201
|
Mentges M, Bormann J. Real-time imaging of hydrogen peroxide dynamics in vegetative and pathogenic hyphae of Fusarium graminearum. Sci Rep 2015; 5:14980. [PMID: 26446493 PMCID: PMC4597226 DOI: 10.1038/srep14980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023] Open
Abstract
Balanced dynamics of reactive oxygen species in the phytopathogenic fungus Fusarium graminearum play key roles for development and infection. To monitor those dynamics, ratiometric analysis using the novel hydrogen peroxide (H2O2) sensitive fluorescent indicator protein HyPer-2 was established for the first time in phytopathogenic fungi. H2O2 changes the excitation spectrum of HyPer-2 with an excitation maximum at 405 nm for the reduced and 488 nm for the oxidized state, facilitating ratiometric readouts with maximum emission at 516 nm. HyPer-2 analyses were performed using a microtiter fluorometer and confocal laser scanning microscopy (CLSM). Addition of external H2O2 to mycelia caused a steep and transient increase in fluorescence excited at 488 nm. This can be reversed by the addition of the reducing agent dithiothreitol. HyPer-2 in F. graminearum is highly sensitive and specific to H2O2 even in tiny amounts. Hyperosmotic treatment elicited a transient internal H2O2 burst. Hence, HyPer-2 is suitable to monitor the intracellular redox balance. Using CLSM, developmental processes like nuclear division, tip growth, septation, and infection structure development were analyzed. The latter two processes imply marked accumulations of intracellular H2O2. Taken together, HyPer-2 is a valuable and reliable tool for the analysis of environmental conditions, cellular development, and pathogenicity.
Collapse
Affiliation(s)
- Michael Mentges
- University of Hamburg, Biocenter Klein Flottbek, Department of Molecular Phytopathology and Genetics, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | - Jörg Bormann
- University of Hamburg, Biocenter Klein Flottbek, Department of Molecular Phytopathology and Genetics, Ohnhorststr. 18, D-22609 Hamburg, Germany
| |
Collapse
|
202
|
Lim JM, Lee KS, Woo HA, Kang D, Rhee SG. Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression. J Cell Biol 2015; 210:23-33. [PMID: 26150388 PMCID: PMC4493999 DOI: 10.1083/jcb.201412068] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Reversible oxidative inactivation of centrosome-bound protein phosphatases such as Cdc14B by H2O2 is likely responsible for the inhibition of Cdk1-opposing phosphatases during early mitosis, which prevents premature degradation of mitotic activators. Proteins associated with the centrosome play key roles in mitotic progression in mammalian cells. The activity of Cdk1-opposing phosphatases at the centrosome must be inhibited during early mitosis to prevent premature dephosphorylation of Cdh1—an activator of the ubiquitin ligase anaphase-promoting complex/cyclosome—and the consequent premature degradation of mitotic activators. In this paper, we show that reversible oxidative inactivation of centrosome-bound protein phosphatases such as Cdc14B by H2O2 is likely responsible for this inhibition. The intracellular concentration of H2O2 increases as the cell cycle progresses. Whereas the centrosome is shielded from H2O2 through its association with the H2O2-eliminating enzyme peroxiredoxin I (PrxI) during interphase, the centrosome-associated PrxI is selectively inactivated through phosphorylation by Cdk1 during early mitosis, thereby exposing the centrosome to H2O2 and facilitating inactivation of centrosome-bound phosphatases. Dephosphorylation of PrxI by okadaic acid–sensitive phosphatases during late mitosis again shields the centrosome from H2O2 and thereby allows the reactivation of Cdk1-opposing phosphatases at the organelle.
Collapse
Affiliation(s)
- Jung Mi Lim
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892
| | - Hyun Ae Woo
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Dongmin Kang
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University, Seoul 120-749, South Korea
| |
Collapse
|
203
|
Hao MS, Jensen AM, Boquist AS, Liu YJ, Rasmusson AG. The Ca2+-Regulation of the Mitochondrial External NADPH Dehydrogenase in Plants Is Controlled by Cytosolic pH. PLoS One 2015; 10:e0139224. [PMID: 26413894 PMCID: PMC4587368 DOI: 10.1371/journal.pone.0139224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/09/2015] [Indexed: 11/29/2022] Open
Abstract
NADPH is a key reductant carrier that maintains internal redox and antioxidant status, and that links biosynthetic, catabolic and signalling pathways. Plants have a mitochondrial external NADPH oxidation pathway, which depends on Ca2+ and pH in vitro, but concentrations of Ca2+ needed are not known. We have determined the K0.5(Ca2+) of the external NADPH dehydrogenase from Solanum tuberosum mitochondria and membranes of E. coli expressing Arabidopsis thaliana NDB1 over the physiological pH range using O2 and decylubiquinone as electron acceptors. The K0.5(Ca2+) of NADPH oxidation was generally higher than for NADH oxidation, and unlike the latter, it depended on pH. At pH 7.5, K0.5(Ca2+) for NADPH oxidation was high (≈100 μM), yet 20-fold lower K0.5(Ca2+) values were determined at pH 6.8. Lower K0.5(Ca2+) values were observed with decylubiquinone than with O2 as terminal electron acceptor. NADPH oxidation responded to changes in Ca2+ concentrations more rapidly than NADH oxidation did. Thus, cytosolic acidification is an important activator of external NADPH oxidation, by decreasing the Ca2+-requirements for NDB1. The results are discussed in relation to the present knowledge on how whole cell NADPH redox homeostasis is affected in plants modified for the NDB1 gene.
Collapse
Affiliation(s)
- Meng-Shu Hao
- Department of Biology, Lund University, Lund, Sweden
| | - Anna M. Jensen
- Department of Biology, Lund University, Lund, Sweden
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | | | - Yun-Jun Liu
- Department of Biology, Lund University, Lund, Sweden
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | |
Collapse
|
204
|
X-ray irradiation activates K+ channels via H2O2 signaling. Sci Rep 2015; 5:13861. [PMID: 26350345 PMCID: PMC4642570 DOI: 10.1038/srep13861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.
Collapse
|
205
|
Soustek MS, Baligand C, Falk DJ, Walter GA, Lewin AS, Byrne BJ. Endurance training ameliorates complex 3 deficiency in a mouse model of Barth syndrome. J Inherit Metab Dis 2015; 38:915-22. [PMID: 25860817 DOI: 10.1007/s10545-015-9834-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/11/2015] [Accepted: 02/26/2015] [Indexed: 02/06/2023]
Abstract
Barth syndrome (BTHS) is an X-linked metabolic disorder that causes cardiomyopathy in infancy and is linked to mutations within the Tafazzin (TAZ) gene. The first mouse model, a TAZ knockdown model (TAZKD), has been generated to further understand the bioenergetics leading to cardiomyopathy. However, the TAZKD model does not show early signs of cardiomyopathy, and cardiac pathophysiology has not been documented until 7-8 months of age. Here we sought to determine the impact of endurance training on the cardiac and skeletal muscle phenotype in young TAZKD mice. TAZKD exercise trained (TAZKD-ET) and control exercise trained (CON-ET) mice underwent a 35-day swimming protocol. Non-trained aged matched TAZKD and CON mice were used as controls. At the end of the protocol, cardiac MRI was used to assess cardiac parameters. Cardiac MRI showed that training resulted in cardiac hypertrophy within both groups and did not result in a decline of ejection fraction. TAZKD mice exhibited a decrease in respiratory complex I, III, and IV enzymatic activity in cardiac tissue compared to control mice; however, training led to an increase in complex III activity in TAZKD-ET mice resulting in similar levels to those of CON-ET mice. (31)P magnetic resonance spectroscopy of the gastrocnemius showed a significantly lowered pH in TAZKD-ET mice post electrical-stimulation compared to CON-ET mice. Endurance training does not accelerate cardiac dysfunction in young TAZKD mice, but results in beneficial physiological effects. Furthermore, our results suggest that a significant drop in intracellular pH levels may contribute to oxidative phosphorylation defects during exercise.
Collapse
Affiliation(s)
- Meghan S Soustek
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
206
|
Shirmanova MV, Druzhkova IN, Lukina MM, Matlashov ME, Belousov VV, Snopova LB, Prodanetz NN, Dudenkova VV, Lukyanov SA, Zagaynova EV. Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:1905-1911. [PMID: 25964069 DOI: 10.1016/j.bbagen.2015.05.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Measuring intracellular pH (pHi) in tumors is essential for the monitoring of cancer progression and the response of cancer cells to various treatments. The purpose of the study was to develop a method for pHi mapping in living cancer cells in vitro and in tumors in vivo, using the novel genetically encoded indicator, SypHer2. METHODS A HeLa Kyoto cell line stably expressing SypHer2 in the cytoplasm was used, to perform ratiometric (dual excitation) imaging of the probe in cell culture, in 3D tumor spheroids and in tumor xenografts in living mice. RESULTS Using SypHer2, pHi was demonstrated to be 7.34±0.11 in monolayer HeLa cells in vitro under standard cultivation conditions. An increasing pHi gradient from the center to the periphery of the spheroids was displayed. We obtained fluorescence ratio maps for HeLa tumors in vivo and ex vivo. Comparison of the map with the pathomorphology and with hypoxia staining of the tumors revealed a correspondence of the zones with higher pHi to the necrotic and hypoxic areas. CONCLUSIONS Our results demonstrate that pHi imaging with the genetically encoded pHi indicator, SypHer2, can be a valuable tool for evaluating tumor progression in xenograft models. GENERAL SIGNIFICANCE We have demonstrated, for the first time, the possibility of using the genetically encoded sensor SypHer2 for ratiometric pH imaging in cancer cells in vitro and in tumors in vivo. SypHer2 shows great promise as an instrument for pHi monitoring able to provide high accuracy and spatiotemporal resolution.
