201
|
Nigar S, Shimosato T. Cooperation of Oligodeoxynucleotides and Synthetic Molecules as Enhanced Immune Modulators. Front Nutr 2019; 6:140. [PMID: 31508424 PMCID: PMC6718720 DOI: 10.3389/fnut.2019.00140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Unmethylated cytosine–guanine dinucleotide (CpG) motifs are potent stimulators of the host immune response. Cellular recognition of CpG motifs occurs via Toll-like receptor 9 (TLR9), which normally activates immune responses to pathogen-associated molecular patterns (PAMPs) indicative of infection. Oligodeoxynucleotides (ODNs) containing unmethylated CpGs mimic the immunostimulatory activity of viral/microbial DNA. Synthetic ODNs harboring CpG motifs resembling those identified in viral/microbial DNA trigger an identical response, such that these immunomodulatory ODNs have therapeutic potential. CpG DNA has been investigated as an agent for the management of malignancy, asthma, allergy, and contagious diseases, and as an adjuvant in immunotherapy. In this review, we discuss the potential synergy between synthetic ODNs and other synthetic molecules and their immunomodulatory effects. We also summarize the different synthetic molecules that function as immune modulators and outline the phenomenon of TLR-mediated immune responses. We previously reported a novel synthetic ODN that acts synergistically with other synthetic molecules (including CpG ODNs, the synthetic triacylated lipopeptide Pam3CSK4, lipopolysaccharide, and zymosan) that could serve as an immune therapy. Additionally, several clinical trials have evaluated the use of CpG ODNs with other immune factors such as granulocyte-macrophage colony-stimulating factor, cytokines, and both endosomal and cell-surface TLR ligands as adjuvants for the augmentation of vaccine activity. Furthermore, we discuss the structural recognition of ODNs by TLRs and the mechanism of functional modulation of TLRs in the context of the potential application of ODNs as wide-spectrum therapeutic agents.
Collapse
Affiliation(s)
- Shireen Nigar
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
202
|
TNF-α in Combination with Palmitate Enhances IL-8 Production via The MyD88- Independent TLR4 Signaling Pathway: Potential Relevance to Metabolic Inflammation. Int J Mol Sci 2019; 20:ijms20174112. [PMID: 31443599 PMCID: PMC6747275 DOI: 10.3390/ijms20174112] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/08/2023] Open
Abstract
Elevated levels of IL-8 (CXCL8) in obesity have been linked with insulin resistance and type 2 diabetes (T2D). The mechanisms that lead to the profound production of IL-8 in obesity remains to be understood. TNF-α and saturated free fatty acids (FFAs) are increased in obese humans and correlate with insulin resistance. Hence, we sought to investigate whether the cooccurrence of TNF-α and FFAs led to increase the production of IL-8 by human monocytes. We found that co-stimulation of human monocytes with palmitate and TNF-α led to increased IL-8 production as compared to those stimulated with palmitate or TNF-α alone. The synergistic production of IL-8 by TNF-α/palmitate was suppressed by neutralizing anti- Toll like receptor 4 (TLR4) antibody and by genetic silencing of TLR4. Both MyD88-deficient and MyD88-competent cells responded comparably to TNF-α/Palmitate. However, TIR-domain-containing adapter-inducing interferon (TRIF) inhibition or interferon regulatory transcription factor 3 (IRF3) knockdown partly blocked the synergistic production of IL-8. Our human data show that increased adipose tissue TNF-α expression correlated positively with IL-8 expression (r = 0.49, P = 0.001). IL-8 and TNF-α correlated positively with macrophage markers including CD68, CD163 and CD86 in adipose tissue. These findings suggest that the signaling cross-talk between saturated fatty acid palmitate and TNF-α may be a key driver in obesity-associated chronic inflammation via an excessive production of IL-8.
Collapse
|
203
|
Zou PF, Shen JJ, Li Y, Yan Q, Zou ZH, Zhang ZP, Wang YL. Molecular cloning and functional characterization of TRIF in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2019; 91:108-121. [PMID: 31091461 DOI: 10.1016/j.fsi.2019.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
As an adaptor in Toll-like receptor (TLR) signaling pathway, Toll/interleukin-1 receptor (TIR) domain containing adaptor inducing interferon-β (TRIF) mediates downstream signaling cascades and plays important roles in host innate immune responses. In the present study, a TRIF ortholog named Lc-TRIF was identified in large yellow croaker (Larimichthys crocea). Sequence comparison analysis revealed that Lc-TRIF has a conserved TIR domain but without TRAF6 binding motif. The genome structure of Lc-TRIF is conserved, with two exons and one intron. Syntenic comparison showed that the loci of fish TRIF was different from that in mammals or birds, and TRAM was absent in the genomes of fish, amphibians, and birds, but present in mammals and reptiles. Expression analysis revealed that Lc-TRIF was broadly expressed in examined organs/tissues, with the highest expression level in gill and weakest in brain, and could be up-regulated under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulation. Fluorescence microscopy results showed that Lc-TRIF exhibited a global localization throughout the entire cell including the nucleus in HEK 293T cells. Additionally, luciferase assays demonstrated that Lc-TRIF expression could significantly induce NF-κB, type I IFN, IRF3 as well as IRF7 promoter activation. These results collectively indicated that Lc-TRIF was function in host antiviral and antibacterial responses via NF-κB and IRF3/7 related signaling pathway.
Collapse
Affiliation(s)
- Peng Fei Zou
- College of Fisheries, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Juan Juan Shen
- College of Fisheries, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Ying Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, Fujian Province, 363105, China
| | - Qingpi Yan
- College of Fisheries, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Zhi Hua Zou
- College of Fisheries, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Zi Ping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Yi Lei Wang
- College of Fisheries, Jimei University, Xiamen, Fujian Province, 361021, China.
| |
Collapse
|
204
|
Strowitzki MJ, Ritter AS, Kimmer G, Schneider M. Hypoxia-adaptive pathways: A pharmacological target in fibrotic disease? Pharmacol Res 2019; 147:104364. [PMID: 31376431 DOI: 10.1016/j.phrs.2019.104364] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
Wound healing responses are physiological reactions to injuries and share common characteristics and phases independently of the injured organ or tissue. A major hallmark of wound healing responses is the formation of extra-cellular matrix (ECM), mainly consisting of collagen fibers, to restore the initial organ architecture and function. Overshooting wound healing responses result in unphysiological accumulation of ECM and collagen deposition, a process called fibrosis. Importantly, hypoxia (oxygen demand exceeds supply) plays a significant role during wound healing responses and fibrotic diseases. Under hypoxic conditions, cells activate a gene program, including the stabilization of hypoxia-inducible factors (HIFs), which induces the expression of HIF target genes counteracting hypoxia. In contrast, in normoxia, so-called HIF-prolyl hydroxylases (PHDs) oxygen-dependently hydroxylate HIF-α, which marks it for proteasomal degradation. Importantly, PHDs can be pharmacologically inhibited (PHI) by so-called PHD inhibitors. There is mounting evidence that the HIF-pathway is continuously up-regulated during the development of tissue fibrosis, and that pharmacological (HIFI) or genetic inhibition of HIF can prevent organ fibrosis. By contrast, initial (short-term) activation of the HIF pathway via PHI during wound healing seems to be beneficial in several models of inflammation or acute organ injury. Thus, timing and duration of PHI and HIFI treatment seem to be crucial. In this review, we will highlight the role of hypoxia-adaptive pathways during wound healing responses and development of fibrotic disease. Moreover, we will discuss whether PHI and HIFI might be a promising treatment option in fibrotic disease, and consider putative pitfalls that might result from this approach.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gwendolyn Kimmer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
205
|
Jones-Nelson O, Hilliard JJ, DiGiandomenico A, Warrener P, Alfaro A, Cheng L, Stover CK, Cohen TS, Sellman BR. The Neutrophilic Response to Pseudomonas Damages the Airway Barrier, Promoting Infection by Klebsiella pneumoniae. Am J Respir Cell Mol Biol 2019; 59:745-756. [PMID: 30109945 DOI: 10.1165/rcmb.2018-0107oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa and Klebsiella pneumoniae are two common gram-negative pathogens that are associated with bacterial pneumonia and can often be isolated from the same patient. We used a mixed-pathogen pneumonia infection model in which mice were infected with sublethal concentrations of P. aeruginosa and K. pneumoniae, resulting in significant lethality, outgrowth of both bacteria in the lung, and systemic dissemination of K. pneumoniae. Inflammation, induced by P. aeruginosa activation of Toll-like receptor 5, results in prolonged neutrophil recruitment to the lung and increased levels of neutrophil elastase in the airway, resulting in lung damage and epithelial barrier dysfunction. Live P. aeruginosa was not required to potentiate K. pneumoniae infection, and flagellin alone was sufficient to induce lethality when delivered along with Klebsiella. Prophylaxis with an anti-Toll-like receptor 5 antibody or Sivelestat, a neutrophil elastase inhibitor, reduced neutrophil influx, inflammation, and mortality. Furthermore, pathogen-specific monoclonal antibodies targeting P. aeruginosa or K. pneumoniae prevented the outgrowth of both bacteria and reduced host inflammation and lethality. These findings suggest that coinfection with P. aeruginosa may enable the outgrowth and dissemination of K. pneumoniae, and that a pathogen- or host-specific prophylactic approach targeting P. aeruginosa may prevent or limit the severity of such infections by reducing neutrophil-induced lung damage.
Collapse
Affiliation(s)
| | | | | | | | - Alex Alfaro
- 2 Department of Laboratory Animal Research, and
| | - Lily Cheng
- 3 Department of Translational Science, MedImmune, LLC, Gaithersburg, Maryland
| | | | | | | |
Collapse
|
206
|
An endosomal LAPF is required for macrophage endocytosis and elimination of bacteria. Proc Natl Acad Sci U S A 2019; 116:12958-12963. [PMID: 31189603 DOI: 10.1073/pnas.1903896116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macrophages can internalize the invading pathogens by raft/caveolae and/or clathrin-dependent endocytosis and elicit an immune response against infection. However, the molecular mechanism for macrophage endocytosis remains elusive. Here we report that LAPF (lysosome-associated and apoptosis-inducing protein containing PH and FYVE domains) is required for caveolae-mediated endocytosis. Lapf -deficient macrophages have impaired capacity to endocytose and eliminate bacteria. Macrophage-specific Lapf-deficient mice are more susceptible to Escherichia coli (E. coli) infection with higher bacterial loads. Moreover, Lapf deficiency impairs TLR4 endocytosis, resulting in attenuated production of TLR-triggered proinflammatory cytokines. LAPF is localized to early endosomes and interacts with caveolin-1. Phosphorylation of LAPF by the tyrosine kinase Src is required for LAPF-Src-Caveolin complex formation and endocytosis and elimination of bacteria. Collectively, our work demonstrates that LAPF is critical for endocytosis of bacteria and induction of inflammatory responses, suggesting that LAPF and Src could be potential targets for the control of infectious diseases.
