201
|
Elias R, Benhamou RI, Jaber QZ, Dorot O, Zada SL, Oved K, Pichinuk E, Fridman M. Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles. Eur J Med Chem 2019; 179:779-790. [DOI: 10.1016/j.ejmech.2019.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 01/26/2023]
|
202
|
Nalawade J, Shinde A, Chavan A, Patil S, Suryavanshi M, Modak M, Choudhari P, Bobade VD, Mhaske PC. Synthesis of new thiazolyl-pyrazolyl-1,2,3-triazole derivatives as potential antimicrobial agents. Eur J Med Chem 2019; 179:649-659. [DOI: 10.1016/j.ejmech.2019.06.074] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 01/08/2023]
|
203
|
Design, synthesis, and structure-activity relationship studies of l-amino alcohol derivatives as broad-spectrum antifungal agents. Eur J Med Chem 2019; 177:374-385. [DOI: 10.1016/j.ejmech.2019.05.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 11/24/2022]
|
204
|
Dong Y, Liu M, Wang J, Ding Z, Sun B. Construction of antifungal dual-target (SE, CYP51) pharmacophore models and the discovery of novel antifungal inhibitors. RSC Adv 2019; 9:26302-26314. [PMID: 35531010 PMCID: PMC9070380 DOI: 10.1039/c9ra03713f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022] Open
Abstract
Fungal infections and drug-resistance are rapidly increasing with the deterioration of the external environment. Squalene cyclooxygenase (SE) and 14α-demethylase (CYP51) are considered to be important antifungal targets, and the corresponding pharmacophore models can be used to design and guide the discovery of novel inhibitors. Therefore, the common feature pharmacophore model (SE inhibitor) and structure-based pharmacophore model (CYP51 receptor) were constructed using different methods in this study. Then, appropriate organic fragments were selected and superimposed onto the pharmacophore features, and compounds 5, 6 and 8 were designed and produced by linking these organic fragments. It is noteworthy that compound 8 can simultaneously match the features of both the SE and CYP51 pharmacophores. Further analysis found that these compounds exhibit a potent antifungal activity. Preliminary mechanistic studies revealed that compound 8 could undergo dual-target inhibition (SE and CYP51) of Candida albicans. This study proved the rationale of pharmacophore models (SE and CYP51), which can guide the design and discovery of new antifungal inhibitors.
Collapse
Affiliation(s)
- Yue Dong
- Institute of BioPharmaceutical Research, Liaocheng University 1 Hunan Road Liaocheng 252000 PR China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University 1 Hunan Road Liaocheng 252000 PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 PR China
| | - Zhuang Ding
- Institute of BioPharmaceutical Research, Liaocheng University 1 Hunan Road Liaocheng 252000 PR China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University 1 Hunan Road Liaocheng 252000 PR China
| |
Collapse
|
205
|
Design, synthesis, and in vitro antifungal evaluation of novel triazole derivatives bearing alkynyl side chains. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
206
|
In Vitro Activities of the Novel Investigational Tetrazoles VT-1161 and VT-1598 Compared to the Triazole Antifungals against Azole-Resistant Strains and Clinical Isolates of Candida albicans. Antimicrob Agents Chemother 2019; 63:AAC.00341-19. [PMID: 30910896 DOI: 10.1128/aac.00341-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/16/2019] [Indexed: 01/10/2023] Open
Abstract
The fungal Cyp51-specific inhibitors VT-1161 and VT-1598 have emerged as promising new therapies to combat fungal infections, including Candida spp. To evaluate their in vitro activities compared to other azoles, MICs were determined by Clinical and Laboratory Standards Institute (CLSI) method for VT-1161, VT-1598, fluconazole, voriconazole, itraconazole, and posaconazole against 68 C. albicans clinical isolates well characterized for azole resistance mechanisms and mutant strains representing individual azole resistance mechanisms. VT-1161 and VT-1598 demonstrated potent activity (geometric mean MICs ≤0.15 μg/ml) against predominantly fluconazole-resistant (≥8 μg/ml) isolates. However, five of 68 isolates exhibited MICs greater than six dilutions (>2 μg/ml) to both tetrazoles compared to fluconazole-susceptible isolates. Four of these isolates likewise exhibited high MICs beyond the upper limit of the assay for all triazoles tested. A premature stop codon in ERG3 likely explained the high-level resistance in one isolate. VT-1598 was effective against strains with hyperactive Tac1, Mrr1, and Upc2 transcription factors and against most ERG11 mutant strains. VT-1161 MICs were elevated compared to the control strain SC5314 for hyperactive Tac1 strains and two strains with Erg11 substitutions (Y132F and Y132F&K143R) but showed activity against hyperactive Mrr1 and Upc2 strains. While mutations affecting Erg3 activity appear to greatly reduce susceptibility to VT-1161 and VT-1598, the elevated MICs of both tetrazoles for four isolates could not be explained by known azole resistance mechanisms, suggesting the presence of undescribed resistance mechanisms to triazole- and tetrazole-based sterol demethylase inhibitors.
Collapse
|
207
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
208
|
Morio F, Lombardi L, Binder U, Loge C, Robert E, Graessle D, Bodin M, Lass-Flörl C, Butler G, Le Pape P. Precise genome editing using a CRISPR-Cas9 method highlights the role of CoERG11 amino acid substitutions in azole resistance in Candida orthopsilosis. J Antimicrob Chemother 2019; 74:2230-2238. [DOI: 10.1093/jac/dkz204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/25/2019] [Accepted: 04/09/2019] [Indexed: 01/08/2023] Open
Abstract
AbstractBackgroundAzoles are one of the main antifungal classes for the treatment of candidiasis. In the current context of emerging drug resistance, most studies have focused on Candida albicans, Candida glabrata or Candida auris but, so far, less is known about the underlying mechanisms of resistance in other species, including Candida orthopsilosis.ObjectivesWe investigated azole resistance in a C. orthopsilosis clinical isolate recovered from a patient with haematological malignancy receiving fluconazole prophylaxis.MethodsAntifungal susceptibility to fluconazole was determined in vitro (CLSI M27-A3) and in vivo (in a Galleria mellonella model of invasive candidiasis). The CoERG11 gene was then sequenced and amino acid substitutions identified were mapped on the predicted 3D structure of CoErg11p. A clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) genome-editing strategy was used to introduce relevant mutations into a fluconazole-susceptible C. orthopsilosis isolate.ResultsCompared with unrelated C. orthopsilosis isolates, the clinical isolate exhibited both in vitro and in vivo fluconazole resistance. Sequencing of the CoERG11 gene identified several amino acid substitutions, including two possibly involved in fluconazole resistance (L376I and G458S). Both mutations mapped close to the active site of CoErg11p. Engineering these mutations in a different genetic background using CRISPR-Cas9 demonstrated that G458S, but not L376I, confers resistance to fluconazole and voriconazole.ConclusionsOur data show that the G458S amino acid substitution in CoERG11p, but not L376I, contributes to azole resistance in C. orthopsilosis. In addition to highlighting the potential of CRISPR-Cas9 technology for precise genome editing in the field of antifungal resistance, we discuss some points that are critical to improving its efficiency.
