201
|
Harnoss JM, Strowitzki MJ, Radhakrishnan P, Platzer LK, Harnoss JC, Hank T, Cai J, Ulrich A, Schneider M. Therapeutic inhibition of prolyl hydroxylase domain-containing enzymes in surgery: putative applications and challenges. HYPOXIA 2015; 3:1-14. [PMID: 27774478 PMCID: PMC5045068 DOI: 10.2147/hp.s60872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxygen is essential for metazoans to generate energy. Upon oxygen deprivation adaptive and protective pathways are induced, mediated by hypoxia-inducible factors (HIFs) and prolyl hydroxylase domain-containing enzymes (PHDs). Both play a pivotal role in various conditions associated with prolonged ischemia and inflammation, and are promising targets for therapeutic intervention. This review focuses on aspects of therapeutic PHD modulation in surgically relevant disease conditions such as hepatic and intestinal disorders, wound healing, innate immune responses, and tumorigenesis, and discusses the therapeutic potential and challenges of PHD inhibition in surgical patients.
Collapse
Affiliation(s)
- Jonathan Michael Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Moritz Johannes Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Lisa Katharina Platzer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Julian Camill Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Hank
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jun Cai
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
202
|
Biddlestone J, Bandarra D, Rocha S. The role of hypoxia in inflammatory disease (review). Int J Mol Med 2015; 35:859-69. [PMID: 25625467 PMCID: PMC4356629 DOI: 10.3892/ijmm.2015.2079] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/27/2015] [Indexed: 02/06/2023] Open
Abstract
Mammals have developed evolutionarily conserved programs of transcriptional response to hypoxia and inflammation. These stimuli commonly occur together in vivo and there is significant crosstalk between the transcription factors that are classically understood to respond to either hypoxia or inflammation. This crosstalk can be used to modulate the overall response to environmental stress. Several common disease processes are characterised by aberrant transcriptional programs in response to environmental stress. In this review, we discuss the current understanding of the role of the hypoxia-responsive (hypoxia-inducible factor) and inflammatory (nuclear factor-κB) transcription factor families and their crosstalk in rheumatoid arthritis, inflammatory bowel disease and colorectal cancer, with relevance for future therapies for the management of these conditions.
Collapse
Affiliation(s)
- John Biddlestone
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Daniel Bandarra
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
203
|
Flannigan KL, Agbor TA, Motta JP, Ferraz JGP, Wang R, Buret AG, Wallace JL. Proresolution effects of hydrogen sulfide during colitis are mediated through hypoxia-inducible factor-1α. FASEB J 2014; 29:1591-602. [PMID: 25550470 DOI: 10.1096/fj.14-266015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023]
Abstract
During a course of colitis, production of the gaseous mediator hydrogen sulfide (H2S) is markedly up-regulated at sites of mucosal damage and contributes significantly to healing and resolution of inflammation. The signaling mechanisms through which H2S promotes resolution of colitis are unknown. We hypothesized that the beneficial effects of H2S in experimental colitis are mediated via stabilization of hypoxia-inducible factor (HIF)-1α. The hapten dinitrobenzene sulfonic acid was used to induce colitis in rats and mice. This resulted in an elevated expression of the H2S-producing enzyme, cystathionine γ-lyase (CSE), and HIF-1α at sites of mucosal ulceration, and the expression of these 2 enzymes followed a similar pattern throughout the course of colitis. This represented a functionally important relationship because the loss of CSE-derived H2S production led to decreased HIF-1α stabilization and exacerbation of colitis. Furthermore, application of an H2S-releasing molecule, diallyl disulfide (DADS), stabilized colonic HIF-1α expression, up-regulated hypoxia-responsive genes, and reduced the severity of disease during peak inflammation. Importantly, the ability of DADS to promote the resolution of colitis was abolished when coadministered with an inhibitor of HIF-1α in vivo (PX-478). DADS was also able to maintain HIF-1α expression at a later point in colitis, when HIF-1α levels would have normally returned to control levels, and to enhance resolution. Finally, we found that HIF-1α stabilization inhibited colonic H2S production and may represent a negative feedback mechanism to prevent prolonged HIF-1α stabilization. Our findings demonstrate an important link between H2S and HIF-1α in the resolution of inflammation and injury during colitis and provide mechanistic insights into the therapeutic value of H2S donors.
Collapse
Affiliation(s)
- Kyle L Flannigan
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Terence A Agbor
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jean-Paul Motta
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - José G P Ferraz
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Rui Wang
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Andre G Buret
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - John L Wallace
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
204
|
Taniguchi CM, Miao YR, Diep AN, Wu C, Rankin EB, Atwood TF, Xing L, Giaccia AJ. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Sci Transl Med 2014; 6:236ra64. [PMID: 24828078 DOI: 10.1126/scitranslmed.3008523] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiation-induced gastrointestinal (GI) toxicity can be a major source of morbidity and mortality after radiation exposure. There is an unmet need for effective preventative or mitigative treatments against the potentially fatal diarrhea and water loss induced by radiation damage to the GI tract. We report that prolyl hydroxylase inhibition by genetic knockout or pharmacologic inhibition of all PHD (prolyl hydroxylase domain) isoforms by the small-molecule dimethyloxallyl glycine (DMOG) increases hypoxia-inducible factor (HIF) expression, improves epithelial integrity, reduces apoptosis, and increases intestinal angiogenesis, all of which are essential for radioprotection. HIF2, but not HIF1, is both necessary and sufficient to prevent radiation-induced GI toxicity and death. Increased vascular endothelial growth factor (VEGF) expression contributes to the protective effects of HIF2, because inhibition of VEGF function reversed the radioprotection and radiomitigation afforded by DMOG. Additionally, mortality from abdominal or total body irradiation was reduced even when DMOG was given 24 hours after exposure. Thus, prolyl hydroxylase inhibition represents a treatment strategy to protect against and mitigate GI toxicity from both therapeutic radiation and potentially lethal radiation exposures.
Collapse
Affiliation(s)
- Cullen M Taniguchi
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Anh N Diep
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Colleen Wu
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Todd F Atwood
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
205
|
Intestinal barrier function and the brain-gut axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:73-113. [PMID: 24997030 DOI: 10.1007/978-1-4939-0897-4_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The luminal-mucosal interface of the intestinal tract is the first relevant location where microorganism-derived antigens and all other potentially immunogenic particles face the scrutiny of the powerful mammalian immune system. Upon regular functioning conditions, the intestinal barrier is able to effectively prevent most environmental and external antigens to interact openly with the numerous and versatile elements that compose the mucosal-associated immune system. This evolutionary super system is capable of processing an astonishing amount of antigens and non-immunogenic particles, approximately 100 tons in one individual lifetime, only considering food-derived components. Most important, to develop oral tolerance and proper active immune responses needed to prevent disease and inflammation, this giant immunogenic load has to be managed in a way that physiological inflammatory balance is constantly preserved. Adequate functioning of the intestinal barrier involves local and distant regulatory networks integrating the so-called brain-gut axis. Along this complex axis both brain and gut structures participate in the processing and execution of response signals to external and internal changes coming from the digestive tract, using multidirectional pathways to communicate. Dysfunction of brain-gut axis facilitates malfunctioning of the intestinal barrier, and vice versa, increasing the risk of uncontrolled immunological reactions that may trigger mucosal and brain low-grade inflammation, a putative first step to the initiation of more permanent gut disorders. In this chapter, we describe the structure, function and interactions of intestinal barrier, microbiota and brain-gut axis in both healthy and pathological conditions.
Collapse
|
206
|
Eltzschig HK, Bratton DL, Colgan SP. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov 2014; 13:852-69. [PMID: 25359381 PMCID: PMC4259899 DOI: 10.1038/nrd4422] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible factors (HIFs) are stabilized during adverse inflammatory processes associated with disorders such as inflammatory bowel disease, pathogen infection and acute lung injury, as well as during ischaemia-reperfusion injury. HIF stabilization and hypoxia-induced changes in gene expression have a profound impact on the inflamed tissue microenvironment and on disease outcomes. Although the mechanism that initiates HIF stabilization may vary, the final molecular steps that control HIF stabilization converge on a set of oxygen-sensing prolyl hydroxylases (PHDs) that mark HIFs for proteasomal degradation. PHDs are therefore promising therapeutic targets. In this Review, we discuss the emerging potential and associated challenges of targeting the PHD-HIF pathway for the treatment of inflammatory and ischaemic diseases.
Collapse
Affiliation(s)
- Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Donna L Bratton
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
207
|
Curtis VF, Ehrentraut SF, Campbell EL, Glover LE, Bayless A, Kelly CJ, Kominsky DJ, Colgan SP. Stabilization of HIF through inhibition of Cullin-2 neddylation is protective in mucosal inflammatory responses. FASEB J 2014; 29:208-15. [PMID: 25326537 DOI: 10.1096/fj.14-259663] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is interest in understanding post-translational modifications of proteins in inflammatory disease. Neddylation is the conjugation of the molecule neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to promote protein stabilization. Cullins are a family of NEDD8 targets important in the stabilization and degradation of proteins, such as hypoxia-inducible factor (HIF; via Cullin-2). Here, we elucidate the role of human deneddylase-1 (DEN-1, also called SENP8) in inflammatory responses in vitro and in vivo and define conditions for targeting neddylation in models of mucosal inflammation. HIF provides protection in inflammatory models, so we examined the contribution of DEN-1 to HIF stabilization. Pharmacologic targeting of neddylation activity with MLN4924 (IC50, 4.7 nM) stabilized HIF-1α, activated HIF promoter activity by 2.5-fold, and induced HIF-target genes in human epithelial cells up to 5-fold. Knockdown of DEN-1 in human intestinal epithelial cells resulted in increased kinetics in barrier formation, decreased permeability, and enhanced barrier restitution by 2 ± 0.5-fold. Parallel studies in vivo revealed that MLN4924 abrogated disease severity in murine dextran sulfate sodium colitis, including weight loss, colon length, and histologic severity. We conclude that DEN-1 is a regulator of cullin neddylation and fine-tunes the inflammatory response in vitro and in vivo. Pharmacologic inhibition of cullin neddylation may provide a therapeutic opportunity in mucosal inflammatory disease.