Collapse
|
207
|
Hu R, Li H, Lei Z, Han Q, Yu X, Zhou N, Zhang X, Mao Y, Wang X, Irwin DM, Niu G, Tan H. Construction of a sensitive pyrogen-testing cell model by site-specific knock-in of multiple genes. Biotechnol Bioeng 2019; 116:2652-2661. [PMID: 31180145 DOI: 10.1002/bit.27084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/15/2019] [Accepted: 06/05/2019] [Indexed: 11/07/2022]
Abstract
A pyrogen test is crucial for evaluating the safety of drugs and medical equipment, especially those involved in injections. As existing pyrogen tests, including the rabbit pyrogen test, the limulus amoebocyte lysate (LAL) test and the monocyte activation test have limitations, development of new models for pyrogen testing is necessary. Here we develop a sensitive cell model for pyrogen test based on the lipopolysaccharides (LPS) signal pathway. TLR4, MD2, and CD14 play key roles in the LPS-mediated pyrogen reaction. We established a new TLR4/MD2/CD14-specific overexpressing knock-in cell model using the CRISPR/CAS9 technology and homologous recombination to detect LPS. Stimulation of our TLR4/CD14/MD2 knock-in cell line model with LPS leads to the release of the cytokines IL-6 and TNF-alpha, with a detection limit of 0.005 EU/ml, which is greatly lower than the lower limit of 0.015 EU/ml detected by the Tachypleus amebocyte lysate (TAL) assay.
Collapse
Affiliation(s)
- Ruobi Hu
- Department of Pharmacology, Health Science Center, Peking University, Beijing, China
| | - Hui Li
- Department of Pharmacology, Health Science Center, Peking University, Beijing, China
| | - Zhen Lei
- Beijing N&N Genetech Company, Ltd., Beijing, China
| | - Qing Han
- Department of Pharmacology, Health Science Center, Peking University, Beijing, China
| | - Xiuyan Yu
- Department of Pharmacology, Health Science Center, Peking University, Beijing, China
| | - Na Zhou
- Department of Pharmacology, Health Science Center, Peking University, Beijing, China
| | - Xuehui Zhang
- Department of Pharmacology, Health Science Center, Peking University, Beijing, China
| | - Yiqing Mao
- Department of Pharmacology, Health Science Center, Peking University, Beijing, China
| | - Xi Wang
- Department of Pharmacology, Health Science Center, Peking University, Beijing, China
| | - David M Irwin
- Department of Pharmacology, Health Science Center, Peking University, Beijing, China.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gang Niu
- Beijing N&N Genetech Company, Ltd., Beijing, China
| | - Huanran Tan
- Department of Pharmacology, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
208
|
Han Q, Hu R, Li H, Lei Z, Zhang X, Yu X, Zhang Q, Mao Y, Wang X, Irwin DM, Niu G, Tan H. Application of a TLR overexpression cell model in pyrogen detection. Biotechnol Bioeng 2019; 116:1269-1279. [PMID: 30684361 PMCID: PMC6519253 DOI: 10.1002/bit.26936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022]
Abstract
Pyrogens are components derived from microorganisms that induce complex inflammatory responses. Current approaches to detect pyrogens are complex and difficult to replicate, thus there is a need for new methods to detect pyrogens. We successfully constructed a pyrogen-sensitive cell model by overexpressing Toll-like receptor (TLR)2, TLR4, MD2, and CD14 in HEK293 cells. Since the cytokine IL-6 is specifically released upon stimulation of the TLR2 and TLR4 signaling pathways in response to pyrogen stimulation, we used it as a read out for our assay. Our results show that IL-6 is released in response to trace amounts of pyrogens in our cell model. Pyrogen incubation times and concentrations were explored to determine the sensitivity of our cell model, and was found to be sensitive to 0.05 EU/ml of LPS and 0.05 ug/ml of LTA after stimulation for 5 hr. Our TLR overexpressing cell model, with IL-6 as readout, could be a new method for in vitro testing of pyrogens and applicable for evaluating the safety of drugs.
Collapse
Affiliation(s)
- Qing Han
- Department of PharmacologyPeking University, Health Science CenterBeijingChina
| | - Ruobi Hu
- Department of PharmacologyPeking University, Health Science CenterBeijingChina
| | - Hui Li
- Department of PharmacologyPeking University, Health Science CenterBeijingChina
| | - Zhen Lei
- Research and Development DepartmentBeijing N&N Genetech CompanyBeijingChina
| | - Xuehui Zhang
- Department of PharmacologyPeking University, Health Science CenterBeijingChina
| | - Xiuyan Yu
- Department of PharmacologyPeking University, Health Science CenterBeijingChina
| | - Qun Zhang
- Department of PharmacologyPeking University, Health Science CenterBeijingChina
| | - Yiqing Mao
- Department of PharmacologyPeking University, Health Science CenterBeijingChina
| | - Xi Wang
- Department of PharmacologyPeking University, Health Science CenterBeijingChina
| | - David M. Irwin
- Department of PharmacologyPeking University, Health Science CenterBeijingChina
- Department of Laboratory Medicine and PathobiologyUniversity of Toronto, TorontoOntarioCanada
| | - Gang Niu
- Research and Development DepartmentBeijing N&N Genetech CompanyBeijingChina
| | - Huanran Tan
- Department of PharmacologyPeking University, Health Science CenterBeijingChina
| |
Collapse
|
209
|
Interferon regulatory factor 3 plays a role in macrophage responses to interferon-γ. Immunobiology 2019; 224:565-574. [PMID: 31072630 DOI: 10.1016/j.imbio.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
Abstract
IFN-γ produced during viral infections activates the IFN-γ receptor (IFNGR) complex for STAT1 transcriptional activity leading to expression of Interferon Regulatory Factors (IRF). Simultaneous activation of TBK/IKKε via TLR3 during viral infections activates the transcription factor IRF3. Together these transcription factors contributes to expression of intracellular proteins (e.g. ISG49, ISG54) and secreted proteins (e.g. IFN-β, IP-10, IL-15) that are essential to innate antiviral immunity. Here we examined the role of IRF3 in expression of innate anti-viral proteins produced in response to IFN-γ plus TLR3 agonist. Wild-type (WT) and IRF3KO RAW264.7 cells, each with ISG54-promoter-luciferase reporter vectors, were stimulated with IFN-γ, poly I:C, or both together. ISG54 promoter activity was significantly reduced in IRF3KO RAW264.7 cells responding to IFN-γ, poly I:C, or IFN-γ plus poly I:C, compared with WT RAW264.7 cells. These data were confirmed with western blot and qRT-PCR. Primary macrophages and dendritic cells (DCs) from IRF3KO mice also showed decreased ISG54 in response to IFN-γ, poly I:C, or IFN-γ plus poly I:C compared with those from WT mice. Moreover, pharmacological inhibition of TBK/IKKε significantly reduced ISG54 promoter activity in response to IFN-γ, poly I:C, or IFN-γ plus poly I:C. Similarly, expression of ISG49 and IL-15, but not IP-10, was impaired in IRF3KO RAW264.7 cells responding to IFN-γ or poly I:C, which also had impaired STAT1 phosphorylation and IRF1 expression. These data show that IRF3 contributes to IFN-γ/IFNGR signaling for expression of innate anti-viral proteins in macrophages.
Collapse
|
210
|
Khademalhosseini M, Arababadi MK. Toll-like receptor 4 and breast cancer: an updated systematic review. Breast Cancer 2019; 26:265-271. [PMID: 30543015 DOI: 10.1007/s12282-018-00935-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) may play dual roles in human cancers. TLR4 is a key molecule which may participate in both friend and foe roles against breast cancer. This review article collected recent data regarding the mechanisms used by TLR4 in the eradication of breast cancer cells and induction of the tumor cells, and discussed the mechanisms involved in the various functions of TLR4. The literature searches revealed that TLR4 is a key molecule that participates in breast cancer cell eradication or induction of breast cancer development and also transformation of the normal cells. TLR4 eradicates breast cancer cells via recognition of their DAMPs and then induces immune responses. Over-expression of TLR4 and also alterations in its signaling, including association of some intrinsic pathways such as TGF-β signaling and TP53, are the crucial factors to alter TLR4 functions against breast cancer.
Collapse
Affiliation(s)
- Morteza Khademalhosseini
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Kazemi Arababadi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
211
|
Zhou Z, Su Y, Fa XE. Isorhynchophylline exerts anti-inflammatory and anti-oxidative activities in LPS-stimulated murine alveolar macrophages. Life Sci 2019; 223:137-145. [DOI: 10.1016/j.lfs.2019.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 01/17/2023]
|
212
|
Skjesol A, Yurchenko M, Bösl K, Gravastrand C, Nilsen KE, Grøvdal LM, Agliano F, Patane F, Lentini G, Kim H, Teti G, Kumar Sharma A, Kandasamy RK, Sporsheim B, Starheim KK, Golenbock DT, Stenmark H, McCaffrey M, Espevik T, Husebye H. The TLR4 adaptor TRAM controls the phagocytosis of Gram-negative bacteria by interacting with the Rab11-family interacting protein 2. PLoS Pathog 2019; 15:e1007684. [PMID: 30883606 PMCID: PMC6438586 DOI: 10.1371/journal.ppat.1007684] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/28/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Phagocytosis is a complex process that eliminates microbes and is performed by specialised cells such as macrophages. Toll-like receptor 4 (TLR4) is expressed on the surface of macrophages and recognizes Gram-negative bacteria. Moreover, TLR4 has been suggested to play a role in the phagocytosis of Gram-negative bacteria, but the mechanisms remain unclear. Here we have used primary human macrophages and engineered THP-1 monocytes to show that the TLR4 sorting adapter, TRAM, is instrumental for phagocytosis of Escherichia coli as well as Staphylococcus aureus. We find that TRAM forms a complex with Rab11 family interacting protein 2 (FIP2) that is recruited to the phagocytic cups of E. coli. This promotes activation of the actin-regulatory GTPases Rac1 and Cdc42. Our results show that FIP2 guided TRAM recruitment orchestrates actin remodelling and IRF3 activation, two events that are both required for phagocytosis of Gram-negative bacteria. The Gram-negative bacteria E. coli is the most common cause of severe human pathological conditions like sepsis. Sepsis is a clinical syndrome defined by pathological changes due to systemic inflammation, resulting in paralysis of adaptive T-cell immunity with IFN-β as a critical factor. TLR4 is a key sensing receptor of lipopolysaccharide on Gram-negative bacteria. Inflammatory signalling by TLR4 is initiated by the use of alternative pair of TIR-adapters, MAL-MyD88 or TRAM-TRIF. MAL-MyD88 signaling occurs mainly from the plasma membrane giving pro-inflammatory cytokines like TNF, while TRAM-TRIF signaling occurs from vacuoles like endosomes and phagosomes to give type I interferons like IFN-β. It has previously been shown that TLR4 can control phagocytosis and phagosomal maturation through MAL-MyD88 in mice, however, these data have been disputed and published before the role of TRAM was defined in the induction of IFN-β. A role for TRAM or TRIF in phagocytosis has not previously been reported. Here we describe a novel mechanism where TRAM and its binding partner Rab11-FIP2 control phagocytosis of E. coli and regulate IRF3 dependent production of IFN-β. The significance of these results is that we define Rab11-FIP2 as a potential target for modulation of TLR4-dependent signalling in different pathological states.
