201
|
González-García S, García-Peydró M, Alcain J, Toribio ML. Notch1 and IL-7 receptor signalling in early T-cell development and leukaemia. Curr Top Microbiol Immunol 2012; 360:47-73. [PMID: 22695916 DOI: 10.1007/82_2012_231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Notch receptors are master regulators of many aspects of development and tissue renewal in metazoans. Notch1 activation is essential for T-cell specification of bone marrow-derived multipotent progenitors that seed the thymus, and for proliferation and further progression of early thymocytes along the T-cell lineage. Deregulated activation of Notch1 significantly contributes to the generation of T-cell acute lymphoblastic leukaemia (T-ALL). In addition to Notch1 signals, survival and proliferation signals provided by the IL-7 receptor (IL-7R) are also required during thymopoiesis. Our understanding of the molecular mechanisms controlling stage-specific survival and proliferation signals provided by Notch1 and IL-7R has recently been improved by the discovery that the IL-7R is a transcriptional target of Notch1. Thus, Notch1 controls T-cell development, in part by regulating the stage- and lineage-specific expression of IL-7R. The finding that induction of IL-7R expression downstream of Notch1 also occurs in T-ALL highlights the important contribution that deregulated IL-7R expression and function may have in this pathology. Confirming this notion, oncogenic IL7R gain-of-function mutations have recently been identified in childhood T-ALL. Here we discuss the fundamental role of Notch1 and IL-7R signalling pathways in physiological and pathological T-cell development in mice and men, highlighting their close molecular underpinnings.
Collapse
Affiliation(s)
- Sara González-García
- Centro de Biología Molecular, Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
202
|
Sandy AR, Jones M, Maillard I. Notch signaling and development of the hematopoietic system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:71-88. [PMID: 22399340 DOI: 10.1007/978-1-4614-0899-4_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Notch signaling exerts multiple important functions in the hematopoietic system. Notch1-mediated signals are essential to induce the onset of definitive hematopoiesis within specialized domains of hemogenic endothelium in the fetal dorsal aorta. In contrast, Notch is dispensable for the subsequent maintenance of hematopoietic stem cells in the adult bone marrow. Notch is a key regulator of early T-cell development in the thymus. An expanding number of hematopoietic and lymphoid cell types have been reported to receive context-dependent inputs from the Notch pathway that regulate their differentiation and function. Progress in the field will continue to bring fundamental information about hematopoiesis and practical insights into the potential to modulate Notch signaling for therapeutic purposes.
Collapse
|
203
|
Tzoneva G, Ferrando AA. Recent advances on NOTCH signaling in T-ALL. Curr Top Microbiol Immunol 2012; 360:163-82. [PMID: 22673746 DOI: 10.1007/82_2012_232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NOTCH1 receptor signaling plays a central role in T-cell lineage specification and in supporting the growth and proliferation of immature T-cell progenitors in the thymus during lymphoid development. In T-cell acute lymphoblastic leukemia (T-ALL), a tumor resulting from the malignant transformation of T-cell progenitors, aberrant and constitutively active NOTCH1 signaling triggered by activating mutations in the NOTCH1 gene contributes to oncogenic transformation and is a hallmark of this disease. Most notably, small molecule γ-secretase inhibitors (GSIs) can effectively block NOTCH1 signaling in T-ALL, and could be exploited as a targeted therapy in this disease. In addition, a number of emerging anti-NOTCH therapeutic strategies including anti-NOTCH1 inhibitory antibodies, small peptide inhibitors of NOTCH signaling and combination therapies with GSIs and glucocorticoids, have recently been proposed. Finally, the identification of NOTCH1 mutations in solid tumors and chronic lymphocytic leukemias has increased even further the clinical relevance of NOTCH signaling as a therapeutic target in human cancer. Here we review our current understanding of NOTCH1-induced transformation, the mechanisms of action of oncogenic NOTCH1 in T-ALL and the therapeutic and prognostic implications of NOTCH1 mutations in T-ALL.
Collapse
Affiliation(s)
- Gannie Tzoneva
- Institute for Cancer Genetics and Graduate Program in Pathobiology and Molecular Medicine, Columbia University Medical Center, New York 10032, USA
| | | |
Collapse
|
204
|
Pozdnyakova O, Kutok JL, Rodig SJ. Emerging targeted therapies for lymphoid malignancies. Arch Pathol Lab Med 2011; 136:476-82. [PMID: 22188200 DOI: 10.5858/arpa.2010-0391-ra] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Our understanding of molecular events in the pathogenesis of hematologic malignancies has evolved substantially. The research data gathered in the past 3 decades have led to the definition of neoplastic disorders based on specific genetic and molecular alterations, which is reflected in the current World Health Organization's classification of tumors of hematopoietic and lymphoid tissues. Moreover, there have been dramatic successes in the development and implementation of therapies that specifically target the proteins and signaling cascades affected by tumor-specific genetic alterations. OBJECTIVE To review the development of select, novel therapies for lymphoid malignancies. DATA SOURCES We examine examples from the recent literature in targeting 4 major regulatory pathways: tyrosine kinase activation, transcription factor activity, apoptotic signaling, and histone acetylation in both preclinical models and early-stage (stage 1 and 2) clinical trials. CONCLUSION Given the successes of novel compounds that target signaling pathways critical to the growth and survival of lymphoid tumor cells, the routine clinical use of molecularly targeted therapies for the treatment of lymphoid malignancies is likely in the near future.
Collapse
Affiliation(s)
- Olga Pozdnyakova
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | | | | |
Collapse
|
205
|
Nwabo Kamdje AH, Krampera M. Notch signaling in acute lymphoblastic leukemia: any role for stromal microenvironment? Blood 2011; 118:6506-6514. [PMID: 21979940 DOI: 10.1182/blood-2011-08-376061] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Notch signaling pathway regulates many different events of embryonic and adult development; among them, Notch plays an essential role in the onset of hematopoietic stem cells and influences multiple maturation steps of developing lymphoid and myeloid cells. Deregulation of Notch signaling determines several human disorders, including cancer. In the last decade it became evident that Notch signaling plays pivotal roles in the onset and development of T- and B-cell acute lymphoblastic leukemia by regulating the intracellular molecular pathways involved in leukemia cell survival and proliferation. On the other hand, bone marrow stromal cells are equally necessary for leukemia cell survival by preventing blast cell apoptosis and favoring their reciprocal interactions and cross-talk with bone marrow microenvironment. Quite surprisingly, the link between Notch signaling pathway and bone marrow stromal cells in acute lymphoblastic leukemia has been pointed out only recently. In fact, bone marrow stromal cells express Notch receptors and ligands, through which they can interact with and influence normal and leukemia T- and B-cell survival. Here, the data concerning the development of T- and B-cell acute lymphoblastic leukemia has been critically reviewed in light of the most recent findings on Notch signaling in stromal microenvironment.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, Piazzale L. A. Scuro 10, Verona, Italy
| | | |
Collapse
|
206
|
Expansion of functionally defined mouse hematopoietic stem and progenitor cells by a short isoform of RUNX1/AML1. Blood 2011; 119:727-35. [PMID: 22130803 DOI: 10.1182/blood-2011-06-362277] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Self-renewal activity is essential for the maintenance and regeneration of the hematopoietic system. The search for molecules capable of promoting self-renewal and expanding hematopoietic stem cells (HSCs) has met with limited success. Here, we show that a short isoform (AML1a) of RUNX1/AML1 has such activities. Enforced AML1a expression expanded functionally defined HSCs, with an efficiency that was at least 20 times greater than that of the control in vivo and by 18-fold within 7 days ex vivo. The ex vivo-expanded HSCs could repopulate hosts after secondary transplantations. Moreover, AML1a expression resulted in vigorous and long-term (> 10(6)-fold at 4 weeks) ex vivo expansion of progenitor cell populations capable of differentiating into multilineages. Gene expression analysis revealed that AML1a expression was associated with up-regulation of genes, including Hoxa9, Meis1, Stat1, and Ski. shRNA-mediated silencing of these genes attenuated AML1a-mediated activities. Overall, these findings establish AML1a as an isoform-specific molecule that can influence several transcriptional regulators associated with HSCs, leading to enhanced self-renewal activity and hematopoietic stem/progenitor cell expansion ex vivo and in vivo. Therefore, the abilities of AML1a may have implications for HSC transplantation and transfusion medicine, given that the effects also can be obtained by cell-penetrating AML1a protein.