Collapse
Affiliation(s)
| | - Stefan F Ehrentraut
- Mucosal Inflammation Program, Department of Anesthesiology, University of Bonn, Bonn, Germany; and
| | | | | | - Amanda Bayless
- Mucosal Inflammation Program, Department of Medicine, and
| | - Caleb J Kelly
- Mucosal Inflammation Program, Department of Medicine, and
| | - Douglas J Kominsky
- Mucosal Inflammation Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, and
| |
Collapse
|
208
|
Bakirtzi K, West G, Fiocchi C, Law IKM, Iliopoulos D, Pothoulakis C. The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3405-14. [PMID: 25307345 DOI: 10.1016/j.ajpath.2014.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 01/14/2023]
Abstract
The expression of neurotensin (NT) and its receptor (NTR1) is up-regulated in experimental colitis and inflammatory bowel disease; NT/NTR1 interactions regulate gut inflammation. During active inflammation, metabolic shifts toward hypoxia lead to the activation of hypoxia-inducible factor (HIF)-1, which enhances vascular endothelial growth factor (VEGF) expression, promoting angiogenesis. We hypothesized that NT/NTR1 signaling regulates intestinal manifestations of hypoxia and angiogenesis by promoting HIF-1 transcriptional activity and VEGFα expression in experimental colitis. We studied NTR1 signaling in colitis-associated angiogenesis using 2,4,6-trinitrobenzenesulfonic acid-treated wild-type and NTR1-knockout mice. The effects of NT on HIF-1α and VEGFα were assessed on human colonic epithelial cells overexpressing NTR1 (NCM460-NTR1) and human intestinal microvascular-endothelial cells. NTR1-knockout mice had reduced microvascular density and mucosal integrity score compared with wild-type mice after 2,4,6-trinitrobenzenesulfonic acid treatment. VEGFα mRNA levels were increased in NCM460-NTR1 cells treated with 10(-7) mol/L NT, at 1 and 6 hours post-treatment. NT exposure in NCM460-NTR1 cells caused stabilization, nuclear translocation, and transcriptional activity of HIF-1α in a diacylglycerol kinase-dependent manner. NT did not stimulate tube formation in isolated human intestinal macrovascular endothelial cells but did so in human intestinal macrovascular endothelial cells cocultured with NCM460-NTR1 cells. Our results demonstrate the importance of an NTR1-HIF-1α-VEGFα axis in intestinal angiogenic responses and in the pathophysiology of colitis and inflammatory bowel disease.
Collapse
Affiliation(s)
- Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Gail West
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Claudio Fiocchi
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| |
Collapse
|
209
|
Huang LY, He Q, Liang SJ, Su YX, Xiong LX, Wu QQ, Wu QY, Tao J, Wang JP, Tang YB, Lv XF, Liu J, Guan YY, Pang RP, Zhou JG. ClC-3 chloride channel/antiporter defect contributes to inflammatory bowel disease in humans and mice. Gut 2014; 63:1587-95. [PMID: 24440986 DOI: 10.1136/gutjnl-2013-305168] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND ClC-3 channel/antiporter plays a critical role in a variety of cellular activities. ClC-3 has been detected in the ileum and colon. OBJECTIVE To determine the functions of ClC-3 in the gastrointestinal tract. DESIGN After administration of dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS), intestines from ClC-3-/- and wild-type mice were examined by histological, cellular, molecular and biochemical approaches. ClC-3 expression was determined by western blot and immunostaining. RESULTS ClC-3 expression was reduced in intestinal tissues from patients with UC or Crohn's disease and from mice treated with DSS. Genetic deletion of ClC-3 increased the susceptibility of mice to DSS- or TNBS-induced experimental colitis and prevented intestinal recovery. ClC-3 deficiency promoted DSS-induced apoptosis of intestinal epithelial cells through the mitochondria pathway. ClC-3 interacts with voltage-dependent anion channel 1, a key player in regulation of mitochondria cytochrome c release, but DSS treatment decreased this interaction. In addition, lack of ClC-3 reduced the numbers of Paneth cells and impaired the expression of antimicrobial peptides. These alterations led to dysfunction of the epithelial barrier and invasion of commensal bacteria into the mucosa. CONCLUSIONS A defect in ClC-3 may contribute to the pathogenesis of IBD by promoting intestinal epithelial cell apoptosis and Paneth cell loss, suggesting that modulation of ClC-3 expression might be a new strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Lin-Yan Huang
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China School of Medical Technology, Xuzhou Medical College, Xuzhou, Jiagsu, China
| | - Qing He
- Gastrointestinal Institute, the 6th Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Si-Jia Liang
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ying-Xue Su
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Li-Xiong Xiong
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qian-Qian Wu
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qin-Yan Wu
- Gastrointestinal Institute, the 6th Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing Tao
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian-Ping Wang
- Department of Colorectal Surgery, The 6th Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yong-Bo Tang
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Fei Lv
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jie Liu
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rui-Ping Pang
- Department of Physiology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
210
|
DiMarco RL, Su J, Yan KS, Dewi R, Kuo CJ, Heilshorn SC. Engineering of three-dimensional microenvironments to promote contractile behavior in primary intestinal organoids. Integr Biol (Camb) 2014; 6:127-142. [PMID: 24343706 DOI: 10.1039/c3ib40188j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple culture techniques now exist for the long-term maintenance of neonatal primary murine intestinal organoids in vitro; however, the achievement of contractile behavior within cultured organoids has thus far been infrequent and unpredictable. Here we combine finite element simulation of oxygen transport and quantitative comparative analysis of cellular microenvironments to elucidate the critical variables that promote reproducible intestinal organoid contraction. Experimentally, oxygen distribution was manipulated by adjusting the ambient oxygen concentration along with the use of semi-permeable membranes to enhance transport. The culture microenvironment was further tailored through variation of collagen type-I matrix density, addition of exogenous R-spondin1, and specification of culture geometry. "Air-liquid interface" cultures resulted in significantly higher numbers of contractile cultures relative to traditional submerged cultures. These interface cultures were confirmed to have enhanced and more symmetric oxygen transport relative to traditional submerged cultures. While oxygen availability was found to impact in vitro contraction rate and the orientation of contractile movement, it was not a key factor in enabling contractility. For all conditions tested, reproducible contractile behavior only occurred within a consistent and narrow range of collagen type-I matrix densities with porosities of approximately 20% and storage moduli near 30 Pa. This suggests that matrix density acts as a "permissive switch" that enables contractions to occur. Similarly, contractions were only observed in cultures with diameters less than 15.5 mm that had relatively large interfacial surface area between the compliant matrix and the rigid culture dish. Taken together, these data suggest that spatial geometry and mechanics of the microenvironment, which includes both the encapsulating matrix as well as the surrounding culture device, may be key determinants of intestinal organoid functionality. As peristaltic contractility is a crucial requirement for normal digestive tract function, this achievement of reproducible organoid contraction marks a pivotal advancement towards engineering physiologically functional replacement tissue constructs.
Collapse
Affiliation(s)
- Rebecca L DiMarco
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - James Su
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Kelley S Yan
- Department of Medicine, Hematology Division, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruby Dewi
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Hematology Division, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
211
|
Shehade H, Oldenhove G, Moser M. Hypoxia in the intestine or solid tumors: a beneficial or deleterious alarm signal? Eur J Immunol 2014; 44:2550-7. [PMID: 25043839 DOI: 10.1002/eji.201444719] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/01/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
The transcription factor hypoxia inducible factors (HIF)-1 functions as a master regulator of oxygen homeostasis. There is increasing evidence that HIF has an essential role to prevent tissue damage in physiological and pathological situations in which cells are deprived of O2. Here, we review the effects of decreased oxygen supply on the innate and adaptive immune responses in the gut and in solid tumors in which the oxygenation profile correlates with the grade of inflammation. Data in the literature indicate that some tumors may co-opt immune mechanisms induced by HIF-1 to promote their survival and proliferation. By contrast, HIF-1 stabilization would have a beneficial effect in the intestinal tract as it would dampen inflammation and promote its resolution. Therefore, stabilization of HIF-1 in hypoxia may have opposite effects on the integrity of the host, depending on the tissue microenvironment.
Collapse
Affiliation(s)
- Hussein Shehade
- Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | |
Collapse
|
212
|
Rezaee F, Georas SN. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am J Respir Cell Mol Biol 2014; 50:857-69. [PMID: 24467704 DOI: 10.1165/rcmb.2013-0541rt] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epithelial permeability is a hallmark of mucosal inflammation, but the molecular mechanisms involved remain poorly understood. A key component of the epithelial barrier is the apical junctional complex that forms between neighboring cells. Apical junctional complexes are made of tight junctions and adherens junctions and link to the cellular cytoskeleton via numerous adaptor proteins. Although the existence of tight and adherens junctions between epithelial cells has long been recognized, in recent years there have been significant advances in our understanding of the molecular regulation of junctional complex assembly and disassembly. Here we review the current thinking about the structure and function of the apical junctional complex in airway epithelial cells, emphasizing the translational aspects of relevance to cystic fibrosis and asthma. Most work to date has been conducted using cell culture models, but technical advancements in imaging techniques suggest that we are on the verge of important new breakthroughs in this area in physiological models of airway diseases.
Collapse
Affiliation(s)
- Fariba Rezaee
- 1 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, and
| | | |
Collapse
|
213
|
Xue X, Ramakrishnan SK, Shah YM. Activation of HIF-1α does not increase intestinal tumorigenesis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G187-95. [PMID: 24875099 PMCID: PMC4101679 DOI: 10.1152/ajpgi.00112.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The hypoxic response is mediated by two transcription factors, hypoxia-inducible factor (HIF)-1α and HIF-2α. These highly homologous transcription factors are induced in hypoxic foci and regulate cell metabolism, angiogenesis, cell proliferation, and cell survival. HIF-1α and HIF-2α are activated early in cancer progression and are important in several aspects of tumor biology. HIF-1α and HIF-2α have overlapping and distinct functions. In the intestine, activation of HIF-2α increases inflammation and colon carcinogenesis in mouse models. Interestingly, in ischemic and inflammatory diseases of the intestine, activation of HIF-1α is beneficial and can reduce intestinal inflammation. HIF-1α is a critical transcription factor regulating epithelial barrier function following inflammation. The beneficial value of pharmacological agents that chronically activate HIF-1α is decreased due to the tumorigenic potential of HIFs. The present study tested the hypothesis that chronic activation of HIF-1α may enhance colon tumorigenesis. Two models of colon cancer were assessed, a sporadic and a colitis-associated colon cancer model. Activation of HIF-1α in intestinal epithelial cells does not increase carcinogenesis or progression of colon cancer. Together, the data provide proof of principle that pharmacological activation of HIF-1α could be a safe therapeutic strategy for inflammatory bowel disease.
Collapse
Affiliation(s)
- Xiang Xue
- Departments of 1Molecular and Integrative Physiology and
| | | | - Yatrik M. Shah
- Departments of 1Molecular and Integrative Physiology and ,2Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
214
|
Hypoxia-inducible factor/MAZ-dependent induction of caveolin-1 regulates colon permeability through suppression of occludin, leading to hypoxia-induced inflammation. Mol Cell Biol 2014; 34:3013-23. [PMID: 24891620 DOI: 10.1128/mcb.00324-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caveolae are specialized microdomains on membranes that are critical for signal transduction, cholesterol transport, and endocytosis. Caveolin-1 (CAV1) is a multifunctional protein and a major component of caveolae. Cav1 is directly activated by hypoxia-inducible factor (HIF). HIFs are heterodimers of an oxygen-sensitive α subunit, HIF1α or HIF2α, and a constitutively expressed β subunit, aryl hydrocarbon receptor nuclear translocator (ARNT). Whole-genome expression analysis demonstrated that Cav1 is highly induced in mouse models of constitutively activated HIF signaling in the intestine. Interestingly, Cav1 was increased only in the colon and not in the small intestine. Currently, the mechanism and role of HIF induction of CAV1 in the colon are unclear. In mouse models, mice that overexpressed HIF1α or HIF2α specifically in intestinal epithelial cells demonstrated an increase in Cav1 gene expression in the colon but not in the duodenum, jejunum, or ileum. HIF2α activated the Cav1 promoter in a HIF response element-independent manner. myc-associated zinc finger (MAZ) protein was essential for HIF2α activation of the Cav1 promoter. Hypoxic induction of CAV1 in the colon was essential for intestinal barrier integrity by regulating occludin expression. This may provide an additional mechanism by which chronic hypoxia can activate intestinal inflammation.