Collapse
Affiliation(s)
- Astrid Skjesol
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mariia Yurchenko
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Korbinian Bösl
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caroline Gravastrand
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kaja Elisabeth Nilsen
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lene Melsæther Grøvdal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Federica Agliano
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Patane
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Germana Lentini
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Hera Kim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Giuseppe Teti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Aditya Kumar Sharma
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørnar Sporsheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian K. Starheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Douglas T. Golenbock
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Harald Stenmark
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department for Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo Norway
| | - Mary McCaffrey
- Molecular Cell Biology Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Harald Husebye
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
- * E-mail:
| |
Collapse
|
213
|
Gaudino SJ, Kumar P. Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front Immunol 2019; 10:360. [PMID: 30894857 PMCID: PMC6414782 DOI: 10.3389/fimmu.2019.00360] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/12/2019] [Indexed: 11/21/2022] Open
Abstract
Innate immunity is maintained in part by antigen presenting cells (APCs) including dendritic cells, macrophages, and B cells. APCs interact with T cells to link innate and adaptive immune responses. By displaying bacterial and tumorigenic antigens on their surface via major histocompatibility complexes, APCs can directly influence the differentiation of T cells. Likewise, T cell activation, differentiation, and effector functions are modulated by APCs utilizing multiple mechanisms. The objective of this review is to describe how APCs interact with and influence the activation of T cells to maintain innate immunity during exposure to microbial infection and malignant cells. How bacteria and cancer cells take advantage of some of these interactions for their own benefit will also be discussed. While this review will cover a broad range of topics, a general focus will be held around pathogens, cancers, and interactions that typically occur within the gastrointestinal tract.
Collapse
Affiliation(s)
- Stephen J Gaudino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - Pawan Kumar
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
214
|
Nie L, Cai SY, Sun J, Chen J. MicroRNA-155 promotes pro-inflammatory functions and augments apoptosis of monocytes/macrophages during Vibrio anguillarum infection in ayu, Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:70-81. [PMID: 30447432 DOI: 10.1016/j.fsi.2018.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Upon recognition of pathogen-associated molecular patterns by pattern-recognition receptors, immune cells are recruited, and multiple antibacterial/viral signaling pathways are activated, leading to the production of immune-related cytokines, chemokines, and interferons along with further activation of the adaptive immune response. MicroRNAs (miRs) play essential roles in regulating such immune signaling pathways, as well as the biological activities of immune cells; however, knowledge regarding the roles of miRs in the immune-related function of monocytes/macrophages (MO/MΦ) remains limited in teleosts. In the present study, we addressed the effects of miR-155 on Vibrio anguillarum-infected MO/MΦ. Our results showed that miR-155 augmented MO/MΦ expression of proinflammatory cytokines and attenuated the expression of anti-inflammatory cytokines. Additionally, the phagocytosis and bacteria-killing abilities of these cells were boosted by miR-155 administration, which also promoted M1-type polarization but inhibited M2-type polarization. Furthermore, the V. anguillarum-infection-induced apoptosis was also enhanced by miR-155 mimic transfection, which might have been due to excessive inflammation or the accumulation of reactive oxygen species. These results represent the first report providing a detailed account of the regulatory roles of miR-155 on MO/MΦ functions in teleosts and offer insight into the evolutionary history of miR-155-mediated regulation of host immune responses.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiao Sun
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315800, China.
| |
Collapse
|
215
|
Groeger S, Meyle J. Oral Mucosal Epithelial Cells. Front Immunol 2019; 10:208. [PMID: 30837987 PMCID: PMC6383680 DOI: 10.3389/fimmu.2019.00208] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular Phenotype and Apoptosis: The function of epithelial tissues is the protection of the organism from chemical, microbial, and physical challenges which is indispensable for viability. To fulfill this task, oral epithelial cells follow a strongly regulated scheme of differentiation that results in the formation of structural proteins that manage the integrity of epithelial tissues and operate as a barrier. Oral epithelial cells are connected by various transmembrane proteins with specialized structures and functions. Keratin filaments adhere to the plasma membrane by desmosomes building a three-dimensional matrix. Cell-Cell Contacts and Bacterial Influence: It is known that pathogenic oral bacteria are able to affect the expression and configuration of cell-cell junctions. Human keratinocytes up-regulate immune-modulatory receptors upon stimulation with bacterial components. Periodontal pathogens including P. gingivalis are able to inhibit oral epithelial innate immune responses through various mechanisms and to escape from host immune reaction, which supports the persistence of periodontitis and furthermore is able to affect the epithelial barrier function by altering expression and distribution of cell-cell interactions including tight junctions (TJs) and adherens junctions (AJs). In the pathogenesis of periodontitis a highly organized biofilm community shifts from symbiosis to dysbiosis which results in destructive local inflammatory reactions. Cellular Receptors: Cell-surface located toll like receptors (TLRs) and cytoplasmatic nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) belong to the pattern recognition receptors (PRRs). PRRs recognize microbial parts that represent pathogen-associated molecular patterns (PAMPs). A multimeric complex of proteins known as inflammasome, which is a subset of NLRs, assembles after activation and proceeds to pro-inflammatory cytokine release. Cytokine Production and Release: Cytokines and bacterial products may lead to host cell mediated tissue destruction. Keratinocytes are able to produce diverse pro-inflammatory cytokines and chemokines, including interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor (TNF)-α. Infection by pathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) can induce a differentiated production of these cytokines. Immuno-modulation, Bacterial Infection, and Cancer Cells: There is a known association between bacterial infection and cancer. Bacterial components are able to up-regulate immune-modulatory receptors on cancer cells. Interactions of bacteria with tumor cells could support malignant transformation an environment with deficient immune regulation. The aim of this review is to present a set of molecular mechanisms of oral epithelial cells and their reactions to a number of toxic influences.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
216
|
Lai CY, Yu GY, Luo Y, Xiang R, Chuang TH. Immunostimulatory Activities of CpG-Oligodeoxynucleotides in Teleosts: Toll-Like Receptors 9 and 21. Front Immunol 2019; 10:179. [PMID: 30800129 PMCID: PMC6375897 DOI: 10.3389/fimmu.2019.00179] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors that detect a wide variety of microbial pathogens for the initiation of host defense immunological responses. Thirteen TLRs have been identified in mammals, and teleosts contain 22 mammalian or non-mammalian TLRs. Of these, TLR9 and TLR21 are the cytosine-phosphate-guanosine-oligodeoxynucleotides (CpG-ODNs) recognition TLRs in teleosts. TLR9 is a mammalian TLR expressed in teleost but not in the avian species. TLR21 is a non-mammalian TLR expressed in both teleost and the avian species. Synthetic CpG-ODNs are potent immunostimulants that are being studied for their application against tumors, allergies, and infectious diseases, and as a vaccine adjuvant in humans. The immunostimulatory effects of CpG-ODNs as vaccine adjuvants and their antimicrobial function in domestic animals and teleosts are also being investigated. Most of our current knowledge about the molecular basis for the immunostimulatory activity of CpG-ODNs comes from earlier studies of the interaction between CpG-ODN and TLR9. More recent studies indicate that in addition to TLR9, TLR21 is another receptor for CpG-ODN recognition in teleosts to initiate immune responses. Whether these two receptors have differential functions in mediating the immunostimulatory activity of CpG-ODN in teleost has not been well-studied. Nevertheless, the existence of two recognition TLRs suggests that the molecular basis for the immunostimulatory activity of CpG-ODN in teleosts is different and more complex than in mammals. This article reviews the current knowledge of TLR9 and TLR21 activation by CpG-ODNs. The key points that need to be considered for CpG-ODNs as immunostimulants with maximum effectiveness in activation of immune responses in teleosts are discussed. This includes the structure/activity relationship of CpG-ODN activities for TLR9 and TLR21, the structure/functional relationship of these two TLRs, and differential expression levels and tissue distributions for these two TLRs.
Collapse
Affiliation(s)
- Chao-Yang Lai
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yunping Luo
- Deptartment of Immunology, Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Science, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Science, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,International Joint Center for Biomedical Research of the Ministry of Education, Tianjin, China
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.,Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
217
|
Wang XH, Li W, Wang XH, Han MY, Muhammad I, Zhang XY, Sun XQ, Cui XX. Water-soluble substances of wheat: a potential preventer of aflatoxin B1-induced liver damage in broilers. Poult Sci 2019; 98:136-149. [PMID: 30107611 DOI: 10.3382/ps/pey358] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/26/2018] [Indexed: 02/04/2023] Open
Abstract
Aflatoxin B1 (AFB1) is very harmful for broiler production and public health. The water-soluble castoff in gluten production, i.e., the water-soluble substances of wheat (WSW) that contains 14% pentosan has positive effect on animal nutrient absorption, immunity, and antioxidation. Our study aims to investigate the preventive effects of WSW against AFB1-induced broiler liver injury. One day-old Arbor Acres broilers were randomly separated to 4 groups and were, respectively, fed with control diet, diet with 5 mg/kg AFB1 standard, diet with 5 mg/kg AFB1 standard and 214 ml/kg WSW, and diet with 214 ml/kg WSW continuously for 28 d. The histopathological, ultra-structural, and serological changes were tested to evaluate liver damage. The hallmarks of hepatocellular autophagy, apoptosis, and inflammation were measured by Western Blot and real-time polymerase chain reaction. The content of AFB1 in chicken liver was detected with an ultra-high performance liquid chromatography linked with the fluorescence detection method. The results showed that (i) WSW restored AFB1-induced changes in serum biochemical parameters, and ameliorated histomorphological changes in hepatocytes, (ii) WSW reduced the content of AFB1 in chicken liver, (iii) WSW alleviated AFB1-induced autophagy inhibition by up-regulating hepatic LC3, beclin-1, and down-regulating hepatic mTOR and cytoplasmic P53 expressions, (iv) WSW alleviated AFB1-induced hepatocellular apoptosis via inhibiting pro-apoptotic gene expression (nuclear P53, Caspase3, Bax), and promoting anti-apoptotic gene expression (bcl-2), (v) WSW feeding ameliorated AFB1-induced liver inflammation via impeding TLR4/NF-${{\bf \kappa }}$B and IL-1/NF-${{\bf \kappa }}$B signaling pathways, down-regulating pro-inflammatory cytokines (IL-1${{\bf \beta }}$, IL-6, and IL-8), and markedly up-regulating anti-inflammatory genes (IL-10 and HO-1). Conclusively, WSW is a potential preventer of AFB1-induced broiler liver damage by reducing the AFB1 content in liver, accelerating hepatocellular autophagy and inhibiting hepatocytes apoptosis and liver inflammation.
Collapse
Affiliation(s)
- Xing-He Wang
- Department of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120, Dongling Road, Shenyang, P R China.,Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Wei Li
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Xing-Hui Wang
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Mei-Yu Han
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Ishfaq Muhammad
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Xiu-Ying Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Xiao-Qi Sun
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Xiao-Xu Cui
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| |
Collapse
|
218
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
219
|
Niu F, Liao K, Hu G, Sil S, Callen S, Guo ML, Yang L, Buch S. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol 2019; 218:700-721. [PMID: 30626719 PMCID: PMC6363463 DOI: 10.1083/jcb.201712011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 08/28/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Cocaine is known to facilitate the transmigration of inflammatory leukocytes into the brain, an important mechanism underlying neuroinflammation. Pericytes are well-recognized as important constituents of the blood-brain barrier (BBB), playing a key role in maintaining barrier integrity. In the present study, we demonstrate for the first time that exposure of human brain vascular pericytes to cocaine results in enhanced secretion of CXCL10, leading, in turn, to increased monocyte transmigration across the BBB both in vitro and in vivo. This process involved translocation of σ-1 receptor (σ-1R) and interaction of σ-1R with c-Src kinase, leading to activation of the Src-PDGFR-β-NF-κB pathway. These findings imply a novel role for pericytes as a source of CXCL10 in the pericyte-monocyte cross talk in cocaine-mediated neuroinflammation, underpinning their role as active components of the innate immune responses.