Collapse
Affiliation(s)
- Marina V Shirmanova
- Nizhny Novgorod State Medical Academy, 10/1 Minin Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia.
| | - Irina N Druzhkova
- Nizhny Novgorod State Medical Academy, 10/1 Minin Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Maria M Lukina
- Nizhny Novgorod State Medical Academy, 10/1 Minin Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Mikhail E Matlashov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Vsevolod V Belousov
- Nizhny Novgorod State Medical Academy, 10/1 Minin Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Ludmila B Snopova
- Nizhny Novgorod State Medical Academy, 10/1 Minin Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Natalia N Prodanetz
- Nizhny Novgorod State Medical Academy, 10/1 Minin Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Varvara V Dudenkova
- Nizhny Novgorod State Medical Academy, 10/1 Minin Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Sergey A Lukyanov
- Nizhny Novgorod State Medical Academy, 10/1 Minin Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Elena V Zagaynova
- Nizhny Novgorod State Medical Academy, 10/1 Minin Pozharsky Sq., 603005 Nizhny Novgorod, Russia; Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| |
Collapse
|
207
|
Matlashov ME, Bogdanova YA, Ermakova GV, Mishina NM, Ermakova YG, Nikitin ES, Balaban PM, Okabe S, Lukyanov S, Enikolopov G, Zaraisky AG, Belousov VV. Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology. Biochim Biophys Acta Gen Subj 2015; 1850:2318-28. [PMID: 26259819 DOI: 10.1016/j.bbagen.2015.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND SypHer is a genetically encoded fluorescent pH-indicator with a ratiometric readout, suitable for measuring fast intracellular pH shifts. However, the relatively low brightness of the indicator limits its use. METHODS Here we designed a new version of pH-sensor called SypHer-2, which has up to three times brighter fluorescence in cultured mammalian cells compared to the SypHer. RESULTS Using the new indicator we registered activity-associated pH oscillations in neuronal cell culture. We observed prominent transient neuronal cytoplasm acidification that occurs in parallel with calcium entry. Furthermore, we monitored pH in presynaptic and postsynaptic termini by targeting SypHer-2 directly to these compartments and revealed marked differences in pH dynamics between synaptic boutons and dendritic spines. Finally, we were able to reveal for the first time the intracellular pH drop that occurs within an extended region of the amputated tail of the Xenopus laevis tadpole before it begins to regenerate. CONCLUSIONS SypHer2 is suitable for quantitative monitoring of pH in biological systems of different scales, from small cellular subcompartments to animal tissues in vivo. GENERAL SIGNIFICANCE The new pH-sensor will help to investigate pH-dependent processes in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mikhail E Matlashov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Yulia A Bogdanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Faculty of Biology, Moscow State University, 119991 Moscow, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Natalia M Mishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Yulia G Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, 117485 Moscow, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, 117485 Moscow, Russia
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Sergey Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Grigori Enikolopov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook, NY 11794, USA; Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794, USA; NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia.
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia.
| |
Collapse
|
208
|
Tarrago L, Péterfi Z, Lee BC, Michel T, Gladyshev VN. Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nat Chem Biol 2015; 11:332-8. [PMID: 25799144 PMCID: PMC4402147 DOI: 10.1038/nchembio.1787] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 02/27/2015] [Indexed: 11/16/2022]
Abstract
Methionine can be reversibly oxidized to methionine sulfoxide (MetO) under physiological and pathophysiological conditions, but its use as a redox marker suffers from the lack of tools to detect and quantify MetO within cells. In this work, we created a pair of complementary stereospecific genetically encoded mechanism-based ratiometric fluorescent sensors of MetO by inserting a circularly permuted yellow fluorescent protein between yeast methionine sulfoxide reductases and thioredoxins. The two sensors, respectively named MetSOx and MetROx for their ability to detect S and R forms of MetO, were used for targeted analysis of protein oxidation, regulation and repair as well as for monitoring MetO in bacterial and mammalian cells, analyzing compartment-specific changes in MetO and examining responses to physiological stimuli.
Collapse
Affiliation(s)
- Lionel Tarrago
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zalán Péterfi
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Byung Cheon Lee
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-712, South Korea
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
209
|
Zhang X, Gao F. Imaging mitochondrial reactive oxygen species with fluorescent probes: current applications and challenges. Free Radic Res 2015; 49:374-82. [PMID: 25789762 DOI: 10.3109/10715762.2015.1014813] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) is a key element in the regulation of several physiological functions and in the development or progression of multiple pathological events. A key task in the study of mitochondrial ROS is to establish reliable methods for measuring the ROS level in mitochondria with high selectivity, sensitivity, and spatiotemporal resolution. Over the last decade, imaging tools with fluorescent indicators from either small-molecule dyes or genetically encoded probes that can be targeted to mitochondria have been developed, which provide a powerful method to visualize and even quantify mitochondrial ROS level not only in live cells, but also in live animals. These innovative tools that have bestowed exciting new insights in mitochondrial ROS biology have been further promoted with the invention of new techniques in indicator design and fluorescent detection. However, these probes present some limitations in terms of specificity, sensitivity, and kinetics; failure to recognize these limitations often results in inappropriate interpretations of data. This review evaluates the recent advances in mitochondrial ROS imaging approaches with emphasis on their proper application and limitations, and highlights the future perspectives in the development of novel fluorescent probes for visualizing all species of ROS.
Collapse
Affiliation(s)
- X Zhang
- Department of Aerospace Medicine, Fourth Military Medical University , Xi'an , P. R. China
| | | |
Collapse
|
210
|
Wang Y, Li Y, Xue H, Pritchard HW, Wang X. Reactive oxygen species-provoked mitochondria-dependent cell death during ageing of elm (Ulmus pumila L.) seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:438-52. [PMID: 25439659 DOI: 10.1111/tpj.12737] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 05/28/2023]
Abstract
Previous studies have shown that controlled deterioration treatment (CDT) induces programmed cell death in elm (Ulmus pumila L.) seeds, which undergo certain fundamental processes that are comparable to apoptosis in animals. In this study, the essential characteristics of mitochondrial physiology in elm seeds during CDT were identified by cellular ultrastructural analysis, whole-body optical imaging, Western blotting and semi-quantitative RT-PCR. The alteration in mitochondrial morphology was an early event during CDT, as indicated by progressive dynamic mitochondrial changes and rupture of the mitochondrial outer membrane; loss of mitochondrial transmembrane potential (Δψ(m)) ensued, and mitochondrial ATP levels decreased. The mitochondrial permeability transition pore inhibitor cyclosporine A effectively suppressed these changes during ageing. The in situ localization of production of reactive oxygen species (ROS), and evaluation of the expression of voltage-dependent anion-selective channel and cyclophilin D indicated that the levels of mitochondrial permeability transition pore components were positively correlated with ROS production, leading to an imbalance of the cellular redox potential and ultimately to programmed cell death. Pre-incubation with ascorbic acid slowed loss of mitochondrial Δψ(m), and decreased the effect of CDT on seed viability. However, there were no significant changes in multiple antioxidant elements or chaperones in the mitochondria during early stages of ageing. Our results indicate that CDT induces dynamic changes in mitochondrial physiology via increased ROS production, ultimately resulting in an irreversible loss of seed viability.
Collapse
Affiliation(s)
- Yu Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing, China
| | | | | | | | | |
Collapse
|
211
|
Kasumov EA, Kasumov RE, Kasumova IV. A mechano-chemiosmotic model for the coupling of electron and proton transfer to ATP synthesis in energy-transforming membranes: a personal perspective. PHOTOSYNTHESIS RESEARCH 2015; 123:1-22. [PMID: 25266924 PMCID: PMC4272416 DOI: 10.1007/s11120-014-0043-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 09/18/2014] [Indexed: 05/03/2023]
Abstract
ATP is synthesized using ATP synthase by utilizing energy either from the oxidation of organic compounds, or from light, via redox reactions (oxidative- or photo phosphorylation), in energy-transforming membranes of mitochondria, chloroplasts, and bacteria. ATP synthase undergoes several changes during its functioning. The generally accepted model for ATP synthesis is the well-known rotatory model (see e.g., Junge et al., Nature 459:364-370, 2009; Junge and Müller, Science 333:704-705, 2011). Here, we present an alternative modified model for the coupling of electron and proton transfer to ATP synthesis, which was initially developed by Albert Lester Lehninger (1917-1986). Details of the molecular mechanism of ATP synthesis are described here that involves cyclic low-amplitude shrinkage and swelling of mitochondria. A comparison of the well-known current model and the mechano-chemiosmotic model is also presented. Based on structural, and other data, we suggest that ATP synthase is a Ca(2+)/H(+)-K(+) Cl(-)-pump-pore-enzyme complex, in which γ-subunit rotates 360° in steps of 30°, and 90° due to the binding of phosphate ions to positively charged amino acid residues in the N-terminal γ-subunit, while in the electric field. The coiled coil b 2-subunits are suggested to act as ropes that are shortened by binding of phosphate ions to positively charged lysines or arginines; this process is suggested to pull the α 3 β 3-hexamer to the membrane during the energization process. ATP is then synthesized during the reverse rotation of the γ-subunit by destabilizing the phosphated N-terminal γ-subunit and b 2-subunits under the influence of Ca(2+) ions, which are pumped over from storage-intermembrane space into the matrix, during swelling of intermembrane space. In the process of ATP synthesis, energy is first, predominantly, used in the delivery of phosphate ions and protons to the α 3 β 3-hexamer against the energy barrier with the help of C-terminal alpha-helix of γ-subunit that acts as a lift; then, in the formation of phosphoryl group; and lastly, in the release of ATP molecules from the active center of the enzyme and the loading of ADP. We are aware that our model is not an accepted model for ATP synthesis, but it is presented here for further examination and test.