Collapse
|
207
|
Palermo R, Checquolo S, Giovenco A, Grazioli P, Kumar V, Campese AF, Giorgi A, Napolitano M, Canettieri G, Ferrara G, Schininà ME, Maroder M, Frati L, Gulino A, Vacca A, Screpanti I. Acetylation controls Notch3 stability and function in T-cell leukemia. Oncogene 2011; 31:3807-17. [PMID: 22120716 DOI: 10.1038/onc.2011.533] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R(1692-1731) mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both in vitro and in vivo in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R(1692-1731) mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents in vivo growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.
Collapse
Affiliation(s)
- R Palermo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Pediatric-inspired intensified therapy of adult T-ALL reveals the favorable outcome of NOTCH1/FBXW7 mutations, but not of low ERG/BAALC expression: a GRAALL study. Blood 2011; 118:5099-107. [DOI: 10.1182/blood-2011-02-334219] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Despite recent progress in the understanding of acute lymphoblastic leukemia (T-ALL) oncogenesis, few markers are sufficiently frequent in large subgroups to allow their use in therapeutic stratification. Low ERG and BAALC expression (E/Blow) and NOTCH1/FBXW7 (N/F) mutations have been proposed as powerful prognostic markers in large cohorts of adult T-ALL. We therefore compared the predictive prognostic value of N/F mutations versus E/Blow in 232 adult T-ALLs enrolled in the LALA-94 and Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) protocols. The outcome of T-ALLs treated in the pediatric-inspired GRAALL trials was significantly superior to the LALA-94 trial. Overall, 43% and 69% of adult T-ALL patients were classified as E/Blow and N/F mutated, respectively. Strikingly, the good prognosis of N/F mutated patients was stronger in more intensively treated, pediatric-inspired GRAALL patients. The E/B expression level did not influence the prognosis in any subgroup. N/F mutation status and the GRAALL trial were the only 2 independent factors that correlated with longer overall survival by multivariate analysis. This study demonstrates that the N/F mutational status and treatment protocol are major outcome determinants for adults with T-ALL, the benefit of pediatric inspired protocols being essentially restricted to the N/F mutated subgroup.
Collapse
|
209
|
Abstract
Classically known for its indispensible role in embryonic development, the Notch signalling pathway is gaining recognition for its regulation of adult tissue homoeostasis and aberrant activation in disease pathogenesis. The pathway has been implicated in cancer initiation and development, as well as early stages of cancer progression by regulating conserved cellular programs such as the epithelial-to-mesenchymal transition. We recently extended the role of Notch signalling to late stages of tumour progression by elucidating a stroma-dependent mechanism for the pathway in osteolytic bone metastasis. Of clinical significance, disrupting the Notch pathway and associated molecular mediators of Notch-dependent bone metastasis may provide novel therapeutic strategies to combat aggressive bone metastatic disease.
Collapse
|
210
|
Osteoclast progenitors reside in the peroxisome proliferator-activated receptor γ-expressing bone marrow cell population. Mol Cell Biol 2011; 31:4692-705. [PMID: 21947280 DOI: 10.1128/mcb.05979-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Osteoclasts are bone-resorbing cells essential for skeletal development, homeostasis, and regeneration. They derive from hematopoietic progenitors in the monocyte/macrophage lineage and differentiate in response to RANKL. However, the precise nature of osteoclast progenitors is a longstanding and important question. Using inducible peroxisome proliferator-activated receptor γ (PPARγ)-tTA TRE-GFP (green fluorescent protein) reporter mice, we show that osteoclast progenitors reside specifically in the PPARγ-expressing hematopoietic bone marrow population and identify the quiescent PPARγ(+) cells as osteoclast progenitors. Importantly, two PPARγ-tTA TRE-Cre-controlled genetic models provide compelling functional evidence. First, Notch activation in PPARγ(+) cells causes high bone mass due to impaired osteoclast precursor proliferation. Second, selective ablation of PPARγ(+) cells by diphtheria toxin also causes high bone mass due to decreased osteoclast numbers. Furthermore, PPARγ(+) cells respond to both pathological and pharmacological resorption-enhancing stimuli. Mechanistically, PPARγ promotes osteoclast progenitors by activating GATA2 transcription. These findings not only identify the long-sought-after osteoclast progenitors but also establish unprecedented tools for their visualization, isolation, characterization, and genetic manipulation.
Collapse
|
211
|
Notch-ing from T-cell to B-cell lymphoid malignancies. Cancer Lett 2011; 308:1-13. [PMID: 21652011 DOI: 10.1016/j.canlet.2011.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/08/2011] [Accepted: 05/12/2011] [Indexed: 01/09/2023]
Abstract
Notch receptors are transmembrane proteins critically determining cell fate and maintenance of progenitor cells in many developmental systems. Notch signaling is involved in stem cell self-renewal and regulates the main functions of cell life at different levels of development: cell proliferation, differentiation and apoptosis. By virtue of its involvement in the regulation of cell physiology, it is not surprising that a deregulation of the Notch pathway leads to the development of different tumors. In this review, we critically discuss the latest findings concerning Notch roles in hematologic oncology, with a special focus on T-cell acute lymphoblastic leukemia and B-cell malignancies. We also describe the molecular mediators of Notch-driven oncogenic effects and the current pharmacological approaches targeting Notch signaling.
Collapse
|
212
|
van Tetering G, Vooijs M. Proteolytic cleavage of Notch: "HIT and RUN". Curr Mol Med 2011; 11:255-69. [PMID: 21506924 DOI: 10.2174/156652411795677972] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/07/2011] [Indexed: 01/03/2023]
Abstract
The Notch pathway is a highly conserved signaling pathway in multicellular eukaryotes essential in controlling spatial patterning, morphogenesis and homeostasis in embryonic and adult tissues. Notch proteins coordinate cell-cell communication through receptor-ligand interactions between adjacent cells. Notch signaling is frequently deregulated by oncogenic mutation or overexpression in many cancer types. Notch activity is controlled by three sequential cleavage steps leading to ectodomain shedding and transcriptional activation. Here we review the key regulatory steps in the activation of Notch, from receptor maturation to receptor activation (HIT) via a rate-limiting proteolytic cascade (RUN) in the context of species-specific differences.
Collapse
Affiliation(s)
- G van Tetering
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
213
|
Koch U, Radtke F. Notch in T-ALL: new players in a complex disease. Trends Immunol 2011; 32:434-42. [DOI: 10.1016/j.it.2011.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 11/29/2022]
|
214
|
Huang Y, Lin L, Shanker A, Malhotra A, Yang L, Dikov MM, Carbone DP. Resuscitating cancer immunosurveillance: selective stimulation of DLL1-Notch signaling in T cells rescues T-cell function and inhibits tumor growth. Cancer Res 2011; 71:6122-31. [PMID: 21825014 DOI: 10.1158/0008-5472.can-10-4366] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deficiencies in immune function that accumulate during cancer immunoediting lead to a progressive escape from host immunosurveillance. Therapies that correct or overcome these defects could have a powerful impact on cancer management, but current knowledge of the types and mechanisms of immune escape is still incomplete. Here, we report a novel mechanism of escape from T-cell immunity that is caused by reduction in levels of the Delta family Notch ligands DLL1 and DLL4 in hematopoietic microenvironments. An important mediator of this effect was an elevation in the levels of circulating VEGF. Selective activation of the DLL1-Notch signaling pathway in bone marrow precursors enhanced T-cell activation and inhibited tumor growth. Conversely, tumor growth led to inhibition of Delta family ligand signaling through Notch in the hematopoietic environment, resulting in suppressed T-cell function. Overall, our findings uncover a novel mechanism of tumoral immune escape and suggest that a soluble multivalent form of DLL1 may offer a generalized therapeutic intervention to stimulate T-cell immunity and suppress tumor growth.
Collapse
Affiliation(s)
- Yuhui Huang
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
215
|
Critical roles of NOTCH1 in acute T-cell lymphoblastic leukemia. Int J Hematol 2011; 94:118-125. [PMID: 21814881 DOI: 10.1007/s12185-011-0899-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
NOTCH1 plays a central role in T-cell development and, when aberrantly activated, in acute T-cell lymphoblastic leukemia (T-ALL). As a transmembrane receptor that is ultimately converted into a transcription factor, NOTCH1 directly activates a spectrum of target genes, which function to mediate NOTCH1 signaling in normal or transformed T cells. During physiologic T-cell development, NOTCH1 has important functions in cell fate determination, proliferation, survival and metabolism. Activating NOTCH1 mutations occur in more than half of human patients with T-ALL, suggesting an important role for aberrant NOTCH1 signaling in the pathogenesis of this disease. Inhibiting NOTCH1 signaling in patient-derived cell lines and murine T-ALLs leads to growth arrest and/or apoptosis suggesting that NOTCH1 inhibitors can improve T-ALL treatment. However, there are challenges to translate NOTCH1 inhibitors to the clinic because of toxicity and resistance. This review focuses on molecular mechanisms of oncogenic NOTCH1 signaling, molecular and functional analysis of NOTCH1 transcriptional targets in T-ALL, and recent advances in therapeutic targeting of NOTCH1.