Collapse
|
215
|
Dulai PS, Gleeson MW, Taylor D, Holubar SD, Buckey JC, Siegel CA. Systematic review: The safety and efficacy of hyperbaric oxygen therapy for inflammatory bowel disease. Aliment Pharmacol Ther 2014; 39:1266-75. [PMID: 24738651 DOI: 10.1111/apt.12753] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/02/2013] [Accepted: 03/25/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hyperbaric oxygen therapy (HBOT) provides 100% oxygen under pressure, which increases tissue oxygen levels, relieves hypoxia and alters inflammatory pathways. Although there is experience using HBOT in Crohn's disease and ulcerative colitis, the safety and overall efficacy of HBOT in inflammatory bowel disease (IBD) is unknown. AIM To quantify the safety and efficacy of HBOT for Crohn's disease (CD) and ulcerative colitis (UC). The rate of adverse events with HBOT for IBD was compared to the expected rate of adverse events with HBOT. METHODS MEDLINE, EMBASE, Cochrane Collaboration and Web of Knowledge were systematically searched using the PRISMA standards for systematic reviews. Seventeen studies involving 613 patients (286 CD, 327 UC) were included. RESULTS The overall response rate was 86% (85% CD, 88% UC). The overall response rate for perineal CD was 88% (18/40 complete healing, 17/40 partial healing). Of the 40 UC patients with endoscopic follow-up reported, the overall response rate to HBOT was 100%. During the 8924 treatments, there were a total of nine adverse events, six of which were serious. The rate of adverse events with HBOT in IBD is lower than that seen when utilising HBOT for other indications (P < 0.01). The risk of bias across studies was high. CONCLUSIONS Hyperbaric oxygen therapy is a relatively safe and potentially efficacious treatment option for IBD patients. To understand the true benefit of HBOT in IBD, well-controlled, blinded, randomised trials are needed for both Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- P S Dulai
- Inflammatory Bowel Disease Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Center for Hyperbaric Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | | | | | | | | |
Collapse
|
216
|
Olszak T, Neves JF, Dowds CM, Baker K, Glickman J, Davidson NO, Lin CS, Jobin C, Brand S, Sotlar K, Wada K, Katayama K, Nakajima A, Mizuguchi H, Kawasaki K, Nagata K, Müller W, Snapper SB, Schreiber S, Kaser A, Zeissig S, Blumberg RS. Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 2014; 509:497-502. [PMID: 24717441 PMCID: PMC4132962 DOI: 10.1038/nature13150] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/17/2014] [Indexed: 12/20/2022]
Abstract
The mechanisms by which mucosal homeostasis is maintained are of central importance to inflammatory bowel disease. Critical to these processes is the intestinal epithelial cell (IEC), which regulates immune responses at the interface between the commensal microbiota and the host. CD1d presents self and microbial lipid antigens to natural killer T (NKT) cells, which are involved in the pathogenesis of colitis in animal models and human inflammatory bowel disease. As CD1d crosslinking on model IECs results in the production of the important regulatory cytokine interleukin (IL)-10 (ref. 9), decreased epithelial CD1d expression--as observed in inflammatory bowel disease--may contribute substantially to intestinal inflammation. Here we show in mice that whereas bone-marrow-derived CD1d signals contribute to NKT-cell-mediated intestinal inflammation, engagement of epithelial CD1d elicits protective effects through the activation of STAT3 and STAT3-dependent transcription of IL-10, heat shock protein 110 (HSP110; also known as HSP105), and CD1d itself. All of these epithelial elements are critically involved in controlling CD1d-mediated intestinal inflammation. This is demonstrated by severe NKT-cell-mediated colitis upon IEC-specific deletion of IL-10, CD1d, and its critical regulator microsomal triglyceride transfer protein (MTP), as well as deletion of HSP110 in the radioresistant compartment. Our studies thus uncover a novel pathway of IEC-dependent regulation of mucosal homeostasis and highlight a critical role of IL-10 in the intestinal epithelium, with broad implications for diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Torsten Olszak
- 1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2]
| | - Joana F Neves
- 1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2]
| | - C Marie Dowds
- 1] Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany [2]
| | - Kristi Baker
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jonathan Glickman
- GI Pathology, Miraca Life Sciences, Newton, Massachusetts 02464, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Chyuan-Sheng Lin
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Christian Jobin
- Department of Medicine, Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida 32611, USA
| | - Stephan Brand
- Department of Medicine II-Grosshadern, Ludwig Maximilians University, Munich 81377, Germany
| | - Karl Sotlar
- Institute of Pathology, Ludwig Maximilians University, Munich 80337, Germany
| | - Koichiro Wada
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Kazufumi Katayama
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Atsushi Nakajima
- Gastroenterology Division, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0027, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kunito Kawasaki
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Kazuhiro Nagata
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Scott B Snapper
- 1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | - Stefan Schreiber
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Arthur Kaser
- Division of Gastroenterology, Addenbrooke Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sebastian Zeissig
- 1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany [3]
| | - Richard S Blumberg
- 1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2]
| |
Collapse
|
217
|
Sun Y, Wang L, Zhou Y, Mao X, Deng X. Cloning and characterization of the human trefoil factor 3 gene promoter. PLoS One 2014; 9:e95562. [PMID: 24743382 PMCID: PMC3990673 DOI: 10.1371/journal.pone.0095562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/28/2014] [Indexed: 11/30/2022] Open
Abstract
Human trefoil factor 3 (hTFF3) is a small-molecule peptide with potential medicinal value. Its main pharmacological function is to alleviate gastrointestinal mucosal injuries caused by various factors and promote the repair of damaged mucosa. However, how its transcription is regulated is not yet known. The aim of this study was to clone the hTFF3 gene promoter region, identify the core promoter and any transcription factors that bind to the promoter, and begin to clarify the regulation of its expression. The 5′ flanking sequence of the hTFF3 gene was cloned from human whole blood genomic DNA by PCR. Truncated promoter fragments with different were cloned and inserted into the pGL3-Basic vector to determine the position of the core hTFF3 promoter. Transcription element maintaining basic transcriptional activity was assessed by mutation techniques. Protein-DNA interactions were analyzed by chromatin immunoprecipitation (ChIP). RNA interference and gene over-expression were performed to assay the effect of transcription factor on the hTFF3 expression. The results showed that approximately 1,826 bp of the fragment upstream of hTFF3 was successfully amplified, and its core promoter region was determined to be from −300 bp to −280 bp through analysis of truncated mutants. Mutation analysis confirmed that the sequence required to maintain basic transcriptional activity was accurately positioned from −300 bp to −296 bp. Bioinformatic analysis indicated that this area contained a Sp1 binding site. Sp1 binding to the hTFF3 promoter was confirmed by ChIP experiments. Sp1 over-expression and interference experiments showed that Sp1 enhanced the transcriptional activity of the hTFF3 promoter and increased hTFF3 expression. This study demonstrated that Sp1 plays an important role in maintaining the transcription of hTFF3.
Collapse
Affiliation(s)
- Yong Sun
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China
- Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
- * E-mail:
| | - Liangxi Wang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China
- Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Yifang Zhou
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China
- Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Xuefei Mao
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China
- Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Xiangdong Deng
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China
- Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| |
Collapse
|
218
|
Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN, Bowers BE, Bayless AJ, Scully M, Saeedi BJ, Golden-Mason L, Ehrentraut SF, Curtis VF, Burgess A, Garvey JF, Sorensen A, Nemenoff R, Jedlicka P, Taylor CT, Kominsky DJ, Colgan SP. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 2014; 40:66-77. [PMID: 24412613 DOI: 10.1016/j.immuni.2013.11.020] [Citation(s) in RCA: 371] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Abstract
Acute intestinal inflammation involves early accumulation of neutrophils (PMNs) followed by either resolution or progression to chronic inflammation. Based on recent evidence that mucosal metabolism influences disease outcomes, we hypothesized that transmigrating PMNs influence the transcriptional profile of the surrounding mucosa. Microarray studies revealed a cohort of hypoxia-responsive genes regulated by PMN-epithelial crosstalk. Transmigrating PMNs rapidly depleted microenvironmental O2 sufficiently to stabilize intestinal epithelial cell hypoxia-inducible factor (HIF). By utilizing HIF reporter mice in an acute colitis model, we investigated the relative contribution of PMNs and the respiratory burst to "inflammatory hypoxia" in vivo. CGD mice, lacking a respiratory burst, developed accentuated colitis compared to control, with exaggerated PMN infiltration and diminished inflammatory hypoxia. Finally, pharmacological HIF stabilization within the mucosa protected CGD mice from severe colitis. In conclusion, transcriptional imprinting by infiltrating neutrophils modulates the host response to inflammation, via localized O2 depletion, resulting in microenvironmental hypoxia and effective inflammatory resolution.
Collapse
Affiliation(s)
- Eric L Campbell
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | - Caleb J Kelly
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Louise E Glover
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eóin N McNamee
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brittelle E Bowers
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amanda J Bayless
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melanie Scully
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bejan J Saeedi
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lucy Golden-Mason
- University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stefan F Ehrentraut
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Valerie F Curtis
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Adrianne Burgess
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Amber Sorensen
- University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Raphael Nemenoff
- University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul Jedlicka
- University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Douglas J Kominsky
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
219
|
Keely S, Campbell EL, Baird AW, Hansbro PM, Shalwitz RA, Kotsakis A, McNamee EN, Eltzschig HK, Kominsky DJ, Colgan SP. Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. Mucosal Immunol 2014; 7:114-23. [PMID: 23695513 PMCID: PMC3772994 DOI: 10.1038/mi.2013.29] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/16/2013] [Indexed: 02/04/2023]
Abstract
Pharmacological stabilization of hypoxia-inducible factor (HIF) through prolyl hydroxylase (PHD) inhibition limits mucosal damage associated with models of murine colitis. However, little is known about how PHD inhibitors (PHDi) influence systemic immune function during mucosal inflammation or the relative importance of immunological changes to mucosal protection. We hypothesized that PHDi enhances systemic innate immune responses to colitis-associated bacteremia. Mice with colitis induced by trinitrobenzene sulfonic acid were treated with AKB-4924, a new HIF-1 isoform-predominant PHDi, and clinical, immunological, and biochemical endpoints were assessed. Administration of AKB-4924 led to significantly reduced weight loss and disease activity compared with vehicle controls. Treated groups were pyrexic but did not become subsequently hypothermic. PHDi treatment augmented epithelial barrier function and led to an approximately 50-fold reduction in serum endotoxin during colitis. AKB-4924 also decreased cytokines involved in pyrogenesis and hypothermia, significantly reducing serum levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α while increasing IL-10. Treatment offered no protection against colitis in epithelial-specific HIF-1α-deficient mice, strongly implicating epithelial HIF-1α as the tissue target for AKB-4924-mediated protection. Taken together, these results indicate that inhibition of prolyl hydroxylase with AKB-4924 enhances innate immunity and identifies that the epithelium is a central site of inflammatory protection afforded by PHDi in murine colitis.