Collapse
Affiliation(s)
- Florent Morio
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie, Nantes, France
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Ulrike Binder
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Tirol, Austria
| | - Cédric Loge
- Département de Chimie Thérapeutique, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie, Nantes, France
| | - Estelle Robert
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie, Nantes, France
| | - Denise Graessle
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Tirol, Austria
| | - Marine Bodin
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie, Nantes, France
| | - Cornelia Lass-Flörl
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Tirol, Austria
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Patrice Le Pape
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
- Département de Parasitologie et Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie, Nantes, France
| |
Collapse
|
209
|
Honorato Siqueira T, Martínez L. Molecular simulations of fluconazole-mediated inhibition of sterol biosynthesis. J Biomol Struct Dyn 2019; 38:1659-1669. [DOI: 10.1080/07391102.2019.1614998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tayane Honorato Siqueira
- Institute of Chemistry and Center for Computing in Engineering & Sciences, University of Campinas, Campinas, Brazil
| | - Leandro Martínez
- Institute of Chemistry and Center for Computing in Engineering & Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
210
|
Shareef MA, Sirisha K, Khan I, Sayeed IB, Jadav SS, Ramu G, Kumar CG, Kamal A, Babu BN. Design, synthesis, and antimicrobial evaluation of 1,4-dihydroindeno[1,2- c]pyrazole tethered carbohydrazide hybrids: exploring their in silico ADMET, ergosterol inhibition and ROS inducing potential. MEDCHEMCOMM 2019; 10:806-813. [PMID: 31191871 PMCID: PMC6540956 DOI: 10.1039/c9md00155g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/29/2019] [Indexed: 11/21/2022]
Abstract
A series of new 1,4-dihydroindeno[1,2-c]pyrazole tethered carbohydrazide hybrids (5a-u) were designed, synthesized and evaluated for their antimicrobial activity. Compounds 5d, 5g, 5j, 5k and 5q demonstrated significant activity against the entire panel of test pathogens. Further, compounds 5d and 5g exhibited significant anti-Candida activity. These potential hybrids (5d and 5g) also exhibited promising ergosterol biosynthesis inhibition against Candida albicans, which was further validated through molecular docking studies. Furthermore, compounds 5d and 5g caused intracellular ROS accumulation in C. albicans MTCC 3017 and were non-toxic to normal human lung cell line MRC5. In silico studies revealed that they demonstrated drug likeness and an appreciable pharmacokinetic profile. Overall, the findings demonstrate that 5d and 5g may be considered as promising leads for further development of new antifungal drugs.
Collapse
Affiliation(s)
- Mohd Adil Shareef
- Department of Fluoro-Agrochemicals , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad , India .
- Academy of Scientific and Innovative Research , New Delhi 110 025 , India
| | - K Sirisha
- Academy of Scientific and Innovative Research , New Delhi 110 025 , India
- Organic Synthesis and Process Chemistry Division , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad 500007 , India
| | - Irfan Khan
- Academy of Scientific and Innovative Research , New Delhi 110 025 , India
- Organic Synthesis and Process Chemistry Division , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad 500007 , India
| | - Ibrahim Bin Sayeed
- Academy of Scientific and Innovative Research , New Delhi 110 025 , India
- Organic Synthesis and Process Chemistry Division , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad 500007 , India
| | - Surender Singh Jadav
- Department of Fluoro-Agrochemicals , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad , India .
| | - Gopathi Ramu
- Department of Fluoro-Agrochemicals , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad , India .
- Academy of Scientific and Innovative Research , New Delhi 110 025 , India
| | - C Ganesh Kumar
- Organic Synthesis and Process Chemistry Division , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad 500007 , India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research , Jamia Hamdard University , New Delhi 110062 , India .
| | - Bathini Nagendra Babu
- Department of Fluoro-Agrochemicals , CSIR-Indian Institute of Chemical Technology , Tarnaka , Hyderabad , India .
- Academy of Scientific and Innovative Research , New Delhi 110 025 , India
| |
Collapse
|
211
|
The Evolution of Azole Resistance in Candida albicans Sterol 14α-Demethylase (CYP51) through Incremental Amino Acid Substitutions. Antimicrob Agents Chemother 2019; 63:AAC.02586-18. [PMID: 30783005 PMCID: PMC6496074 DOI: 10.1128/aac.02586-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
Recombinant Candida albicans CYP51 (CaCYP51) proteins containing 23 single and 5 double amino acid substitutions found in clinical strains and the wild-type enzyme were expressed in Escherichia coli and purified by Ni2+-nitrilotriacetic acid agarose chromatography. Catalytic tolerance to azole antifungals was assessed by determination of the concentration causing 50% enzyme inhibition (IC50) using CYP51 reconstitution assays. The greatest increase in the IC50 compared to that of the wild-type enzyme was observed with the five double substitutions Y132F+K143R (15.3-fold), Y132H+K143R (22.1-fold), Y132F+F145L (10.1-fold), G307S+G450E (13-fold), and D278N+G464S (3.3-fold). The single substitutions K143R, D278N, S279F, S405F, G448E, and G450E conferred at least 2-fold increases in the fluconazole IC50, and the Y132F, F145L, Y257H, Y447H, V456I, G464S, R467K, and I471T substitutions conferred increased residual CYP51 activity at high fluconazole concentrations. In vitro testing of select CaCYP51 mutations in C. albicans showed that the Y132F, Y132H, K143R, F145L, S405F, G448E, G450E, G464S, Y132F+K143R, Y132F+F145L, and D278N+G464S substitutions conferred at least a 2-fold increase in the fluconazole MIC. The catalytic tolerance of the purified proteins to voriconazole, itraconazole, and posaconazole was far lower and limited to increased residual activities at high triazole concentrations for certain mutations rather than large increases in IC50 values. Itraconazole was the most effective at inhibiting CaCYP51. However, when tested against CaCYP51 mutant strains, posaconazole seemed to be the most resistant to changes in MIC as a result of CYP51 mutation compared to itraconazole, voriconazole, or fluconazole.
Collapse
|
212
|
Gacemi S, Benarous K, Imperial S, Yousfi M. Lepidine B & E as New Target Inhibitors from Lepidium Sativum Seeds Against Four Enzymes of the Pathogen Candida albicans: In Vitro and In Silico Studies. Endocr Metab Immune Disord Drug Targets 2019; 20:127-138. [PMID: 30987578 DOI: 10.2174/1871530319666190415141520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE The present paper aims to study the inhibition of Candida albicans growth as candidiasis treatment, using seeds of Lepidium sativum as source. METHODS In vitro assays were carried out on the antifungal activity of three kinds of extracts from L. sativum seeds against four strains of C. albicans, then testing the same phytochemicals on the inhibition of Lipase (LCR). A new in silico study was achieved using molecular docking, with Autodock vina program, to find binding affinity of two important and major lepidine alkaloids (lepidine E and B) towards the four enzymes secreted by C. albicans as target drugs, responsible of vitality and virulence of this yeast cells: Lipase, Serine/threonine phosphatase, Phosphomannose isomerase and Sterol 14-alpha demethylase (CYP51). RESULTS The results of the microdillution assay show that the hexanic and alkaloidal extracts have an antifungal activity with MICs: 2.25 mg/ml and 4.5mg/ml, respectively. However, Candida rugosa lipase assay gives a remarkable IC50 values for the hexanic extract (1.42± 0.04 mg/ml) followed by 1.7± 0.1 and 2.29 ± 0.09 mg/ml of ethyl acetate and alkaloidal extracts respectively. The molecular docking confirms a significant correlation between C. albicans growth and inhibition of crucial enzymes involved in the invasion mechanism and cellular metabolisms, for the first time there were an interesting and new positive results on binding modes of lepidine E and B on the four studied enzymes. CONCLUSION Through this work, we propose Lepidine B & E as potent antifungal drugs.
Collapse
Affiliation(s)
- Safia Gacemi
- Department of Biology, Faculty of Sciences, University of Laghouat BP37G 03000, Laghouat, Algeria
| | - Khedidja Benarous
- Department of Biology, Faculty of Sciences, University of Laghouat BP37G 03000, Laghouat, Algeria
| | - Santiago Imperial
- Department of biochemistry, Molecular Biomedicine, Faculty of Biology. University of Barcelona, Avenue de Diagonal, 643 08028 Barcelona, Spain
| | - Mohamed Yousfi
- Department of Biology, Faculty of Sciences, University of Laghouat BP37G 03000, Laghouat, Algeria
| |
Collapse
|
213
|
Karaburun AC. Synthesis and Anticandidal Activities of Some Aryl (5-Chloro-Benzofuran- 2-yl) Ketoximes. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666181207155701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background:
In this study, some aryl (5-chloro-benzofuran-2-yl) ketoximes and their
ethers were synthesised to evaluate their antifungal activity against C. albicans, C. glabrata, C.
krusei, and C. parapsilosis.