Collapse
|
216
|
Weber BN, Chi AWS, Chavez A, Yashiro-Ohtani Y, Yang Q, Shestova O, Bhandoola A. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 2011; 476:63-8. [PMID: 21814277 PMCID: PMC3156435 DOI: 10.1038/nature10279] [Citation(s) in RCA: 322] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/09/2011] [Indexed: 12/29/2022]
Abstract
The vertebrate thymus provides an inductive environment for T-cell development. Within the mouse thymus, Notch signals are indispensable for imposing the T-cell fate on multipotential haematopoietic progenitors, but the downstream effectors that impart T-lineage specification and commitment are not well understood. Here we show that a transcription factor, T-cell factor 1 (TCF-1; also known as transcription factor 7, T-cell specific, TCF7), is a critical regulator in T-cell specification. TCF-1 is highly expressed in the earliest thymic progenitors, and its expression is upregulated by Notch signals. Most importantly, when TCF-1 is forcibly expressed in bone marrow (BM) progenitors, it drives the development of T-lineage cells in the absence of T-inductive Notch1 signals. Further characterization of these TCF-1-induced cells revealed expression of many T-lineage genes, including T-cell-specific transcription factors Gata3 and Bcl11b, and components of the T-cell receptor. Our data suggest a model where Notch signals induce TCF-1, and TCF-1 in turn imprints the T-cell fate by upregulating expression of T-cell essential genes.
Collapse
Affiliation(s)
- Brittany Nicole Weber
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk Philadelphia, PA 19104
| | - Anthony Wei-Shine Chi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk Philadelphia, PA 19104
| | - Alejandro Chavez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk Philadelphia, PA 19104
| | - Yumi Yashiro-Ohtani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk Philadelphia, PA 19104
| | - Qi Yang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk Philadelphia, PA 19104
| | - Olga Shestova
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk Philadelphia, PA 19104
| | - Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3620 Hamilton Walk Philadelphia, PA 19104
| |
Collapse
|
217
|
Medyouf H, Gusscott S, Wang H, Tseng JC, Wai C, Nemirovsky O, Trumpp A, Pflumio F, Carboni J, Gottardis M, Pollak M, Kung AL, Aster JC, Holzenberger M, Weng AP. High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling. ACTA ACUST UNITED AC 2011; 208:1809-22. [PMID: 21807868 PMCID: PMC3171095 DOI: 10.1084/jem.20110121] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Notch-driven expression of IGF1R promotes the growth, viability, and transplantability of T-ALL cells. T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer of immature T cells that often shows aberrant activation of Notch1 and PI3K–Akt pathways. Although mutations that activate PI3K–Akt signaling have previously been identified, the relative contribution of growth factor-dependent activation is unclear. We show here that pharmacologic inhibition or genetic deletion of insulin-like growth factor 1 receptor (IGF1R) blocks the growth and viability of T-ALL cells, whereas moderate diminution of IGF1R signaling compromises leukemia-initiating cell (LIC) activity as defined by transplantability in syngeneic/congenic secondary recipients. Furthermore, IGF1R is a Notch1 target, and Notch1 signaling is required to maintain IGF1R expression at high levels in T-ALL cells. These findings suggest effects of Notch on LIC activity may be mediated in part by enhancing the responsiveness of T-ALL cells to ambient growth factors, and provide strong rationale for use of IGF1R inhibitors to improve initial response to therapy and to achieve long-term cure of patients with T-ALL.
Collapse
Affiliation(s)
- Hind Medyouf
- Terry Fox Laboratory/Department of Pathology, BC Cancer Agency, Vancouver, BC, V52 1L3 Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Identification of Flt3⁺CD150⁻ myeloid progenitors in adult mouse bone marrow that harbor T lymphoid developmental potential. Blood 2011; 118:2723-32. [PMID: 21791413 DOI: 10.1182/blood-2010-09-309989] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Common myeloid progenitors (CMPs) were first identified as progenitors that were restricted to myeloid and erythroid lineages. However, it was recently demonstrated that expression of both lymphoid- and myeloid-related genes could be detected in myeloid progenitors. Furthermore, these progenitors were able to give rise to T and B lymphocytes, in addition to myeloid cells. Yet, it was not known whether these progenitors were multipotent at the clonogenic level or there existed heterogeneity within these progenitors with different lineage potential. Here we report that previously defined CMPs possess T-lineage potential, and that this is exclusively found in the Flt3(+)CD150(-) subset of CMPs at the clonal level. In contrast, we did not detect B-lineage potential in CMP subsets. Therefore, these Flt3(+)CD150(-) myeloid progenitors were T/myeloid potent. Yet, Flt3(+)CD150(-) myeloid progenitors are not likely to efficiently traffic to the thymus and contribute to thymopoiesis under normal conditions because of the lack of CCR7 and CCR9 expression. Interestingly, both Flt3(+)CD150(-) and Flt3(-)CD150(-) myeloid progenitors are susceptible to Notch1-mediated T-cell acute lymphoblastic leukemia (T-ALL). Hence, gain-of-function Notch1 mutations occurring in developing myeloid progenitors, in addition to known T-lineage progenitors, could lead to T-ALL oncogenesis.
Collapse
|
219
|
Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci U S A 2011; 108:14908-13. [PMID: 21737748 DOI: 10.1073/pnas.1109023108] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Notch1 regulates gene expression by associating with the DNA-binding factor RBPJ and is oncogenic in murine and human T-cell progenitors. Using ChIP-Seq, we find that in human and murine T-lymphoblastic leukemia (TLL) genomes Notch1 binds preferentially to promoters, to RBPJ binding sites, and near imputed ZNF143, ETS, and RUNX sites. ChIP-Seq confirmed that ZNF143 binds to ∼40% of Notch1 sites. Notch1/ZNF143 sites are characterized by high Notch1 and ZNF143 signals, frequent cobinding of RBPJ (generally through sites embedded within ZNF143 motifs), strong promoter bias, and relatively low mean levels of activating chromatin marks. RBPJ and ZNF143 binding to DNA is mutually exclusive in vitro, suggesting RBPJ/Notch1 and ZNF143 complexes exchange on these sites in cells. K-means clustering of Notch1 binding sites and associated motifs identified conserved Notch1-RUNX, Notch1-ETS, Notch1-RBPJ, Notch1-ZNF143, and Notch1-ZNF143-ETS clusters with different genomic distributions and levels of chromatin marks. Although Notch1 binds mainly to gene promoters, ∼75% of direct target genes lack promoter binding and are presumably regulated by enhancers, which were identified near MYC, DTX1, IGF1R, IL7R, and the GIMAP cluster. Human and murine TLL genomes also have many sites that bind only RBPJ. Murine RBPJ-only sites are highly enriched for imputed REST (a DNA-binding transcriptional repressor) sites, whereas human RPBJ-only sites lack REST motifs and are more highly enriched for imputed CREB sites. Thus, there is a conserved network of cis-regulatory factors that interacts with Notch1 to regulate gene expression in TLL cells, as well as unique classes of divergent RBPJ-only sites that also likely regulate transcription.
Collapse
|
220
|
Ranganathan P, Vasquez-Del Carpio R, Kaplan FM, Wang H, Gupta A, VanWye JD, Capobianco AJ. Hierarchical phosphorylation within the ankyrin repeat domain defines a phosphoregulatory loop that regulates Notch transcriptional activity. J Biol Chem 2011; 286:28844-28857. [PMID: 21685388 DOI: 10.1074/jbc.m111.243600] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Notch signal transduction pathway mediates important cellular functions through direct cell-to-cell contact. Deregulation of Notch activity can lead to an altered cell proliferation and has been linked to many human cancers. Casein kinase 2 (CK2), a ubiquitous kinase, regulates several cellular processes by phosphorylating proteins involved in signal transduction, gene expression, and protein synthesis. In this report we identify Notch(ICD) as a novel target of phosphorylation by CK2. Using mapping and mutational studies, we identified serine 1901, located in the ankyrin domain of Notch, as the target amino acid. Interestingly, phosphorylation of serine 1901 by CK2 appears to generate a second phosphorylation site at threonine 1898. Furthermore, threonine 1898 phosphorylation only occurs when Notch forms a complex with Mastermind and CSL. Phosphorylation of both threonine 1898 and serine 1901 resulted in decreased binding of the Notch-Mastermind-CSL ternary complex to DNA and consequently lower transcriptional activity. These data indicate that the phosphorylation of serine 1901 and threonine 1898 negatively regulates Notch function by dissociating the complex from DNA. This study identifies a new component involved in regulation of Notch(ICD) transcriptional activity, reinforcing the notion that a precise and tight regulation is required for this essential signaling pathway.