Collapse
Affiliation(s)
- Simon Keely
- School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW, Australia,Hunter Medical Research Institute, John Hunter Hospital, NSW, Australia,Correspondence to: Simon Keely, Ph.D., School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW, Australia. Office phone: (02) 40420229 Fax: (02) 4042 0024
| | - Eric L. Campbell
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Alan W. Baird
- School of Veterinary Medicine, University College Dublin, Ireland
| | - Philip M. Hansbro
- School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW, Australia,Hunter Medical Research Institute, John Hunter Hospital, NSW, Australia
| | | | | | - Eoin N. McNamee
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Holger K. Eltzschig
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Douglas J. Kominsky
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Sean P. Colgan
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
220
|
Kominsky DJ, Campbell EL, Ehrentraut SF, Wilson KE, Kelly CJ, Glover LE, Collins CB, Bayless AJ, Saeedi B, Dobrinskikh E, Bowers BE, MacManus CF, Müller W, Colgan SP, Bruder D. IFN-γ-mediated induction of an apical IL-10 receptor on polarized intestinal epithelia. THE JOURNAL OF IMMUNOLOGY 2013; 192:1267-76. [PMID: 24367025 DOI: 10.4049/jimmunol.1301757] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytokines secreted at sites of inflammation impact the onset, progression, and resolution of inflammation. In this article, we investigated potential proresolving mechanisms of IFN-γ in models of inflammatory bowel disease. Guided by initial microarray analysis, in vitro studies revealed that IFN-γ selectively induced the expression of IL-10R1 on intestinal epithelia. Further analysis revealed that IL-10R1 was expressed predominantly on the apical membrane of polarized epithelial cells. Receptor activation functionally induced canonical IL-10 target gene expression in epithelia, concomitant with enhanced barrier restitution. Furthermore, knockdown of IL-10R1 in intestinal epithelial cells results in impaired barrier function in vitro. Colonic tissue isolated from murine colitis revealed that levels of IL-10R1 and suppressor of cytokine signaling 3 were increased in the epithelium and coincided with increased tissue IFN-γ and IL-10 cytokines. In parallel, studies showed that treatment of mice with rIFN-γ was sufficient to drive expression of IL-10R1 in the colonic epithelium. Studies of dextran sodium sulfate colitis in intestinal epithelial-specific IL-10R1-null mice revealed a remarkable increase in disease susceptibility associated with increased intestinal permeability. Together, these results provide novel insight into the crucial and underappreciated role of epithelial IL-10 signaling in the maintenance and restitution of epithelial barrier and of the temporal regulation of these pathways by IFN-γ.
Collapse
Affiliation(s)
- Douglas J Kominsky
- Department of Anesthesiology and Perioperative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Tajdini M, Mirbagheri SA, Nikooie R, Ostovaneh MR, Ghoreyshi Hefzabad SM, Garg SK, Hosseini SMR. Tissue hypoxia in pathogenesis of ulcerative colitis: should we change all our beliefs? Scand J Gastroenterol 2013; 48:1487-8. [PMID: 24134784 DOI: 10.3109/00365521.2013.845798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Masih Tajdini
- Department of Gastroenterology, Amira'lam Hospital, Faculty of Medicine, Tehran University of Medical Science , Tehran , Iran
| | | | | | | | | | | | | |
Collapse
|
222
|
Fundamental role for HIF-1α in constitutive expression of human β defensin-1. Mucosal Immunol 2013; 6:1110-8. [PMID: 23462909 PMCID: PMC3740147 DOI: 10.1038/mi.2013.6] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/08/2013] [Indexed: 02/04/2023]
Abstract
Antimicrobial peptides are secreted by the intestinal epithelium to defend from microbial threats. The role of human β defensin-1 (hBD-1) is notable because its gene (beta-defensin 1 (DEFB1)) is constitutively expressed and its antimicrobial activity is potentiated in the low-oxygen environment that characterizes the intestinal mucosa. Hypoxia-inducible factor (HIF) is stabilized even in healthy intestinal mucosa, and we identified that epithelial HIF-1α maintains expression of murine defensins. Extension to a human model revealed that basal HIF-1α is critical for the constitutive expression of hBD-1. Chromatin immunoprecipitation identified HIF-1α binding to a hypoxia response element in the DEFB1 promoter whose importance was confirmed by site-directed mutagenesis. We used 94 human intestinal samples to identify a strong expression correlation between DEFB1 and the canonical HIF-1α target GLUT1. These findings indicate that basal HIF-1α is critical for constitutive expression of enteric DEFB1 and support targeting epithelial HIF for restoration and maintenance of intestinal integrity.
Collapse
|
223
|
Chen Y, Lee SH, Tsai YH, Tseng SH. Ischemic preconditioning increased the intestinal stem cell activities in the intestinal crypts in mice. J Surg Res 2013; 187:85-93. [PMID: 24176207 DOI: 10.1016/j.jss.2013.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/07/2013] [Accepted: 10/02/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND Ischemic preconditioning (IPC) can protect against ischemia-reperfusion injury in the small intestine. Because intestinal stem cells (ISCs) control the recovery and growth of intestinal villi, this study investigated whether IPC had any effects on the activity of ISCs. MATERIALS AND METHODS The small intestines of mice were treated with IPC, laparotomy only (sham), or no surgery. The crypt fractions were isolated and the characteristics of ISCs among various groups were compared. The regenerative ability and the number of organoids grown from various crypt fractions were compared. The expression of hypoxia-inducible factor-1α (HIF-1α) and the related proteins of the Wnt-/β-catenin pathway in the crypt fractions were studied. RESULTS The IPC group had higher messenger RNA levels of various stem cell markers than the sham group at days 1 and 2 after surgery. The IPC group exhibited greater regenerative activity and more crypt organoids than the sham group (P < 0.05). The expression of HIF-1α, β-catenin, and phosphoglycogen synthase kinase 3β was increased in the IPC-treated crypt fractions in vivo and cultured crypt organoid cells with deferoxamine-mimicked hypoxia in vitro. CONCLUSIONS IPC significantly upregulated the activity of ISCs, possibly through the HIF-1α response and Wnt-/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yun Chen
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan, Republic of China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan, Republic of China
| | - Shih-Hua Lee
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan, Republic of China
| | - Ya-Hui Tsai
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan, Republic of China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan, Republic of China.
| | - Sheng-Hong Tseng
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China.
| |
Collapse
|
224
|
Williams CS, Bradley AM, Chaturvedi R, Singh K, Piazuelo MB, Chen X, McDonough EM, Schwartz DA, Brown CT, Allaman MM, Coburn LA, Horst SN, Beaulieu DB, Choksi YA, Washington MK, Williams AD, Fisher MA, Zinkel SS, Peek RM, Wilson KT, Hiebert SW. MTG16 contributes to colonic epithelial integrity in experimental colitis. Gut 2013; 62:1446-55. [PMID: 22833394 PMCID: PMC3663894 DOI: 10.1136/gutjnl-2011-301439] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The myeloid translocation genes (MTGs) are transcriptional corepressors with both Mtg8(-/-) and Mtgr1(-/-) mice showing developmental and/or differentiation defects in the intestine. We sought to determine the role of MTG16 in intestinal integrity. METHODS Baseline and stress induced colonic phenotypes were examined in Mtg16(-/-) mice. To unmask phenotypes, we treated Mtg16(-/-) mice with dextran sodium sulphate (DSS) or infected them with Citrobacter rodentium and the colons were examined for ulceration and for changes in proliferation, apoptosis and inflammation. RESULTS Mtg16(-/-) mice have altered immune subsets, suggesting priming towards Th1 responses. Mtg16(-/-) mice developed increased weight loss, diarrhoea, mortality and histological colitis and there were increased innate (Gr1(+), F4/80(+), CD11c(+) and MHCII(+); CD11c(+)) and Th1 adaptive (CD4) immune cells in Mtg16(-/-) colons after DSS treatment. Additionally, there was increased apoptosis and a compensatory increased proliferation in Mtg16(-/-) colons. Compared with wild-type mice, Mtg16(-/-) mice exhibited increased colonic CD4;IFN-γ cells in vehicle-treated and DSS-treated mice. Adoptive transfer of wild-type marrow into Mtg16(-/-) recipients did not rescue the Mtg16(-/-) injury phenotype. Isolated colonic epithelial cells from DSS-treated Mtg16(-/-) mice exhibited increased KC (Cxcl1) mRNA expression when compared with wild-type mice. Mtg16(-/-) mice infected with C rodentium had more severe colitis and greater bacterial colonisation. Last, MTG16 mRNA levels were reduced in human ulcerative colitis versus normal colon tissues. CONCLUSIONS These observations indicate that MTG16 is critical for colonocyte survival and regeneration in response to intestinal injury and provide evidence that this transcriptional corepressor regulates inflammatory recruitment in response to injury.
Collapse
Affiliation(s)
- Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Amber M Bradley
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Rupesh Chaturvedi
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Kshipra Singh
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Maria B Piazuelo
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Xi Chen
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Elizabeth M McDonough
- Department of Pediatrics, Division of Pediatric Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - David A Schwartz
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Caroline T Brown
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Margaret M Allaman
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lori A Coburn
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Sara N Horst
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Dawn B Beaulieu
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Yash A Choksi
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Amanda D Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA
| | - Melissa A Fisher
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Sandra S Zinkel
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA
| | - Richard M Peek
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Keith T Wilson
- Department of Medicine, Division of Gastroenterology, Vanderbilt University, Nashville, Tennessee, USA,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Scott W Hiebert
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
225
|
Xue X, Ramakrishnan S, Anderson E, Taylor M, Zimmermann EM, Spence JR, Huang S, Greenson JK, Shah YM. Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice. Gastroenterology 2013; 145:831-41. [PMID: 23860500 PMCID: PMC3799890 DOI: 10.1053/j.gastro.2013.07.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Hypoxic inflammation (decreased oxygen tension at sites of inflammation) is a feature of inflammatory bowel disease (IBD). The hypoxia response is mediated by the transcription factors hypoxia-inducible factor (HIF) 1α and endothelial PAS domain protein 1 (EPAS1 or HIF2α), which are induced in intestinal tissues of patients with IBD. HIF1α limits intestinal barrier dysfunction, but the role of EPAS1 has not been assessed under conditions of hypoxic inflammation or in models of IBD. METHODS Acute colitis was induced by administration of Citrobacter rodentium or dextran sulfate sodium (DSS) to transgenic hypoxia reporter mice (oxygen-dependent degradation-luciferase), mice with conditional overexpression of Epas1 (Epas1(LSL/LSL)), mice with intestinal epithelium-specific deletion of Epas1 (Epas1(ΔIE) ), or wild-type littermates (controls). Colon tissues from these mice and from patients with ulcerative colitis or Crohn's disease were assessed by histologic and immunoblot analyses, immunohistochemistry, and quantitative polymerase chain reaction. RESULTS Levels of hypoxia and EPAS1 were increased in colon tissues of mice after induction of colitis and patients with ulcerative colitis or Crohn's disease compared with controls. Epas1(ΔIE) mice had attenuated colonic inflammation and were protected from DSS-induced colitis. Intestine-specific overexpression of EPAS1, but not HIF-1α, led to spontaneous colitis, increased susceptibility to induction of colitis by C rodentium or DSS, and reduced survival times compared with controls. Disruption of intestinal epithelial EPAS1 attenuated the inflammatory response after administration of DSS or C rodentium, and intestine-specific overexpression of EPAS1 increased this response. We found EPAS1 to be a positive regulator of tumor necrosis factor-α production by the intestinal epithelium. Blocking tumor necrosis factor-α completely reduced hypoxia-induced intestinal inflammation. CONCLUSIONS EPAS1 is a transcription factor that activates mediators of inflammation, such as tumor necrosis factor-α, in the intestinal epithelium and promotes development of colitis in mice.
