In the small intestine, bile salts are almost quantitatively reclaimed and transported back via the portal circulation to the liver. In the liver, hepatocytes take up bile salts and secrete them again into bile for ongoing enterohepatic circulation. Uptake of bile salts into hepatocytes occurs largely in a sodium-dependent manner by the sodium taurocholate cotransporting polypeptide NTCP. The transport properties of NTCP have been extensively characterized. It is an electrogenic member of the solute carrier family of transporters (SLC10A1) and transports predominantly bile salts and sulfated compounds, but is also able to mediate transport of additional substrates, such as thyroid hormones, drugs and toxins. It is highly regulated under physiologic and pathophysiologic conditions. Regulation of NTCP copes with changes of bile salt load to hepatocytes and prevents entry of cytotoxic bile salts during liver disease. Canalicular export of bile salts is mediated by the ATP-binding cassette transporter bile salt export pump BSEP (ABCB11). BSEP constitutes the rate limiting step of hepatocellular bile salt transport and drives enterohepatic circulation of bile salts. It is extensively regulated to keep intracellular bile salt levels low under normal and pathophysiologic situations. Mutations in the BSEP gene lead to severe progressive familial intrahepatic cholestasis. The substrates of BSEP are practically restricted to bile salts and their metabolites. It is, however, subject to inhibition by endogenous metabolites or by drugs. A sustained inhibition will lead to acquired cholestasis, which can end in liver injury.
Collapse
Affiliation(s)
- Bruno Stieger
- Division of Clinical Pharmacology and Toxicology, University Hospital, 8091, Zurich, Switzerland.
| |
Collapse
|
244
|
Abstract
This article describes the uses of immunostaining in the diagnosis of cholestasis. To immunostain for bile salt export pump (BSEP) and multidrug resistance protein 3 in severe hepatobiliary disease manifest early in life can rapidly identify whether sequencing of ABCB11 or ABCB4 is likely to yield a genetic diagnosis. To immunostain for canalicular ectoenzymes as well as transporters, with transmission electron microscopy, can suggest whether sequencing of ATP8B1 is likely to yield a genetic diagnosis. Demonstrating BSEP expression can direct attention to bile acid synthesis disorders. Immunostaining for multidrug resistance-associated protein 2 serves principally as a control for adequacy of processing.
Collapse
|
245
|
Abstract
Generation of bile is a key function of the liver. Its impairment leads to accumulation of cytotoxic bile salts in hepatocytes and, consequently, to liver disease. The bile salt export pump, BSEP, is critically involved in the secretion of bile salts into bile. Its function can be disturbed or abolished by inherited mutations. This will lead to progressive intrahepatic cholestais and severe liver disease. In addition to mutations, BSEP can be inhibited by acquired factors, such as xenobiotics or drugs, aberrant bile salt metabolites, or pregnancy. This inhibition will lead to acquired cholestasis. Some drugs are now known to be competitive inhibitors of Bsep. In addition, a polymorphism in the gene coding for BSEP has been identified as a potential susceptibility factor for acquired cholestasis.