Collapse
Affiliation(s)
- Prathibha Ranganathan
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami Florida 33136
| | - Rodrigo Vasquez-Del Carpio
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami Florida 33136
| | - Fred M Kaplan
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami Florida 33136
| | - Hong Wang
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami Florida 33136
| | - Ashu Gupta
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami Florida 33136
| | - Jeffrey D VanWye
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami Florida 33136
| | - Anthony J Capobianco
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami Florida 33136.
| |
Collapse
|
221
|
Crosstalk between NOTCH and AKT signaling during murine megakaryocyte lineage specification. Blood 2011; 118:1264-73. [PMID: 21653327 DOI: 10.1182/blood-2011-01-328567] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The NOTCH signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. However, the molecular basis for its role at the different steps of stem cell lineage commitment is unclear. We recently identified the NOTCH signaling pathway as a positive regulator of megakaryocyte lineage specification during hematopoiesis, but the developmental pathways that allow hematopoietic stem cell differentiation into the erythro-megakaryocytic lineages remain controversial. Here, we investigated the role of downstream mediators of NOTCH during megakaryopoiesis and report crosstalk between the NOTCH and PI3K/AKT pathways. We demonstrate the inhibitory role of phosphatase with tensin homolog and Forkhead Box class O factors on megakaryopoiesis in vivo. Finally, our data annotate developmental mechanisms in the hematopoietic system that enable a decision to be made either at the hematopoietic stem cell or the committed progenitor level to commit to the megakaryocyte lineage, supporting the existence of 2 distinct developmental pathways.
Collapse
|
222
|
A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet 2011; 43:673-8. [PMID: 21642990 DOI: 10.1038/ng.858] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 05/16/2011] [Indexed: 02/06/2023]
Abstract
The importance of individual microRNAs (miRNAs) has been established in specific cancers. However, a comprehensive analysis of the contribution of miRNAs to the pathogenesis of any specific cancer is lacking. Here we show that in T-cell acute lymphoblastic leukemia (T-ALL), a small set of miRNAs is responsible for the cooperative suppression of several tumor suppressor genes. Cross-comparison of miRNA expression profiles in human T-ALL with the results of an unbiased miRNA library screen allowed us to identify five miRNAs (miR-19b, miR-20a, miR-26a, miR-92 and miR-223) that are capable of promoting T-ALL development in a mouse model and which account for the majority of miRNA expression in human T-ALL. Moreover, these miRNAs produce overlapping and cooperative effects on tumor suppressor genes implicated in the pathogenesis of T-ALL, including IKAROS (also known as IKZF1), PTEN, BIM, PHF6, NF1 and FBXW7. Thus, a comprehensive and unbiased analysis of miRNA action in T-ALL reveals a striking pattern of miRNA-tumor suppressor gene interactions in this cancer.
Collapse
|
223
|
Hsu FC, Pajerowski AG, Nelson-Holte M, Sundsbak R, Shapiro VS. NKAP is required for T cell maturation and acquisition of functional competency. ACTA ACUST UNITED AC 2011; 208:1291-304. [PMID: 21624937 PMCID: PMC3173250 DOI: 10.1084/jem.20101874] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Newly generated T cells are unable to respond to antigen/MHC. Rather, post-selection single-positive thymocytes must undergo T cell maturation to gain functional competency and enter the long-lived naive peripheral T cell pool. This process is poorly understood, as no gene specifically required for T cell maturation has been identified. Here, we demonstrate that loss of the transcriptional repressor NKAP results in a complete block in T cell maturation. In CD4-cre NKAP conditional knockout mice, thymic development including positive selection occurs normally, but there is a cell-intrinsic defect in the peripheral T cell pool. All peripheral naive CD4-cre NKAP conditional knockout T cells were found to be functionally immature recent thymic emigrants. This defect is not simply in cell survival, as the T cell maturation defect was not rescued by a Bcl-2 transgene. Thus, NKAP is required for T cell maturation and the acquisition of functional competency.
Collapse
Affiliation(s)
- Fan-Chi Hsu
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | | | | |
Collapse
|
224
|
Choy W, Kim W, Nagasawa D, Stramotas S, Yew A, Gopen Q, Parsa AT, Yang I. The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus 2011; 30:E6. [DOI: 10.3171/2011.2.focus1116] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Meningiomas are mostly benign, slow-growing tumors of the CNS that originate from arachnoidal cap cells. While monosomy 22 is the most frequent genetic abnormality found in meningiomas, a multitude of other aberrant chromosomal alterations, signaling pathways, and growth factors have been implicated in its pathogenesis. Losses on 22q12.2, a region encoding the tumor suppressor gene merlin, represent the most common genetic alterations in early meningioma formation. Malignant meningioma progression, however, is associated with more complex karyotypes and greater genetic instability. Cytogenetic studies of atypical and anaplastic meningiomas revealed gains and losses on chromosomes 9, 10, 14, and 18, with amplifications on chromosome 17. However, the specific gene targets in a majority of these chromosomal abnormalities remain elusive.
Studies have also implicated a myriad of aberrant signaling pathways involved with meningioma tumorigenesis, including those involved with proliferation, angiogenesis, and autocrine loops. Understanding these disrupted pathways will aid in deciphering the relationship between various genetic changes and their downstream effects on meningioma pathogenesis.
Despite advancements in our understanding of meningioma pathogenesis, the conventional treatments, including surgery, radiotherapy, and stereotactic radiosurgery, have remained largely stagnant. Surgery and radiation therapy are curative in the majority of lesions, yet treatment remains challenging for meningiomas that are recurrent, aggressive, or refractory to conventional treatments. Future therapies will include combinations of targeted molecular agents as a result of continued progress in the understanding of genetic and biological changes associated with meningiomas.
Collapse
Affiliation(s)
| | - Won Kim
- 1Department of Neurological Surgery, and
| | | | | | - Andrew Yew
- 1Department of Neurological Surgery, and
| | - Quinton Gopen
- 2Division of Otolaryngology, University of California Los Angeles; and
| | - Andrew T. Parsa
- 3Department of Neurological Surgery, University of California, San Francisco, California
| | - Isaac Yang
- 1Department of Neurological Surgery, and
| |
Collapse
|
225
|
Constitutive Notch pathway activation in murine ZMYM2-FGFR1-induced T-cell lymphomas associated with atypical myeloproliferative disease. Blood 2011; 117:6837-47. [PMID: 21527531 DOI: 10.1182/blood-2010-07-295725] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The ZMYM2-FGFR1 (formerly known as ZNF198-FGFR1) fusion kinase induces stem cell leukemia-lymphoma syndrome (SCLL), a hematologic malignancy characterized by rapid transformation to acute myeloid leukemia and T-lymphoblastic lymphoma. In the present study, we demonstrate frequent, constitutive activation of Notch1 and its downstream target genes in T-cell lymphomas that arose in a murine model of ZMYM2-FGFR1 SCLL. Notch up-regulation was also demonstrated in human SCLL- and FGFR1OP2-FGFR1-expressing KG-1 cells. To study the role of Notch in T-cell lymphomagenesis, we developed a highly tumorigenic cell line from ZMYM2-FGFR1-expressing cells. Pharmacologic inhibition of Notch signaling in these cells using γ-secretase inhibitors significantly delayed leukemogenesis in vivo. shRNA targeting of Notch1, as well as c-promoter-binding factor 1 (CBF1) and mastermind-like 1 (MAML1), 2 essential cofactors involved in transcriptional activation of Notch target genes, also significantly delayed or inhibited tumorigenesis in vivo. Mutation analysis demonstrated that 5' promoter deletions and alternative promoter usage were responsible for constitutive activation of Notch1 in all T-cell lymphomas. These data demonstrate the importance of Notch signaling in the etiology of SCLL, and suggest that targeting this pathway could provide a novel strategy for molecular therapies to treat SCLL patients.