</p><p>
Methods: The structure elucidation of the compounds was performed by IR, 1H-NMR, 13C-NMR
and HR-MS spectroscopic data. ADME parameters of synthesised compounds 2a-2d, 3a-3d, 4a-4d
were predicted by an in-silico study and it was determined that all synthesised compounds may
have a good pharmacokinetic profile.
</p><p>
Results: In the anticandidal activity studies, compounds 2c and 3c were found to be the most active
compounds. The effect of compound 2c, on ergosterol biosynthesis of C. albicans, was determined
by using the LC-MS-MS method.
</p><p>
Conclusion: It was also docked in the active site of the lanosterol 14α-demethylase enzyme, and
shown that there is a strong interaction between compound 2c and enzyme.
Collapse
Affiliation(s)
- Ahmet Cagri Karaburun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| |
Collapse
|
214
|
Monk BC, Sagatova AA, Hosseini P, Ruma YN, Wilson RK, Keniya MV. Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140206. [PMID: 30851431 DOI: 10.1016/j.bbapap.2019.02.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
The cytochrome P450 enzyme lanosterol 14α-demethylase (LDM) is the target of the azole antifungals used widely in medicine and agriculture as prophylaxis or treatments of infections or diseases caused by fungal pathogens. These drugs and agrochemicals contain an imidazole, triazole or tetrazole substituent, with one of the nitrogens in the azole ring coordinating as the sixth axial ligand to the LDM heme iron. Structural studies show that this membrane bound enzyme contains a relatively rigid ligand binding pocket comprised of a deeply buried heme-containing active site together with a substrate entry channel and putative product exit channel that reach to the membrane. Within the ligand binding pocket the azole antifungals have additional affinity determining interactions with hydrophobic side-chains, the polypeptide backbone and via water-mediated hydrogen bond networks. This review will describe the tools that can be used to identify and characterise the next generation of antifungals targeting LDM, with the goal of obtaining highly potent broad-spectrum fungicides that will be able to avoid target and drug efflux mediated antifungal resistance.
Collapse
Affiliation(s)
- Brian C Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Alia A Sagatova
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Parham Hosseini
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Yasmeen N Ruma
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rajni K Wilson
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Mikhail V Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
215
|
Abstract
In honor of the 100th birthday of Dr. Herbert Tabor, JBC's Editor-in-Chief for 40 years, I will review here JBC's extensive coverage of the field of cytochrome P450 (P450) research. Research on the reactions catalyzed by these enzymes was published in JBC before it was even realized that they were P450s, i.e. they have a "pigment" with an absorption maximum at 450 nm. After the P450 pigment discovery, reported in JBC in 1962, the journal proceeded to publish the methods for measuring P450 activities and many seminal findings. Since then, the P450 field has grown extensively, with significant progress in characterizing these enzymes, including structural features, catalytic mechanisms, regulation, and many other aspects of P450 biochemistry. JBC has been the most influential journal in the P450 field. As with many other research areas, Dr. Tabor deserves a great deal of the credit for significantly advancing this burgeoning and important topic of research.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
216
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. Eine strukturelle Evaluierung medizinalchemischer Strategien gegen Wirkstoffresistenzen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201802416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Agnello
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Michael Brand
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Mathieu F. Chellat
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Silvia Gazzola
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
217
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. A Structural View on Medicinal Chemistry Strategies against Drug Resistance. Angew Chem Int Ed Engl 2019; 58:3300-3345. [PMID: 29846032 DOI: 10.1002/anie.201802416] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Indexed: 12/31/2022]
Abstract
The natural phenomenon of drug resistance is a widespread issue that hampers the performance of drugs in many major clinical indications. Antibacterial and antifungal drugs are affected, as well as compounds for the treatment of cancer, viral infections, or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, the underlying molecular mechanisms have been identified to understand the emergence of resistance and to overcome this detrimental process. Detailed structural information on the root causes for drug resistance is nowadays frequently available, so next-generation drugs can be designed that are anticipated to suffer less from resistance. This knowledge-based approach is essential for fighting the inevitable occurrence of drug resistance.
Collapse
Affiliation(s)
- Stefano Agnello
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Michael Brand
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Silvia Gazzola
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| |
Collapse
|
218
|
Karaburun AÇ, Kaya Çavuşoğlu B, Acar Çevik U, Osmaniye D, Sağlık BN, Levent S, Özkay Y, Atlı Ö, Koparal AS, Kaplancıklı ZA. Synthesis and Antifungal Potential of Some Novel Benzimidazole-1,3,4-Oxadiazole Compounds. Molecules 2019; 24:molecules24010191. [PMID: 30621357 PMCID: PMC6337182 DOI: 10.3390/molecules24010191] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 01/06/2023] Open
Abstract
Discovery of novel anticandidal agents with clarified mechanisms of action, could be a rationalist approach against diverse pathogenic fungal strains due to the rise of resistance to existing drugs. In support to this hypothesis, in this paper, a series of benzimidazole-oxadiazole compounds were synthesized and subjected to antifungal activity evaluation. In vitro activity assays indicated that some of the compounds exhibited moderate to potent antifungal activities against tested Candida species when compared positive control amphotericin B and ketoconazole. The most active compounds 4h and 4p were evaluated in terms of inhibitory activity upon ergosterol biosynthesis by an LC-MS-MS method and it was determined that they inhibited ergosterol synthesis concentration dependently. Docking studies examining interactions between most active compounds and lanosterol 14-α-demethylase also supported the in vitro results.
Collapse
Affiliation(s)
- Ahmet Çağrı Karaburun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Betül Kaya Çavuşoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Özlem Atlı
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Ali Savaş Koparal
- Open Education Faculty, Anadolu University, Eskişehir 26470, Turkey.
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| |
Collapse
|
219
|
Zhang J, Li L, Lv Q, Yan L, Wang Y, Jiang Y. The Fungal CYP51s: Their Functions, Structures, Related Drug Resistance, and Inhibitors. Front Microbiol 2019; 10:691. [PMID: 31068906 PMCID: PMC6491756 DOI: 10.3389/fmicb.2019.00691] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
CYP51 (Erg11) belongs to the cytochrome P450 monooxygenase (CYP) superfamily and mediates a crucial step of the synthesis of ergosterol, which is a fungal-specific sterol. It is also the target of azole drugs in clinical practice. In recent years, researches on fungal CYP51 have stepped into a new stage attributing to the discovery of crystal structures of the homologs in Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. This review summarizes the functions, structures of fungal CYP51 proteins, and the inhibitors targeting these homologs. In particular, several drug-resistant mechanisms associated with the fungal CYP51s are introduced. The sequences and crystal structures of CYP51 proteins in different fungal species are also compared. These will provide new insights for the advancement of research on antifungal agents.
Collapse
Affiliation(s)
- Jingxiang Zhang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Liping Li
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Quanzhen Lv
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lan Yan
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| | - Yan Wang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| | - Yuanying Jiang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| |
Collapse
|
220
|
Balanites aegyptiaca (L.) Del. for dermatophytoses: Ascertaining the efficacy and mode of action through experimental and computational approaches. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
221
|
Azole Resistance Reduces Susceptibility to the Tetrazole Antifungal VT-1161. Antimicrob Agents Chemother 2018; 63:AAC.02114-18. [PMID: 30397057 DOI: 10.1128/aac.02114-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 01/07/2023] Open
Abstract
Tetrazole antifungals designed to target fungal lanosterol 14α-demethylase (LDM) appear to be effective against a range of fungal pathogens. In addition, a crystal structure of the catalytic domain of Candida albicans LDM in complex with the tetrazole VT-1161 has been obtained. We have addressed concern about artifacts that might arise from crystallizing VT-1161 with truncated recombinant CYP51s and measured the impact on VT-1161 susceptibility of genotypes known to confer azole resistance. A yeast system was used to overexpress recombinant full-length Saccharomyces cerevisiae LDM with a C-terminal hexahistidine tag (ScLDM6×His) for phenotypic analysis and crystallographic studies with VT-1161 or with the widely used triazole drug posaconazole (PCZ). We determined the effect of characterized mutations in LDM on VT-1161 activity and identified drug efflux pumps from fungi, including key fungal pathogens, that efflux VT-1161. The relevance of these yeast-based observations on drug efflux was verified using clinical isolates of C. albicans and Candida glabrata VT-1161 binding elicits a significant conformational difference between the full-length and truncated enzymes not found when posaconazole is bound. Susceptibility to VT-1161 is reduced by ATP-binding cassette (ABC) and major facilitator superfamily (MFS) drug efflux pumps, the overexpression of LDM, and mutations within the drug binding pocket of LDM that affect interaction with the tertiary alcohol of the drug.