Collapse
Affiliation(s)
- Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
220
|
Aschenbach JR, Zebeli Q, Patra AK, Greco G, Amasheh S, Penner GB. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. J Dairy Sci 2019; 102:1866-1882. [DOI: 10.3168/jds.2018-15243] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
|
221
|
Chen X, Shen Y, Wu M, Zhao J. Irf3 from mandarin fish thymus initiates interferon transcription. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:133-144. [PMID: 30056593 DOI: 10.1007/s10695-018-0543-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Interferon regulatory factors (IRFs) are transcription factors of the interferon (IFN)-inducible signaling pathway essential for host immunity against antimicrobial infection by virus and bacteria. Interferon regulatory factor 3 (IRF3) regulates the expression of IFNs and IFN-stimulated genes by binding to the IFN stimulatory response element (ISRE). In this study, we analyze the thymus transcriptome of the mandarin fish Siniperca chuatsi and report the functional analysis of Irf3 from the thymus as an emerging model of antiviral approaches. The predicted S. chuatsi IRF3 (Sc-Irf3) protein has 465 amino acid residues and evolutionarily conserved domains and is clustered in the IRF3 subfamily on a phylogenetic tree. Sc-Irf3 upon transgenic expression was mainly found in the cytoplasm through Western blot analysis and microscopy, but it translocated to the nucleus after polyinosinic:polycytidylic acid (ploly I:C) treatment. Endogenous Sc-irf3 RNA expression was detected in all eight adult organs examined. Importantly, Sc-irf3 RNA expression was significantly upregulated by ploly(I:C) treatment in the adult organs. Concurrently, reporter assays revealed that Sc-Irf3 increased the transcriptional activity of the ifnβ promoter, a minimal ISRE-containing promoter, and ifn promoter of mandarin fish. Therefore, Sc-Irf3 plays a major role in the IFN immune defense system against virus infection.
Collapse
Affiliation(s)
- Xiaowu Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yawei Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, NO.40 South Nongke Road, Luyang District, Hefei, 230000, Anhui, China
| | - Jinliang Zhao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China.
| |
Collapse
|
222
|
Zhang Z, La Placa D, Nguyen T, Kujawski M, Le K, Li L, Shively JE. CEACAM1 regulates the IL-6 mediated fever response to LPS through the RP105 receptor in murine monocytes. BMC Immunol 2019; 20:7. [PMID: 30674283 PMCID: PMC6345024 DOI: 10.1186/s12865-019-0287-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Systemic inflammation and the fever response to pathogens are coordinately regulated by IL-6 and IL-1β. We previously showed that CEACAM1 regulates the LPS driven expression of IL-1β in murine neutrophils through its ITIM receptor. Results We now show that the prompt secretion of IL-6 in response to LPS is regulated by CEACAM1 expression on bone marrow monocytes. Ceacam1−/− mice over-produce IL-6 in response to an i.p. LPS challenge, resulting in prolonged surface temperature depression and overt diarrhea compared to their wild type counterparts. Intraperitoneal injection of a 64Cu-labeled LPS, PET imaging agent shows confined localization to the peritoneal cavity, and fluorescent labeled LPS is taken up by myeloid splenocytes and muscle endothelial cells. While bone marrow monocytes and their progenitors (CD11b+Ly6G−) express IL-6 in the early response (< 2 h) to LPS in vitro, these cells are not detected in the bone marrow after in vivo LPS treatment perhaps due to their rapid and complete mobilization to the periphery. Notably, tissue macrophages are not involved in the early IL-6 response to LPS. In contrast to human monocytes, TLR4 is not expressed on murine bone marrow monocytes. Instead, the alternative LPS receptor RP105 is expressed and recruits MD1, CD14, Src, VAV1 and β-actin in response to LPS. CEACAM1 negatively regulates RP105 signaling in monocytes by recruitment of SHP-1, resulting in the sequestration of pVAV1 and β-actin from RP105. Conclusion This novel pathway and regulation of IL-6 signaling by CEACAM1 defines a novel role for monocytes in the fever response of mice to LPS. Electronic supplementary material The online version of this article (10.1186/s12865-019-0287-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA.
| | - Deirdre La Placa
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Tung Nguyen
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Maciej Kujawski
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Keith Le
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - Lin Li
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA
| | - John E Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500E Duarte Road, Duarte, CA91010, USA.
| |
Collapse
|
223
|
Widera D, Martínez Aguilar R, Cottrell GS. Toll-like receptor 4 and protease-activated receptor 2 in physiology and pathophysiology of the nervous system: more than just receptor cooperation? Neural Regen Res 2019; 14:1196-1201. [PMID: 30804245 PMCID: PMC6425834 DOI: 10.4103/1673-5374.251290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptor 4 (TLR4) and protease-activated receptor 2 (PAR2) play pivotal roles in the mammalian innate immune response. Notably, in addition to their involvement in detection of invading pathogens, PAR2 and TLR4 modulate the levels of cell death-induced sterile inflammation by activating pro- or anti-inflammatory downstream signaling cascades. Within the central nervous system, there is emerging evidence that both receptors are involved in synaptic transmission and brain plasticity. Furthermore, due to their prominent role in mediating neuroinflammation, PAR2 and TLR4 are associated with development and progression of neurodegenerative disorders including but not limited to Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. In this article, we summarise the current knowledge on the cooperation between PAR2 and TLR4, discuss the potential cross-talk levels and highlight the impact of the cross-coupling on neuroinflammation.
Collapse
Affiliation(s)
- Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights campus, Reading, UK
| | - Rocío Martínez Aguilar
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights campus, Reading, UK; Unidad de Inmunología, IBIMER, Universidad de Granada, Granada, Spain
| | - Graeme S Cottrell
- Cellular and Molecular Neuroscience, School of Pharmacy, University of Reading, Reading, UK
| |
Collapse
|
224
|
Alam MM, Yang D, Trivett A, Meyer TJ, Oppenheim JJ. HMGN1 and R848 Synergistically Activate Dendritic Cells Using Multiple Signaling Pathways. Front Immunol 2018; 9:2982. [PMID: 30619338 PMCID: PMC6305469 DOI: 10.3389/fimmu.2018.02982] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022] Open
Abstract
High mobility group nucleosome-binding protein 1 (HMGN1 or N1) is a Th1-polarizing alarmin, but alone is insufficient to induce antitumor immunity. We previously showed that combination of N1 and R848, a synthetic TLR7/8 agonist, synergistically activates dendritic cells (DCs) and induces therapeutic antitumor immunity, however, it remained unclear how N1 and R848 synergistically activate DCs. Here, we show that co-stimulation with N1 and R848 of human monocyte-derived DCs (MoDCs) markedly upregulated DC's surface expression of CD80, CD83, CD86, and HLA-DR, as well as synergistic production of pro-inflammatory cytokines including IL-12p70, IL-1β, and TNF-α. This combination also synergistically activated NF-κB and multiple MAPKs that are involved in DC maturation. Moreover, N1 and R848 synergistically increased nuclear translocation of interferon (IFN) regulatory transcription factors (e.g., IRF3 and IRF7) and promoted the expression of type 1 IFNs such as IFN-α2, IFN-α4, and IFN-β1. Similar signaling pathways were also induced in mouse bone marrow-derived DCs (BMDCs). RNA-seq analysis in human MoDCs revealed that N1 plus R848 synergistically upregulated the expression of genes predominantly involved in DC maturation pathway, particularly genes critical for the polarization of Th1 immune responses (e.g., IL12A, IL12B, and IFNB1, etc.). Overall, our findings show that (1) N1 synergizes with R848 in activating human and mouse DCs and (2) the synergistic effect based on various intracellular signaling events culminated in the activation of multiple transcriptional factors. These findings have important implications for future clinical trials since N1 and R848 synergistically promoted optimal Th1 lineage immune responses resulting in tumor rejection in mice.
Collapse
Affiliation(s)
- Md Masud Alam
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - De Yang
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Anna Trivett
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Thomas J. Meyer
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Joost J. Oppenheim
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
225
|
Luo G, Cheng BCY, Zhao H, Fu XQ, Xie R, Zhang SF, Pan SY, Zhang Y. Schisandra Chinensis Lignans Suppresses the Production of Inflammatory Mediators Regulated by NF-κB, AP-1, and IRF3 in Lipopolysaccharide-Stimulated RAW264.7 Cells. Molecules 2018; 23:molecules23123319. [PMID: 30558163 PMCID: PMC6320760 DOI: 10.3390/molecules23123319] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/04/2022] Open
Abstract
Schisandra Fructus (SF) is a traditional Chinese herb used in the treatment of inflammatory disorders like hepatitis. One of the main anti-inflammatory components of SF is the lignans. However, the underlying anti-inflammatory mechanism of Schisandra Chinensis lignans (SCL) remains unclear. This study aims to investigate the effects of SCL on inflammatory mediators in lipopolysaccharide-stimulated RAW264.7 cells and explore the underlying mechanism. The production of nitric oxide (NO) was determined by Griess reaction. ELISA was used to determine cytokine levels and chemokines secretion. To estimate protein levels and enzyme activities, we employed Western blotting. Nuclear localization of NF-κB, AP-1, and IRF3 was detected using immunofluorescence analyses. The results showed that SCL significantly reduced the release of inflammatory mediators, including NO and PGE2, which may be related to down-regulation of iNOS and COX-2 expression. The production of cytokines and chemokines was suppressed by SCL treatment. SCL also decreased the phosphorylation of IKKα/β, IκB-α, Akt, TBK1, ERK, p38, JNK, NF-κB (p65), AP-1 (c-Jun), and IRF3 in RAW264.7 macrophages activated with LPS. The nuclear protein levels and nuclear translocation of AP-1, NF-κB and IRF3 were suppressed by SCL. These results indicated that SCL suppressed the IKKα/β/NF-κB, MAPKs/AP-1 and TBK1/IRF3 signaling pathways in LPS-stimulated RAW264.7 macrophages.
Collapse
Affiliation(s)
- Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University, Hong Kong 999077, China.
- Quality Healthcare Medical Services, Hong Kong 999077, China.
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Shuo-Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Si-Yuan Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
226
|
Semlali A, Parine NR, Al-Numair NS, Almutairi M, Hawsawi YM, Amri AA, Aljebreen AM, Arafah M, Almadi MA, Azzam NA, Alharbi O, Alanazi MS. Potential role of Toll-like receptor 2 expression and polymorphisms in colon cancer susceptibility in the Saudi Arabian population. Onco Targets Ther 2018; 11:8127-8141. [PMID: 30532554 PMCID: PMC6241690 DOI: 10.2147/ott.s168478] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Inflammation is a fundamental factor that contributes to the development and progression of several types of cancer including colon cancer. Toll-like receptors (TLRs) and their signaling pathways have been reported to be associated with chronic inflammation and thereby induced cancer. Our aim was to investigate the expression and polymorphisms of TLR2 and their association with colon cancer. Methods Real-time PCR and immunohistochemistry were used to investigate TLR2 gene expression and to evaluate the potential risk of predisposition to colon cancer caused by three tagging single-nucleotide polymorphisms (SNPs) on TLR2, including rs3804100, rs4696480, and rs3804099. TaqMan assay was conducted on samples from 115 patients with colon cancer and 102 age- and sex-matched normal individuals. Results We found that, TLR2 was highly expressed in epithelial colon cancer cells and both TLR2 mRNA and protein levels, and significantly decreased in tumor tissues compared to normal tissues. Two of three TLR2 SNPs increased the risk of colon cancer. However, TLR2 rs3804099 increased the risk of colon cancer development by more than 3.8- and 5-fold in female patients and patients aged less than 57 years, respectively. The T allele of TLR2 rs3804100 showed a significant association with patients less than 57 years. In silico analysis of the TLR2 nucleotide substitution in SNP rs3804100 and rs3804099 determined that 67% and 70% probability of these single nucleotide variants alter splicing phenotypes, rs3804100 more specifically result on activating an additional splice site. Genotype and allele frequencies of rs4696480 were similar between the overall study populations. Thus, TLR2 rs4696480 appear to be not involved in colon cancer in our study population. Conclusions There was a significant link between innate immunity deregulation through disruption of the TLRs and potential development of colon cancer. These SNPs can be used as screening markers for predicting colon cancer risk earlier in life to implement necessary prevention.