Collapse
|
226
|
Li X, Sanda T, Look AT, Novina CD, von Boehmer H. Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL. ACTA ACUST UNITED AC 2011; 208:663-75. [PMID: 21464222 PMCID: PMC3135352 DOI: 10.1084/jem.20102384] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
miR-451 represses expression of Myc and acts as a tumor suppressor in murine and human T cell acute lymphoblastic leukemia. The NOTCH1 signaling pathway is a critical determinant of cell fate decisions and drives oncogenesis through mechanisms that are incompletely understood. Using an established mouse model of T cell acute lymphoblastic leukemia (T-ALL), here we report that induction of intracellular Notch1 (ICN1) leads to repression of miR-451 and miR-709. ICN1 decreases expression of these miRNAs by inducing degradation of the E2a tumor suppressor, which transcriptionally activates the genes encoding miR-451 and miR-709. Both miR-451 and miR-709 directly repress Myc expression. In addition, miR-709 directly represses expression of the Akt and Ras-GRF1 oncogenes. We also show that repression of miR-451 and miR-709 expression is required for initiation and maintenance of mouse T-ALL. miR-451 but not miR-709 is conserved in humans, and human T-ALLs with activating NOTCH1 mutations have decreased miR-451 and increased MYC levels compared with T-ALLs with wild-type NOTCH1. Thus, miR-451 and miR-709 function as potent suppressors of oncogenesis in NOTCH1-induced mouse T-ALL, and miR-451 influences MYC expression in human T-ALL bearing NOTCH1 mutations.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
227
|
Guo D, Teng Q, Ji C. NOTCH and phosphatidylinositide 3-kinase/phosphatase and tensin homolog deleted on chromosome ten/AKT/mammalian target of rapamycin (mTOR) signaling in T-cell development and T-cell acute lymphoblastic leukemia. Leuk Lymphoma 2011; 52:1200-10. [PMID: 21463127 DOI: 10.3109/10428194.2011.564696] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activating mutations in NOTCH1 consitute the most prominent genetic abnormality in T-cell acute lymphoblastic leukemia (T-ALL). However, most T-ALL cell lines with NOTCH1 mutations are resistant to treatment with γ-secretase inhibitors (GSIs). The spotlight is now shifting to the phosphatidylinositide 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome ten (PTEN)/AKT/mammalian target of rapamycin (mTOR) pathway as another key potential target. These two signaling routes are deregulated in many types of cancer. In this review we discuss these two pathways with respect to their signaling mechanisms, functions during T-cell development, and their mutual roles in the development of T-ALL.
Collapse
Affiliation(s)
- Dongmei Guo
- Department of Hematology, The Central Hospital of Taian, Taian, Shandong, P R China.
| | | | | |
Collapse
|
228
|
Mansour MR. Oncogenic Kras and Notch-1 cooperate in T-cell acute lymphoblastic leukemia/lymphoma. Expert Rev Hematol 2011; 2:133-6. [PMID: 21083447 DOI: 10.1586/ehm.09.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mutations of the Ras family are one of the most common somatic events found in all human cancers, although they are relatively rare in T-cell acute lymphoblastic leukemia (T-ALL). In mice, conditional expression of oncogenic Kras(G12D) from its endogenous promoter causes a fatal myeloproliferative disorder, and only rarely a T-ALL-like disease. In the article being evaluated, the authors demonstrate that primary mice expressing oncogenic Kras have a block in T-cell differentiation at the double-negative 1 stage. Interestingly, most secondarily transplanted mice develop a fatal T-ALL-like disease. Sequencing of NOTCH-1 showed that 50% of these mice harbored truncating mutations in the PEST domain that would be predicted to activate Notch signaling. Cell lines established from some of the mice demonstrated sensitivity to γ-secretase inhibition, suggesting that even when NOTCH-1 mutations occur as secondary collaborating events, tumors retain a dependency on this pathway that might be exploitable clinically.
Collapse
Affiliation(s)
- Marc R Mansour
- Department of Hematology, Cancer Institute, University College London, 72 Huntley Street, London, UK.
| |
Collapse
|
229
|
D'Altri T, Gonzalez J, Aifantis I, Espinosa L, Bigas A. Hes1 expression and CYLD repression are essential events downstream of Notch1 in T-cell leukemia. Cell Cycle 2011; 10:1031-6. [PMID: 21389783 DOI: 10.4161/cc.10.7.15067] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Notch activation is a current event in T Acute Lymphoblastic Leukemia (T-ALL) but the downstream elements that are able to support Notch-dependent leukemias are not well characterized. We have recently shown that the Notch-Hes1-CYLD-NFkB axis is crucial in the maintenance of T-ALL, but detailed evaluation of the contribution of each one of these elements is still missing. Here we use a Notch1-induced leukemia in vivo model to study the effect of silencing the Notch-target gene, Hes1, or over-expressing the Hes1-target, CYLD. We here show that both strategies completely abolish the ability of constitutive active Notch1 to generate T-ALL.
Collapse
|
230
|
Abstract
Despite progress in our understanding of the growth factors that support the progressive maturation of the various cell lineages of the hematopoietic system, less is known about factors that govern the self-renewal of hematopoietic stem and progenitor cells (HSPCs), and our ability to expand human HSPC numbers ex vivo remains limited. Interest in stem cell expansion has been heightened by the increasing importance of HSCs in the treatment of both malignant and nonmalignant diseases, as well as their use in gene therapy. To date, most attempts to ex vivo expand HSPCs have used hematopoietic growth factors but have not achieved clinically relevant effects. More recent approaches, including our studies in which activation of the Notch signaling pathway has enabled a clinically relevant ex vivo expansion of HSPCs, have led to renewed interest in this arena. Here we briefly review early attempts at ex vivo expansion by cytokine stimulation followed by an examination of our studies investigating the role of Notch signaling in HSPC self-renewal. We will also review other recently developed approaches for ex vivo expansion, primarily focused on the more extensively studied cord blood-derived stem cell. Finally, we discuss some of the challenges still facing this field.
Collapse
|
231
|
Ding X, Zhu F, Li T, Zhou Q, Hou FF, Nie J. Numb protects renal proximal tubular cells from puromycin aminonucleoside-induced apoptosis through inhibiting Notch signaling pathway. Int J Biol Sci 2011; 7:269-78. [PMID: 21448337 PMCID: PMC3065739 DOI: 10.7150/ijbs.7.269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/11/2011] [Indexed: 11/05/2022] Open
Abstract
Numb was originally discovered as an intrinsic cell fate determinant in Drosophila by antagonizing Notch signaling. The present study is to characterize the role of Numb in oxidative stress-induced apoptosis of renal proximal tubular cells. Exposure of NRK52E cells to puromycin aminonucleoside (PA) resulted in caspase 3-dependent apoptosis. Numb expression was downregulated by PA in a time- and dose-dependent manner. Knocking down endogenous Numb by siRNA sensitized NRK52E cells to PA-induced apoptosis, whereas overexpressing Numb protected NRK52E cells from PA-induced apoptosis. Moreover, PA activated Notch signaling in a time- and dose-dependent manner as indicated by increased expression of the intracellular domain of Notch and Hes-1. Notch signaling inhibitor DAPT significantly attenuated Numb siRNA-augmented apoptosis. On the other hand, overexpression of intracellular domain of Notch1 could reverse the protective effect of Numb on PA-induced apoptosis. Taken together, our data demonstrated that, in renal proximal tubular cells, Numb functions as a protective molecule on PA-induced apoptosis through antagonizing Notch signaling activity.