Collapse
|
222
|
Lepesheva GI, Friggeri L, Waterman MR. CYP51 as drug targets for fungi and protozoan parasites: past, present and future. Parasitology 2018; 145:1820-1836. [PMID: 29642960 PMCID: PMC6185833 DOI: 10.1017/s0031182018000562] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The efficiency of treatment of human infections with the unicellular eukaryotic pathogens such as fungi and protozoa remains deeply unsatisfactory. For example, the mortality rates from nosocomial fungemia in critically ill, immunosuppressed or post-cancer patients often exceed 50%. A set of six systemic clinical azoles [sterol 14α-demethylase (CYP51) inhibitors] represents the first-line antifungal treatment. All these drugs were discovered empirically, by monitoring their effects on fungal cell growth, though it had been proven that they kill fungal cells by blocking the biosynthesis of ergosterol in fungi at the stage of 14α-demethylation of the sterol nucleus. This review briefs the history of antifungal azoles, outlines the situation with the current clinical azole-based drugs, describes the attempts of their repurposing for treatment of human infections with the protozoan parasites that, similar to fungi, also produce endogenous sterols, and discusses the most recently acquired knowledge on the CYP51 structure/function and inhibition. It is our belief that this information should be helpful in shifting from the traditional phenotypic screening to the actual target-driven drug discovery paradigm, which will rationalize and substantially accelerate the development of new, more efficient and pathogen-oriented CYP51 inhibitors.
Collapse
Affiliation(s)
- Galina I. Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Laura Friggeri
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Michael R. Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
223
|
Gałczyńska K, Kurdziel K, Ciepluch K, Rachuna J, Kowalska M, Madej Ł, Węgierek-Ciuk A, Lankoff A, Arabski M. Synthesis, physicochemical and biological characterization of Ni(II) complex with imidazole-4-acetate anion as new antifungal agent. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1574-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
224
|
Karaburun AÇ, Acar Çevik U, Osmaniye D, Sağlık BN, Kaya Çavuşoğlu B, Levent S, Özkay Y, Koparal AS, Behçet M, Kaplancıklı ZA. Synthesis and Evaluation of New 1,3,4-Thiadiazole Derivatives as Potent Antifungal Agents. Molecules 2018; 23:molecules23123129. [PMID: 30501053 PMCID: PMC6321371 DOI: 10.3390/molecules23123129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 01/24/2023] Open
Abstract
With the goal of obtaining a novel bioactive compound with significant antifungal activity, a series of 1,3,4-thiadiazole derivatives (3a–3l) were synthesized and characterized. Due to thione-thiol tautomerism in the intermediate compound 2, type of substitution reaction in the final step was determined by two-dimensional (2D) NMR. In vitro antifungal activity of the synthesized compounds was evaluated against eight Candida species. The active compounds 3k and 3l displayed very notable antifungal effects. The probable mechanisms of action of active compounds were investigated using an ergosterol quantification assay. Docking studies on 14-α-sterol demethylase enzyme were also performed to investigate the inhibition potency of compounds on ergosterol biosynthesis. Theoretical absorption, distribution, metabolism, and excretion (ADME) predictions were calculated to seek their drug likeness of final compounds. The results of the antifungal activity test, ergosterol biosynthesis assay, docking study, and ADME predictions indicated that the synthesized compounds are potential antifungal agents, which inhibit ergosterol biosynthesis probably interacting with the fungal 14-α-sterol demethylase.
Collapse
Affiliation(s)
- Ahmet Çağrı Karaburun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Betül Kaya Çavuşoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Ali Savaş Koparal
- Open Education Faculty, Anadolu University, Eskişehir 26470, Turkey.
| | - Mustafa Behçet
- Department of Medical Microbiology, Faculty of Medicine, Abant İzzet Baysal University, Bolu 14280, Turkey.
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| |
Collapse
|
225
|
Crystal Structures of Full-Length Lanosterol 14α-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provide Tools for Antifungal Discovery. Antimicrob Agents Chemother 2018; 62:AAC.01134-18. [PMID: 30126961 DOI: 10.1128/aac.01134-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/08/2018] [Indexed: 01/10/2023] Open
Abstract
Targeting lanosterol 14α-demethylase (LDM) with azole drugs provides prophylaxis and treatments for superficial and disseminated fungal infections, but cure rates are not optimal for immunocompromised patients and individuals with comorbidities. The efficacy of azole drugs has also been reduced due to the emergence of drug-resistant fungal pathogens. We have addressed the need to improve the potency, spectrum, and specificity for azoles by expressing in Saccharomyces cerevisiae functional, recombinant, hexahistidine-tagged, full-length Candida albicans LDM (CaLDM6×His) and Candida glabrata LDM (CgLDM6×His) and determining their X-ray crystal structures. The crystal structures of CaLDM6×His, CgLDM6×His, and ScLDM6×His have the same fold and bind itraconazole in nearly identical conformations. The catalytic domains of the full-length LDMs have the same fold as the CaLDM6×His catalytic domain in complex with posaconazole, with minor structural differences within the ligand binding pocket. Our structures give insight into the LDM reaction mechanism and phenotypes of single-site CaLDM mutations. This study provides a practical basis for the structure-directed discovery of novel antifungals that target LDMs of fungal pathogens.
Collapse
|
226
|
Heterologous Expression of Full-Length Lanosterol 14α-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provides Tools for Antifungal Discovery. Antimicrob Agents Chemother 2018; 62:AAC.01131-18. [PMID: 30126959 DOI: 10.1128/aac.01131-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Targeting lanosterol 14α-demethylase (LDM) with azole drugs provides prophylaxis and treatments for superficial and disseminated fungal infections, but cure rates are modest for immunocompromised patients and individuals with comorbidities. The efficacy of azole drugs has also been reduced due to the emergence of drug-resistant fungal pathogens. We have addressed these problems by expressing in Saccharomyces cerevisiae functional, hexahistidine-tagged, full-length Candida albicans LDM (CaLDM6×His) and Candida glabrata LDM (CgLDM6×His) for drug discovery purposes and determining their X-ray crystal structures. Compared with S. cerevisiae overexpressing LDM6×His (ScLDM6×His), the reduced susceptibility of CgLDM6×His to all azole drugs tested correlated with its level of overexpression. In contrast, the reduced susceptibility to short-tailed (fluconazole and voriconazole) but not medium-tailed (VT-1161) or long-tailed azoles (itraconazole and posaconazole) indicates CaLDM6×His works best when coexpressed with its cognate NADPH-cytochrome P450 reductase (CaNcp1A) rather than the host reductase (ScNcp1). Overexpression of LDM or Ncp1 modified the ergosterol content of yeast and affected growth inhibition by the polyene antibiotic amphotericin B. Affinity-purified recombinant Candida LDMs bind carbon monoxide and show tight type II binding of a range of azole drugs, including itraconazole, posaconazole, fluconazole, and voriconazole. This study provides a practical basis for the phenotype-, biochemistry-, and structure-directed discovery of novel antifungals that target LDMs of fungal pathogens.