Collapse
Affiliation(s)
- Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Département de stomatologie, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada, .,Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia,
| | - Narasimha Reddy Parine
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia,
| | - Nouf S Al-Numair
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Mikhlid Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Yousef M Hawsawi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Al Amri
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia,
| | - Abdulrahman M Aljebreen
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Division of Gastroenterology, King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Maha Arafah
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Majid A Almadi
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Division of Gastroenterology, King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Nahla Ali Azzam
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Division of Gastroenterology, King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Othman Alharbi
- College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Division of Gastroenterology, King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Saud Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia,
| |
Collapse
|
227
|
Perkins DJ, Richard K, Hansen AM, Lai W, Nallar S, Koller B, Vogel SN. Autocrine-paracrine prostaglandin E 2 signaling restricts TLR4 internalization and TRIF signaling. Nat Immunol 2018; 19:1309-1318. [PMID: 30397349 PMCID: PMC6240378 DOI: 10.1038/s41590-018-0243-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
The unique cell biology of Toll-like receptor 4 (TLR4) allows it to initiate two signal transduction cascades: a Mal (TIRAP)–MyD88-dependent signal from the cell surface that regulates proinflammatory cytokines and a TRAM–TRIF-dependent signal from endosomes that drives type I interferon production. Negative feedback circuits to limit TLR4 signals from both locations are necessary to balance the inflammatory response. We describe a negative feedback loop driven by autocrine-paracrine prostaglandin E2 (PGE2), and the PGE2 receptor, EP4, which restricted TRIF-dependent signals and IFN-β induction through regulation of TLR4 trafficking. Inhibition of PGE2 production or EP4 antagonism increased the rate of TLR4 endosomal translocation, and amplified TRIF-dependent IRF3 and caspase 8 activation. This PGE2-driven mechanism restricted TLR4-TRIF signaling in vitro upon infection of macrophages by Gram-negative pathogens Escherichia coli and Citrobacter rodentium and protected mice against Salmonella enteritidis serovar Typhimurium (ST)-induced mortality. Thus, PGE2 restricts TLR4-TRIF signaling specifically in response to lipopolysaccharide.
Collapse
Affiliation(s)
- Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA.
| | - Katharina Richard
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Shreeram Nallar
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA
| | - Beverly Koller
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
228
|
Ji L, Hou X, Liu W, Deng X, Jiang Z, Huang K, Li R. Paeoniflorin inhibits activation of the IRAK1-NF-κB signaling pathway in peritoneal macrophages from lupus-prone MRL/lpr mice. Microb Pathog 2018; 124:223-229. [DOI: 10.1016/j.micpath.2018.08.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022]
|
229
|
Concurrent infection of monocyte-derived macrophages with porcine reproductive and respiratory syndrome virus and Haemophilus parasuis: A role of IFNα in pathogenesis of co-infections. Vet Microbiol 2018; 225:64-71. [DOI: 10.1016/j.vetmic.2018.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 02/06/2023]
|
230
|
Fiebich BL, Batista CRA, Saliba SW, Yousif NM, de Oliveira ACP. Role of Microglia TLRs in Neurodegeneration. Front Cell Neurosci 2018; 12:329. [PMID: 30333729 PMCID: PMC6176466 DOI: 10.3389/fncel.2018.00329] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a group of receptors widely distributed in the organism. In the central nervous system, they are expressed in neurons, astrocytes and microglia. Although their involvement in immunity is notorious, different articles have demonstrated their roles in physiological and pathological conditions, including neurodegeneration. There is increasing evidence of an involvement of TLRs, especially TLR2, 4 and 9 in neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). In this sense, their expression in microglia might modulate the activity of these cells, which in turn, lead to protective or deleterious effects over neurons and other cells. Therefore, TLRs might mediate the link between inflammation and neurodegenerative diseases. However, further studies have to be performed to elucidate the role of the other TLRs in these diseases and to further prove and confirm the pathophysiological role of all TLRs in neurodegeneration. In this article, we revise and summarize the current knowledge regarding the role of TLRs in neurodegeneration with the focus on the possible functions of these receptors in microglia.
Collapse
Affiliation(s)
- Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nizar M Yousif
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
231
|
Zhang S, Carriere J, Lin X, Xie N, Feng P. Interplay between Cellular Metabolism and Cytokine Responses during Viral Infection. Viruses 2018; 10:v10100521. [PMID: 30249998 PMCID: PMC6213852 DOI: 10.3390/v10100521] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolism and immune responses are two fundamental biological processes that serve to protect hosts from viral infection. As obligate intracellular pathogens, viruses have evolved diverse strategies to activate metabolism, while inactivating immune responses to achieve maximal reproduction or persistence within their hosts. The two-way virus-host interaction with metabolism and immune responses choreograph cytokine production via reprogramming metabolism of infected cells/hosts. In return, cytokines can affect the metabolism of virus-infected and bystander cells to impede viral replication processes. This review aims to summarize our current understanding of the cross-talk between metabolic reprogramming and cytokine responses, and to highlight future potential research topics. Although the focus is placed on viral pathogens, relevant findings from other microbes are integrated to provide an overall picture, particularly when corresponding information on viral infection is lacking.
Collapse
Affiliation(s)
- Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | - Jessica Carriere
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | - Xiaoxi Lin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | - Na Xie
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| |
Collapse
|
232
|
Zhang Y, Guo H, Cheng BCY, Su T, Fu XQ, Li T, Zhu PL, Tse KW, Pan SY, Yu ZL. Dingchuan tang essential oil inhibits the production of inflammatory mediators via suppressing the IRAK/NF-κB, IRAK/AP-1, and TBK1/IRF3 pathways in lipopolysaccharide-stimulated RAW264.7 cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2731-2748. [PMID: 30233137 PMCID: PMC6129014 DOI: 10.2147/dddt.s160645] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Dingchuan tang (asthma-relieving decoction), a formula of nine herbs, has been used for treating respiratory inflammatory diseases for >400 years in the People’s Republic of China. However, the mechanisms underlying the anti-inflammatory action of dingchuan tang is not fully understood. This study aims to investigate the effects of Dingchuan tang essential oil (DCEO) on inflammatory mediators and the underlying mechanism of action. Materials and methods DCEO was extracted by steam distillation. Lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were used as the cell model. Production of nitric oxide (NO) was determined by the Griess test. Protein secretion and mRNA levels of inflammatory mediators were measured by the enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Protein levels were examined by Western blot. Nuclear localization of nuclear factor-kappa B (NF-κB) was detected using immunofluorescence analyses. Results DCEO significantly reduced LPS-triggered production of NO and prostaglandin E2 (PGE2) and decreased protein and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). LPS induced upregulation of protein and mRNA levels of cytokines (interleukin-1β [IL-1β], interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), and chemokines (monocyte chemoattractant protein-1 [MCP-1], chemokine [C-C motif] ligand 5 [CCL-5], and macrophage inflammatory protein [MIP]-1α) were suppressed by DCEO treatment. Phosphorylation and nuclear protein levels of transcription factors (activator protein-1 [AP-1], NF-κB, interferon regulatory factor 3 [IRF3]) were decreased by DCEO. Protein levels of phosphorylated IκB-α, IκB kinase α/β (IKKα/β), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), TGF β-activated kinase 1 (TAK1), TANK-binding kinase 1 (TBK1), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), and c-Jun N-terminal kinase (JNK) were lowered by DCEO. Moreover, degradation of interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 induced by LPS was inhibited by DCEO treatment. Conclusion Suppression of the interleukin-1 receptor-associated kinase (IRAK)/NF-κB, IRAK/AP-1 and TBK1/IRF3 pathways was associated with the inhibitory effects of DCEO on inflammatory mediators in LPS-stimulated RAW264.7 macrophages. This study provides a pharmacological justification for the use of dingchuan tang in managing inflammatory disorders.
Collapse
Affiliation(s)
- Yi Zhang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, .,Department of Pharmacology, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hui Guo
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Brian Chi-Yan Cheng
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Tao Su
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Ting Li
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Pei-Li Zhu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Kai-Wing Tse
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
| | - Si-Yuan Pan
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, People's Republic of China,
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, .,Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, People's Republic of China, .,Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, People's Republic of China,
| |
Collapse
|
233
|
Yu N, Xu X, Qi G, Liu D, Chen X, Ran X, Jiang Z, Li Y, Mao H, Hu C. Ctenopharyngodon idella TBK1 activates innate immune response via IRF7. FISH & SHELLFISH IMMUNOLOGY 2018; 80:521-527. [PMID: 29960062 DOI: 10.1016/j.fsi.2018.06.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
In mammals, IFN regulatory factor (IRF) 7 is a central regulator of IFN-α expression in response to variable pathogenic infections. There are several pathogenic sensors involved in monitoring pathogen intrusion in mammals. These sensors trigger IRF7-mediated responses through different pathways. TANK-binding kinase 1 (TBK1) is a critical mediator of IRF7 activation upon pathogen infection. In fish, there are many reports on TBK1, IRF3 and IRF7, especially on TBK1-IRF3 signaling pathway. However, it is not very clear how TBK1-IRF7 works in innate immune signaling pathway. In this study, we explored how TBK1 up-regulates IFN, ISG expression, and how TBK1 initiates innate immune response through IRF7 in fish under lipopolysaccharides (LPS) stimulation. After stimulation with LPS, grass carp IRF3 and IRF7 transcriptions were up-regulated, indicating they participate in TLR-mediated antiviral signaling pathway. It is interesting that the response time of grass carp IRF3 to LPS was earlier than that of IRF7. In addition, IRF7 rather than IRF3 acted as a stronger positive regulator of IFN and ISG transcription in Ctenopharyngodon idella kidney cells (CIKs). It is suggested the potential function differentiation between IRF3 and IRF7 upon LPS infection in fish. Dual luciferase assays also showed that overexpression of grass carp IRF7 and TBK1 up-regulated the transcription level of IFN and PKR. However, knockdown of IRF7 inhibits ISG expression, suggesting that grass carp TBK1 regulates the transcription via IRF7. Co-immunoprecipitation and GST pull-down assays proved the binding of grass carp IRF7 to TBK1. Furthermore, grass carp TBK1 can promote the nuclear translocation of IRF7. The results indicated that grass carp TBK1 can bind directly to and activate IRF7.