Collapse
Affiliation(s)
- Xuebing Ding
- Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
232
|
Notch, a T-ALL order. Blood 2011; 117:2749-50. [DOI: 10.1182/blood-2011-01-330225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
233
|
Li X, von Boehmer H. Notch Signaling in T-Cell Development and T-ALL. ISRN HEMATOLOGY 2011; 2011:921706. [PMID: 22111016 PMCID: PMC3200084 DOI: 10.5402/2011/921706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 12/15/2010] [Indexed: 11/23/2022]
Abstract
The Notch signaling pathway is an evolutionarily conserved cell signaling system present in most multicellular organisms, as it controls cell fate specification by regulating cell proliferation, differentiation, apoptosis, and survival. Regulation of the Notch signaling pathway can be achieved at multiple levels. Notch proteins are involved in lineage fate decisions in a variety of tissues in various species. Notch is essential for T lineage cell differentiation including T versus B and αβ versus γδ lineage specification. In this paper, we discuss Notch signaling in normal T-cell maturation and differentiation as well as in T-cell acute lymphoblastic lymphoma/leukemia.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Harald von Boehmer
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| |
Collapse
|
234
|
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic neoplasm characterized by malignant expansion of immature T cells. Activated NOTCH (Notch(IC)) and c-MYC expression are increased in a large percentage of human T-ALL tumors. Furthermore, c-MYC has been shown to be a NOTCH target gene. Although activating mutations of Notch have been found in human T-ALL tumors, there is little evidence that the c-MYC locus is altered in this neoplasm. It was previously demonstrated that Notch and c-Myc-regulated genes have a broadly overlapping profile, including genes involved in cell cycle progression and metabolism. Given that Notch and c-Myc appear to function similarly in T-ALL, we sought to determine whether these two oncogenes could substitute for each other in T-ALL tumors. Here we report that NOTCH(IC) is able to maintain T-ALL tumors formed in the presence of exogenous NOTCH(IC) and c-MYC when exogenous c-MYC expression is extinguished. In contrast, c-MYC is incapable of maintaining these tumors in the absence of NOTCH(IC). We propose that failure of c-MYC to maintain these tumors is the result of p53-mediated apoptosis. These results demonstrate that T-ALL maintenance is dependent on NOTCH(IC), but not c-MYC, demonstrating that NOTCH is oncogenic dominant in T-ALL tumors.
Collapse
|
235
|
Notch protection against apoptosis in T-ALL cells mediated by GIMAP5. Blood Cells Mol Dis 2010; 45:201-9. [PMID: 20817506 DOI: 10.1016/j.bcmd.2010.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/14/2010] [Accepted: 06/21/2010] [Indexed: 12/16/2022]
Abstract
Recent studies have highlighted the role of Notch signalling in the development of T cell acute lymphoblasic leukaemia (T-ALL). Over-expression of Notch3 and gain of function mutations in the Notch1 gene have been reported. The aims of this study were to determine the effect of Notch signalling on apoptosis in human T-ALL cell lines and to identify targets of Notch signalling that may mediate this effect. Functional studies showed that inhibition of Notch signalling using gamma secretase inhibitors promoted glucocorticoid-induced apoptosis in cells carrying gain of function mutations in Notch1. Moreover, ectopic expression of constitutively activated Notch provided protection against glucocorticoid-induced apoptosis, indicating that signalling via Notch may also contribute to the development of T-ALL by conferring resistance to apoptosis. Microarray analysis revealed that GIMAP5, a gene coding for an anti-apoptotic intracellular protein, is upregulated by Notch in T-ALL cell lines. Knockdown of GIMAP5 expression using siRNA promoted glucocorticoid-induced apoptosis in T-ALL cells carrying gain of function mutations in Notch1 and in T-ALL cells engineered to express ectopic constitutively activated Notch indicating that Notch signalling protects T-ALL cells from apoptosis by upregulating the expression of GIMAP5.
Collapse
|
236
|
Shiba N, Kanazawa T, Park MJ, Okuno H, Tamura K, Tsukada S, Hayashi Y, Arakawa H. NOTCH1 mutation in a female with myeloid/NK cell precursor acute leukemia. Pediatr Blood Cancer 2010; 55:1406-9. [PMID: 20730882 DOI: 10.1002/pbc.22758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A 6-year-old Japanese female was diagnosed as having myeloid/NK cell precursor acute leukemia (MNKL) using immunocytochemical analysis. The patient was treated by cord blood transplantation from an HLA 1-locus mismatched unrelated donor after chemotherapy comprising cytosine arabinoside, idarubicin, etoposide, and L-asparaginase. We detected a nonsense mutation, C7412A, resulting in S2471X, where X is a terminal codon, in the PEST domain of NOTCH1 in this patient. The presence of the NOTCH1 activating mutation in MNKL might suggest a possible role in the leukemogenesis of MNKL.
Collapse
Affiliation(s)
- Norio Shiba
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Liu H, Chi AW, Arnett KL, Chiang MY, Xu L, Shestova O, Wang H, Li YM, Bhandoola A, Aster JC, Blacklow SC, Pear WS. Notch dimerization is required for leukemogenesis and T-cell development. Genes Dev 2010; 24:2395-407. [PMID: 20935071 PMCID: PMC2964750 DOI: 10.1101/gad.1975210] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/13/2010] [Indexed: 12/30/2022]
Abstract
Notch signaling regulates myriad cellular functions by activating transcription, yet how Notch selectively activates different transcriptional targets is poorly understood. The core Notch transcriptional activation complex can bind DNA as a monomer, but it can also dimerize on DNA-binding sites that are properly oriented and spaced. However, the significance of Notch dimerization is unknown. Here, we show that dimeric Notch transcriptional complexes are required for T-cell maturation and leukemic transformation but are dispensable for T-cell fate specification from a multipotential precursor. The varying requirements for Notch dimerization result from the differential sensitivity of specific Notch target genes. In particular, c-Myc and pre-T-cell antigen receptor α (Ptcra) are dimerization-dependent targets, whereas Hey1 and CD25 are not. These findings identify functionally important differences in the responsiveness among Notch target genes attributable to the formation of higher-order complexes. Consequently, it may be possible to develop a new class of Notch inhibitors that selectively block outcomes that depend on Notch dimerization (e.g., leukemogenesis).
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cell Line, Tumor
- Cell Proliferation
- Cells, Cultured
- Flow Cytometry
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/pathology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Multimerization
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Receptor, Notch1/chemistry
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Signal Transduction/genetics
- Signal Transduction/physiology
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Hudan Liu
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Anthony W.S. Chi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kelly L. Arnett
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Mark Y. Chiang
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lanwei Xu
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Olga Shestova
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hongfang Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yue-Ming Li
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen C. Blacklow
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Warren S. Pear
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
238
|
Aster JC, Blacklow SC, Pear WS. Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. J Pathol 2010; 223:262-73. [PMID: 20967796 DOI: 10.1002/path.2789] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 12/21/2022]
Abstract
Notch receptors participate in a highly conserved signalling pathway that regulates normal development and tissue homeostasis in a context- and dose-dependent manner. Deregulated Notch signalling has been implicated in many diseases, but the clearest example of a pathogenic role is found in T-cell lymphoblastic leukaemia/lymphoma (T-LL), in which the majority of human and murine tumours have acquired mutations that lead to aberrant increases in Notch1 signalling. Remarkably, it appears that the selective pressure for Notch mutations is virtually unique among cancers to T-LL, presumably reflecting a special context-dependent role for Notch in normal T-cell progenitors. Nevertheless, there are some recent reports suggesting that Notch signalling has subtle, yet important roles in other forms of haematological malignancy as well. Here, we review the role of Notch signalling in various blood cancers, focusing on T-LL with an eye towards targeted therapeutics.
Collapse
Affiliation(s)
- Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | |
Collapse
|
239
|
Paganin M, Ferrando A. Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia. Blood Rev 2010; 25:83-90. [PMID: 20965628 DOI: 10.1016/j.blre.2010.09.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic tumor resulting from the malignant transformation of immature T-cell progenitors. Originally associated with a dismal prognosis, the outcome of T-ALL patients has improved remarkably over the last two decades as a result of the introduction of intensified chemotherapy protocols. However, these treatments are associated with significant acute and long-term toxicities, and the treatment of patients presenting with primary resistant disease or those relapsing after a transient response remains challenging. T-ALL is a genetically heterogeneous disease in which numerous chromosomal and genetic alterations cooperate to promote the aberrant proliferation and survival of leukemic lymphoblasts. However, the identification of activating mutations in the NOTCH1 gene in over 50% of T-ALL cases has come to define aberrant NOTCH signaling as a central player in this disease. Therefore, the NOTCH pathway represents an important potential therapeutic target. In this review, we will update our current understanding of the molecular basis of T-ALL, with a particular focus on the role of the NOTCH1 oncogene and the development of anti-NOTCH1 targeted therapies for the treatment of this disease.