Collapse
|
227
|
Hargrove TY, Wawrzak Z, Fisher PM, Child SA, Nes WD, Guengerich FP, Waterman MR, Lepesheva GI. Binding of a physiological substrate causes large-scale conformational reorganization in cytochrome P450 51. J Biol Chem 2018; 293:19344-19353. [PMID: 30327430 DOI: 10.1074/jbc.ra118.005850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/15/2018] [Indexed: 11/06/2022] Open
Abstract
Sterol 14α-demethylases (CYP51s) are phylogenetically the most conserved cytochromes P450, and their three-step reaction is crucial for biosynthesis of sterols and serves as a leading target for clinical and agricultural antifungal agents. The structures of several (bacterial, protozoan, fungal, and human) CYP51 orthologs, in both the ligand-free and inhibitor-bound forms, have been determined and have revealed striking similarity at the secondary and tertiary structural levels, despite having low sequence identity. Moreover, in contrast to many of the substrate-promiscuous, drug-metabolizing P450s, CYP51 structures do not display substantial rearrangements in their backbones upon binding of various inhibitory ligands, essentially representing a snapshot of the ligand-free sterol 14α-demethylase. Here, using the obtusifoliol-bound I105F variant of Trypanosoma cruzi CYP51, we report that formation of the catalytically competent complex with the physiological substrate triggers a large-scale conformational switch, dramatically reshaping the enzyme active site (3.5-6.0 Å movements in the FG arm, HI arm, and helix C) in the direction of catalysis. Notably, our X-ray structural analyses revealed that the substrate channel closes, the proton delivery route opens, and the topology and electrostatic potential of the proximal surface reorganize to favor interaction with the electron-donating flavoprotein partner, NADPH-cytochrome P450 reductase. Site-directed mutagenesis of the amino acid residues involved in these events revealed a key role of active-site salt bridges in contributing to the structural dynamics that accompanies CYP51 function. Comparative analysis of apo-CYP51 and its sterol-bound complex provided key conceptual insights into the molecular mechanisms of CYP51 catalysis, functional conservation, lineage-specific substrate complementarity, and druggability differences.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439
| | - Paxtyn M Fisher
- the Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, and
| | - Stella A Child
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - W David Nes
- the Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, and
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Michael R Waterman
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Galina I Lepesheva
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, .,the Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
228
|
Zhao S, Wei P, Wu M, Zhang X, Zhao L, Jiang X, Hao C, Su X, Zhao D, Cheng M. Design, synthesis and evaluation of benzoheterocycle analogues as potent antifungal agents targeting CYP51. Bioorg Med Chem 2018; 26:3242-3253. [DOI: 10.1016/j.bmc.2018.04.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/25/2023]
|
229
|
Friggeri L, Hargrove TY, Wawrzak Z, Blobaum AL, Rachakonda G, Lindsley CW, Villalta F, Nes WD, Botta M, Guengerich FP, Lepesheva GI. Sterol 14α-Demethylase Structure-Based Design of VNI (( R)- N-(1-(2,4-Dichlorophenyl)-2-(1 H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide)) Derivatives To Target Fungal Infections: Synthesis, Biological Evaluation, and Crystallographic Analysis. J Med Chem 2018; 61:5679-5691. [PMID: 29894182 DOI: 10.1021/acs.jmedchem.8b00641] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Because of the increase in the number of immunocompromised patients, the incidence of invasive fungal infections is growing, but the treatment efficiency remains unacceptably low. The most potent clinical systemic antifungals (azoles) are the derivatives of two scaffolds: ketoconazole and fluconazole. Being the safest antifungal drugs, they still have shortcomings, mainly because of pharmacokinetics and resistance. Here, we report the successful use of the target fungal enzyme, sterol 14α-demethylase (CYP51), for structure-based design of novel antifungal drug candidates by minor modifications of VNI [( R)- N-(1-(2,4-dichlorophenyl)-2-(1 H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide)], an inhibitor of protozoan CYP51 that cures Chagas disease. The synthesis of fungi-oriented VNI derivatives, analysis of their potencies to inhibit CYP51s from two major fungal pathogens ( Aspergillus fumigatus and Candida albicans), microsomal stability, effects in fungal cells, and structural characterization of A. fumigatus CYP51 in complexes with the most potent compound are described, offering a new antifungal drug scaffold and outlining directions for its further optimization.
Collapse
Affiliation(s)
- Laura Friggeri
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Tatiana Y Hargrove
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team , Northwestern University , Argonne , Illinois 60439 , United States
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery , Franklin , Tennessee 37067 , United States
| | - Girish Rachakonda
- Department of Microbiology, Immunology, and Physiology , Meharry Medical College , Nashville , Tennessee 37208 , United States
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery , Franklin , Tennessee 37067 , United States
| | - Fernando Villalta
- Department of Microbiology, Immunology, and Physiology , Meharry Medical College , Nashville , Tennessee 37208 , United States
| | - W David Nes
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy , University of Siena , Siena 53100 , Italy
| | - F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Galina I Lepesheva
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37232 , United States
| |
Collapse
|
230
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
231
|
Sobel JD, Sobel R. Current treatment options for vulvovaginal candidiasis caused by azole-resistant Candida species. Expert Opin Pharmacother 2018; 19:971-977. [PMID: 29932786 DOI: 10.1080/14656566.2018.1476490] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Clinicians are increasingly challenged by patients with refractory vulvovaginal candidiasis (VVC) caused by azole-resistant Candida species. Fluconazole resistant C.albicans is a growing and perplexing problem following years of indiscriminate drug prescription and unnecessary drug exposure and for which there are few therapeutic alternatives. Regrettably, although the azole class of drugs has expanded, new classes of antifungal drugs have not been forthcoming, limiting effective treatment options in patients with azole resistant Candida vaginitis. AREAS COVERED This review covers published data on epidemiology, pathophysiology and treatment options for women with azole-resistant refractory VVC. EXPERT OPINION Fluconazole resistant C.albicans adds to the challenge of azole resistant non-albicans Candida spp. Both issues follow years of indiscriminate drug prescription and unnecessary fluconazole exposure. Although an understanding of azole resistance in yeast has been established, this knowledge has not translated into useful therapeutic advantage. Treatment options for such women with refractory symptoms are extremely limited. New therapeutic options and strategies are urgently needed to meet this challenge of azole drug resistance.
Collapse
Affiliation(s)
- J D Sobel
- a Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| | - R Sobel
- b Department of Obstetrics & Gynecology , Jefferson Medical College , Philadelphia , PA , USA
| |
Collapse
|
232
|
Sun B, Zhang H, Liu M, Hou Z, Liu X. Structure-based virtual screening and ADME/T-based prediction analysis for the discovery of novel antifungal CYP51 inhibitors. MEDCHEMCOMM 2018; 9:1178-1187. [PMID: 30109006 DOI: 10.1039/c8md00230d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/02/2018] [Indexed: 12/24/2022]
Abstract
With the increasing incidence of pathogenic fungi and drug-resistant fungi in clinic, it has become very important to develop the novel rate-limiting enzyme 14α-demethylase (CYP51) as an antifungal inhibitor. In this study, a method involving structure-based virtual screening was employed. First, a publicly available database was obtained from the Dow Chemical Company, and the database was screened by the designed pharmacophore model of CYP51 inhibitors. Then, the pharmacophore search hits were docked into the CYP51 crystal structure. Finally, sixteen compounds were selected for in vitro antifungal inhibition assay, and most of the compounds showed a certain degree of antifungal activity. In particular, compounds 3, 4, and 9 exhibited significant antifungal and anti-drug resistance activities by blocking the synthesis of ergosterol. The molecular docking and ADME/T properties of the compounds 3, 4, and 9 were further predicted, and the results indicated that they can form hydrophobic and coordination interactions with the active sites of CYP51. At the same time, compounds 4 and 9 showed promising drug-like properties. This study reveals that the compounds can be further optimized and developed as lead compounds.