Collapse
Affiliation(s)
- Xiang Xue
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Sadeesh Ramakrishnan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Erik Anderson
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Matthew Taylor
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ellen M. Zimmermann
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Jason R. Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan,Center for Organogenesis, University of Michigan, Ann Arbor, Michigan
| | - Sha Huang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Joel K. Greenson
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Yatrik M. Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan,Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, To whom correspondence should be addressed. Tel: +1 734 6150567; Fax: +1 734 9368813;
| |
Collapse
|
226
|
Weissmüller T, Glover LE, Fennimore B, Curtis VF, MacManus CF, Ehrentraut SF, Campbell EL, Scully M, Grove BD, Colgan SP. HIF-dependent regulation of AKAP12 (gravin) in the control of human vascular endothelial function. FASEB J 2013; 28:256-64. [PMID: 24029533 DOI: 10.1096/fj.13-238741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hypoxia has been widely implicated in many pathological conditions, including those associated with inflammation and tumorigenesis. A number of recent studies have implicated hypoxia in the control of vasculogenesis and permeability, the basis for which is not fully understood. Here we examine the transcriptional regulation of angiogenesis and permeability by hypoxia in endothelial cells. Guided by a global profiling approach in cultured endothelial cells, these studies revealed the selective induction of human gravin (protein kinase A anchoring protein 12) by hypoxia. Analysis of the cloned gravin promoter identified a functional hypoxia-responsive region including 2 binding sites for hypoxia-inducible factor (HIF). Site-directed mutagenesis identified the most distal HIF-binding site as essential for the induction of gravin by hypoxia. Further studies examining gravin gain and loss of function confirmed strong dependence of gravin in control of microvascular endothelial tube formation, wherein gravin functions as a "braking" system for angiogenesis. Additional studies in confluent endothelia revealed that gravin functionally couples to control endothelial barrier function in response to protein kinase A (PKA) agonists. Taken together, these results demonstrate transcriptional coordination of gravin by HIF-1α and amplified PKA-dependent endothelial responses. These findings provide an important link between hypoxia and metabolic conditions associated with inflammation and angiogenesis.
Collapse
Affiliation(s)
- Thomas Weissmüller
- 1Mucosal Inflammation Program, University of Colorado, 12700 E. 19th Ave, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Goggins BJ, Chaney C, Radford-Smith GL, Horvat JC, Keely S. Hypoxia and Integrin-Mediated Epithelial Restitution during Mucosal Inflammation. Front Immunol 2013; 4:272. [PMID: 24062740 PMCID: PMC3769679 DOI: 10.3389/fimmu.2013.00272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/27/2013] [Indexed: 12/27/2022] Open
Abstract
Epithelial damage and loss of intestinal barrier function are hallmark pathologies of the mucosal inflammation associated with conditions such as inflammatory bowel disease. In order to resolve inflammation and restore intestinal integrity the mucosa must rapidly and effectively repair the epithelial barrier. Epithelial wound healing is a highly complex and co-ordinated process and the factors involved in initiating intestinal epithelial healing are poorly defined. In order for restitution to be successful there must be a balance between epithelial cell migration, proliferation, and differentiation within and adjacent to the inflamed area. Endogenous, compensatory epithelial signaling pathways are activated by the changes in oxygen tensions that accompany inflammation. These signaling pathways induce the activation of key transcription factors, governing anti-apoptotic, and proliferative processes resulting in epithelial cell survival, proliferation, and differentiation at the site of mucosal inflammation. In this review, we will discuss the primary processes involved in epithelial restitution with a focus on the role of hypoxia-inducible factor and epithelial integrins as mediators of epithelial repair following inflammatory injury at the mucosal surface.
Collapse
Affiliation(s)
- Bridie J Goggins
- School of Biomedical Sciences and Pharmacy, University of Newcastle , Newcastle, NSW , Australia ; Hunter Medical Research Institute , New Lambton, NSW , Australia
| | | | | | | | | |
Collapse
|
228
|
Wang WS, Liang HY, Cai YJ, Yang H. DMOG ameliorates IFN-γ-induced intestinal barrier dysfunction by suppressing PHD2-dependent HIF-1α degradation. J Interferon Cytokine Res 2013; 34:60-9. [PMID: 24010824 DOI: 10.1089/jir.2013.0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) has been well established as a protective factor for intestinal barrier function in intestinal epithelial cells. Recently, a study found that increased HIF-1α-induced intestinal barrier dysfunction. We proposed that lymphocyte-derived interferon-gamma (IFN-γ) might be responsible for the intestinal barrier dysfunction caused by increased HIF-1α. HT-29 cell monolayers were grown in the presence or absence of IFN-γ under hypoxia. Then, the transepithelial electrical resistance was measured, and HIF-1α-modulated intestinal barrier protective factors were quantified by polymerase chain reaction (PCR). PCR, western blotting, and chromatin immunoprecipitation of HIF-1α were performed. Dimethyloxalyglycine (DMOG), an inhibitor of prolyl-hydroxylases (PHDs) that stabilizes HIF-1α during normoxia, and RNA interference of PHDs were also used to identify the signal pathway between IFN-γ and HIF-1α. We demonstrated that IFN-γ caused barrier dysfunction in hypoxic HT-29 cell monolayers via suppressing HIF-1α and HIF-1α-modulated intestinal barrier protective factors. We found that IFN-γ decreased HIF-1α protein expression instead of affecting HIF-1α transcription or transcriptional activity. Study also showed that DMOG reversed the IFN-γ-induced decrease in HIF-1α protein expression. Further, we found that PHD2 is the major regulator of IFN-γ-induced HIF-1α degradation by PHD inhibition and RNA interference. We conclude that IFN-γ caused barrier dysfunction by promoting PHD-, especially PHD2-, dependent HIF-1α degradation, and DMOG or PHD2 inhibition reversed this HIF-1α suppression and ameliorated barrier dysfunction. Combined with other studies demonstrating HIF-1α activation in lymphocytes promotes IFN-γ secretion, these findings suggest a mechanism by which increased HIF-1α-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Wen-Sheng Wang
- 1 Department of General Surgery, Xinqiao Hospital, Third Military Medical University , Chongqing, China
| | | | | | | |
Collapse
|
229
|
Abstract
A current view of the inflammatory bowel diseases (IBDs) includes the luminal triggering of innate immune disease in a genetically susceptible host. Given the unique anatomy and complex environment of the intestine, local microenvironmental cues likely contribute significantly to both disease progression and resolution in IBD. Compartmentalized tissue and microbe populations within the intestine result in significant metabolic shifts within these tissue microenvironments. During active inflammatory disease, metabolic demands often exceed supply, resulting in localized areas of metabolic stress and diminished oxygen delivery (hypoxia). There is much recent interest in harnessing these microenvironmental changes to the benefit of the tissue, including targeting these pathways for therapy of IBD. Here, we review the current understanding of metabolic microenvironments within the intestine in IBD, with discussion of the advantages and disadvantages of targeting these pathways to treat patients with IBD.
Collapse
|
230
|
Pearce SC, Mani V, Boddicker RL, Johnson JS, Weber TE, Ross JW, Rhoads RP, Baumgard LH, Gabler NK. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLoS One 2013; 8:e70215. [PMID: 23936392 PMCID: PMC3731365 DOI: 10.1371/journal.pone.0070215] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/18/2013] [Indexed: 02/06/2023] Open
Abstract
Excessive heat exposure reduces intestinal integrity and post-absorptive energetics that can inhibit wellbeing and be fatal. Therefore, our objectives were to examine how acute heat stress (HS) alters intestinal integrity and metabolism in growing pigs. Animals were exposed to either thermal neutral (TN, 21°C; 35–50% humidity; n = 8) or HS conditions (35°C; 24–43% humidity; n = 8) for 24 h. Compared to TN, rectal temperatures in HS pigs increased by 1.6°C and respiration rates by 2-fold (P<0.05). As expected, HS decreased feed intake by 53% (P<0.05) and body weight (P<0.05) compared to TN pigs. Ileum heat shock protein 70 expression increased (P<0.05), while intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased; P<0.05). Furthermore, HS increased serum endotoxin concentrations (P = 0.05). Intestinal permeability was accompanied by an increase in protein expression of myosin light chain kinase (P<0.05) and casein kinase II-α (P = 0.06). Protein expression of tight junction (TJ) proteins in the ileum revealed claudin 3 and occludin expression to be increased overall due to HS (P<0.05), while there were no differences in claudin 1 expression. Intestinal glucose transport and blood glucose were elevated due to HS (P<0.05). This was supported by increased ileum Na+/K+ ATPase activity in HS pigs. SGLT-1 protein expression was unaltered; however, HS increased ileal GLUT-2 protein expression (P = 0.06). Altogether, these data indicate that HS reduce intestinal integrity and increase intestinal stress and glucose transport.
Collapse
Affiliation(s)
- Sarah C. Pearce
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Venkatesh Mani
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Rebecca L. Boddicker
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Jay S. Johnson
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Thomas E. Weber
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Jason W. Ross
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Robert P. Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Lance H. Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
| | - Nicholas K. Gabler
- Department of Animal Science, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
231
|
Colgan SP, Ehrentraut SF, Glover LE, Kominsky DJ, Campbell EL. Contributions of neutrophils to resolution of mucosal inflammation. Immunol Res 2013; 55:75-82. [PMID: 22968707 DOI: 10.1007/s12026-012-8350-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neutrophil (PMN) recruitment from the blood stream into surrounding tissues involves a regulated series of events central to acute responses in host defense. Accumulation of PMN within mucosal tissues has historically been considered pathognomonic features of both acute and chronic inflammatory conditions. Historically, PMNs have been deemed necessary but detrimental when recruited, given the potential for tissue damage that results from a variety of mechanisms. Recent work, however, has altered our preconceived notions of PMN contributions to inflammatory processes. In particular, significant evidence implicates a central role for the PMN in triggering inflammatory resolution. Such mechanisms involve both metabolic and biochemical crosstalk pathways during the intimate interactions of PMN with other cell types at inflammatory sites. Here, we highlight several recent examples of how PMN coordinate the resolution of ongoing inflammation, with a particular focus on the gastrointestinal mucosa.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
232
|
Burki NK, Tetenta SU. Inflammatory response to acute hypoxia in humans. Pulm Pharmacol Ther 2013; 27:208-11. [PMID: 23727146 DOI: 10.1016/j.pupt.2013.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/01/2013] [Accepted: 05/21/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND In animal studies hypoxia is known to cause an inflammatory response, inducing multiple transcription factors and activating molecular processes at the cellular level. However, it is not known whether acute hypoxia causes similar inflammatory effects in humans, although such an assumption is commonly made. METHODS The effects of acute hypoxic exposure were studied in 12 healthy adults: Each subject was studied on 2 different days. Group 1 (mean age 33 ± 5.5 years; 2 females, 4 males) was exposed either to a hypoxic gas mixture or room air for 30 min and Group 2 (mean age 26.5 ± 7.5 years; 3 females, 3 males) for 60 min. Measurements of circulating adhesion molecules (AMs), Clara cell secretory protein (CC16), hypoxia inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and C reactive protein (hsCRP) were made at baseline and at intervals following exposure for 240 min. RESULTS No significant changes were seen in circulating AMs, CC16, TNF-α, IL-6 or hsCRP, although both HIF-1α and VEGF levels increased significantly (p < 0.05) after hypoxic exposure. CONCLUSIONS Acute hypoxic exposure in normal man does not induce a measurable change in inflammatory or epithelial biomarkers, in contrast to studies at the cellular level in animals. However, acute hypoxic exposure does induce the expression of HIF-1α and VEGF. These results indicate that in humans acute hypoxic exposure for up to 60 min does not induce a generalized inflammatory response, indicating that the human response to hypoxia is more complex than inferred from animal/cellular studies.