Collapse
Affiliation(s)
- Eldar A Kasumov
- Research and Production Centre «KORVET», Moscow Region, Domodedovo, Russia,
| | | | | |
Collapse
|
212
|
Wagner S, Nietzel T, Aller I, Costa A, Fricker MD, Meyer AJ, Schwarzländer M. Analysis of plant mitochondrial function using fluorescent protein sensors. Methods Mol Biol 2015; 1305:241-52. [PMID: 25910739 DOI: 10.1007/978-1-4939-2639-8_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial physiology sets the basis for function of the organelle and vice versa. While a limited range of in vivo parameters, such as oxygen consumption, has been classically accessible for measurement, a growing collection of fluorescent protein sensors can now give insights into the physiology of plant mitochondria. Nevertheless, the meaningful application of these sensors in mitochondria is technically challenging and requires rigorous experimental standards. Here we exemplify the application of three genetically encoded sensors to monitor glutathione redox potential, pH, and calcium in the matrix of mitochondria in intact plants. We describe current methods for quantitative imaging and analysis in living root tips by confocal microscopy and discuss methodological limitations.
Collapse
Affiliation(s)
- Stephan Wagner
- Plant Energy Biology Lab, INRES - Chemical Signalling, University of Bonn, Bonn, 53113, Germany
| | | | | | | | | | | | | |
Collapse
|
213
|
Esquivel-Gaon M, Anguissola S, Garry D, Gallegos-Melgar ADC, Saldaña JM, Dawson KA, De Vizcaya-Ruiz A, Del Razo LM. Bismuth-based nanoparticles as the environmentally friendly replacement for lead-based piezoelectrics. RSC Adv 2015. [DOI: 10.1039/c5ra02151k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BNT-BT is suitable non-toxic candidate to replace lead-based PZT, as they avoid leaching, imposing less risk during occupational and environmental exposure.
Collapse
Affiliation(s)
- Margarita Esquivel-Gaon
- Departamento de Toxicología. Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)
- Av. Instituto Politecnico Nacional No. 2508
- Mexico Distrito Federal
- Mexico
| | - Sergio Anguissola
- Centre for Bionano Interactions
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | - David Garry
- Centre for Bionano Interactions
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | | | - Juan Muñoz Saldaña
- Unidad Querétaro
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)
- Queretaro
- Mexico
| | - Kenneth A. Dawson
- Centre for Bionano Interactions
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología. Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)
- Av. Instituto Politecnico Nacional No. 2508
- Mexico Distrito Federal
- Mexico
| | - Luz M. Del Razo
- Departamento de Toxicología. Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)
- Av. Instituto Politecnico Nacional No. 2508
- Mexico Distrito Federal
- Mexico
| |
Collapse
|
214
|
Teardo E, Carraretto L, De Bortoli S, Costa A, Behera S, Wagner R, Lo Schiavo F, Formentin E, Szabo I. Alternative splicing-mediated targeting of the Arabidopsis GLUTAMATE RECEPTOR3.5 to mitochondria affects organelle morphology. PLANT PHYSIOLOGY 2015; 167:216-27. [PMID: 25367859 PMCID: PMC4280996 DOI: 10.1104/pp.114.242602] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/30/2014] [Indexed: 05/18/2023]
Abstract
Since the discovery of 20 genes encoding for putative ionotropic glutamate receptors in the Arabidopsis (Arabidopsis thaliana) genome, there has been considerable interest in uncovering their physiological functions. For many of these receptors, neither their channel formation and/or physiological roles nor their localization within the plant cells is known. Here, we provide, to our knowledge, new information about in vivo protein localization and give insight into the biological roles of the so-far uncharacterized Arabidopsis GLUTAMATE RECEPTOR3.5 (AtGLR3.5), a member of subfamily 3 of plant glutamate receptors. Using the pGREAT vector designed for the expression of fusion proteins in plants, we show that a splicing variant of AtGLR3.5 targets the inner mitochondrial membrane, while the other variant localizes to chloroplasts. Mitochondria of knockout or silenced plants showed a strikingly altered ultrastructure, lack of cristae, and swelling. Furthermore, using a genetically encoded mitochondria-targeted calcium probe, we measured a slightly reduced mitochondrial calcium uptake capacity in the knockout mutant. These observations indicate a functional expression of AtGLR3.5 in this organelle. Furthermore, AtGLR3.5-less mutant plants undergo anticipated senescence. Our data thus represent, to our knowledge, the first evidence of splicing-regulated organellar targeting of a plant ion channel and identify the first cation channel in plant mitochondria from a molecular point of view.
Collapse
Affiliation(s)
- Enrico Teardo
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Luca Carraretto
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Sara De Bortoli
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Alex Costa
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Smrutisanjita Behera
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Richard Wagner
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Elide Formentin
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Ildiko Szabo
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| |
Collapse
|
215
|
Schwarzländer M, Wagner S, Ermakova YG, Belousov VV, Radi R, Beckman JS, Buettner GR, Demaurex N, Duchen MR, Forman HJ, Fricker MD, Gems D, Halestrap AP, Halliwell B, Jakob U, Johnston IG, Jones NS, Logan DC, Morgan B, Müller FL, Nicholls DG, Remington SJ, Schumacker PT, Winterbourn CC, Sweetlove LJ, Meyer AJ, Dick TP, Murphy MP. The 'mitoflash' probe cpYFP does not respond to superoxide. Nature 2014; 514:E12-4. [PMID: 25341790 DOI: 10.1038/nature13858] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/28/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Markus Schwarzländer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Stephan Wagner
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Yulia G Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Rafael Radi
- Departamento de Bioquímica, and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Joseph S Beckman
- Linus Pauling Institute, Environmental Health Sciences Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Garry R Buettner
- The University of Iowa, Department of Radiation Oncology and Interdisciplinary Graduate Program in Human Toxicology, and ESR Facility, College of Medicine, Med Labs B180K, Iowa City, Iowa 52242-1181, USA
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, 1, rue Michel-Servet, Geneva 4 CH-1211, Switzerland
| | - Michael R Duchen
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Henry J Forman
- 1] Life and Environmental Sciences Unit, University of California, Merced, 5200 North Lake Road, Merced, California 95344, USA [2] Andrus Gerontology Center of the Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, California 90089-0191, USA
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - David Gems
- Institute of Healthy Ageing, and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Andrew P Halestrap
- School of Biochemistry and Bristol CardioVascular, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore 117597, Singapore
| | - Ursula Jakob
- Molecular, Cellular and Developmental Biology Department, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | - Iain G Johnston
- Department of Mathematics, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Nick S Jones
- Department of Mathematics, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - David C Logan
- Université d'Angers &INRA &Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, Angers, F-49045, France
| | - Bruce Morgan
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Florian L Müller
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - David G Nicholls
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - S James Remington
- Department of Physics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | - Paul T Schumacker
- Department of Pediatrics, Division of Neonatology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology, University of Otago, ChristchurchPO Box 4345, Christchurch, New Zealand
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
216
|
Weller J, Kizina KM, Can K, Bao G, Müller M. Response properties of the genetically encoded optical H2O2 sensor HyPer. Free Radic Biol Med 2014; 76:227-41. [PMID: 25179473 DOI: 10.1016/j.freeradbiomed.2014.07.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/20/2023]
Abstract
Reactive oxygen species mediate cellular signaling and neuropathologies. Hence, there is tremendous interest in monitoring (sub)cellular redox conditions. We evaluated the genetically engineered redox sensor HyPer in mouse hippocampal cell cultures. Two days after lipofection, neurons and glia showed sufficient expression levels, and H2O2 reversibly and dose-dependently increased the fluorescence ratio of cytosolic HyPer. Yet, repeated H2O2 treatment caused progressively declining responses, and with millimolar doses an apparent recovery started while H2O2 was still present. Although HyPer should be H2O2 specific, it seemingly responded also to other oxidants and altered cell-endogenous superoxide production. Control experiments with the SypHer pH sensor confirmed that the HyPer ratio responds to pH changes, decreasing with acidosis and increasing during alkalosis. Anoxia/reoxygenation evoked biphasic HyPer responses reporting apparent reduction/oxidation; replacing Cl(-) exerted only negligible effects. Mitochondria-targeted HyPer readily responded to H2O2-albeit less intensely than cytosolic HyPer. With ratiometric two-photon excitation, H2O2 increased the cytosolic HyPer ratio. Time-correlated fluorescence-lifetime imaging microscopy (FLIM) revealed a monoexponential decay of HyPer fluorescence, and H2O2 decreased fluorescence lifetimes. Dithiothreitol failed to further reduce HyPer or to induce reasonable FLIM and two-photon responses. By enabling dynamic recordings, HyPer is superior to synthetic redox-sensitive dyes. Its feasibility for two-photon excitation also enables studies in more complex preparations. Based on FLIM, quantitative analyses might be possible independent of switching excitation wavelengths. Yet, because of its pronounced pH sensitivity, adaptation to repeated oxidation, and insensitivity to reducing stimuli, HyPer responses have to be interpreted carefully. For reliable data, side-by-side pH monitoring with SypHer is essential.