Collapse
Affiliation(s)
- Ningli Yu
- College of Life Science, Nanchang University; Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- College of Life Science, Nanchang University; Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Guoqin Qi
- College of Life Science, Nanchang University; Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Dan Liu
- College of Life Science, Nanchang University; Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Xin Chen
- College of Life Science, Nanchang University; Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Xiaoqin Ran
- College of Life Science, Nanchang University; Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Zeyin Jiang
- College of Life Science, Nanchang University; Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Yinping Li
- College of Life Science, Nanchang University; Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- College of Life Science, Nanchang University; Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| | - Chengyu Hu
- College of Life Science, Nanchang University; Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
234
|
Sahni A, Fang R, Sahni SK, Walker DH. Pathogenesis of Rickettsial Diseases: Pathogenic and Immune Mechanisms of an Endotheliotropic Infection. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:127-152. [PMID: 30148688 DOI: 10.1146/annurev-pathmechdis-012418-012800] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obligately intracytosolic rickettsiae that cycle between arthropod and vertebrate hosts cause human diseases with a spectrum of severity, primarily by targeting microvascular endothelial cells, resulting in endothelial dysfunction. Endothelial cells and mononuclear phagocytes have important roles in the intracellular killing of rickettsiae upon activation by the effector molecules of innate and adaptive immunity. In overwhelming infection, immunosuppressive effects contribute to the severity of illness. Rickettsia-host cell interactions involve host cell receptors for rickettsial ligands that mediate cell adhesion and, in some instances, trigger induced phagocytosis. Rickettsiae interact with host cell actin to effect both cellular entry and intracellular actin-based mobility. The interaction of rickettsiae with the host cell also involves rickettsial evasion of host defense mechanisms and exploitation of the intracellular environment. Signal transduction events exemplify these effects. An intriguing frontier is the array of rickettsial noncoding RNA molecules and their potential effects on the pathogenesis and transmission of rickettsial diseases.
Collapse
Affiliation(s)
- Abha Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Rong Fang
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Sanjeev K Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - David H Walker
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| |
Collapse
|
235
|
Védrine M, Berthault C, Leroux C, Répérant-Ferter M, Gitton C, Barbey S, Rainard P, Gilbert FB, Germon P. Sensing of Escherichia coli and LPS by mammary epithelial cells is modulated by O-antigen chain and CD14. PLoS One 2018; 13:e0202664. [PMID: 30142177 PMCID: PMC6108492 DOI: 10.1371/journal.pone.0202664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli is one of the major pathogens causing mastitis in dairy cattle. Yet, the factors which mediate the ability for E. coli to develop in the bovine mammary gland remain poorly elucidated. In a mouse model, infections induced by the reference mastitis E. coli P4 showed a strong colonisation of the mammary gland, while this strain had a low stimulating power on cells of the PS bovine mammary epithelial cell line. In order to understand if such a reduced response contributes to the severity of infection, a library of random mutants of P4 strain was screened to identify mutants inducing stronger response of PS cells. Among hyper-stimulating mutants, six were altered in genes involved in biosynthesis of lipopolysaccharide (LPS) and had lost their O-polysaccharide region, suggesting that the presence of O-antigen impairs the response of PS cells to LPS. Using purified smooth (S) and rough (R) fractions of LPS, we showed that the R-LPS fraction induced a stronger response from PS cells than the smooth LPS fraction. Biological activity of the S-LPS fraction could be restored by the addition of recombinant bovine CD14 (rbCD14), indicating a crucial role of CD14 in the recognition of S-LPS by Mammary Epithelial Cells (MEC). When S-LPS and R-LPS were injected in udder quarters of healthy lactating cows, an inflammation developed in all infused quarters, but the S-LPS induced a more intense pro-inflammatory response, possibly in relation to sizeable concentrations of CD14 in milk. Altogether, our results demonstrate that the O-antigen modulates the pro-inflammatory response of MEC to LPS, that S-LPS and R-LPS trigger different responses of MEC and that these responses depend on the presence of CD14.
Collapse
Affiliation(s)
- Mégane Védrine
- ISP UMR 1282, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Camille Berthault
- ISP UMR 1282, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Cindy Leroux
- ISP UMR 1282, INRA, Université François Rabelais de Tours, Nouzilly, France
| | | | - Christophe Gitton
- ISP UMR 1282, INRA, Université François Rabelais de Tours, Nouzilly, France
| | - Sarah Barbey
- UE 0326 Domaine Expérimental du Pin-Au-Haras, INRA, Le-Pin-Au-Haras, France
| | - Pascal Rainard
- ISP UMR 1282, INRA, Université François Rabelais de Tours, Nouzilly, France
| | | | - Pierre Germon
- ISP UMR 1282, INRA, Université François Rabelais de Tours, Nouzilly, France
- * E-mail:
| |
Collapse
|
236
|
Min KJ, Tatar M. Unraveling the Molecular Mechanism of Immunosenescence in Drosophila. Int J Mol Sci 2018; 19:E2472. [PMID: 30134574 PMCID: PMC6164973 DOI: 10.3390/ijms19092472] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 12/29/2022] Open
Abstract
A common feature of the aging process is a decline in immune system performance. Extensive research has sought to elucidate how changes in adaptive immunity contribute to aging and to provide evidence showing that changes in innate immunity have an important role in the overall decline of net immune function. Drosophila is an emerging model used to address questions related to immunosenescence via research that integrates its capacity for genetic dissection of aging with groundbreaking molecular biology related to innate immunity. Herein, we review information on the immunosenescence of Drosophila and suggest its possible mechanisms that involve changes in insulin/IGF(insulin-like growth factor)-1 signaling, hormones such as juvenile hormone and 20-hydroxyecdysone, and feedback system degeneration. Lastly, the emerging role of microbiota on the regulation of immunity and aging in Drosophila is discussed.
Collapse
Affiliation(s)
- Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, Korea.
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
237
|
Ippagunta SK, Pollock JA, Sharma N, Lin W, Chen T, Tawaratsumida K, High AA, Min J, Chen Y, Guy RK, Redecke V, Katzenellenbogen JA, Häcker H. Identification of Toll-like receptor signaling inhibitors based on selective activation of hierarchically acting signaling proteins. Sci Signal 2018; 11:11/543/eaaq1077. [PMID: 30108181 DOI: 10.1126/scisignal.aaq1077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toll-like receptors (TLRs) recognize various pathogen- and host tissue-derived molecules and initiate inflammatory immune responses. Exaggerated or prolonged TLR activation, however, can lead to etiologically diverse diseases, such as bacterial sepsis, metabolic and autoimmune diseases, or stroke. Despite the apparent medical need, no small-molecule drugs against TLR pathways are clinically available. This may be because of the complex signaling mechanisms of TLRs, which are governed by a series of protein-protein interactions initiated by Toll/interleukin-1 receptor homology domains (TIR) found in TLRs and the cytoplasmic adaptor proteins TIRAP and MyD88. Oligomerization of TLRs with MyD88 or TIRAP leads to the recruitment of members of the IRAK family of kinases and the E3 ubiquitin ligase TRAF6. We developed a phenotypic drug screening system based on the inducible homodimerization of either TIRAP, MyD88, or TRAF6, that ranked hits according to their hierarchy of action. From a bioactive compound library, we identified methyl-piperidino-pyrazole (MPP) as a TLR-specific inhibitor. Structure-activity relationship analysis, quantitative proteomics, protein-protein interaction assays, and cellular thermal shift assays suggested that MPP targets the TIR domain of MyD88. Chemical evolution of the original MPP scaffold generated compounds with selectivity for distinct TLRs that interfered with specific TIR interactions. Administration of an MPP analog to mice protected them from TLR4-dependent inflammation. These results validate this phenotypic screening approach and suggest that the MPP scaffold could serve as a starting point for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Sirish K Ippagunta
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Julie A Pollock
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Naina Sharma
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kazuki Tawaratsumida
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anthony A High
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yizhe Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Vanessa Redecke
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | - Hans Häcker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
238
|
Helminths-based bi-functional molecule, tuftsin-phosphorylcholine (TPC), ameliorates an established murine arthritis. PLoS One 2018; 13:e0200615. [PMID: 30089122 PMCID: PMC6082512 DOI: 10.1371/journal.pone.0200615] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/29/2018] [Indexed: 01/04/2023] Open
Abstract
A novel small molecule named tuftsin-phosphorylcholine (TPC), which is linked to the biological activity of helminths, was constructed. The current study address the effect of TPC treatment in established collagen-induced arthritis (CIA) mice and propose TPC bi-functional activity. TPC treatment was initiated when clinical score was 2 to 4. Arthritis scores in TPC treated mice were lower compared to mice treated with vehicle (P < 0.001). Joint staining showed normal joint structure in TPC-treated mice compared to control groups treated with phosphate buffered saline (PBS), phosphorylcholine, or tuftsin, which exhibited severely inflamed joints. TPC enhanced anti-inflammatory response due to increased IL-10 secretion, and reduced pro-inflammatory cytokine secretion (IL-1-β, IL-6, TNF-αP < 0.001). Furthermore, TPC therapy increased expansion of CD4+CD25+FOXP3+T regulatory cells and IL-10+CD5+CD1d+B regulatory cells. We propose that the immunomodulatory activity of TPC can be a result of a bi-specific activity of TPC: (a) The tuftsin part of the TPC shifts RAW macrophage cells from pro-inflammatory macrophages M1 to anti-inflammatory M2-secreting IL-10 (P < 0.001) through neuropilin-1 and (b) TPC significantly reduce mouse TLR4 expression via NFkB pathway by HEKTM cells (P < 0.02) via the phosphorylcholine site of the molecule. Our results indicate that TPC, significantly ameliorated established CIA by its immunomodulatory activity. These data could lead to a novel self bi-functional small molecule for treating patients with progressive RA.
Collapse
|
239
|
Ahmed-Hassan H, Abdul-Cader MS, Sabry MA, Hamza E, Abdul-Careem MF. Toll-like receptor (TLR)4 signalling induces myeloid differentiation primary response gene (MYD) 88 independent pathway in avian species leading to type I interferon production and antiviral response. Virus Res 2018; 256:107-116. [PMID: 30098398 DOI: 10.1016/j.virusres.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Engagement of toll-like receptor (TLR)4 ligand, lipopolysaccharide (LPS) with TLR4 in mammals activates two downstream intracellular signaling routes; the myeloid differentiation primary response gene (MyD)88 dependent and independent pathways. However, existence of the later pathway leading to production of type I interferons (IFNs) in avian species has been debated due to conflicting observations. The objective of our study was to investigate whether LPS induces type I IFN production in chicken macrophages leading to antiviral response attributable to type I IFN. We found that LPS elicits type I IFN response dominated by IFN-β production. We also found that reduction in infectious laryngotracheitis virus (ILTV) replication by LPS-mediated antiviral response is attributable to type I IFNs in addition to nitric oxide (NO). Our findings imply that LPS elicits both MyD88 dependent and independent pathways in chicken macrophages consequently eliciting anti-ILTV response attributable to production of both type I IFNs and NO.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed Sarjoon Abdul-Cader
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Maha Ahmed Sabry
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Hamza
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
240
|
Han HS, Shin JS, Lee SB, Park JC, Lee KT. Cirsimarin, a flavone glucoside from the aerial part of Cirsium japonicum var. ussuriense (Regel) Kitam. ex Ohwi, suppresses the JAK/STAT and IRF-3 signaling pathway in LPS-stimulated RAW 264.7 macrophages. Chem Biol Interact 2018; 293:38-47. [PMID: 30053449 DOI: 10.1016/j.cbi.2018.07.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Cirsium japonicum var. ussuriense (Regel) Kitam. ex Ohwi (C. ussuriense) is known as "Dae-Gye" or "Korean milk thistle". C. ussuriense have long been used as a folk medicinal plant for inflammatory diseases such as hepatitis, nephritis, and mastitis in Korea, China, and Japan. To reveal the anti-inflammatory components of C. ussuriense, we isolated three flavone glycosides (linarin, cirsimarin, and hispidulin-7-O-neohesperidoside) from the aerial part of C. ussuriense and evaluated their inhibitory effects on LPS-induced pro-inflammatory mediators in macrophages. We also investigated the involving molecular mechanisms of cirsimarin. Among three flavone glycosides, cirsimarin showed vastly superior inhibitory potency in LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. Cirsimarin concentration-dependently inhibited LPS-induced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in macrophages. Cirsimarin suppressed the production and mRNA expression of tumor necrosis factor- α (TNF-α) and interleukin (IL)-6 in LPS-stimulated RAW 264.7 and bone marrow-derived macrophages. Moreover, molecular data presented that cirsimarin down-regulated the phosphorylation of Janus kinase (JAK)/signal transducer and activator of transcriptions (STATs) and p38 mitogen-activated protein kinase (MAPK), and nuclear translocation of interferon regulatory factor (IRF)-3. Collectively, cirsimarin may be an active ingredient responsible for anti-inflammatory effects of C. ussuriense and it may act as a promising therapeutic against inflammatory diseases by suppressing the JAK/STAT and IRF-3 signaling pathway.