Collapse
Affiliation(s)
- Nausherwan K Burki
- Division of Pulmonary & Critical Care Medicine, University of Connecticut Health Center, Farmington, CT 06030-1321, USA.
| | - Sodienye U Tetenta
- Division of Pulmonary & Critical Care Medicine, University of Connecticut Health Center, Farmington, CT 06030-1321, USA.
| |
Collapse
|
233
|
Scholz CC, Taylor CT. Targeting the HIF pathway in inflammation and immunity. Curr Opin Pharmacol 2013; 13:646-53. [PMID: 23660374 DOI: 10.1016/j.coph.2013.04.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 01/03/2023]
Abstract
Oxygen deprivation (hypoxia) is a frequently encountered condition in both health and disease. Metazoans have evolved an elegant and direct cellular mechanism by which to sense local oxygen levels and mount an adaptive transcriptional response to hypoxia which is mediated by a transcription factor termed the hypoxia-inducible factor (HIF). In normoxia, HIF is repressed primarily through the action of a family of hydroxylases, which target HIFα subunits for degradation in an oxygen-dependent manner. In hypoxia, HIF is rapidly stabilized in cells thus allowing it to regulate the expression of hundreds of genes which promote an adaptive response including genes expressing regulators of angiogenesis, metabolism, growth and survival. Initial studies into the HIF pathway focused mainly on its role in supporting tumor adaptation through enhancing processes such as angiogenesis, glycolytic metabolism and cell survival. More recently however, it has become clear that the HIF pathway also plays a key role in the regulation of immunity and inflammation. In fact, conditional knockout of the HIF-1α subunit has identified key immune roles in T-cells, dendritic cells, macrophages, neutrophils and epithelial cells. In this review, we will consider the role for HIF in the regulation of the immune response and its possible contribution to inflammation. Furthermore, we will consider potential therapeutic strategies, which target the HIF pathway in chronic inflammatory and infectious disease.
Collapse
Affiliation(s)
- Carsten C Scholz
- Systems Biology Ireland, School of Medicine and Medical Science & The Conway Institute, University College Dublin, Ireland
| | | |
Collapse
|
234
|
Epithelial calcium-sensing receptor activation by eosinophil granule protein analog stimulates collagen matrix contraction. Pediatr Res 2013; 73:414-9. [PMID: 23269116 PMCID: PMC4321999 DOI: 10.1038/pr.2012.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Eosinophils reside in normal gastrointestinal tracts and increase during disease states. Receptors for eosinophil-derived granule proteins (EDGPs) have not been identified, but highly cationic molecules, similar to eosinophil proteins, bind extracellular calcium-sensing receptors (CaSRs). We hypothesized that stimulation of CaSRs by eosinophil proteins activates epithelial cells. METHODS Caco2 intestinal epithelial cells, AML14.3D10 eosinophils, wild-type (WT) human embryonic kidney 293 (HEK293) cells not expressing CaSRs (HEK-WT), and CaSR-transfected HEK293 cells (HEK-CaSR) were stimulated with an eosinophil protein analog poly-L-arginine (PA) and phosphorylated extracellular signal-regulated kinase (pERK)1 and pERK2 were measured. Functional activation was measured with collagen lattice contraction assays. RESULTS Coculture of Caco2 cells with AML14.3D10 eosinophils augmented lattice contraction as compared with lattices containing Caco2 cells alone. PA stimulation of Caco2 lattices augmented contraction. HEK-CaSR stimulation with PA or Ca(2+) resulted in greater pERK activation than that of stimulated HEK-WT cells. PA stimulated greater HEK-CaSR lattice contraction than unstimulated lattices. Contraction of PA-stimulated and PA-unstimulated HEK-WT lattices did not differ. CONCLUSION Exposure of intestinal epithelia to the EDGP analog PA stimulates CaSR-dependent ERK phosphorylation and epithelial-mediated collagen lattice contraction. We speculate that EDGP release within the epithelial layers activates the CaSR receptor, leading to matrix contraction and tissue fibrosis.
Collapse
|
235
|
Abstract
Inflammatory bowel disease (IBD) is a common and debilitating clinical disorder comprising ulcerative colitis and Crohn's disease. IBD occurs when inappropriate immunological activity in the intestinal mucosa results in epithelial barrier dysfunction leading to exposure of the mucosal immune system to luminal antigenic material. This in turn results in the cycles of inflammation and further barrier dysfunction which underlie disease progression. Although significant therapeutic advances have been made over the last decade, current immunosuppressive and anti-inflammatory treatments for IBD have significant limitations due to lack of treatment response in some patients and adverse effects, including increased risk of infection and malignancy. Recent studies using experimental models of IBD have identified that intracellular hydroxylases, a group of enzymes responsible for oxygen sensing and activation of adaptive transcriptional responses to hypoxia may represent a new class of therapeutic targets in IBD. Hydroxylase inhibitors are effective in ameliorating symptoms of colitis at least in part through the promotion of intestinal epithelial barrier function. The mechanism of this protection is due to activation of hypoxia-sensitive transcription factors, including the hypoxia-inducible factor (HIF) and nuclear factor kappa-B (NF-κB), which activate specific epithelial barrier-protective transcriptional programs. In this review, the mechanism(s) of action and the therapeutic potential of small molecule hydroxylase inhibitors for the treatment of IBD will be discussed.
Collapse
|
236
|
Qiu HJ, Wu W, Liu ZJ. Role of hypoxic injury in pathophysiology of intestinal mucosal inflammation. Shijie Huaren Xiaohua Zazhi 2013; 21:591-596. [DOI: 10.11569/wcjd.v21.i7.591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypoxia influences the normal metabolism of cells and normal functions of organs, eventually causing diseases. Various degrees of hypoxia can be seen in the intestinal mucosa of both experimental mouse models and patients with inflammatory bowel disease (IBD), whose oxygen supply and oxygen consumption are damaged. A number of hypoxia inducible factors, such as HIF-1, HIF-2 and HIF-3, can regulate different physiological responses via different mechanisms. Proline hydroxylasedomain (PHD) is a two-dioxygenase oxygen sensor that can mediate degradation of proline residues of HIFs. IBD is closely related to hypoxia. In recent years, researchers have paid more attention to improving the body's reaction to hypoxia in IBD, which is considered a novel treatment concept. This review will analyze the role of hypoxic injury in the pathophysiology of intestinal mucosal inflammation in IBD.
Collapse
|
237
|
Schaible B, McClean S, Selfridge A, Broquet A, Asehnoune K, Taylor CT, Schaffer K. Hypoxia modulates infection of epithelial cells by Pseudomonas aeruginosa. PLoS One 2013; 8:e56491. [PMID: 23418576 PMCID: PMC3572047 DOI: 10.1371/journal.pone.0056491] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/10/2013] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen commonly associated with lung and wound infections. Hypoxia is a frequent feature of the microenvironment of infected tissues which induces the expression of genes associated with innate immunity and inflammation in host cells primarily through the activation of the hypoxia-inducible factor (HIF) and Nuclear factor kappaB (NF-κB) pathways which are regulated by oxygen-dependent prolyl-hydroxylases. Hypoxia also affects virulence and antibiotic resistance in bacterial pathogens. However, less is known about the impact of hypoxia on host-pathogen interactions such as bacterial adhesion and infection. In the current study, we demonstrate that hypoxia decreases the internalization of P. aeruginosa into cultured epithelial cells resulting in decreased host cell death. This response can also be elicited by the hydroxylase inhibitor Dimethyloxallyl Glycine (DMOG). Reducing HIF-2α expression or Rho kinase activity diminished the effects of hypoxia on P. aeruginosa infection. Furthermore, in an in vivo pneumonia infection model, application of DMOG 48 h before infection with P. aeruginosa significantly reduced mortality. Thus, hypoxia reduces P. aeruginosa internalization into epithelial cells and pharmacologic manipulation of the host pathways involved may represent new therapeutic targets in the treatment of P. aeruginosa infection.
Collapse
Affiliation(s)
- Bettina Schaible
- UCD School of Medicine and Medical Science and The Conway Institute, University College Dublin, Dublin, Ireland
- School of Pharmacy, Queens's University, Belfast, United Kingdom
| | | | - Andrew Selfridge
- UCD School of Medicine and Medical Science and The Conway Institute, University College Dublin, Dublin, Ireland
| | - Alexis Broquet
- Laboratoire UPRES EA 3826 «Thérapeutiques cliniques et expérimentales des infections», Faculté de médecine, Université de Nantes, Nantes, France
| | - Karim Asehnoune
- Laboratoire UPRES EA 3826 «Thérapeutiques cliniques et expérimentales des infections», Faculté de médecine, Université de Nantes, Nantes, France
- Centre Hospitalier Universitaire de Nantes, Service anesthésie réanimation chirurgicale, Hôtel Dieu-HME, Nantes, France
| | - Cormac T. Taylor
- UCD School of Medicine and Medical Science and The Conway Institute, University College Dublin, Dublin, Ireland
| | - Kirsten Schaffer
- Department of Microbiology, St. Vincent's University Hospital, Dublin, Ireland
- * E-mail:
| |
Collapse
|
238
|
Miyauchi E, O'Callaghan J, Buttó LF, Hurley G, Melgar S, Tanabe S, Shanahan F, Nally K, O'Toole PW. Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: strain dependence and attenuation by bacteriocin production. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1029-41. [PMID: 22961803 DOI: 10.1152/ajpgi.00003.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enhanced barrier function is one mechanism whereby commensals and probiotic bacteria limit translocation of foreign antigens or pathogens in the gut. However, barrier protection is not exhibited by all probiotic or commensals and the strain-specific molecules involved remain to be clarified. We evaluated the effects of 33 individual Lactobacillus salivarius strains on the hydrogen peroxide (H(2)O(2))-induced barrier impairment in human epithelial Caco-2 cells. These strains showed markedly different effects on H(2)O(2)-induced reduction in transepithelial resistance (TER). The effective strains such as UCC118 and CCUG38008 attenuated H(2)O(2)-induced disassembly and relocalization of tight junction proteins, but the ineffective strain AH43324 did not. Strains UCC118 and CCUG38008 induced phosphorylation of extracellular signal-regulated kinase (ERK) in Caco-2 cells, and the ERK inhibitor U0126 attenuated the barrier-protecting effect of these strains. In contrast, the AH43324 strain induced phosphorylation of Akt and p38, which was associated with an absence of a protective effect. Global transcriptome analysis of UCC118 and AH43324 revealed that some genes in a bacteriocin gene cluster were upregulated in AH43324 under TER assay conditions. A bacteriocin-negative UCC118 mutant displayed significantly greater suppressive effect on H(2)O(2)-induced reduction in TER compared with wild-type UCC118. The wild-type strain augmented H(2)O(2)-induced phosphorylation of Akt and p38, whereas a bacteriocin-negative UCC118 mutant did not. These observations indicate that L. salivarius strains are widely divergent in their capacity for barrier protection, and this is underpinned by differences in the activation of intracellular signaling pathways. Furthermore, bacteriocin production appears to have an attenuating influence on lactobacillus-mediated barrier protection.