Collapse
Affiliation(s)
- Jonathan Weller
- Institut für Neuro- und Sinnesphysiologie, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany
| | - Kathrin M Kizina
- Institut für Neuro- und Sinnesphysiologie, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany
| | - Karolina Can
- Institut für Neuro- und Sinnesphysiologie, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany
| | - Guobin Bao
- Institut für Neurophysiologie und Zelluläre Biophysik, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany
| | - Michael Müller
- Institut für Neuro- und Sinnesphysiologie, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Zentrum Physiologie und Pathophysiologie, Georg-August-Universität Göttingen, Universitätsmedizin, D-37073 Göttingen, Germany.
| |
Collapse
|
217
|
Ermakova YG, Bilan DS, Matlashov ME, Mishina NM, Markvicheva KN, Subach OM, Subach FV, Bogeski I, Hoth M, Enikolopov G, Belousov VV. Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nat Commun 2014; 5:5222. [PMID: 25330925 PMCID: PMC4553041 DOI: 10.1038/ncomms6222] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/09/2014] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) are conserved regulators of numerous cellular functions, and overproduction of ROS is a hallmark of various pathological processes. Genetically encoded fluorescent probes are unique tools to study ROS production in living systems of different scale and complexity. However, the currently available recombinant redox sensors have green emission, which overlaps with the spectra of many other probes. Expanding the spectral range of recombinant in vivo ROS probes would enable multiparametric in vivo ROS detection. Here we present the first genetically encoded red fluorescent sensor for hydrogen peroxide detection, HyPerRed. The performance of this sensor is similar to its green analogues. We demonstrate the utility of the sensor by tracing low concentrations of H2O2 produced in the cytoplasm of cultured cells upon growth factor stimulation. Moreover, using HyPerRed we detect local and transient H2O2 production in the mitochondrial matrix upon inhibition of the endoplasmic reticulum Ca(2+) uptake.
Collapse
Affiliation(s)
- Yulia G Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Dmitry S Bilan
- 1] Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia [2] NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia
| | - Mikhail E Matlashov
- 1] Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia [2] NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia
| | - Natalia M Mishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | - Oksana M Subach
- NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia
| | - Fedor V Subach
- NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia
| | - Ivan Bogeski
- Department of Biophysics, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Markus Hoth
- Department of Biophysics, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Grigori Enikolopov
- 1] NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia [2] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Vsevolod V Belousov
- 1] Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia [2] NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia
| |
Collapse
|
218
|
Connolly NMC, Prehn JHM. The metabolic response to excitotoxicity - lessons from single-cell imaging. J Bioenerg Biomembr 2014; 47:75-88. [PMID: 25262286 DOI: 10.1007/s10863-014-9578-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Excitotoxicity is a pathological process implicated in neuronal death during ischaemia, traumatic brain injuries and neurodegenerative diseases. Excitotoxicity is caused by excess levels of glutamate and over-activation of NMDA or calcium-permeable AMPA receptors on neuronal membranes, leading to ionic influx, energetic stress and potential neuronal death. The metabolic response of neurons to excitotoxicity is complex and plays a key role in the ability of the neuron to adapt and recover from such an insult. Single-cell imaging is a powerful experimental technique that can be used to study the neuronal metabolic response to excitotoxicity in vitro and, increasingly, in vivo. Here, we review some of the knowledge of the neuronal metabolic response to excitotoxicity gained from in vitro single-cell imaging, including calcium and ATP dynamics and their effects on mitochondrial function, along with the contribution of glucose metabolism, oxidative stress and additional neuroprotective signalling mechanisms. Future work will combine knowledge gained from single-cell imaging with data from biochemical and computational techniques to garner holistic information about the metabolic response to excitotoxicity at the whole brain level and transfer this knowledge to a clinical setting.
Collapse
Affiliation(s)
- Niamh M C Connolly
- Department of Physiology and Medical Physics, 123 St Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
219
|
Pouvreau S. Genetically encoded reactive oxygen species (ROS) and redox indicators. Biotechnol J 2014; 9:282-93. [PMID: 24497389 DOI: 10.1002/biot.201300199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/10/2013] [Accepted: 11/06/2013] [Indexed: 12/17/2022]
Abstract
Redox processes are increasingly being recognized as key elements in the regulation of cellular signaling cascades. They are frequently encountered at the frontier between physiological functions and pathological events. The biological relevance of intracellular redox changes depends on the subcellular origin, the spatio-temporal distribution and the redox couple involved. Thus, a key task in the elucidation of the role of redox reactions is the specific and quantitative measurement of redox conditions with high spatio-temporal resolution. Unfortunately, until recently, our ability to perform such measurements was limited by the lack of adequate technology. Over the last 10 years, promising imaging tools have been developed from fluorescent proteins. Genetically encoded reactive oxygen species (ROS) and redox indicators (GERRIs) have the potential to allow real-time and pseudo-quantitative monitoring of specific ROS and thiol redox state in subcellular compartments or live organisms. Redox-sensitive yellow fluorescent proteins (rxYFP family), redox-sensitive green fluorescent proteins (roGFP family), HyPer (a probe designed to measure H2 O2 ), circularly permuted YFP and others have been used in several models and sufficient information has been collected to highlight their main characteristics. This review is intended to be a tour guide of the main types of GERRIs, their origins, properties, advantages and pitfalls.
Collapse
Affiliation(s)
- Sandrine Pouvreau
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.
| |
Collapse
|
220
|
Silencing of plasma membrane Ca2+-ATPase isoforms 2 and 3 impairs energy metabolism in differentiating PC12 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:735106. [PMID: 25276815 PMCID: PMC4170788 DOI: 10.1155/2014/735106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022]
Abstract
A close link between Ca(2+), ATP level, and neurogenesis is apparent; however, the molecular mechanisms of this relationship have not been completely elucidated. Transient elevations of cytosolic Ca(2+) may boost ATP synthesis, but ATP is also consumed by ion pumps to maintain a low Ca(2+) in cytosol. In differentiation process plasma membrane Ca(2+) ATPase (PMCA) is considered as one of the major players for Ca(2+) homeostasis. From four PMCA isoforms, the fastest PMCA2 and PMCA3 are expressed predominantly in excitable cells. In the present study we assessed whether PMCA isoform composition may affect energy balance in differentiating PC12 cells. We found that PMCA2-downregulated cells showed higher basal O2 consumption, lower NAD(P)H level, and increased activity of ETC. These changes associated with higher [Ca(2+)]c resulted in elevated ATP level. Since PMCA2-reduced cells demonstrated greatest sensitivity to ETC inhibition, we suppose that the main source of energy for PMCA isoforms 1, 3, and 4 was oxidative phosphorylation. Contrary, cells with unchanged PMCA2 expression exhibited prevalence of glycolysis in ATP generation. Our results with PMCA2- or PMCA3-downregulated lines provide an evidence of a novel role of PMCA isoforms in regulation of bioenergetic pathways, and mitochondrial activity and maintenance of ATP level during PC12 cells differentiation.
Collapse
|
221
|
Hou T, Wang X, Ma Q, Cheng H. Mitochondrial flashes: new insights into mitochondrial ROS signalling and beyond. J Physiol 2014; 592:3703-13. [PMID: 25038239 PMCID: PMC4192698 DOI: 10.1113/jphysiol.2014.275735] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/10/2014] [Indexed: 12/11/2022] Open
Abstract
Respiratory mitochondria undergo stochastic, intermittent bursts of superoxide production accompanied by transient depolarization of the mitochondrial membrane potential and reversible opening of the membrane permeability transition pore. These discrete events were named 'superoxide flashes' for the reactive oxygen species (ROS) signal involved, and 'mitochondrial flashes' (mitoflashes) for the entirety of the multifaceted and intertwined mitochondrial processes. In contrast to the flashless basal ROS production of 'homeostatic ROS' for redox regulation, bursting ROS production during mitoflashes may provide 'signalling ROS' at the organelle level, fulfilling distinctly different cell functions. Mounting evidence indicates that mitoflash frequency is richly regulated over a broad range, and represents a novel, universal, and 'digital' readout of mitochondrial functional status and of the mitochondrial stress response. An emerging view is that mitoflashes participate in vital processes including metabolism, cell differentiation, the stress response and ageing. These recent advances shed new light on the role of mitochondrial functional dynamics in health and disease.
Collapse
Affiliation(s)
- Tingting Hou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xianhua Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Qi Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Heping Cheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
222
|
Abstract
SIGNIFICANCE Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling mechanism triggered by Ca2+ depletion of the endoplasmic reticulum (ER) and by a variety of cellular stresses. Reactive oxygen species (ROS) are often concomitantly produced in response to these stresses, however, the relationship between redox signaling and SOCE is not completely understood. Various cardiovascular, neurological, and immune diseases are associated with alterations in both Ca2+ signaling and ROS production, and thus understanding this relationship has therapeutic implications. RECENT ADVANCES Several reactive cysteine modifications in stromal interaction molecule (STIM) and Orai proteins comprising the core SOCE machinery were recently shown to modulate SOCE in a redox-dependent manner. Moreover, STIM1 and Orai1 expression levels may reciprocally regulate and be affected by responses to oxidative stress. ER proteins involved in oxidative protein folding have gained increased recognition as important sources of ROS, and the recent discovery of their accumulation in contact sites between the ER and mitochondria provides a further link between ROS production and intracellular Ca2+ handling. CRITICAL ISSUES AND FUTURE DIRECTIONS Future research should aim to establish the complete set of SOCE controlling molecules, to determine their redox-sensitive residues, and to understand how intracellular Ca2+ stores dynamically respond to different types of stress. Mapping the precise nature and functional consequence of key redox-sensitive components of the pre- and post-translational control of SOCE machinery and of proteins regulating ER calcium content will be pivotal in advancing our understanding of the complex cross-talk between redox and Ca2+ signaling.