Collapse
Affiliation(s)
- Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea; Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea
| | - Seung-Bin Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea; Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea
| | - Jong Cheol Park
- Department of Oriental Medicine Resources, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, South Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea; Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
241
|
Qiu L, Wang T, Tang Q, Li G, Wu P, Chen K. Long Non-coding RNAs: Regulators of Viral Infection and the Interferon Antiviral Response. Front Microbiol 2018; 9:1621. [PMID: 30072977 PMCID: PMC6060254 DOI: 10.3389/fmicb.2018.01621] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
Interferons (IFNs) are a family of cytokines providing a robust first line of host innate defense against pathogenic infection, and have now been part of the standard treatment for viral infection. However, IFN based therapy can best be described as modestly effective. Long non-coding RNAs (lncRNAs) are a novel class of non-protein-coding RNAs that are capable of regulating gene expression at different levels, including chromatin, transcription, post-transcription, and translation. Recently, lncRNAs are found to be deregulated upon viral infection or IFN treatment, and some of them can modulate viral infection in an IFN-dependent or -independent manner. Due to the crucial roles of lncRNAs in viral infection and the IFN antiviral response, the modulation of specific lncRNAs may be involved to increase the IFN antiviral response and improve the clinical result of IFN-based therapy. In this review, we summarize lncRNAs that are deregulated by viral infection, with special focus on the functions and underlying mechanisms of some essential lncRNAs, and discuss their roles in viral infection and the antiviral response of IFN.
Collapse
Affiliation(s)
- Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Tao Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Peng Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
242
|
Fukui R, Murakami Y, Miyake K. New application of anti-TLR monoclonal antibodies: detection, inhibition and protection. Inflamm Regen 2018; 38:11. [PMID: 29988708 PMCID: PMC6029368 DOI: 10.1186/s41232-018-0068-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Monoclonal antibody (mAb) is an essential tool for the analysis in various fields of biology. In the field of innate immunology, mAbs have been established and used for the study of Toll-like receptors (TLRs), a family of pathogen sensors that induces cytokine production and activate immune responses. TLRs play the role as a frontline of protection against pathogens, whereas excessive activation of TLRs has been implicated in a variety of infectious diseases and inflammatory diseases. For example, TLR7 and TLR9 sense not only pathogen-derived nucleic acids, but also self-derived nucleic acids in noninfectious inflammatory diseases such as systemic lupus erythematosus (SLE) or hepatitis. Consequently, it is important to clarify the molecular mechanisms of TLRs for therapeutic intervention in these diseases. For analysis of the molecular mechanisms of TLRs, mAbs to nucleic acid-sensing TLRs were developed recently. These mAbs revealed that TLR7 and TLR9 are localized also in the plasma membrane, while TLR7 and TLR9 were thought to be localized in endosomes and lysosomes. Among these mAbs, antagonistic mAbs to TLR7 or TLR9 are able to inhibit in vitro responses to synthetic ligands. Furthermore, antagonistic mAbs mitigate inflammatory disorders caused by TLR7 or TLR9 in mice. These results suggest that antagonistic mAbs to nucleic acid-sensing TLRs are a promising tool for therapeutic intervention in inflammatory disorders caused by excessive activation of nucleic acid-sensing TLRs. Here, we summarize the molecular mechanisms of TLRs and recent progresses in the trials targeting TLRs with mAbs to control inflammatory diseases.
Collapse
Affiliation(s)
- Ryutaro Fukui
- 1Division of Innate Immunity, Department of Microbiology and Immunology, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 Japan
| | - Yusuke Murakami
- 1Division of Innate Immunity, Department of Microbiology and Immunology, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 Japan.,2Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shin-machi, Nishitokyo-shi, Tokyo 202-8585 Japan
| | - Kensuke Miyake
- 1Division of Innate Immunity, Department of Microbiology and Immunology, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 Japan.,3Laboratory of Innate Immunity, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 Japan
| |
Collapse
|
243
|
Domínguez-Acosta O, Vega L, Estrada-Muñiz E, Rodríguez MS, Gonzalez FJ, Elizondo G. Activation of aryl hydrocarbon receptor regulates the LPS/IFNγ-induced inflammatory response by inducing ubiquitin-proteosomal and lysosomal degradation of RelA/p65. Biochem Pharmacol 2018; 155:141-149. [PMID: 29935959 DOI: 10.1016/j.bcp.2018.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023]
Abstract
Several studies have identified the aryl hydrocarbon receptor (AhR) as a negative regulator of the innate and adaptive immune responses. However, the molecular mechanisms by which this transcription factor exerts such modulatory effects are not well understood. Interaction between AhR and RelA/p65 has previously been reported. RelA/p65 is the major NFκB subunit that plays a critical role in immune responses to infection. The aim of the present study was to determine whether the activation of AhR disrupted RelA/p65 signaling in mouse peritoneal macrophages by decreasing its half-life. The data demonstrate that the activation of AhR by TCDD and β-naphthoflavone (β-NF) decreased protein levels of the pro-inflammatory cytokines TNF-α, IL-6 and IL-12 after macrophage activation with LPS/IFNγ. In an AhR-dependent manner, TCDD treatment induces RelA/p65 ubiquitination and proteosomal degradation, an effect dependent on AhR transcriptional activity. Activation of AhR also induced lysosome-like membrane structure formation in mouse peritoneal macrophages and RelA/p65 lysosome-dependent degradation. In conclusion, these results demonstrate that AhR activation promotes RelA/p65 protein degradation through the ubiquitin proteasome system, as well as through the lysosomes, resulting in decreased pro-inflammatory cytokine levels in mouse peritoneal macrophages.
Collapse
Affiliation(s)
- O Domínguez-Acosta
- Departamento de Biología Celular, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico
| | - L Vega
- Departamento de Toxicología, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico
| | - E Estrada-Muñiz
- Departamento de Toxicología, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico
| | - M S Rodríguez
- Institut des Technologies Avancées en Sciences du Vivant (ITAV) CNRS-USR3505, Institut de Pharmacologie et de Biologie Structurale (IPBS) CNRS UMR8601, Université de Toulouse, 31106 Toulouse, France
| | - F J Gonzalez
- Laboratory of Metabolism, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - G Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Zacatenco, México D. F., Av. IPN 2508, C.P. 07360, Mexico.
| |
Collapse
|
244
|
TRIF Regulates BIC/miR-155 via the ERK Signaling Pathway to Control the ox-LDL-Induced Macrophage Inflammatory Response. J Immunol Res 2018; 2018:6249085. [PMID: 29977930 PMCID: PMC6011077 DOI: 10.1155/2018/6249085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/01/2018] [Indexed: 01/03/2023] Open
Abstract
Toll/IL-1R-domain-containing adaptor-inducing IFN-β (TRIF) is an important adaptor for TLR3- and TLR4-mediated inflammatory signaling pathways. Recent studies have shown that TRIF plays a key role in vessel inflammation and atherosclerosis; however, the precise mechanisms are unclear. We investigated the mechanisms of the TRIF-regulated inflammatory response in RAW264.7 macrophages under oxidized low-density lipoprotein (ox-LDL) stimulation. Our data show that ox-LDL induces TRIF, miR-155, and BIC expression, activates the ERK1/2 and SOCS1-STAT3-NF-κB signaling pathways, and elevates the levels of IL-6 and TNF-α in RAW264.7 cells. Knockdown of TRIF using TRIF siRNA suppressed BIC, miR-155, IL-6, and TNF-α expression and inhibited the ERK1/2 and SOCS1-STAT3-NF-κB signaling pathways. Inhibition of ERK1/2 signaling also suppressed BIC and miR-155 expression. These findings suggest that TRIF plays an important role in regulating the ox-LDL-induced macrophage inflammatory response and that TRIF modulates the expression of BIC/miR-155 and the downstream SOCS1-STAT3-NF-κB signaling pathway via ERK1/2. Therefore, TRIF might be a novel therapeutic target for atherosclerosis.
Collapse
|
245
|
Fensterheim BA, Young JD, Luan L, Kleinbard RR, Stothers CL, Patil NK, McAtee-Pereira AG, Guo Y, Trenary I, Hernandez A, Fults JB, Williams DL, Sherwood ER, Bohannon JK. The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3777-3789. [PMID: 29686054 PMCID: PMC5964009 DOI: 10.4049/jimmunol.1800085] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/28/2018] [Indexed: 12/21/2022]
Abstract
Monophosphoryl lipid A (MPLA) is a clinically used TLR4 agonist that has been found to drive nonspecific resistance to infection for up to 2 wk. However, the molecular mechanisms conferring protection are not well understood. In this study, we found that MPLA prompts resistance to infection, in part, by inducing a sustained and dynamic metabolic program in macrophages that supports improved pathogen clearance. Mice treated with MPLA had enhanced resistance to infection with Staphylococcus aureus and Candida albicans that was associated with augmented microbial clearance and organ protection. Tissue macrophages, which exhibited augmented phagocytosis and respiratory burst after MPLA treatment, were required for the beneficial effects of MPLA. Further analysis of the macrophage phenotype revealed that early TLR4-driven aerobic glycolysis was later coupled with mitochondrial biogenesis, enhanced malate shuttling, and increased mitochondrial ATP production. This metabolic program was initiated by overlapping and redundant contributions of MyD88- and TRIF-dependent signaling pathways as well as downstream mTOR activation. Blockade of mTOR signaling inhibited the development of the metabolic and functional macrophage phenotype and ablated MPLA-induced resistance to infection in vivo. Our findings reveal that MPLA drives macrophage metabolic reprogramming that evolves over a period of days to support a macrophage phenotype highly effective at mediating microbe clearance and that this results in nonspecific resistance to infection.