Collapse
|
246
|
Boaglio AC, Zucchetti AE, Sánchez Pozzi EJ, Pellegrino JM, Ochoa JE, Mottino AD, Vore M, Crocenzi FA, Roma MG. Phosphoinositide 3-kinase/protein kinase B signaling pathway is involved in estradiol 17β-D-glucuronide-induced cholestasis: complementarity with classical protein kinase C. Hepatology 2010; 52:1465-76. [PMID: 20815017 DOI: 10.1002/hep.23846] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Estradiol 17β-D-glucuronide (E(2)17G) is an endogenous, cholestatic metabolite that induces endocytic internalization of the canalicular transporters relevant to bile secretion: bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2). We assessed whether phosphoinositide 3-kinase (PI3K) is involved in E(2)17G-induced cholestasis. E(2)17G activated PI3K according to an assessment of the phosphorylation of the final PI3K effector, protein kinase B (Akt). When the PI3K inhibitor wortmannin (WM) was preadministered to isolated rat hepatocyte couplets (IRHCs), it partially prevented the reduction induced by E(2)17G in the proportion of IRHCs secreting fluorescent Bsep and Mrp2 substrates (cholyl lysyl fluorescein and glutathione methylfluorescein, respectively). 2-Morpholin-4-yl-8-phenylchromen-4-one, another PI3K inhibitor, and an Akt inhibitor (Calbiochem 124005) showed similar protective effects. IRHC immunostaining and confocal microscopy analysis revealed that endocytic internalization of Bsep and Mrp2 induced by E(2)17G was extensively prevented by WM; this effect was fully blocked by the microtubule-disrupting agent colchicine. The protection of WM was additive to that afforded by the classical protein kinase C (cPKC) inhibitor 5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4-c]carbazole-12-propanenitrile (Gö6976); this suggested differential and complementary involvement of the PI3K and cPKC signaling pathways in E(2)17G-induced cholestasis. In isolated perfused rat liver, an intraportal injection of E(2)17G triggered endocytosis of Bsep and Mrp2, and this was accompanied by a sustained decrease in the bile flow and the biliary excretion of the Bsep and Mrp2 substrates [(3)H]taurocholate and glutathione until the end of the perfusion period. Unlike Gö6976, WM did not prevent the initial decay, but it greatly accelerated the recovery to normality of these parameters and the reinsertion of Bsep and Mrp2 into the canalicular membrane in a microtubule-dependent manner. CONCLUSION The PI3K/Akt signaling pathway is involved in the biliary secretory failure induced by E(2)17G through sustained internalization of canalicular transporters endocytosed via cPKC.
Collapse
Affiliation(s)
- Andrea C Boaglio
- Institute of Experimental Physiology, National Scientific and Technical Research Council/University of Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
van der Woerd WL, van Mil SWC, Stapelbroek JM, Klomp LWJ, van de Graaf SFJ, Houwen RHJ. Familial cholestasis: progressive familial intrahepatic cholestasis, benign recurrent intrahepatic cholestasis and intrahepatic cholestasis of pregnancy. Best Pract Res Clin Gastroenterol 2010; 24:541-53. [PMID: 20955958 DOI: 10.1016/j.bpg.2010.07.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/16/2010] [Accepted: 07/22/2010] [Indexed: 01/31/2023]
Abstract
Progressive familial intrahepatic cholestasis (PFIC) type 1, 2 and 3 are due to mutations in ATP8B1, ABCB11 and ABCB4, respectively. Each of these genes encodes a hepatocanalicular transporter, which is essential for the proper formation of bile. Mutations in ABCB4 can result in progressive cholestatic disease, while mutations in ATP8B1 and ABCB11 can result both in episodic cholestasis, referred to as benign recurrent intrahepatic cholestasis (BRIC) type 1 and 2, as well as in progressive cholestatic disease. This suggests a clinical continuum and these diseases are therefore preferably referred to as ATP8B1 deficiency and ABCB11 deficiency. Similarly PFIC type 3 is designated as ABCB4 deficiency. Heterozygous mutations in each of these transporters can also be associated with intrahepatic cholestasis of pregnancy. This review summarizes the pathophysiology, clinical features and current as well as future therapeutic options for progressive familial- and benign recurrent intrahepatic cholestasis as well as intrahepatic cholestasis of pregnancy.