Collapse
Affiliation(s)
- Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva , Geneva, Switzerland
| | | |
Collapse
|
223
|
Kaludercic N, Deshwal S, Di Lisa F. Reactive oxygen species and redox compartmentalization. Front Physiol 2014; 5:285. [PMID: 25161621 PMCID: PMC4130307 DOI: 10.3389/fphys.2014.00285] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/11/2014] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca(2+) or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy ; Department of Biomedical Sciences, University of Padova Padova, Italy
| |
Collapse
|
224
|
Ezeriņa D, Morgan B, Dick TP. Imaging dynamic redox processes with genetically encoded probes. J Mol Cell Cardiol 2014; 73:43-9. [DOI: 10.1016/j.yjmcc.2013.12.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 12/13/2022]
|
225
|
Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations. PLoS One 2014; 9:e102352. [PMID: 25014339 PMCID: PMC4094512 DOI: 10.1371/journal.pone.0102352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/17/2014] [Indexed: 12/14/2022] Open
Abstract
Plasma membrane Ca2+-ATPase (PMCA) by extruding Ca2+ outside the cell, actively participates in the regulation of intracellular Ca2+ concentration. Acting as Ca2+/H+ counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca2+ overload evoked by 59 mM KCl. We observed that manipulation in PMCA expression elevated pHmito and pHcyto but only in PMCA2-downregulated cells higher mitochondrial pH gradient (ΔpH) was found in steady-state conditions. Our data also demonstrated that PMCA2 or PMCA3 knock-down delayed Ca2+ clearance and partially attenuated cellular acidification during KCl-stimulated Ca2+ influx. Because SERCA and NCX modulated cellular pH response in neglectable manner, and all conditions used to inhibit PMCA prevented KCl-induced pH drop, we considered PMCA2 and PMCA3 as mainly responsible for transport of protons to intracellular milieu. In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca2+ overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca2+-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient.
Collapse
|
226
|
Fernández-Sada E, Silva-Platas C, Villegas CA, Rivero SL, Willis BC, García N, Garza JR, Oropeza-Almazán Y, Valverde CA, Mazzocchi G, Zazueta C, Torre-Amione G, García-Rivas G. Cardiac responses to β-adrenoceptor stimulation is partly dependent on mitochondrial calcium uniporter activity. Br J Pharmacol 2014; 171:4207-21. [PMID: 24628066 DOI: 10.1111/bph.12684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 02/06/2014] [Accepted: 03/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Despite the importance of mitochondrial Ca(2+) to metabolic regulation and cell physiology, little is known about the mechanisms that regulate Ca(2+) entry into the mitochondria. Accordingly, we established a system to determine the role of the mitochondrial Ca(2+) uniporter in an isolated heart model, at baseline and during increased workload following β-adrenoceptor stimulation. EXPERIMENTAL APPROACH Cardiac contractility, oxygen consumption and intracellular Ca(2+) transients were measured in ex vivo perfused murine hearts. Ru360 and spermine were used to modify mitochondrial Ca(2+) uniporter activity. Changes in mitochondrial Ca(2+) content and energetic phosphate metabolite levels were determined. KEY RESULTS The addition of Ru360 , a selective inhibitor of the mitochondrial Ca(2+) uniporter, induced progressively and sustained negative inotropic effects that were dose-dependent with an EC50 of 7 μM. Treatment with spermine, a uniporter agonist, showed a positive inotropic effect that was blocked by Ru360 . Inotropic stimulation with isoprenaline elevated oxygen consumption (2.7-fold), Ca(2+) -dependent activation of pyruvate dehydrogenase (5-fold) and mitochondrial Ca(2+) content (2.5-fold). However, in Ru360 -treated hearts, this parameter was attenuated. In addition, β-adrenoceptor stimulation in the presence of Ru360 did not affect intracellular Ca(2+) handling, PKA or Ca(2+) /calmodulin-dependent PK signalling. CONCLUSIONS AND IMPLICATIONS Inhibition of the mitochondrial Ca(2+) uniporter decreases β-adrenoceptor response, uncoupling between workload and production of energetic metabolites. Our results support the hypothesis that the coupling of workload and energy supply is partly dependent on mitochondrial Ca(2+) uniporter activity.
Collapse
Affiliation(s)
- E Fernández-Sada
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun 2014; 5:4153. [PMID: 24923787 PMCID: PMC4082642 DOI: 10.1038/ncomms5153] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/16/2014] [Indexed: 12/19/2022] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria accumulate Ca2+ within their lumens to regulate numerous cell functions. However, determining the dynamics of intraorganellar Ca2+ has proven to be difficult. Here we describe a family of genetically encoded Ca2+ indicators, named calcium-measuring organelle-entrapped protein indicators (CEPIA), which can be utilized for intraorganellar Ca2+ imaging. CEPIA, which emit green, red or blue/green fluorescence, are engineered to bind Ca2+ at intraorganellar Ca2+ concentrations. They can be targeted to different organelles and may be used alongside other fluorescent molecular markers, expanding the range of cell functions that can be simultaneously analysed. The spatiotemporal resolution of CEPIA makes it possible to resolve Ca2+ import into individual mitochondria while simultaneously measuring ER and cytosolic Ca2+. We have used these imaging capabilities to reveal differential Ca2+ handling in individual mitochondria. CEPIA imaging is a useful new tool to further the understanding of organellar functions. The use of intracellular calcium sensors provides important information about the dynamics of calcium signalling in cells. Here Suzuki et al. develop organelle-targeted sensors to simultaneously measure calcium concentrations in ER and mitochondria, and uncover novel insights into calcium flux in mitochondria.
Collapse
|
228
|
De Marchi U, Santo-Domingo J, Castelbou C, Sekler I, Wiederkehr A, Demaurex N. NCLX protein, but not LETM1, mediates mitochondrial Ca2+ extrusion, thereby limiting Ca2+-induced NAD(P)H production and modulating matrix redox state. J Biol Chem 2014; 289:20377-85. [PMID: 24898248 DOI: 10.1074/jbc.m113.540898] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitochondria capture and subsequently release Ca(2+) ions, thereby sensing and shaping cellular Ca(2+) signals. The Ca(2+) uniporter MCU mediates Ca(2+) uptake, whereas NCLX (mitochondrial Na/Ca exchanger) and LETM1 (leucine zipper-EF-hand-containing transmembrane protein 1) were proposed to exchange Ca(2+) against Na(+) or H(+), respectively. Here we study the role of these ion exchangers in mitochondrial Ca(2+) extrusion and in Ca(2+)-metabolic coupling. Both NCLX and LETM1 proteins were expressed in HeLa cells mitochondria. The rate of mitochondrial Ca(2+) efflux, measured with a genetically encoded indicator during agonist stimulations, increased with the amplitude of mitochondrial Ca(2+) ([Ca(2+)]mt) elevations. NCLX overexpression enhanced the rates of Ca(2+) efflux, whereas increasing LETM1 levels had no impact on Ca(2+) extrusion. The fluorescence of the redox-sensitive probe roGFP increased during [Ca(2+)]mt elevations, indicating a net reduction of the matrix. This redox response was abolished by NCLX overexpression and restored by the Na(+)/Ca(2+) exchanger inhibitor CGP37157. The [Ca(2+)]mt elevations were associated with increases in the autofluorescence of NAD(P)H, whose amplitude was strongly reduced by NCLX overexpression, an effect reverted by Na(+)/Ca(2+) exchange inhibition. We conclude that NCLX, but not LETM1, mediates Ca(2+) extrusion from mitochondria. By controlling the duration of matrix Ca(2+) elevations, NCLX contributes to the regulation of NAD(P)H production and to the conversion of Ca(2+) signals into redox changes.