Collapse
|
240
|
Hughes DPM. How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treat Res 2010; 152:479-96. [PMID: 20213410 DOI: 10.1007/978-1-4419-0284-9_28] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Controlling metastasis is the key to improving outcomes for osteosarcoma patients; yet our knowledge of the mechanisms regulating the metastatic process is incomplete. Clearly Fas and Ezrin are important, but other genes must play a role in promoting tumor spread. Early developmental pathways are often recapitulated in malignant tissues, and these genes are likely to be important in regulating the primitive behaviors of tumor cells, including invasion and metastasis. The Notch pathway is a highly conserved regulatory signaling network involved in many developmental processes and several cancers, at times serving as an oncogene and at others, behaving as a tumor suppressor. In normal limb development, Notch signaling maintains the apical ectodermal ridge in the developing limb bud and regulated size of bone and muscles. Here, we examine the role of Notch signaling in promoting metastasis of osteosarcoma, and the underlying regulatory processes that control Notch pathway expression and activity in the disease. We have shown that, compared to normal human osteoblasts and non-metastatic osteosarcoma cell lines, osteosarcoma cell lines with the ability to metastasize have higher levels of Notch 1, Notch 2, the Notch ligand DLL1 and the Notch-induced gene Hes1. When invasive osteosarcoma cells are treated with small molecule inhibitors of gamma-secretase, which blocks Notch activation, invasiveness is abrogated. Direct retroviral expression has shown that Hes1 expression was necessary for osteosarcoma invasiveness and accounted for the observations. In a novel orthotopic murine xenograft model of osteosarcoma pulmonary metastasis, blockade of Hes1 expression and Notch signaling eliminated spread of disease from the tibial primary tumor. In a sample of archival human osteosarcoma tumor specimens, expression of Hes1 mRNA was inversely correlated with survival (n=16 samples, p=0.04). Expression of the microRNA 34 cluster, which is known to downregulate DLL1, Notch 1 and Notch 2, was inversely correlated with invasiveness in a small panel of osteosarcoma tumors, suggesting that this family of microRNAs may be responsible for regulating Notch expression in at least some tumors. Further, exposure to valproic acid at therapeutic concentrations induced expression of Notch genes and caused a 250-fold increase in invasiveness for non-invasive cell lines, but had no discernible effect on those lines that expressed high levels of Notch without valproic acid treatment, suggesting a role for HDAC in regulating Notch pathway expression in osteosarcoma. These findings show that the Notch pathway is important in regulating osteosarcoma metastasis and may be useful as a therapeutic target. Better understanding of Notch's role and its regulation will be essential in planning therapies with other agents, especially the use of valproic acid and other HDAC inhibitors.
Collapse
Affiliation(s)
- Dennis P M Hughes
- Children's Cancer Hospital, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA.
| |
Collapse
|
241
|
Oricchio E, Wolfe AL, Schatz JH, Mavrakis KJ, Wendel HG. Mouse models of cancer as biological filters for complex genomic data. Dis Model Mech 2010; 3:701-4. [PMID: 20876355 DOI: 10.1242/dmm.006296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetically and pathologically accurate mouse models of leukemia and lymphoma have been developed in recent years. Adoptive transfer of genetically modified hematopoietic progenitor cells enables rapid and highly controlled gain- and loss-of-function studies for these types of cancer. In this Commentary, we discuss how these highly versatile experimental approaches can be used as biological filters to pinpoint transformation-relevant activities from complex cancer genome data. We anticipate that the functional identification of genetic 'drivers' using mouse models of leukemia and lymphoma will facilitate the development of molecular diagnostics and mechanism-based therapies for patients that suffer from these diseases.
Collapse
Affiliation(s)
- Elisa Oricchio
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
242
|
NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia 2010; 24:2023-31. [PMID: 20861920 DOI: 10.1038/leu.2010.205] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Risk-adjusted treatment stratification in T-cell acute lymphoblastic leukemias (T-ALLs) is currently based only on early response to chemotherapy. We investigated the prognostic implication of hyperactivation of NOTCH pathway resulting from mutations of NOTCH1 or FBXW7 in children with T-ALL enrolled in EORTC-CLG trials. Overall, 80 out of 134 (60%) patients were NOTCH+ (NOTCH1 and/or FBXW7 mutated). Although clinical presentations were not significantly associated with NOTCH status, NOTCH+ patients showed a better early response to chemotherapy as compared with NOTCH- patients, according to the rate of poor pre-phase 'responders' (25% versus 44%; P=0.02) and the incidence of high minimal residual disease (MRD) levels (11% (7/62) versus 32% (10/31); P=0.01) at completion of induction. However, the outcome of NOTCH+ patients was similar to that of NOTCH- patients, with a 5-year event-free survival (EFS) of 73% and 70% (P=0.82), and 5-year overall survival of 82% and 79% (P=0.62), respectively. In patients with high MRD levels, the 5-year EFS rate was 0% (NOTCH+) versus 42% (NOTCH-), whereas in those with low MRD levels, the outcome was similar: 76% (NOTCH+) versus 78% (NOTCH-). The incidence of isolated central nervous system (CNS) relapses was relatively high in NOTCH1+ patients (8.3%), which could be related to a higher propensity of NOTCH+ leukemic blasts to target the CNS.
Collapse
|
243
|
Oncogenic activation of the Notch1 gene by deletion of its promoter in Ikaros-deficient T-ALL. Blood 2010; 116:5443-54. [PMID: 20829372 DOI: 10.1182/blood-2010-05-286658] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Notch pathway is frequently activated in T-cell acute lymphoblastic leukemias (T-ALLs). Of the Notch receptors, Notch1 is a recurrent target of gain-of-function mutations and Notch3 is expressed in all T-ALLs, but it is currently unclear how these receptors contribute to T-cell transformation in vivo. We investigated the role of Notch1 and Notch3 in T-ALL progression by a genetic approach, in mice bearing a knockdown mutation in the Ikaros gene that spontaneously develop Notch-dependent T-ALL. While deletion of Notch3 has little effect, T cell-specific deletion of floxed Notch1 promoter/exon 1 sequences significantly accelerates leukemogenesis. Notch1-deleted tumors lack surface Notch1 but express γ-secretase-cleaved intracellular Notch1 proteins. In addition, these tumors accumulate high levels of truncated Notch1 transcripts that are caused by aberrant transcription from cryptic initiation sites in the 3' part of the gene. Deletion of the floxed sequences directly reprograms the Notch1 locus to begin transcription from these 3' promoters and is accompanied by an epigenetic reorganization of the Notch1 locus that is consistent with transcriptional activation. Further, spontaneous deletion of 5' Notch1 sequences occurs in approximately 75% of Ikaros-deficient T-ALLs. These results reveal a novel mechanism for the oncogenic activation of the Notch1 gene after deletion of its main promoter.
Collapse
|
244
|
Meijerink JP. Genetic rearrangements in relation to immunophenotype and outcome in T-cell acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2010; 23:307-18. [DOI: 10.1016/j.beha.2010.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
245
|
Lee-Sherick AB, Linger RMA, Gore L, Keating AK, Graham DK. Targeting paediatric acute lymphoblastic leukaemia: novel therapies currently in development. Br J Haematol 2010; 151:295-311. [PMID: 20813012 DOI: 10.1111/j.1365-2141.2010.08282.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Modifications to the treatment of acute lymphoblastic leukaemia (ALL) in children have led to a dramatic increase in survival in the past 40 years. Despite this success, a significant subset of paediatric leukaemia patients either relapse or fail to ever achieve a complete remission. Additionally, some patients necessitate treatment with intensified chemotherapy regimens due to clinical or laboratory findings which identify them as high risk. These patients are unlikely to respond to further minor adjustments to the dosing or timing of administration of the same chemotherapy medications. Many novel targeted therapies for the treatment of childhood ALL provide potential mechanisms to further improve cure rates, and provide the possibility of minimizing toxicity to non-malignant cells, given their specificity to malignant cell phenotypes. This article explores many of the potential targeted therapies in varying stages of development, from those currently in clinical trials to those still being refined in the research laboratory.