Collapse
Affiliation(s)
- Eiji Miyauchi
- Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Ortiz-Masià D, Díez I, Calatayud S, Hernández C, Cosín-Roger J, Hinojosa J, Esplugues JV, Barrachina MD. Induction of CD36 and thrombospondin-1 in macrophages by hypoxia-inducible factor 1 and its relevance in the inflammatory process. PLoS One 2012; 7:e48535. [PMID: 23119050 PMCID: PMC3485304 DOI: 10.1371/journal.pone.0048535] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/26/2012] [Indexed: 12/18/2022] Open
Abstract
Inflammation is part of a complex biological response of vascular tissue to pathogens or damaged cells. First inflammatory cells attempt to remove the injurious stimuli and this is followed by a healing process mediated principally by phagocytosis of senescent cells. Hypoxia and p38-MAPK are associated with inflammation, and hypoxia inducible factor 1 (HIF-1) has been detected in inflamed tissues. We aimed to analyse the role of p38-MAPK and HIF-1 in the transcriptional regulation of CD36, a class B scavenger receptor, and its ligand thrombospondin (TSP-1) in macrophages and to evaluate the involvement of this pathway in phagocytosis of apoptotic neutrophils. We have also assessed HIF-1α, p38-MAPK and CD36 immunostaining in the mucosa of patients with inflammatory bowel disease. Results show that hypoxia increases neutrophil phagocytosis by macrophages and induces the expression of CD36 and TSP-1. Addition of a p38-MAPK inhibitor significantly reduced the increase in CD36 and TSP-1 expression provoked by hypoxia and decreased HIF-1α stabilization in macrophages. Transient transfection of macrophages with a miHIF-1α-targeting vector blocked the increase in mRNA expression of CD36 and TSP-1 during hypoxia and reduced phagocytosis, thus highlighting a role for the transcriptional activity of HIF-1. CD36 and TSP-1 were necessary for the phagocytosis of neutrophils induced by hypoxic macrophages, since functional blockade of these proteins undermined this process. Immunohistochemical studies revealed CD36, HIF-1α and p38-MAPK expression in the mucosa of patients with inflammatory bowel disease. A positive and significant correlation between HIF-1α and CD36 expression and CD36 and p38-MAPK expression was observed in cells of the lamina propria of the damaged mucosa. Our results demonstrate a HIF-1-dependent up-regulation of CD36 and TSP-1 that mediates the increased phagocytosis of neutrophils by macrophages during hypoxia. Moreover, they suggest that CD36 expression in the damaged mucosa of patients with inflammatory bowel disease depends on p38-MAPK and HIF-1 activity.
Collapse
Affiliation(s)
- Dolores Ortiz-Masià
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Ehrentraut SF, Colgan SP. Implications of protein post-translational modifications in IBD. Inflamm Bowel Dis 2012; 18:1378-88. [PMID: 22223542 PMCID: PMC3378042 DOI: 10.1002/ibd.22859] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/22/2011] [Indexed: 12/19/2022]
Abstract
In recent years our understanding of the pathogenesis of inflammatory bowel disease (IBD) has greatly increased. Hallmarks of IBD include loss of intestinal barrier function, increased cytokine production, and failed resolution of tissue damage. Lasting treatments are still lacking and, therefore, a better understanding of the underlying molecular mechanisms is necessary to design novel therapeutic approaches. Apart from transcriptional and posttranscriptional regulation of relevant genes, mammals have evolved a complex and efficient series of mechanisms to rapidly modify newly made proteins for the purposes of signaling and adaptation. These posttranslational protein modifications include, among others, phosphorylation, hydroxylation, neddylation, and cytokine cleavage by the inflammasome. This review focuses on our current understanding of posttranslational protein modifications with a particular focus on their relevance to IBD pathogenesis.
Collapse
Affiliation(s)
- Stefan F Ehrentraut
- Department of Medicine and Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
241
|
Wang Y, Liu Y, Sidhu A, Ma Z, McClain C, Feng W. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol 2012; 303:G32-41. [PMID: 22538402 PMCID: PMC3404581 DOI: 10.1152/ajpgi.00024.2012] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endotoxemia is a contributing cofactor to alcoholic liver disease (ALD), and alcohol-induced increased intestinal permeability is one of the mechanisms of endotoxin absorption. Probiotic bacteria have been shown to promote intestinal epithelial integrity and protect barrier function in inflammatory bowel disease (IBD) and in ALD. Although it is highly possible that some common molecules secreted by probiotics contribute to this action in IBD, the effect of probiotic culture supernatant has not yet been studied in ALD. We examined the effects of Lactobacillus rhamnosus GG culture supernatant (LGG-s) on the acute alcohol-induced intestinal integrity and liver injury in a mouse model. Mice on standard chow diet were supplemented with supernatant from LGG culture (10(9) colony-forming unit/mouse) for 5 days, and one dose of alcohol at 6 g/kg body wt was administered via gavage. Intestinal permeability was measured by FITC-FD-4 ex vivo. Alcohol-induced liver injury was examined by measuring the activity of alanine aminotransferase (ALT) in plasma, and liver steatosis was evaluated by triglyceride content and Oil Red O staining of the liver sections. LGG-s pretreatment restored alcohol-induced reduction in ileum mRNA levels of claudin-1, intestine trefoil factor (ITF), P-glycoprotein (P-gp), and cathelin-related antimicrobial peptide (CRAMP), which play important roles on intestinal barrier integrity. As a result, LGG-s pretreatment significantly inhibited the alcohol-induced intestinal permeability, endotoxemia and subsequently liver injury. Interestingly, LGG-s pretreatment increased ileum mRNA expression of hypoxia-inducible factor (HIF)-2α, an important transcription factor of ITF, P-gp, and CRAMP. These results suggest that LGG-s ameliorates the acute alcohol-induced liver injury by promoting HIF signaling, leading to the suppression of alcohol-induced increased intestinal permeability and endotoxemia. The use of bacteria-free LGG culture supernatant provides a novel strategy for prevention of acute alcohol-induced liver injury.
Collapse
Affiliation(s)
- Yuhua Wang
- Departments of 1Medicine, ,2College of Food Science and Engineering, Jilin Agricultural University, Changchun, China;
| | - Yanlong Liu
- Departments of 1Medicine, ,3School of Pharmacy, Wenzhou Medical College, Wenzhou, China;
| | | | - Zhenhua Ma
- Departments of 1Medicine, ,4First Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Craig McClain
- Departments of 1Medicine, ,5Pharmacology and Toxicology, School of Medicine, and ,7Alcohol Research Center, University of Louisville; ,6Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky;
| | - Wenke Feng
- Departments of 1Medicine, ,7Alcohol Research Center, University of Louisville;
| |
Collapse
|
242
|
Wang Y, Liu Y, Sidhu A, Ma Z, McClain C, Feng W. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. J Am Coll Nutr 2012; 31:14-23. [PMID: 22661622 DOI: 10.1080/07315724.2012.10720004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endotoxemia is a contributing cofactor to alcoholic liver disease (ALD), and alcohol-induced increased intestinal permeability is one of the mechanisms of endotoxin absorption. Probiotic bacteria have been shown to promote intestinal epithelial integrity and protect barrier function in inflammatory bowel disease (IBD) and in ALD. Although it is highly possible that some common molecules secreted by probiotics contribute to this action in IBD, the effect of probiotic culture supernatant has not yet been studied in ALD. We examined the effects of Lactobacillus rhamnosus GG culture supernatant (LGG-s) on the acute alcohol-induced intestinal integrity and liver injury in a mouse model. Mice on standard chow diet were supplemented with supernatant from LGG culture (10(9) colony-forming unit/mouse) for 5 days, and one dose of alcohol at 6 g/kg body wt was administered via gavage. Intestinal permeability was measured by FITC-FD-4 ex vivo. Alcohol-induced liver injury was examined by measuring the activity of alanine aminotransferase (ALT) in plasma, and liver steatosis was evaluated by triglyceride content and Oil Red O staining of the liver sections. LGG-s pretreatment restored alcohol-induced reduction in ileum mRNA levels of claudin-1, intestine trefoil factor (ITF), P-glycoprotein (P-gp), and cathelin-related antimicrobial peptide (CRAMP), which play important roles on intestinal barrier integrity. As a result, LGG-s pretreatment significantly inhibited the alcohol-induced intestinal permeability, endotoxemia and subsequently liver injury. Interestingly, LGG-s pretreatment increased ileum mRNA expression of hypoxia-inducible factor (HIF)-2α, an important transcription factor of ITF, P-gp, and CRAMP. These results suggest that LGG-s ameliorates the acute alcohol-induced liver injury by promoting HIF signaling, leading to the suppression of alcohol-induced increased intestinal permeability and endotoxemia. The use of bacteria-free LGG culture supernatant provides a novel strategy for prevention of acute alcohol-induced liver injury.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Medicine, School of Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
243
|
Greer SN, Metcalf JL, Wang Y, Ohh M. The updated biology of hypoxia-inducible factor. EMBO J 2012; 31:2448-60. [PMID: 22562152 PMCID: PMC3365421 DOI: 10.1038/emboj.2012.125] [Citation(s) in RCA: 424] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/10/2012] [Indexed: 02/06/2023] Open
Abstract
Oxygen is essential for eukaryotic life and is inextricably linked to the evolution of multicellular organisms. Proper cellular response to changes in oxygen tension during normal development or pathological processes, such as cardiovascular disease and cancer, is ultimately regulated by the transcription factor, hypoxia-inducible factor (HIF). Over the past decade, unprecedented molecular insight has been gained into the mammalian oxygen-sensing pathway involving the canonical oxygen-dependent prolyl-hydroxylase domain-containing enzyme (PHD)-von Hippel-Lindau tumour suppressor protein (pVHL) axis and its connection to cellular metabolism. Here we review recent notable advances in the field of hypoxia that have shaped a more complex model of HIF regulation and revealed unique roles of HIF in a diverse range of biological processes, including immunity, development and stem cell biology.