Collapse
Affiliation(s)
- Umberto De Marchi
- From the Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, CH-1015 Lausanne, Switzerland, the Department of Cell Physiology and Metabolism, University of Geneva, Rue Michel-Servet, 1, CH-1211 Genève, Switzerland, and
| | - Jaime Santo-Domingo
- From the Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, CH-1015 Lausanne, Switzerland, the Department of Cell Physiology and Metabolism, University of Geneva, Rue Michel-Servet, 1, CH-1211 Genève, Switzerland, and
| | - Cyril Castelbou
- the Department of Cell Physiology and Metabolism, University of Geneva, Rue Michel-Servet, 1, CH-1211 Genève, Switzerland, and
| | - Israel Sekler
- the Department of Physiology, Ben-Gurion University of Negev, Beer-Sheva 84105, Israel
| | - Andreas Wiederkehr
- From the Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, CH-1015 Lausanne, Switzerland
| | - Nicolas Demaurex
- the Department of Cell Physiology and Metabolism, University of Geneva, Rue Michel-Servet, 1, CH-1211 Genève, Switzerland, and
| |
Collapse
|
229
|
Ramming T, Hansen HG, Nagata K, Ellgaard L, Appenzeller-Herzog C. GPx8 peroxidase prevents leakage of H2O2 from the endoplasmic reticulum. Free Radic Biol Med 2014; 70:106-16. [PMID: 24566470 DOI: 10.1016/j.freeradbiomed.2014.01.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 12/16/2022]
Abstract
Unbalanced endoplasmic reticulum (ER) homeostasis (ER stress) leads to increased generation of reactive oxygen species (ROS). Disulfide-bond formation in the ER by Ero1 family oxidases produces hydrogen peroxide (H2O2) and thereby constitutes one potential source of ER-stress-induced ROS. However, we demonstrate that Ero1α-derived H2O2 is rapidly cleared by glutathione peroxidase (GPx) 8. In 293 cells, GPx8 and reduced/activated forms of Ero1α co-reside in the rough ER subdomain. Loss of GPx8 causes ER stress, leakage of Ero1α-derived H2O2 to the cytosol, and cell death. In contrast, peroxiredoxin (Prx) IV, another H2O2-detoxifying rough ER enzyme, does not protect from Ero1α-mediated toxicity, as is currently proposed. Only when Ero1α-catalyzed H2O2 production is artificially maximized can PrxIV participate in its reduction. We conclude that the peroxidase activity of the described Ero1α-GPx8 complex prevents diffusion of Ero1α-derived H2O2 within and out of the rough ER. Along with the induction of GPX8 in ER-stressed cells, these findings question a ubiquitous role of Ero1α as a producer of cytoplasmic ROS under ER stress.
Collapse
Affiliation(s)
- Thomas Ramming
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Henning G Hansen
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 803-8555, Japan
| | - Lars Ellgaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Christian Appenzeller-Herzog
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
230
|
Mitochondrial hyperpolarization during chronic complex I inhibition is sustained by low activity of complex II, III, IV and V. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1247-56. [PMID: 24769419 DOI: 10.1016/j.bbabio.2014.04.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 02/01/2023]
Abstract
The mitochondrial oxidative phosphorylation (OXPHOS) system consists of four electron transport chain (ETC) complexes (CI-CIV) and the FoF1-ATP synthase (CV), which sustain ATP generation via chemiosmotic coupling. The latter requires an inward-directed proton-motive force (PMF) across the mitochondrial inner membrane (MIM) consisting of a proton (ΔpH) and electrical charge (Δψ) gradient. CI actively participates in sustaining these gradients via trans-MIM proton pumping. Enigmatically, at the cellular level genetic or inhibitor-induced CI dysfunction has been associated with Δψ depolarization or hyperpolarization. The cellular mechanism of the latter is still incompletely understood. Here we demonstrate that chronic (24h) CI inhibition in HEK293 cells induces a proton-based Δψ hyperpolarization in HEK293 cells without triggering reverse-mode action of CV or the adenine nucleotide translocase (ANT). Hyperpolarization was associated with low levels of CII-driven O2 consumption and prevented by co-inhibition of CII, CIII or CIV activity. In contrast, chronic CIII inhibition triggered CV reverse-mode action and induced Δψ depolarization. CI- and CIII-inhibition similarly reduced free matrix ATP levels and increased the cell's dependence on extracellular glucose to maintain cytosolic free ATP. Our findings support a model in which Δψ hyperpolarization in CI-inhibited cells results from low activity of CII, CIII and CIV, combined with reduced forward action of CV and ANT.
Collapse
|
231
|
Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat Med 2014; 20:555-60. [DOI: 10.1038/nm.3520] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
|
232
|
Genetically encoded fluorescent redox sensors. Biochim Biophys Acta Gen Subj 2014; 1840:745-56. [DOI: 10.1016/j.bbagen.2013.05.030] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 05/10/2013] [Accepted: 05/20/2013] [Indexed: 11/19/2022]
|
233
|
De Michele R, Carimi F, Frommer WB. Mitochondrial biosensors. Int J Biochem Cell Biol 2014; 48:39-44. [PMID: 24397954 DOI: 10.1016/j.biocel.2013.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
Biosensors offer an innovative tool for measuring the dynamics of a wide range of metabolites in living organisms. Biosensors are genetically encoded, and thus can be specifically targeted to specific compartments of organelles by fusion to proteins or targeting sequences. Mitochondria are central to eukaryotic cell metabolism and present a complex structure with multiple compartments. Over the past decade, genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of mitochondrial physiology. To date, sensors for ATP, NADH, pH, hydrogen peroxide, superoxide anion, redox state, cAMP, calcium and zinc have been used in the matrix, intermembrane space and in the outer membrane region of mitochondria of animal and plant cells. This review summarizes the different types of sensors employed in mitochondria and their main limits and advantages, and it provides an outlook for the future application of biosensor technology in studying mitochondrial biology.
Collapse
Affiliation(s)
- Roberto De Michele
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Corso Calatafimi 414, 90129 Palermo, Italy.
| | - Francesco Carimi
- Institute of Biosciences and Bioresources, National Research Council of Italy (CNR-IBBR), Corso Calatafimi 414, 90129 Palermo, Italy
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institute for Science, 260 Panama Street, Stanford, CA 94305, USA
| |
Collapse
|
234
|
Benčina M. Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors. SENSORS 2013; 13:16736-58. [PMID: 24316570 PMCID: PMC3892890 DOI: 10.3390/s131216736] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 12/11/2022]
Abstract
Fluorescent proteins have been extensively used for engineering genetically encoded sensors that can monitor levels of ions, enzyme activities, redox potential, and metabolites. Certain fluorescent proteins possess specific pH-dependent spectroscopic features, and thus can be used as indicators of intracellular pH. Moreover, concatenated pH-sensitive proteins with target proteins pin the pH sensors to a definite location within the cell, compartment, or tissue. This study provides an overview of the continually expanding family of pH-sensitive fluorescent proteins that have become essential tools for studies of pH homeostasis and cell physiology. We describe and discuss the design of intensity-based and ratiometric pH sensors, their spectral properties and pH-dependency, as well as their performance. Finally, we illustrate some examples of the applications of pH sensors targeted at different subcellular compartments.
Collapse
Affiliation(s)
- Mojca Benčina
- Laboratory of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia.
| |
Collapse
|
235
|
Song DH, Park J, Maurer LL, Lu W, Philbert MA, Sastry AM. Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062723. [PMID: 24483502 PMCID: PMC4315510 DOI: 10.1103/physreve.88.062723] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Indexed: 05/29/2023]
Abstract
The available literature supports the hypothesis that the morphology of the inner mitochondrial membrane is regulated by different energy states, that the three-dimensional morphology of cristae is dynamic, and that both are related to biochemical function. Examination of the correlation between the inner mitochondrial membrane (IMM) structure and mitochondrial energetic function is critical to an understanding of the links between mesoscale morphology and function in progressive mitochondrial dysfunction such as aging, neurodegeneration, and disease. To investigate this relationship, we develop a model to examine the effects of three-dimensional IMM morphology on the electrochemical potential of mitochondria. The two-dimensional axisymmetric finite element method is used to simulate mitochondrial electric potential and proton concentration distribution. This simulation model demonstrates that the proton motive force (Δp) produced on the membranes of cristae can be higher than that on the inner boundary membrane. The model also shows that high proton concentration in cristae can be induced by the morphology-dependent electric potential gradient along the outer side of the IMM. Furthermore, simulation results show that a high Δp is induced by the large surface-to-volume ratio of an individual crista, whereas a high capacity for ATP synthesis can primarily be achieved by increasing the surface area of an individual crista. The mathematical model presented here provides compelling support for the idea that morphology at the mesoscale is a significant driver of mitochondrial function.
Collapse
Affiliation(s)
- Dong Hoon Song
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jonghyun Park
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Laura L Maurer
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Wei Lu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Martin A Philbert
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
236
|
Bilan DS, Matlashov ME, Gorokhovatsky AY, Schultz C, Enikolopov G, Belousov VV. Genetically encoded fluorescent indicator for imaging NAD(+)/NADH ratio changes in different cellular compartments. Biochim Biophys Acta Gen Subj 2013; 1840:951-7. [PMID: 24286672 DOI: 10.1016/j.bbagen.2013.11.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND The ratio of NAD(+)/NADH is a key indicator that reflects the overall redox state of the cells. Until recently, there were no methods for real time NAD(+)/NADH monitoring in living cells. Genetically encoded fluorescent probes for NAD(+)/NADH are fundamentally new approach for studying the NAD(+)/NADH dynamics. METHODS We developed a genetically encoded probe for the nicotinamide adenine dinucleotide, NAD(H), redox state changes by inserting circularly permuted YFP into redox sensor T-REX from Thermus aquaticus. We characterized the sensor in vitro using spectrofluorometry and in cultured mammalian cells using confocal fluorescent microscopy. RESULTS The sensor, named RexYFP, reports changes in the NAD(+)/NADH ratio in different compartments of living cells. Using RexYFP, we were able to track changes in NAD(+)/NADH in cytoplasm and mitochondrial matrix of cells under a variety of conditions. The affinity of the probe enables comparison of NAD(+)/NADH in compartments with low (cytoplasm) and high (mitochondria) NADH concentration. We developed a method of eliminating pH-driven artifacts by normalizing the signal to the signal of the pH sensor with the same chromophore. CONCLUSION RexYFP is suitable for detecting the NAD(H) redox state in different cellular compartments. GENERAL SIGNIFICANCE RexYFP has several advantages over existing NAD(+)/NADH sensors such as smallest size and optimal affinity for different compartments. Our results show that normalizing the signal of the sensor to the pH changes is a good strategy for overcoming pH-induced artifacts in imaging.