Collapse
Affiliation(s)
- Bin Sun
- Department of Medicinal Chemistry , School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , PR China . .,Institute of BioPharmaceutical Research , Liaocheng University , 1 Hunan Road , Liaocheng 252000 , PR China
| | - Hong Zhang
- Liaocheng People's Hospital , 67 Dongchang Road , Liaocheng 252000 , PR China
| | - Min Liu
- Institute of BioPharmaceutical Research , Liaocheng University , 1 Hunan Road , Liaocheng 252000 , PR China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education , School of Pharmaceutical Engineering , Shenyang Pharmaceutical University , 103 Wenhua Road, Shenhe District , Shenyang 110016 , PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry , School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , PR China .
| |
Collapse
|
233
|
Teodoro GR, Gontijo AVL, Salvador MJ, Tanaka MH, Brighenti FL, Delbem ACB, Delbem ÁCB, Koga-Ito CY. Effects of Acetone Fraction From Buchenavia tomentosa Aqueous Extract and Gallic Acid on Candida albicans Biofilms and Virulence Factors. Front Microbiol 2018; 9:647. [PMID: 29675005 PMCID: PMC5895766 DOI: 10.3389/fmicb.2018.00647] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
A promising anti-Candida activity of Buchenavia tomentosa extracts was recently described. In the present work, experiments were carried out to determine the fraction with higher antifungal activity from a B. tomentosa extract. Acetone fraction (AF) was obtained from the aqueous extract from dried leaves (5 min/100°C) and it was the most effective one. Gallic acid (GA) was identified by electrospray ionization mass spectrometry (ESI–MS) and also chosen to perform antifungal tests due to its promising activity on Candida albicans. Minimal inhibitory and fungicidal concentrations (MIC and MFC) were determined by broth microdilution technique. The effect on virulence factors of C. albicans was evaluated, and the cytotoxicity was determined. MIC50 and MIC90 values were both equal to 0.625 mg ml-1 for AF and 2.5 and 5 mg ml-1, respectively, for GA. AF and GA showed ability to inhibit C. albicans adherence and to disrupt 48 h-biofilm. AF and GA were effective in reducing the formation of hyphae of C. albicans SC5314. AF and GA decreased adherence of C. albicans to oral epithelial cells. AF and GA showed slight to moderate toxicity to Vero cells. This result suggests further studies for topic use of these compounds. AF, which contains a combination of several molecules, presented greater potential of antimicrobial activity than GA, with lower values of MIC and lower cytoxicity.
Collapse
Affiliation(s)
- Guilherme R Teodoro
- Environmental Engineering Department and Oral Biopathology Graduate Program, Institute of Science and Technology of São José dos Campos, São Paulo State University, São Paulo, Brazil
| | - Aline V L Gontijo
- Environmental Engineering Department and Oral Biopathology Graduate Program, Institute of Science and Technology of São José dos Campos, São Paulo State University, São Paulo, Brazil.,Department of Plant Biology, PPGBTPB, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marcos J Salvador
- Department of Plant Biology, PPGBTPB, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Márcia H Tanaka
- Environmental Engineering Department and Oral Biopathology Graduate Program, Institute of Science and Technology of São José dos Campos, São Paulo State University, São Paulo, Brazil
| | | | - Alberto C B Delbem
- Araçatuba Faculty of Dentistry, São Paulo State University, São Paulo, Brazil
| | - Ádina C B Delbem
- Araçatuba Faculty of Dentistry, São Paulo State University, São Paulo, Brazil
| | - Cristiane Y Koga-Ito
- Environmental Engineering Department and Oral Biopathology Graduate Program, Institute of Science and Technology of São José dos Campos, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
234
|
Moustafa G, Khalaf H, Naglah A, Al-Wasidi A, Al-Jafshar N, Awad H. The Synthesis of Molecular Docking Studies, In Vitro Antimicrobial and Antifungal Activities of Novel Dipeptide Derivatives Based on N-(2-(2-Hydrazinyl-2-oxoethylamino)-2-oxoethyl)-nicotinamide. Molecules 2018; 23:molecules23040761. [PMID: 29584635 PMCID: PMC6017860 DOI: 10.3390/molecules23040761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022] Open
Abstract
A series of linear dipeptide derivatives (4–10) were prepared and evaluated as antimicrobial agents via the synthesis of N-(2-(2-hydrazinyl-2-oxoethylamino)-2-oxoethyl) nicotinamide (4). Compound 4 was reacted with 4-chlorobenzaldehyde or 4-hydroxybenzaldehyde, to give the hydrazones 5 and 6, respectively. On the other hand, Compound 4 was coupled with phenylisocyanate or methylisothiocyanate to give Compounds 7 and 8, respectively. The latter compounds (7 and 8) were coupled with chloroacetic acid to give oxazolidine (9) and thiazolidine (10), respectively. The newly synthesized dipeptide compounds were confirmed by means of their spectral data. The antimicrobial activity of the newly synthesized compounds 4–10 was evaluated by agar well diffusion, and they showed good activity. Compounds 4, 5, and 9 gave the most promising activity in this study. Most of the tested compounds possessed MIC values ranging from 50 to 500 µg/mL. Furthermore, docking studies were carried out on enoyl reductase from E. coli and cytochrome P450 14 α-sterol demethylase (Cyp51) from Candida albicans active sites. The MolDock scores of the seven tested compounds ranged between −117 and −171 and between −107 and −179, respectively.
Collapse
Affiliation(s)
- Gaber Moustafa
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Hemat Khalaf
- Chemistry Department, College of Science and Arts-Qurayat, Jouf University, Sakaka 72388, Saudi Arabia.
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Ahmed Naglah
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki 12622, Cairo, Egypt.
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Asma Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Nawal Al-Jafshar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Hassan Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Div., National Research Centre, Dokki 12622, Cairo, Egypt.
| |
Collapse
|
235
|
Impact of Homologous Resistance Mutations from Pathogenic Yeast on Saccharomyces cerevisiae Lanosterol 14α-Demethylase. Antimicrob Agents Chemother 2018; 62:AAC.02242-17. [PMID: 29263059 DOI: 10.1128/aac.02242-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/08/2017] [Indexed: 11/20/2022] Open
Abstract
Fungal infections frequently affect immunodeficient individuals and are estimated to kill 1.35 million people per annum. Azole antifungals target the membrane-bound cytochrome P450 monooxygenase lanosterol 14α-demethylase (CYP51; Erg11p). Mutations in CYP51 can render the widely used triazole drugs less effective. The Candida albicans CYP51 mutation G464S and the double mutation Y132F G464S (Y140F and G464S by Saccharomyces cerevisiae numbering) as well as the CYP51A G54E/R/W mutations of Aspergillus fumigatus (G73E/R/W by S. cerevisiae numbering) have been reproduced in a recombinant C-terminal hexahistidine-tagged version of S. cerevisiae CYP51 (ScErg11p6×His). Phenotypes and X-ray crystal structures were determined for the mutant enzymes. Liquid microdilution assays showed that the G464S mutation in ScErg11p6×His conferred no difference in the susceptibility of yeast to triazole drugs but in combination with the Y140F mutation gave a 4-fold reduction in susceptibility to the short-tailed triazole fluconazole. The ScErg11p6×His Y140F G464S mutant was unstable during purification and was not crystallized. The ScErg11p6×His G73E/R/W mutations conferred increased susceptibly to all triazoles tested in liquid microdilution assays. High-resolution X-ray crystal structures reveal two different conformations of the ligand itraconazole, including a previously unseen conformation, as well as interactions between the tail of this triazole and the E/W73 residue. This study shows that S. cerevisiae CYP51 adequately represents some but not all mutations in CYP51s of pathogenic fungi. Insight into the molecular mechanisms of resistance mutations in CYP51 will assist the development of inhibitors that will overcome antifungal resistance.