Collapse
Affiliation(s)
- Wendy L van der Woerd
- Department of Paediatric Gastroenterology (KE.01.144.3), Wilhelmina Children's Hospital, University Medical Centre Utrecht, Post-Box 85090, 3508 AB Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
248
|
Morgan RE, Trauner M, van Staden CJ, Lee PH, Ramachandran B, Eschenberg M, Afshari CA, Qualls CW, Lightfoot-Dunn R, Hamadeh HK. Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci 2010; 118:485-500. [PMID: 20829430 DOI: 10.1093/toxsci/kfq269] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The bile salt export pump (BSEP) is an efflux transporter, driving the elimination of endobiotic and xenobiotic substrates from hepatocytes into the bile. More specifically, it is responsible for the elimination of monovalent, conjugated bile salts, with little or no assistance from other apical transporters. Disruption of BSEP activity through genetic disorders is known to manifest in clinical liver injury such as progressive familial intrahepatic cholestasis type 2. Drug-induced disruption of BSEP is hypothesized to play a role in the development of liver injury for several marketed or withdrawn therapeutics. Unfortunately, preclinical animal models have been poor predictors of the liver injury associated with BSEP interference observed for humans, possibly because of interspecies differences in bile acid composition, differences in hepatobiliary transporter modulation or constitutive expression, as well as other mechanisms. Thus, a BSEP-mediated liver liability may go undetected until the later stages of drug development, such as during clinical trials or even postlicensing. In the absence of a relevant preclinical test system for BSEP-mediated liver injury, the toxicological relevance of available in vitro models to human health rely on the use of benchmark compounds with known clinical outcomes, such as marketed or withdrawn drugs. In this study, membrane vesicles harvested from BSEP-transfected insect cells were used to assess the activity of more than 200 benchmark compounds to thoroughly investigate the relationship between interference with BSEP function and liver injury. The data suggest a relatively strong association between the pharmacological interference with BSEP function and human hepatotoxicity. Although the most accurate translation of risk would incorporate pharmacological potency, pharmacokinetics, clearance mechanisms, tissue distribution, physicochemical properties, indication, and other drug attributes, the additional understanding of a compound's potency for BSEP interference should help to limit or avoid BSEP-related liver liabilities in humans that are not often detected by standard preclinical animal models.
Collapse
Affiliation(s)
- Ryan E Morgan
- Department of Comparative Biology and Safety Sciences Amgen Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Short- and medium-chain fatty acids enhance the cell surface expression and transport capacity of the bile salt export pump (BSEP/ABCB11). Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1005-12. [DOI: 10.1016/j.bbalip.2010.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/26/2010] [Accepted: 04/06/2010] [Indexed: 11/18/2022]
|
250
|
Whalen KE, Sotka EE, Goldstone JV, Hahn ME. The role of multixenobiotic transporters in predatory marine molluscs as counter-defense mechanisms against dietary allelochemicals. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:288-300. [PMID: 20546934 DOI: 10.1016/j.cbpc.2010.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 01/16/2023]
Abstract
Multixenobiotic transporters have been extensively studied for their ability to modulate the disposition and toxicity of pharmacological agents, yet their influence in regulating the levels of dietary toxins within marine consumers has only recently been explored. This study presents functional and molecular evidence for multixenobiotic transporter-mediated efflux activity and expression in the generalist gastropod Cyphoma gibbosum, and the specialist nudibranch Tritonia hamnerorum, obligate predators of chemically defended gorgonian corals. Immunochemical analysis revealed that proteins with homology to permeability glycoprotein (P-gp) were highly expressed in T. hamnerorum whole animal homogenates and localized to the apical tips of the gut epithelium, a location consistent with a role in protection against ingested prey toxins. In vivo dye assays with specific inhibitors of efflux transporters demonstrated the activity of P-gp and multidrug resistance-associated protein (MRP) families of ABC transporters in T. hamnerorum. In addition, we identified eight partial cDNA sequences encoding two ABCB and two ABCC proteins from each molluscan species. Digestive gland transcripts of C. gibbosum MRP-1, which have homology to vertebrate glutathione-conjugate transporters, were constitutively expressed regardless of gorgonian diet. This constitutive expression may reflect the ubiquitous presence of high affinity substrates for C. gibbosum glutathione transferases in gorgonian tissues likely necessitating export by MRPs. Our results suggest that differences in multixenobiotic transporter expression patterns and activity in molluscan predators may stem from the divergent foraging strategies of each consumer.
Collapse
Affiliation(s)
- Kristen E Whalen
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | | | | | |
Collapse
|