Collapse
Affiliation(s)
- Dmitry S Bilan
- Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Mikhail E Matlashov
- Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | - Carsten Schultz
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Grigori Enikolopov
- Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia; Cold Spring Harbor Laboratory, 11724 Cold Spring Harbor, NY, USA
| | - Vsevolod V Belousov
- Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
| |
Collapse
|
237
|
Enyedi B, Zana M, Donkó Á, Geiszt M. Spatial and temporal analysis of NADPH oxidase-generated hydrogen peroxide signals by novel fluorescent reporter proteins. Antioxid Redox Signal 2013; 19:523-34. [PMID: 23121369 DOI: 10.1089/ars.2012.4594] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Hydrogen peroxide (H2O2) is an emerging signaling molecule with diverse regulatory functions. Despite its significance, the spatial and temporal organization of H2O2 signals within cells is basically unknown. Our limited knowledge about H2O2 signals is largely due to the lack of appropriate techniques for measuring intracellular H2O2. The aim of the current study was to develop novel fluorescent reporter proteins for the measurement of intracellular H2O2. RESULTS We developed two novel, fluorescence resonance energy transfer-based redox probes that undergo opposite emission ratio changes upon exposure to H2O2. We have successfully used these sensors to measure H2O2 production by NADPH oxidases (Nox). Moreover, we targeted these probes to specific cellular compartments or incorporated them into oxidase complexes to detect H2O2 at different, well-defined loci. INNOVATION Studying Nox2- and dual oxidase 1 (Duox1)-expressing cells, we provide the first analysis of how NADPH-oxidase generated H2O2 signals radiate within and between cells. CONCLUSION Our results suggest that H2O2 produced by Noxs can induce redox changes in the intracellular milieu of Nox/Duox-expressing cells while simultaneously transmitting paracrine effects to neighboring cells.
Collapse
Affiliation(s)
- Balázs Enyedi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
238
|
Wang X, Fang H, Huang Z, Shang W, Hou T, Cheng A, Cheng H. Imaging ROS signaling in cells and animals. J Mol Med (Berl) 2013; 91:917-27. [PMID: 23873151 PMCID: PMC3730091 DOI: 10.1007/s00109-013-1067-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/08/2013] [Accepted: 06/17/2013] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) act as essential cellular messengers, redox regulators, and, when in excess, oxidative stressors that are widely implicated in pathologies of cancer and cardiovascular and neurodegenerative diseases. Understanding such complexity of the ROS signaling is critically hinged on the ability to visualize and quantify local, compartmental, and global ROS dynamics at high selectivity, sensitivity, and spatiotemporal resolution. The past decade has witnessed significant progress in ROS imaging at levels of intact cells, whole organs or tissues, and even live organisms. In particular, major advances include the development of novel synthetic or genetically encoded fluorescent protein-based ROS indicators, the use of protein indicator-expressing animal models, and the advent of in vivo imaging technology. Innovative ROS imaging has led to important discoveries in ROS signaling—for example, mitochondrial superoxide flashes as elemental ROS signaling events and hydrogen peroxide transients for wound healing. This review aims at providing an update of the current status in ROS imaging, while identifying areas of insufficient knowledge and highlighting emerging research directions.
Collapse
Affiliation(s)
- Xianhua Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
239
|
Birk J, Ramming T, Odermatt A, Appenzeller-Herzog C. Green fluorescent protein-based monitoring of endoplasmic reticulum redox poise. Front Genet 2013; 4:108. [PMID: 23781233 PMCID: PMC3680709 DOI: 10.3389/fgene.2013.00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/27/2013] [Indexed: 01/08/2023] Open
Abstract
Pathological endoplasmic reticulum (ER) stress is tightly linked to the accumulation of reactive oxidants, which can be both upstream and downstream of ER stress. Accordingly, detrimental intracellular stress signals are amplified through establishment of a vicious cycle. An increasing number of human diseases are characterized by tissue atrophy in response to ER stress and oxidative injury. Experimental monitoring of stress-induced, time-resolved changes in ER reduction-oxidation (redox) states is therefore important. Organelle-specific examination of redox changes has been facilitated by the advent of genetically encoded, fluorescent probes, which can be targeted to different subcellular locations by means of specific amino acid extensions. These probes include redox-sensitive green fluorescent proteins (roGFPs) and the yellow fluorescent protein-based redox biosensor HyPer. In the case of roGFPs, variants with known specificity toward defined redox couples are now available. Here, we review the experimental framework to measure ER redox changes using ER-targeted fluorescent biosensors. Advantages and drawbacks of plate-reader and microscopy-based measurements are discussed, and the power of these techniques demonstrated in the context of selected cell culture models for ER stress.
Collapse
Affiliation(s)
- Julia Birk
- Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel Basel, Switzerland
| | | | | | | |
Collapse
|
240
|
Csordás G, Golenár T, Seifert EL, Kamer KJ, Sancak Y, Perocchi F, Moffat C, Weaver D, Perez SDLF, Bogorad R, Koteliansky V, Adijanto J, Mootha VK, Hajnóczky G. MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca²⁺ uniporter. Cell Metab 2013; 17:976-987. [PMID: 23747253 PMCID: PMC3722067 DOI: 10.1016/j.cmet.2013.04.020] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/02/2013] [Accepted: 04/26/2013] [Indexed: 12/18/2022]
Abstract
Mitochondrial Ca(2+) uptake via the uniporter is central to cell metabolism, signaling, and survival. Recent studies identified MCU as the uniporter's likely pore and MICU1, an EF-hand protein, as its critical regulator. How this complex decodes dynamic cytoplasmic [Ca(2+)] ([Ca(2+)]c) signals, to tune out small [Ca(2+)]c increases yet permit pulse transmission, remains unknown. We report that loss of MICU1 in mouse liver and cultured cells causes mitochondrial Ca(2+) accumulation during small [Ca(2+)]c elevations but an attenuated response to agonist-induced [Ca(2+)]c pulses. The latter reflects loss of positive cooperativity, likely via the EF-hands. MICU1 faces the intermembrane space and responds to [Ca(2+)]c changes. Prolonged MICU1 loss leads to an adaptive increase in matrix Ca(2+) binding, yet cells show impaired oxidative metabolism and sensitization to Ca(2+) overload. Collectively, the data indicate that MICU1 senses the [Ca(2+)]c to establish the uniporter's threshold and gain, thereby allowing mitochondria to properly decode different inputs.
Collapse
Affiliation(s)
- György Csordás
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Tünde Golenár
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Erin L Seifert
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kimberli J Kamer
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yasemin Sancak
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School and Broad Institute, Cambridge, MA 02142, USA
| | - Fabiana Perocchi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School and Broad Institute, Cambridge, MA 02142, USA; Gene Center, Ludwig-Maximilians-Universität, Munich D-81377, Germany
| | - Cynthia Moffat
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David Weaver
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sergio de la Fuente Perez
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Roman Bogorad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jeffrey Adijanto
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School and Broad Institute, Cambridge, MA 02142, USA.
| | - György Hajnóczky
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
241
|
Boyman L, Williams GSB, Khananshvili D, Sekler I, Lederer WJ. NCLX: the mitochondrial sodium calcium exchanger. J Mol Cell Cardiol 2013; 59:205-13. [PMID: 23538132 PMCID: PMC3951392 DOI: 10.1016/j.yjmcc.2013.03.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/15/2013] [Indexed: 11/18/2022]
Abstract
The free Ca(2+) concentration within the mitochondrial matrix ([Ca(2+)]m) regulates the rate of ATP production and other [Ca(2+)]m sensitive processes. It is set by the balance between total Ca(2+) influx (through the mitochondrial Ca(2+) uniporter (MCU) and any other influx pathways) and the total Ca(2+) efflux (by the mitochondrial Na(+)/Ca(2+) exchanger and any other efflux pathways). Here we review and analyze the experimental evidence reported over the past 40years which suggest that in the heart and many other mammalian tissues a putative Na(+)/Ca(2+) exchanger is the major pathway for Ca(2+) efflux from the mitochondrial matrix. We discuss those reports with respect to a recent discovery that the protein product of the human FLJ22233 gene mediates such Na(+)/Ca(2+) exchange across the mitochondrial inner membrane. Among its many functional similarities to other Na(+)/Ca(2+) exchanger proteins is a unique feature: it efficiently mediates Li(+)/Ca(2+) exchange (as well as Na(+)/Ca(2+) exchange) and was therefore named NCLX. The discovery of NCLX provides both the identity of a novel protein and new molecular means of studying various unresolved quantitative aspects of mitochondrial Ca(2+) movement out of the matrix. Quantitative and qualitative features of NCLX are discussed as is the controversy regarding the stoichiometry of the NCLX Na(+)/Ca(2+) exchange, the electrogenicity of NCLX, the [Na(+)]i dependency of NCLX and the magnitude of NCLX Ca(2+) efflux. Metabolic features attributable to NCLX and the physiological implication of the Ca(2+) efflux rate via NCLX during systole and diastole are also briefly discussed.