Collapse
|
236
|
Design, synthesis, and structure-activity relationship studies of novel tetrazole antifungal agents with potent activity, broad antifungal spectrum and high selectivity. Bioorg Med Chem Lett 2018; 28:344-350. [DOI: 10.1016/j.bmcl.2017.12.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022]
|
237
|
Liu N, Tu J, Dong G, Wang Y, Sheng C. Emerging New Targets for the Treatment of Resistant Fungal Infections. J Med Chem 2018; 61:5484-5511. [DOI: 10.1021/acs.jmedchem.7b01413] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
238
|
Qian H, Duan M, Sun X, Chi M, Zhao Y, Liang W, Du J, Huang J, Li B. The binding mechanism between azoles and FgCYP51B, sterol 14α-demethylase of Fusarium graminearum. PEST MANAGEMENT SCIENCE 2018; 74:126-134. [PMID: 28719051 DOI: 10.1002/ps.4667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Fusarium graminearum is the main pathogen of Fusarium head blight (FHB), a worldwide plant disease and a major disease of wheat in China. Control of FHB is mainly dependent on the application of demethylase inhibitor (DMI) fungicides. Fungal sterol 14α-demethylase enzymes (CYP51) are the main target for DMI fungicides. A molecular modeling study and biological evaluation were performed to investigate the binding mechanism between azoles and CYP51B in F. graminearum. RESULTS A homology model based on the crystal structure of Aspergillus fumigatus was built. Molecular docking and molecular dynamics (MD) simulations were then used to identify the optimum binding mode of propiconazole (PRP), diniconazole (DIN), triadimenol (TRL), tebuconazole (TEC) and triadimefon (TRN) with FgCYP51B. Furthermore, the binding free energy of the five protein-inhibitor complexes was calculated using molecular mechanics generalized Born surface area and Poisson-Boltzmann surface area (MM-GB/PBSA) methods. Key residues in the selective binding of azoles to FgCYP51B were recognized by per-residue free energy decomposition analysis. The five ligands have a similar binding mode in the active pocket. The binding free energy to the enzyme for inhibitors PRP and TEC is more favorable than that of TRN, TRL and DIN. Furthermore, the amino acid residues Phe511, Val136, Ile374, Ala308, Ser312 and Try137 of FgCYP51B are key residues interacting with azoles fungicides. From the experimental evaluation, the 50% effective concentration (EC50 ) values for PRP, TEC, DIN, TRL and TRN are 0.024, 0.047, 0.148, 0.154 and 0.474 mg L-1 , respectively. These five molecules exhibit potential inhibitory activity against CYP51B protein from F. graminearum. CONCLUSION Azole fungicides for FgCYP51B should possess more hydrophobic groups interacting with residues Phe511, Val136, Ile374, Ala308, Ser312 and Tyr137. PRP and TEC are preferable for the control of FHB than DIN, TRL and TRN. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hengwei Qian
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Meilin Duan
- College of Life Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Xiaomei Sun
- College of Animation and Communication, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Mengyu Chi
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Ying Zhao
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Wenxing Liang
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Juan Du
- College of Life Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Jinguang Huang
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Baodu Li
- College of Plant Health and Medicine and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, People's Republic of China
| |
Collapse
|
239
|
Yoshimaru S, Shizu R, Tsuruta S, Amaike Y, Kano M, Hosaka T, Sasaki T, Yoshinari K. Acceleration of murine hepatocyte proliferation by imazalil through the activation of nuclear receptor PXR. J Toxicol Sci 2018; 43:443-450. [DOI: 10.2131/jts.43.443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shohei Yoshimaru
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Satoshi Tsuruta
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yuto Amaike
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Makoto Kano
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
240
|
Staniszewska M, Gizińska M, Mikulak E, Adamus K, Koronkiewicz M, Łukowska-Chojnacka E. New 1,5 and 2,5-disubstituted tetrazoles-dependent activity towards surface barrier of Candida albicans. Eur J Med Chem 2017; 145:124-139. [PMID: 29324336 DOI: 10.1016/j.ejmech.2017.11.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
Abstract
A series of novel tetrazole derivatives was synthetized using N-alkylation or Michael-type addition reactions, and screened for their fungistatic potential against Candida albicans (the lack of endpoint = 100%). Among them, the selected compounds 2d, 4b, and 6a differing in substituents at the tetrazole ring were non-toxic to Galleria mellonella larvae in vivo and exerted slight toxicity against Caco-2 in vitro (CC50 at 256 μg/mL). An antagonistic effect of tetrazole derivatives 2d, 4b, and 6a respectively in combination with Fluconazole was shown using the checker board and colorimetric methods (fractional inhibitory concentration indexes FICIs >1). The most active 2d and 6a displayed an inverse relation between MICs in the presence of exogenous ergosterol, the effect was opposite to Itraconazole and Amphotericin B. The differences between 6a's and 2d's action mode were noted. Combining both flow cytometry and fluorescence image analyses respectively showed the complexity of planktonic and biofilm cell demise mode under the tetrazole derivatives tested. The following evidences for 6a's interaction with fungal membrane were noted: necrosis-like programmed cell death (97.03 ± 0.88), DNA denaturation (no laddering), mitochondrial damage (XTT assay), reduced adhesion to human epithelium (>50% at 0.0313 μg/mL, p ≤ .05), irregular deposit of chitin, and attenuated morphogenesis in mature biofilm. The treatment with 6a reduced pathogenicity of C. albicans during infection in G. mellonella. Contrariwise, 2d enhancing fungal adhesion displayed mechanism targeted to the cell wall (due to the presence of 3-chloropropyl clubbed with aryltetrazole) in the presence of osmotic protector. Under 2d, the accidental cell death (88.60% ± 4.81) was observed. In conclusion, all tetrazole derivatives were obtained in satisfactory yields (60-95%) using efficient, simple and not expensive methods. Fungistatic and slightly anticancer tetrazole derivatives with the novel action mode can circumvent an appearance of antifungal-resistant strains. These results indicate that they are worthy of further studies.
Collapse
Affiliation(s)
- Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| | - Małgorzata Gizińska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Ewa Mikulak
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Klaudia Adamus
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | | | | |
Collapse
|
241
|
Debnath A, Calvet CM, Jennings G, Zhou W, Aksenov A, Luth MR, Abagyan R, Nes WD, McKerrow JH, Podust LM. CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLoS Negl Trop Dis 2017; 11:e0006104. [PMID: 29284029 PMCID: PMC5746216 DOI: 10.1371/journal.pntd.0006104] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 11/24/2022] Open
Abstract
Primary Amoebic Meningoencephalitis (PAM) is caused by Naegleria fowleri, a free-living amoeba that occasionally infects humans. While considered "rare" (but likely underreported) the high mortality rate and lack of established success in treatment makes PAM a particularly devastating infection. In the absence of economic inducements to invest in development of anti-PAM drugs by the pharmaceutical industry, anti-PAM drug discovery largely relies on drug 'repurposing'-a cost effective strategy to apply known drugs for treatment of rare or neglected diseases. Similar to fungi, N. fowleri has an essential requirement for ergosterol, a building block of plasma and cell membranes. Disruption of sterol biosynthesis by small-molecule inhibitors is a validated interventional strategy against fungal pathogens of medical and agricultural importance. The N. fowleri genome encodes the sterol 14-demethylase (CYP51) target sharing ~35% sequence identity to fungal orthologues. The similarity of targets raises the possibility of repurposing anti-mycotic drugs and optimization of their usage for the treatment of PAM. In this work, we (i) systematically assessed the impact of anti-fungal azole drugs, known as conazoles, on sterol biosynthesis and viability of cultured N. fowleri trophozotes, (ii) identified the endogenous CYP51 substrate by mass spectrometry analysis of N. fowleri lipids, and (iii) analyzed the interactions between the recombinant CYP51 target and conazoles by UV-vis spectroscopy and x-ray crystallography. Collectively, the target-based and parasite-based data obtained in these studies validated CYP51 as a potentially 'druggable' target in N. fowleri, and conazole drugs as the candidates for assessment in the animal model of PAM.