Collapse
Affiliation(s)
- Samantha N Greer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| | - Julie L Metcalf
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| | - Yi Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada
| |
Collapse
|
244
|
Neutrophil priming by hypoxic preconditioning protects against epithelial barrier damage and enteric bacterial translocation in intestinal ischemia/reperfusion. J Transl Med 2012; 92:783-96. [PMID: 22370946 DOI: 10.1038/labinvest.2012.11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) induces mucosal barrier dysfunction and bacterial translocation (BT). Neutrophil-derived oxidative free radicals have been incriminated in the pathogenesis of ischemic injury in various organs, but their role in the bacteria-containing intestinal tract is debatable. Primed neutrophils are characterized by a faster and higher respiratory burst activity associated with more robust bactericidal effects on exposure to a second stimulus. Hypoxic preconditioning (HPC) attenuates ischemic injury in brain, heart, lung and kidney; no reports were found in the gut. Our aim is to investigate whether neutrophil priming by HPC protects against intestinal I/R-induced barrier damage and bacterial influx. Rats were raised in normoxia (NM) or kept in a hypobaric hypoxic chamber (380 Torr) 17 h/day for 3 weeks for HPC, followed by sham operation or intestinal I/R. Gut permeability was determined by using an ex vivo macromolecular flux assay and an in vivo magnetic resonance imaging-based method. Liver and spleen homogenates were plated for bacterial culturing. Rats raised in HPC showed diminished levels of BT, and partially improved mucosal histopathology and epithelial barrier function compared with the NM groups after intestinal I/R. Augmented cytokine-induced neutrophil chemoattractant (CINC)-1 and -3 levels and myeloperoxidase activity correlated with enhanced infiltration of neutrophils in intestines of HPC-I/R compared with NM-I/R rats. HPC alone caused blood neutrophil priming, as shown by elevated production of superoxide and hydrogen peroxide on stimulation, increased membrane translocation of cytosolic p47(phox) and p67(phox), as well as augmented bacterial-killing and phagocytotic activities. Neutrophil depletion reversed the mucosal protection by HPC, and aggravated intestinal leakiness and BT following I/R. In conclusion, neutrophil priming by HPC protects against I/R-induced BT via direct antimicrobial activity by oxidative respiratory bursts and through promotion of epithelial barrier integrity for luminal confinement of enteric bacteria.
Collapse
|
245
|
Wang Y, Kirpich I, Liu Y, Ma Z, Barve S, McClain CJ, Feng W. Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 179:2866-75. [PMID: 22093263 DOI: 10.1016/j.ajpath.2011.08.039] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/20/2011] [Accepted: 08/24/2011] [Indexed: 02/08/2023]
Abstract
Gut-derived endotoxin is a critical factor in the development and progression of alcoholic liver disease (ALD). Probiotics can treat alcohol-induced liver injury associated with gut leakiness and endotoxemia in animal models, as well as in human ALD; however, the mechanism or mechanisms of their beneficial action are not well defined. We hypothesized that alcohol impairs the adaptive response-induced hypoxia-inducible factor (HIF) and that probiotic supplementation could attenuate this impairment, restoring barrier function in a mouse model of ALD by increasing HIF-responsive proteins (eg, intestinal trefoil factor) and reversing established ALD. C57BJ/6N mice were fed the Lieber DeCarli diet containing 5% alcohol for 8 weeks. Animals received Lactobacillus rhamnosus GG (LGG) supplementation in the last 2 weeks. LGG supplementation significantly reduced alcohol-induced endotoxemia and hepatic steatosis and improved liver function. LGG restored alcohol-induced reduction of HIF-2α and intestinal trefoil factor levels. In vitro studies using the Caco-2 cell culture model showed that the addition of LGG supernatant prevented alcohol-induced epithelial monolayer barrier dysfunction. Furthermore, gene silencing of HIF-1α/2α abolished the LGG effects, indicating that the protective effect of LGG is HIF-dependent. The present study provides a mechanistic insight for utilization of probiotics for the treatment of ALD, and suggests a critical role for intestinal hypoxia and decreased trefoil factor in the development of ALD.
Collapse
Affiliation(s)
- Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
246
|
Kelly CJ, Colgan SP. Targeting Hypoxia to Augment Mucosal Barrier Function. JOURNAL OF EPITHELIAL BIOLOGY & PHARMACOLOGY 2012; 5:67-76. [PMID: 28824735 PMCID: PMC5560425 DOI: 10.2174/1875044301205010067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sites of inflammation are associated with profound changes in tissue metabolism. Studies in vitro and in vivo have shown that the activation of the hypoxia-inducible factor (HIF) serves as an adaptive pathway for the resolution of inflammation associated with various murine disease models. The resolution of disease occurs, at least in part, through transcriptional regulation of non-classical epithelial barrier genes. There is significant recent interest in harnessing hypoxia-inducible pathways, including targeting the HIF and the proyl-hydroxylase (PHD) enzymes that stabilize HIF, to promote mucosal healing. Here, we review the signaling pathways involved and define how hypoxia-associated signaling provides mechanistic insight into augmenting barrier function in mucosal inflammatory disease.
Collapse
Affiliation(s)
- Caleb J Kelly
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Health Sciences Center, Aurora, CO USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Health Sciences Center, Aurora, CO USA
| |
Collapse
|
247
|
Colgan SP, Eltzschig HK. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu Rev Physiol 2011; 74:153-75. [PMID: 21942704 DOI: 10.1146/annurev-physiol-020911-153230] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gastrointestinal mucosa has proven to be an interesting tissue in which to investigate disease-related metabolism. In this review, we outline some of the evidence that implicates hypoxia-mediated adenosine signaling as an important signature within both healthy and diseased mucosa. Studies derived from cultured cell systems, animal models, and human patients have revealed that hypoxia is a significant component of the inflammatory microenvironment. These studies have revealed a prominent role for hypoxia-induced factor (HIF) and hypoxia signaling at several steps along the adenine nucleotide metabolism and adenosine receptor signaling pathways. Likewise, studies to date in animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes. Ongoing studies to define potential similarities with and differences between innate and adaptive immune responses will continue to teach us important lessons about the complexity of the gastrointestinal tract. Such information has provided new insights into disease pathogenesis and, importantly, will provide insights into new therapeutic targets.
Collapse
Affiliation(s)
- Sean P Colgan
- Departments of Medicine and Anesthesiology and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
248
|
Fredenburgh LE, Velandia MMS, Ma J, Olszak T, Cernadas M, Englert JA, Chung SW, Liu X, Begay C, Padera RF, Blumberg RS, Walsh SR, Baron RM, Perrella MA. Cyclooxygenase-2 deficiency leads to intestinal barrier dysfunction and increased mortality during polymicrobial sepsis. THE JOURNAL OF IMMUNOLOGY 2011; 187:5255-67. [PMID: 21967897 DOI: 10.4049/jimmunol.1101186] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sepsis remains the leading cause of death in critically ill patients, despite modern advances in critical care. Intestinal barrier dysfunction may lead to secondary bacterial translocation and the development of the multiple organ dysfunction syndrome during sepsis. Cyclooxygenase (COX)-2 is highly upregulated in the intestine during sepsis, and we hypothesized that it may be critical in the maintenance of intestinal epithelial barrier function during peritonitis-induced polymicrobial sepsis. COX-2(-/-) and COX-2(+/+) BALB/c mice underwent cecal ligation and puncture (CLP) or sham surgery. Mice chimeric for COX-2 were derived by bone marrow transplantation and underwent CLP. C2BBe1 cells, an intestinal epithelial cell line, were treated with the COX-2 inhibitor NS-398, PGD(2), or vehicle and stimulated with cytokines. COX-2(-/-) mice developed exaggerated bacteremia and increased mortality compared with COX-2(+/+) mice following CLP. Mice chimeric for COX-2 exhibited the recipient phenotype, suggesting that epithelial COX-2 expression in the ileum attenuates bacteremia following CLP. Absence of COX-2 significantly increased epithelial permeability of the ileum and reduced expression of the tight junction proteins zonula occludens-1, occludin, and claudin-1 in the ileum following CLP. Furthermore, PGD(2) attenuated cytokine-induced hyperpermeability and zonula occludens-1 downregulation in NS-398-treated C2BBe1 cells. Our findings reveal that absence of COX-2 is associated with enhanced intestinal epithelial permeability and leads to exaggerated bacterial translocation and increased mortality during peritonitis-induced sepsis. Taken together, our results suggest that epithelial expression of COX-2 in the ileum is a critical modulator of tight junction protein expression and intestinal barrier function during sepsis.
Collapse
Affiliation(s)
- Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Masterson JC, McNamee EN, Jedlicka P, Fillon S, Ruybal J, Hosford L, Rivera-Nieves J, Lee JJ, Furuta GT. CCR3 Blockade Attenuates Eosinophilic Ileitis and Associated Remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2302-14. [PMID: 21945903 DOI: 10.1016/j.ajpath.2011.07.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/07/2011] [Accepted: 07/26/2011] [Indexed: 01/12/2023]
Abstract
Intestinal remodeling and stricture formation is a complication of inflammatory bowel disease (IBD) that often requires surgical intervention. Although eosinophils are associated with mucosal remodeling in other organs and are increased in IBD tissues, their role in IBD-associated remodeling is unclear. Histological and molecular features of ileitis and remodeling were assessed using immunohistochemical, histomorphometric, flow cytometric, and molecular analysis (real-time RT-PCR) techniques in a murine model of chronic eosinophilic ileitis. Collagen protein was assessed by Sircol assay. Using a spontaneous eosinophilic Crohn's-like mouse model SAMP1/SkuSlc, we demonstrate an association between ileitis progression and remodeling over the course of 40 weeks. Mucosal and submucosal eosinophilia increased over the time course and correlated with increased histological inflammatory indices. Ileitis and remodeling increased over the 40 weeks, as did expression of fibronectin. CCR3-specific antibody-mediated reduction of eosinophils resulted in significant decrease in goblet cell hyperplasia, muscularis propria hypertrophy, villus blunting, and expression of inflammatory and remodeling genes, including fibronectin. Cellularity of local mesenteric lymph nodes, including T- and B-lymphocytes, was also significantly reduced. Thus, eosinophils participate in intestinal remodeling, supporting eosinophils as a novel therapeutic target.
Collapse
Affiliation(s)
- Joanne C Masterson
- Section of Pediatric Gastroenterology, Hepatology and Nutrition-Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Olson N, Hristova M, Heintz NH, Lounsbury KM, van der Vliet A. Activation of hypoxia-inducible factor-1 protects airway epithelium against oxidant-induced barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2011; 301:L993-L1002. [PMID: 21926263 DOI: 10.1152/ajplung.00250.2011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The respiratory epithelium forms an important barrier against inhaled pollutants and microorganisms, and its barrier function is often compromised during inflammatory airway diseases. Epithelial activation of hypoxia-inducible factor-1 (HIF-1) represents one feature of airway inflammation, but the functional importance of HIF-1 within the respiratory epithelium is largely unknown. Using primary mouse tracheal epithelial (MTE) cells or immortalized human bronchial epithelial cells (16HBE14o-), we evaluated the impact of HIF-1 activation on loss of epithelial barrier function during oxidative stress. Exposure of either 16HBE14o- or MTE cells to H(2)O(2) resulted in significant loss of transepithelial electrical resistance and increased permeability to fluorescein isothiocyanate-dextran (4 kDa), and this was attenuated significantly after prior activation of HIF-1 by preexposure to hypoxia (2% O(2); 6 h) or the hypoxia mimics CoCl(2) or dimethyloxalylglycine (DMOG). Oxidative barrier loss was associated with reduced levels of the tight junction protein occludin and with hyperoxidation of the antioxidant enzyme peroxiredoxin (Prx-SO(2)H), events that were also attenuated by prior activation of HIF-1. Involvement of HIF-1 in these protective effects was confirmed using the pharmacological inhibitor YC-1 and by short-hairpin RNA knockdown of HIF-1α. The protective effects of HIF-1 were associated with induction of sestrin-2, a hypoxia-inducible enzyme known to reduce oxidative stress and minimize Prx hyperoxidation. Together, our results suggest that loss of epithelial barrier integrity by oxidative stress is minimized by activation of HIF-1, in part by induction of sestrin-2.
Collapse
Affiliation(s)
- Nels Olson
- Department of Pathology, College of Medicine, University of Vermont, Burlington, 05405-0068, USA
| | | | | | | | | |
Collapse
|