Collapse
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology and Dept. Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - George S. B. Williams
- Center for Biomedical Engineering and Technology and Dept. Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- School of Systems Biology, College of Science, George Mason University, Manassas, VA 20110
| | - Daniel Khananshvili
- Sackler School of Medicine, Department of Physiology and Pharmacology, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Israel Sekler
- Goldman Medical School, Dept. Biology & Neurobiology, Ben Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - W. J. Lederer
- Center for Biomedical Engineering and Technology and Dept. Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
242
|
Abstract
SIGNIFICANCE For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. RECENT ADVANCES Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. CRITICAL ISSUES Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. FUTURE DIRECTIONS Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling.
Collapse
|
243
|
OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange. EMBO J 2013; 32:1927-40. [PMID: 23714779 PMCID: PMC3981180 DOI: 10.1038/emboj.2013.124] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 04/19/2013] [Indexed: 01/13/2023] Open
Abstract
The chemical nature and functional significance of mitochondrial flashes associated with fluctuations in mitochondrial membrane potential is unclear. Using a ratiometric pH probe insensitive to superoxide, we show that flashes reflect matrix alkalinization transients of ∼0.4 pH units that persist in cells permeabilized in ion-free solutions and can be evoked by imposed mitochondrial depolarization. Ablation of the pro-fusion protein Optic atrophy 1 specifically abrogated pH flashes and reduced the propagation of matrix photoactivated GFP (paGFP). Ablation or invalidation of the pro-fission Dynamin-related protein 1 greatly enhanced flash propagation between contiguous mitochondria but marginally increased paGFP matrix diffusion, indicating that flashes propagate without matrix content exchange. The pH flashes were associated with synchronous depolarization and hyperpolarization events that promoted the membrane potential equilibration of juxtaposed mitochondria. We propose that flashes are energy conservation events triggered by the opening of a fusion pore between two contiguous mitochondria of different membrane potentials, propagating without matrix fusion to equilibrate the energetic state of connected mitochondria. Mitochondrial fusion events and transient changes in matrix pH linked to membrane depolarization are found to underlie mitochondrial flashes, whose propagation may help equilibrate energy states between connected mitochondria.
Collapse
|
244
|
Pal R, Basu Thakur P, Li S, Minard C, Rodney GG. Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter. PLoS One 2013; 8:e63989. [PMID: 23704967 PMCID: PMC3660327 DOI: 10.1371/journal.pone.0063989] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/11/2013] [Indexed: 01/10/2023] Open
Abstract
Production of reactive oxygen species (ROS) has been implicated in the pathology of many conditions, including cardiovascular, inflammatory and degenerative diseases, aging, muscular dystrophy, and muscle fatigue. NADPH oxidases (Nox) have recently gained attention as an important source of ROS involved in redox signaling. However, our knowledge of the source of ROS has been limited by the relatively impoverished array of tools available to study them and the limitations of all imaging probes to provide meaningful spatial resolution. By linking redox-sensitive GFP (roGFP) to the Nox organizer protein, p47phox, we have developed a redox sensitive protein to specifically assess Nox activity (p47-roGFP). Stimulation of murine macrophages with endotoxin resulted in rapid, reversible oxidation of p47-roGFP. In murine skeletal muscle, both passive stretch and repetitive electrical stimulation resulted in oxidation of p47-roGFP. The oxidation of p47-roGFP in both macrophages and skeletal muscle was blocked by a Nox specific peptide inhibitor. Furthermore, expression of p47-roGFP in p47phox deficient cells restored Nox activity. As Nox has been linked to pathological redox signaling, our newly developed Nox biosensor will allow for the direct assessment of Nox activity and the development of therapeutic Nox inhibitors.
Collapse
Affiliation(s)
- Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Poulami Basu Thakur
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shumin Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Charles Minard
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - George G. Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
245
|
Wei-LaPierre L, Gong G, Gerstner BJ, Ducreux S, Yule DI, Pouvreau S, Wang X, Sheu SS, Cheng H, Dirksen RT, Wang W. Respective contribution of mitochondrial superoxide and pH to mitochondria-targeted circularly permuted yellow fluorescent protein (mt-cpYFP) flash activity. J Biol Chem 2013; 288:10567-10577. [PMID: 23457298 PMCID: PMC3624438 DOI: 10.1074/jbc.m113.455709] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/14/2013] [Indexed: 11/06/2022] Open
Abstract
Superoxide flashes are transient bursts of superoxide production within the mitochondrial matrix that are detected using the superoxide-sensitive biosensor, mitochondria-targeted circularly permuted YFP (mt-cpYFP). However, due to the pH sensitivity of mt-cpYFP, flashes were suggested to reflect transient events of mitochondrial alkalinization. Here, we simultaneously monitored flashes with mt-cpYFP and mitochondrial pH with carboxy-SNARF-1. In intact cardiac myocytes and purified skeletal muscle mitochondria, robust mt-cpYFP flashes were accompanied by only a modest increase in SNARF-1 ratio (corresponding to a pH increase of <0.1), indicating that matrix alkalinization is minimal during an mt-cpYFP flash. Individual flashes were also accompanied by stepwise increases of MitoSOX signal and decreases of NADH autofluorescence, supporting the superoxide origin of mt-cpYFP flashes. Transient matrix alkalinization induced by NH4Cl only minimally influenced flash frequency and failed to alter flash amplitude. However, matrix acidification modulated superoxide flash frequency in a bimodal manner. Low concentrations of nigericin (< 100 nM) that resulted in a mild dissipation of the mitochondrial pH gradient increased flash frequency, whereas a maximal concentration of nigericin (5 μm) collapsed the pH gradient and abolished flash activity. These results indicate that mt-cpYFP flash events reflect a burst in electron transport chain-dependent superoxide production that is coincident with a modest increase in matrix pH. Furthermore, flash activity depends strongly on a combination of mitochondrial oxidation and pH gradient.
Collapse
Affiliation(s)
- Lan Wei-LaPierre
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Guohua Gong
- the Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| | - Brent J. Gerstner
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Sylvie Ducreux
- the Physiologie Intégrative, Cellulaire et Moléculaire, Université Lyon 1, UMR CNRS 5123, Villeurbanne, France
| | - David I. Yule
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Sandrine Pouvreau
- the Physiologie Intégrative, Cellulaire et Moléculaire, Université Lyon 1, UMR CNRS 5123, Villeurbanne, France
| | - Xianhua Wang
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China, and
| | - Shey-Shing Sheu
- the Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Heping Cheng
- the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China, and
| | - Robert T. Dirksen
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642
| | - Wang Wang
- the Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| |
Collapse
|
246
|
Extramitochondrial domain rich in carbonic anhydrase activity improves myocardial energetics. Proc Natl Acad Sci U S A 2013; 110:E958-67. [PMID: 23431149 DOI: 10.1073/pnas.1213471110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CO2 is produced abundantly by cardiac mitochondria. Thus an efficient means for its venting is required to support metabolism. Carbonic anhydrase (CA) enzymes, expressed at various sites in ventricular myocytes, may affect mitochondrial CO2 clearance by catalyzing CO2 hydration (to H(+) and HCO3(-)), thereby changing the gradient for CO2 venting. Using fluorescent dyes to measure changes in pH arising from the intracellular hydration of extracellularly supplied CO2, overall CA activity in the cytoplasm of isolated ventricular myocytes was found to be modest (2.7-fold above spontaneous kinetics). Experiments on ventricular mitochondria demonstrated negligible intramitochondrial CA activity. CA activity was also investigated in intact hearts by (13)C magnetic resonance spectroscopy from the rate of H(13)CO3(-) production from (13)CO2 released specifically from mitochondria by pyruvate dehydrogenase-mediated metabolism of hyperpolarized [1-(13)C]pyruvate. CA activity measured upon [1-(13)C]pyruvate infusion was fourfold higher than the cytoplasm-averaged value. A fluorescent CA ligand colocalized with a mitochondrial marker, indicating that mitochondria are near a CA-rich domain. Based on immunoreactivity, this domain comprises the nominally cytoplasmic CA isoform CAII and sarcoplasmic reticulum-associated CAXIV. Inhibition of extramitochondrial CA activity acidified the matrix (as determined by fluorescence measurements in permeabilized myocytes and isolated mitochondria), impaired cardiac energetics (indexed by the phosphocreatine-to-ATP ratio measured by (31)P magnetic resonance spectroscopy of perfused hearts), and reduced contractility (as measured from the pressure developed in perfused hearts). These data provide evidence for a functional domain of high CA activity around mitochondria to support CO2 venting, particularly during elevated and fluctuating respiratory activity. Aberrant distribution of CA activity therefore may reduce the heart's energetic efficiency.
Collapse
|
247
|
Santo-Domingo J, Demaurex N. Perspectives on: SGP symposium on mitochondrial physiology and medicine: the renaissance of mitochondrial pH. ACTA ACUST UNITED AC 2013; 139:415-23. [PMID: 22641636 PMCID: PMC3362525 DOI: 10.1085/jgp.201110767] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jaime Santo-Domingo
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211 Geneva, Switzerland
| | | |
Collapse
|
248
|
|
249
|
Affiliation(s)
- Emilie Quatresous
- Centre National de la Recherche Scientifique (CNRS) UMR 5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon 1, 69622 Villeurbanne, France
| | - Claude Legrand
- Centre National de la Recherche Scientifique (CNRS) UMR 5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon 1, 69622 Villeurbanne, France
| | - Sandrine Pouvreau
- CNRS UMR 5297, Interdisciplinary Institute for Neuroscience, University of Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
250
|
Mitochondrial ‘flashes’: a radical concept repHined. Trends Cell Biol 2012; 22:503-8. [DOI: 10.1016/j.tcb.2012.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/23/2022]
|