Collapse
Affiliation(s)
- Alisa B Lee-Sherick
- Department of Paediatrics, Section of Haematology, Oncology, and Bone Marrow Transplantation, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | | | | | | | | |
Collapse
|
246
|
Khwaja SS, Liu H, Tong C, Jin F, Pear WS, van Deursen J, Bram RJ. HIV-1 Rev-binding protein accelerates cellular uptake of iron to drive Notch-induced T cell leukemogenesis in mice. J Clin Invest 2010; 120:2537-48. [PMID: 20516639 DOI: 10.1172/jci41277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 04/19/2010] [Indexed: 12/22/2022] Open
Abstract
Somatic activating mutations in Notch1 contribute to the pathogenesis of T cell acute lymphoblastic lymphoma (T-ALL), but how activated Notch1 signaling exerts this oncogenic effect is not completely understood. Here we identify HIV-1 Rev-binding protein (Hrb), a component of the clathrin-mediated endocytosis machinery, as a critical mediator of Notch-induced T-ALL development in mice. Hrb was found to be a direct transcriptional target of Notch1, and Hrb loss reduced the incidence or delayed the onset of T-ALL in mouse models in which activated Notch1 signaling either contributes to or drives leukemogenesis. Consistent with this observation, Hrb supported survival and proliferation of hematopoietic and T cell precursor cells in vitro. We demonstrated that Hrb accelerated the uptake of transferrin, which was required for upregulation of the T cell protooncogene p21. Indeed, iron-deficient mice developed Notch1-induced T-ALL substantially more slowly than control mice, further supporting a critical role for iron uptake during leukemogenesis. Taken together, these results reveal that Hrb is a critical Notch target gene that mediates lymphoblast transformation and disease progression via its ability to satisfy the enhanced demands of transformed lymphoblasts for iron. Further, our data suggest that Hrb may be targeted to improve current treatment or design novel therapies for human T-ALL patients.
Collapse
Affiliation(s)
- Shariq S Khwaja
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
247
|
Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol 2010; 11:717-24. [PMID: 20622884 DOI: 10.1038/ni.1901] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/11/2010] [Indexed: 12/12/2022]
Abstract
ZFP36L1 and ZFP36L2 are RNA-binding proteins (RBPs) that interact with AU-rich elements in the 3' untranslated region of mRNA, which leads to mRNA degradation and translational repression. Here we show that mice that lacked ZFP36L1 and ZFP36L2 during thymopoiesis developed a T cell acute lymphoblastic leukemia (T-ALL) dependent on the oncogenic transcription factor Notch1. Before the onset of T-ALL, thymic development was perturbed, with accumulation of cells that had passed through the beta-selection checkpoint without first expressing the T cell antigen receptor beta-chain (TCRbeta). Notch1 expression was higher in untransformed thymocytes in the absence of ZFP36L1 and ZFP36L2. Both RBPs interacted with evolutionarily conserved AU-rich elements in the 3' untranslated region of Notch1 and suppressed its expression. Our data establish a role for ZFP36L1 and ZFP36L2 during thymocyte development and in the prevention of malignant transformation.
Collapse
|
248
|
Tremblay M, Tremblay CS, Herblot S, Aplan PD, Hébert J, Perreault C, Hoang T. Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Genes Dev 2010; 24:1093-105. [PMID: 20516195 PMCID: PMC2878648 DOI: 10.1101/gad.1897910] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/12/2010] [Indexed: 11/25/2022]
Abstract
Deciphering molecular events required for full transformation of normal cells into cancer cells remains a challenge. In T-cell acute lymphoblastic leukemia (T-ALL), the genes encoding the TAL1/SCL and LMO1/2 transcription factors are recurring targets of chromosomal translocations, whereas NOTCH1 is activated in >50% of samples. Here we show that the SCL and LMO1 oncogenes collaborate to expand primitive thymocyte progenitors and inhibit later stages of differentiation. Together with pre-T-cell antigen receptor (pre-TCR) signaling, these oncogenes provide a favorable context for the acquisition of activating Notch1 mutations and the emergence of self-renewing leukemia-initiating cells in T-ALL. All tumor cells harness identical and specific Notch1 mutations and Tcrbeta clonal signature, indicative of clonal dominance and concurring with the observation that Notch1 gain of function confers a selective advantage to SCL-LMO1 transgenic thymocytes. Accordingly, a hyperactive Notch1 allele accelerates leukemia onset induced by SCL-LMO1 and bypasses the requirement for pre-TCR signaling. Finally, the time to leukemia induced by the three transgenes corresponds to the time required for clonal expansion from a single leukemic stem cell, suggesting that SCL, LMO1, and Notch1 gain of function, together with an active pre-TCR, might represent the minimum set of complementing events for the transformation of susceptible thymocytes.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Institute of Research in Immunology and Cancer, University of Montreal, Montréal, Québec H3C 3J7, Canada
| | - Cédric S. Tremblay
- Institute of Research in Immunology and Cancer, University of Montreal, Montréal, Québec H3C 3J7, Canada
| | - Sabine Herblot
- Institute of Research in Immunology and Cancer, University of Montreal, Montréal, Québec H3C 3J7, Canada
| | - Peter D. Aplan
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Josée Hébert
- Banque de Cellules Leucémiques du Québec, Maisonneuve-Rosemont Hospital, Montréal, Québec H1T 2M4, Canada
| | - Claude Perreault
- Institute of Research in Immunology and Cancer, University of Montreal, Montréal, Québec H3C 3J7, Canada
| | - Trang Hoang
- Institute of Research in Immunology and Cancer, University of Montreal, Montréal, Québec H3C 3J7, Canada
- Department of Pharmacology, Faculty of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada
- Department of Biochemistry, Faculty of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada
- Department of Molecular Biology, Faculty of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
249
|
Chari S, Umetsu SE, Winandy S. Notch target gene deregulation and maintenance of the leukemogenic phenotype do not require RBP-J kappa in Ikaros null mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:410-7. [PMID: 20511547 DOI: 10.4049/jimmunol.0903688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ikaros and Notch are transcriptional regulators essential for normal T cell development. Aberrant activation of Notch target genes is observed in Ikaros-deficient thymocytes as well as leukemia cell lines. However, it is not known whether Notch deregulation plays a preferential or obligatory role in the leukemia that arise in Ikaros null (Ik(-/-)) mice. To answer this question, the expression of the DNA-binding Notch target gene activator RBP-Jkappa was abrogated in Ik(-/-) double-positive thymocytes. This was accomplished through conditional inactivation using CD4-Cre transgenic mice containing floxed RBP-Jkappa alleles (RBPJ(fl/fl)). Ik(-/-) x RBPJ(fl/fl) x CD4-Cre(+) transgenic mice develop clonal T cell populations in the thymus that escape to the periphery, with similar kinetics and penetrance as their CD4-Cre(-) counterparts. The clonal populations do not display increased RBP-Jkappa expression compared with nontransformed thymocytes, suggesting there is no selection for clones that have not fully deleted RBP-Jkappa. However, RBPJ-deficient clonal populations do not expand as aggressively as their RBPJ-sufficient counterparts, suggesting a qualitative role for deregulated Notch target gene activation in the leukemogenic process. Finally, these studies show that RBP-Jkappa plays no role in Notch target gene repression in double-positive thymocytes but rather that it is Ikaros that is required for the repression of these genes at this critical stage of T cell development.
Collapse
Affiliation(s)
- Sheila Chari
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
250
|
Yan Q, Yao D, Wei LL, Huang Y, Myers J, Zhang L, Xin W, Shim J, Man Y, Petryniak B, Gerson S, Lowe JB, Zhou L. O-fucose modulates Notch-controlled blood lineage commitment. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2921-34. [PMID: 20363915 DOI: 10.2353/ajpath.2010.090702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Notch receptors are cell surface molecules essential for cell fate determination. Notch signaling is subject to tight regulation at multiple levels, including the posttranslational modification of Notch receptors by O-linked fucosylation, a reaction that is catalyzed by protein O-fucosyltransferase-1 (Pofut1). Our previous studies identified a myeloproliferative phenotype in mice conditionally deficient in cellular fucosylation that is attributable to a loss of Notch-dependent suppression of myelopoiesis. Here, we report that hematopoietic stem cells deficient in cellular fucosylation display decreased frequency and defective repopulating ability as well as decreased lymphoid but increased myeloid developmental potential. This phenotype may be attributed to suppressed Notch ligand binding and reduced downstream signaling of Notch activity in hematopoietic stem cells. Consistent with this finding, we further demonstrate that mouse embryonic stem cells deficient in Notch1 (Notch1(-/-)) or Pofut1 (Pofut1(-/-)) fail to generate T lymphocytes but differentiate into myeloid cells while coculturing with Notch ligand-expressing bone marrow stromal cells in vitro. Moreover, in vivo hematopoietic reconstitution of CD34(+) progenitor cells derived from either Notch1(-/-) or Pofut1(-/-) embryonic stem cells show enhanced granulopoiesis with depressed lymphoid lineage development. Together, these results indicate that Notch signaling maintains hematopoietic lineage homeostasis by promoting lymphoid development and suppressing overt myelopoiesis, in part through processes controlled by O-linked fucosylation of Notch receptors.
Collapse
Affiliation(s)
- Quanjian Yan
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|