Collapse
Affiliation(s)
- Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Claudia M. Calvet
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Cellular Ultrastructure Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Gareth Jennings
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wenxu Zhou
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Alexander Aksenov
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Madeline R. Luth
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ruben Abagyan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - W. David Nes
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Larissa M. Podust
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
242
|
Pandey B, Sharma P. Structural insights into impact of Y134F mutation and discovery of novel fungicidal compounds against CYP51 in Puccinia triticina. J Cell Biochem 2017; 119:2588-2603. [PMID: 28980720 DOI: 10.1002/jcb.26422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/22/2017] [Indexed: 12/22/2022]
Abstract
Sterol 14α-Demethylase Cytochrome P450 (CYP51) protein involved in ergosterol biosynthesis pathways turn out to be a crucial target for the fungicidal compound. However, the recognition mechanism and dynamic behavior of CYP51 in wheat leaf rust pathogen, Puccinia triticina, is still obscure. Previously, a mutation at position 134 (Y134F) was reported in five European isolates of P. triticina, conversely, structural basis of this mutation remains unclear. To address this problem, three-dimensional structure of CYP51 protein from P. triticina was successfully built using homology modeling approach. To assess the protein structure stability, wild and mutant-type CYP51 proteins bound with azole fungicide was subjected to 50 ns molecular dynamics (MD) simulations run. Observably, the comparative protein-ligand interaction analysis and binding free energy results revealed that impact of the mutation on the thermodynamics and conformational stability of the CYP51 protein was negligible. In addition, we carried out structure-based virtual screening and identified potent novel fungicidal compounds from four different databases and libraries. Consequently, through MD simulation and thermodynamic integration, four novel compounds such as CoCoCo54211 (CoCoCo database), ZINC04089470 (ZINC database), Allyl pyrocatechol 3,4 diacetate (Natural compound library), and 9-octadecenoic acid (Traditional Chinese Medicine database) has been predicted as potent fungicidal compound against CYP51 with XPGlide docking score of -11.41, -13.64, -7.40, and -6.55 kcal/mol, respectively. These compounds were found to form hydrogen bonds with heme group of CYP51, subsequently disturbing the stability and survival of fungus and can be used to control leaf rust in wheat.
Collapse
Affiliation(s)
- Bharati Pandey
- Plant Biotechnology Unit, ICAR-Indian Institute of Wheat Barley Research, Karnal, Haryana, India
| | - Pradeep Sharma
- Plant Biotechnology Unit, ICAR-Indian Institute of Wheat Barley Research, Karnal, Haryana, India
| |
Collapse
|
243
|
Szafrański K, Sławiński J, Kędzia A, Kwapisz E. Syntheses of Novel 4-Substituted N-(5-amino-1H-1,2,4-triazol-3-yl)pyridine-3-sulfonamide Derivatives with Potential Antifungal Activity. Molecules 2017; 22:molecules22111926. [PMID: 29112162 PMCID: PMC6150321 DOI: 10.3390/molecules22111926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
Candidiasis represent a serious threat for patients with altered immune responses. Therefore, we have undertaken the synthesis of compounds comprising a pyridine-3-sulfonamide scaffold and known antifungally active 1,2,4-triazole substituents. Thus a series of novel 4-substituted N-(5-amino-1H-1,2,4-triazol-3-yl)pyridine-3-sulfonamides have been synthesized by multistep reactions starting from 4-chloropyridine-3-sulfonamide via N′-cyano-N-[(4-substitutedpyridin-3-yl)sulfonyl]carbamimidothioates which were further converted with hydrazine hydrate to the corresponding 1,2,4-triazole derivatives 26–36. The final compounds were evaluated for antifungal activity against strains of the genera Candida, Geotrichum, Rhodotorula, and Saccharomycess isolated from patients with mycosis. Many of them show greater efficacy than fluconazole, mostly towards Candida albicans and Rhodotorula mucilaginosa species, with MIC values ≤ 25 µg/mL. A docking study of the most active compounds 26, 34 and 35 was performed showing the potential mode of binding to Candida albicans lanosterol 14α-demethylase. Also in vitro cytotoxicity of selected compounds have been evaluated on the NCI-60 cell line panel.
Collapse
Affiliation(s)
- Krzysztof Szafrański
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Anna Kędzia
- Department of Oral Microbiology, Medical University of Gdańsk, ul. Dębowa 25., 80-204, Gdańsk, Poland.
| | - Ewa Kwapisz
- Department of Oral Microbiology, Medical University of Gdańsk, ul. Dębowa 25., 80-204, Gdańsk, Poland.
| |
Collapse
|
244
|
A CTG Clade Candida Yeast Genetically Engineered for the Genotype-Phenotype Characterization of Azole Antifungal Resistance in Human-Pathogenic Yeasts. Antimicrob Agents Chemother 2017; 62:AAC.01483-17. [PMID: 29038279 DOI: 10.1128/aac.01483-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/12/2017] [Indexed: 11/20/2022] Open
Abstract
A strain of the opportunistic pathogenic yeast Candida lusitaniae was genetically modified for use as a cellular model for assessing by allele replacement the impact of lanosterol C14α-demethylase ERG11 mutations on azole resistance. Candida lusitaniae was chosen because it is susceptible to azole antifungals, it belongs to the CTG clade of yeast, which includes most of the Candida species pathogenic for humans, and it is haploid and easily amenable to genetic transformation and molecular modeling. In this work, allelic replacement is targeted at the ERG11 locus by the reconstitution of a functional auxotrophic marker in the 3' intergenic region of ERG11 Homologous and heterologous ERG11 alleles are expressed from the resident ERG11 promoter of C. lusitaniae, allowing accurate comparison of the phenotypic change in azole susceptibility. As a proof of concept, we successfully expressed in C. lusitaniae different ERG11 alleles, either bearing or not bearing mutations retrieved from a clinical context, from two phylogenetically distant yeasts, C. albicans and Kluyveromyces marxianusCandida lusitaniae constitutes a high-fidelity expression system, giving specific Erg11p-dependent fluconazole MICs very close to those observed with the ERG11 donor strain. This work led us to characterize the phenotypic effect of two kinds of mutation: mutation conferring decreased fluconazole susceptibility in a species-specific manner and mutation conferring fluconazole resistance in several yeast species. In particular, a missense mutation affecting amino acid K143 of Erg11p in Candida species, and the equivalent position K151 in K. marxianus, plays a critical role in fluconazole resistance.
Collapse
|
245
|
Comparison and analysis of the structures and binding modes of antifungal SE and CYP51 inhibitors. J Mol Graph Model 2017; 77:1-8. [DOI: 10.1016/j.jmgm.2017.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 11/15/2022]
|
246
|
Crystal Structure of the New Investigational Drug Candidate VT-1598 in Complex with Aspergillus fumigatus Sterol 14α-Demethylase Provides Insights into Its Broad-Spectrum Antifungal Activity. Antimicrob Agents Chemother 2017; 61:AAC.00570-17. [PMID: 28461309 DOI: 10.1128/aac.00570-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/17/2017] [Indexed: 01/08/2023] Open
Abstract
Within the past few decades, the incidence and complexity of human fungal infections have increased, and therefore, the need for safer and more efficient, broad-spectrum antifungal agents is high. In the study described here, we characterized the new tetrazole-based drug candidate VT-1598 as an inhibitor of sterol 14α-demethylase (CYP51B) from the filamentous fungus Aspergillus fumigatus VT-1598 displayed a high affinity of binding to the enzyme in solution (dissociation constant, 13 ± 1 nM) and in the reconstituted enzymatic reaction was revealed to have an inhibitory potency stronger than the potencies of all other simultaneously tested antifungal drugs, including fluconazole, voriconazole, ketoconazole, and posaconazole. The X-ray structure of the VT-1598/A. fumigatus CYP51 complex was determined and depicts the distinctive binding mode of the inhibitor in the enzyme active site, suggesting the molecular basis of the improved drug potency and broad-spectrum antifungal activity. These data show the formation of an optimized hydrogen bond between the phenoxymethyl oxygen of VT-1598 and the imidazole ring nitrogen of His374, the CYP51 residue that is highly conserved across fungal pathogens and fungus specific. Comparative structural analysis of A. fumigatus CYP51/voriconazole and Candida albicans CYP51/VT-1161 complexes supports the role of H bonding in fungal CYP51/inhibitor complexes and emphasizes the importance of an optimal distance between this interaction and the inhibitor-heme iron interaction. Cellular experiments using two A. fumigatus strains (strains 32820 and 1022) displayed a direct correlation between the effects of the drugs on CYP51B activity and fungal growth inhibition, indicating the noteworthy anti-A. fumigatus potency of VT-1598 and confirming its promise as a broad-spectrum antifungal agent.
Collapse
|