Collapse
Affiliation(s)
- Benjamin A Fensterheim
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37212
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Ruby R Kleinbard
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Cody L Stothers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37212
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | | | - Yin Guo
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Jessica B Fults
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - David L Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Edward R Sherwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37212
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| |
Collapse
|
246
|
Zhu H, Pu D, Di Q, Zhao X, Ji F, Li H, Zhao Z, Gao J, Xiao W, Chen W. Cirsitakaoside isolated from Premna szemaoensis reduces LPS-induced inflammatory responses in vitro and in vivo. Int Immunopharmacol 2018; 59:384-390. [PMID: 29689498 DOI: 10.1016/j.intimp.2018.04.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 11/26/2022]
Abstract
Cirsitakaoside is a natural compound isolated from Premna szemaoensis. However, the anti-inflammatory effects of cirsitakaoside are poorly understood. We investigated the anti-inflammatory action of cirsitakaoside in lipopolysaccharide (LPS)-stimulated macrophages and mice in vivo. Cirsitakaoside could suppress the production of pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in a dose-dependent manner in LPS-stimulated mouse peritoneal macrophages and RAW264.7 cells. Cirsitakaoside also could inhibit inducible nitric oxide synthase (iNOS) mRNA and cyclooxygenase-2 (COX-2) mRNA expression in LPS-stimulated mouse peritoneal macrophages and RAW264.7 cells. These effects were partially carried out by inactivated nuclear factor-κB (NF-κB) and Mitogen-activated protein kinases (MAPKs) pathway via inhibiting the phosphorylation of the IKKα/β, IκBα and c-Jun N-terminal kinase/stress-activated protein kinase (JNK) in LPS-stimulated murine macrophages. In vivo, we showed that cirsitakaoside could relieve LPS-induced inflammation response. These results suggest that cirsitakaoside has the potential anti-inflammatory effect for treatment of inflammation diseases.
Collapse
Affiliation(s)
- Huihui Zhu
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Debing Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qianqian Di
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Xibao Zhao
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feiyang Ji
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongrui Li
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zizhao Zhao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junbo Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Weilin Chen
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
247
|
Pang Z, Junkins RD, Raudonis R, MacNeil AJ, McCormick C, Cheng Z, Lin TJ. Regulator of calcineurin 1 differentially regulates TLR-dependent MyD88 and TRIF signaling pathways. PLoS One 2018; 13:e0197491. [PMID: 29799862 PMCID: PMC5969770 DOI: 10.1371/journal.pone.0197491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLRs) recognize the conserved molecular patterns in microorganisms and trigger myeloid differentiation primary response 88 (MyD88) and/or TIR-domain-containing adapter-inducing interferon-β (TRIF) pathways that are critical for host defense against microbial infection. However, the molecular mechanisms that govern TLR signaling remain incompletely understood. Regulator of calcineurin-1 (RCAN1), a small evolutionarily conserved protein that inhibits calcineurin phosphatase activity, suppresses inflammation during Pseudomonas aeruginosa infection. Here, we define the roles for RCAN1 in P. aeruginosa lipopolysaccharide (LPS)-activated TLR4 signaling. We compared the effects of P. aeruginosa LPS challenge on bone marrow-derived macrophages from both wild-type and RCAN1-deficient mice and found that RCAN1 deficiency increased the MyD88-NF-κB-mediated cytokine production (IL-6, TNF and MIP-2), whereas TRIF-interferon-stimulated response elements (ISRE)-mediated cytokine production (IFNβ, RANTES and IP-10) was suppressed. RCAN1 deficiency caused increased IκBα phosphorylation and NF-κB activity in the MyD88-dependent pathway, but impaired ISRE activation and reduced IRF7 expression in the TRIF-dependent pathway. Complementary studies of a mouse model of P. aeruginosa LPS-induced acute pneumonia confirmed that RCAN1-deficient mice displayed greatly enhanced NF-κB activity and MyD88-NF-κB-mediated cytokine production, which correlated with enhanced pulmonary infiltration of neutrophils. By contrast, RCAN1 deficiency had little effect on the TRIF pathway in vivo. These findings demonstrate a novel regulatory role of RCAN1 in TLR signaling, which differentially regulates MyD88 and TRIF pathways.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert D. Junkins
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam J. MacNeil
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
248
|
Tsukamoto H, Takeuchi S, Kubota K, Kobayashi Y, Kozakai S, Ukai I, Shichiku A, Okubo M, Numasaki M, Kanemitsu Y, Matsumoto Y, Nochi T, Watanabe K, Aso H, Tomioka Y. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation. J Biol Chem 2018; 293:10186-10201. [PMID: 29760187 DOI: 10.1074/jbc.m117.796631] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 04/10/2018] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is an indispensable immune receptor for lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall. Following LPS stimulation, TLR4 transmits the signal from the cell surface and becomes internalized in an endosome. However, the spatial regulation of TLR4 signaling is not fully understood. Here, we investigated the mechanisms of LPS-induced TLR4 internalization and clarified the roles of the extracellular LPS-binding molecules, LPS-binding protein (LBP), and glycerophosphatidylinositol-anchored protein (CD14). LPS stimulation of CD14-expressing cells induced TLR4 internalization in the presence of serum, and an inhibitory anti-LBP mAb blocked its internalization. Addition of LBP to serum-free cultures restored LPS-induced TLR4 internalization to comparable levels of serum. The secretory form of the CD14 (sCD14) induced internalization but required a much higher concentration than LBP. An inhibitory anti-sCD14 mAb was ineffective for serum-mediated internalization. LBP lacking the domain for LPS transfer to CD14 and a CD14 mutant with reduced LPS binding both attenuated TLR4 internalization. Accordingly, LBP is an essential serum molecule for TLR4 internalization, and its LPS transfer to membrane-anchored CD14 (mCD14) is a prerequisite. LBP induced the LPS-stimulated phosphorylation of TBK1, IKKϵ, and IRF3, leading to IFN-β expression. However, LPS-stimulated late activation of NF-κB or necroptosis were not affected. Collectively, our results indicate that LBP controls LPS-induced TLR4 internalization, which induces TLR adaptor molecule 1 (TRIF)-dependent activation of the TBK1-IKKϵ-IRF3-IFN-β pathway. In summary, we showed that LBP-mediated LPS transfer to mCD14 is required for serum-dependent TLR4 internalization and activation of the TRIF pathway.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578,
| | - Shino Takeuchi
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Kanae Kubota
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Yohei Kobayashi
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Sao Kozakai
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Ippo Ukai
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Ayumi Shichiku
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Misaki Okubo
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Muneo Numasaki
- the Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, and
| | - Yoshitomi Kanemitsu
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Yotaro Matsumoto
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Tomonori Nochi
- the Laboratory of Functional Morphology and.,International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Sendai 980-0845, Japan
| | - Kouichi Watanabe
- the Laboratory of Functional Morphology and.,International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Sendai 980-0845, Japan
| | - Hisashi Aso
- the Laboratory of Functional Morphology and.,International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Sendai 980-0845, Japan
| | - Yoshihisa Tomioka
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578,
| |
Collapse
|
249
|
Dery KJ, Silver C, Yang L, Shively JE. Interferon regulatory factor 1 and a variant of heterogeneous nuclear ribonucleoprotein L coordinately silence the gene for adhesion protein CEACAM1. J Biol Chem 2018; 293:9277-9291. [PMID: 29720400 DOI: 10.1074/jbc.ra117.001507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
The adhesion protein carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is widely expressed in epithelial cells as a short cytoplasmic isoform (S-iso) and in leukocytes as a long cytoplasmic isoform (L-iso) and is frequently silenced in cancer by unknown mechanisms. Previously, we reported that interferon response factor 1 (IRF1) biases alternative splicing (AS) to include the variable exon 7 (E7) in CEACAM1, generating long cytoplasmic isoforms. We now show that IRF1 and a variant of heterogeneous nuclear ribonucleoprotein L (Lv1) coordinately silence the CEACAM1 gene. RNAi-mediated Lv1 depletion in IRF1-treated HeLa and melanoma cells induced significant CEACAM1 protein expression, reversed by ectopic Lv1 expression. The Lv1-mediated CEACAM1 repression resided in residues Gly71-Gly89 and Ala38-Gly89 in Lv1's N-terminal extension. ChIP analysis of IRF1- and FLAG-tagged Lv1-treated HeLa cells and global treatment with the global epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A indicated that IRF1 and Lv1 together induce chromatin remodeling, restricting IRF1 access to the CEACAM1 promoter. In interferon γ-treated HeLa cells, the transcription factor SP1 did not associate with the CEACAM1 promoter, but binding by upstream transcription factor 1 (USF1), a known CEACAM1 regulator, was greatly enhanced. ChIP-sequencing revealed that Lv1 overexpression in IRF1-treated cells induces transcriptional silencing across many genes, including DCC (deleted in colorectal carcinoma), associated with CEACAM5 in colon cancer. Notably, IRF1, but not IRF3 and IRF7, affected CEACAM1 expression via translational repression. We conclude that IRF1 and Lv1 coordinately regulate CEACAM1 transcription, alternative splicing, and translation and may significantly contribute to CEACAM1 silencing in cancer.
Collapse
Affiliation(s)
- Kenneth J Dery
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Craig Silver
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, and
| | - Lu Yang
- The Integrative Genomics and Bioinformatics Core, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - John E Shively
- From the Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010,
| |
Collapse
|
250
|
Lork M, Kreike M, Staal J, Beyaert R. Importance of Validating Antibodies and Small Compound Inhibitors Using Genetic Knockout Studies-T Cell Receptor-Induced CYLD Phosphorylation by IKKε/TBK1 as a Case Study. Front Cell Dev Biol 2018; 6:40. [PMID: 29755980 PMCID: PMC5932415 DOI: 10.3389/fcell.2018.00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
CYLD is a deubiquitinating enzyme that plays a crucial role in immunity and inflammation as a negative regulator of NF-κB transcription factor and JNK kinase signaling. Defects in either of these pathways contribute to the progression of numerous inflammatory and autoimmune disorders. Therefore, we set out to unravel molecular mechanisms that control CYLD activity in the context of T cell receptor (TCR) signaling. More specifically, we focused on CYLD phosphorylation at Ser418, which can be detected upon immunoblotting of cell extracts with phospho(Ser418)-CYLD specific antibodies. Jurkat T cells stimulated with either anti-CD3/anti-CD28 or PMA/Ionomycin (to mimic TCR signaling) were used as a model system. The role of specific kinases was analyzed using pharmacological as well as genetic approaches. Our initial data indicated that CYLD is directly phosphorylated by the noncanonical IκB kinases (IKKs) IKKε and TANK Binding Kinase 1 (TBK1) at Ser418 upon TCR stimulation. Treatment with MRT67307, a small compound inhibitor for IKKε and TBK1, inhibited TCR-induced CYLD phosphorylation. However, the phospho(Ser418)-CYLD immunoreactive band was still present in CRISPR/Cas9 generated IKKε/TBK1 double knockout cell lines, where it could still be prevented by MRT67307, indicating that the initially observed inhibitory effect of MRT67307 on TCR-induced CYLD phosphorylation is IKKε/TBK1-independent. Most surprisingly, the phospho(Ser418)-CYLD immunoreactive band was still detectable upon immunoblotting of cell extracts obtained from CYLD deficient cells. These data demonstrate the non-specificity of MRT67307 and phospho(Ser418)-CYLD specific antibodies, implying that previously published results based on these tools may also have led to wrong conclusions. We therefore advise to use genetic knockout studies or alternative approaches for a better validation of antibodies and small compound inhibitors. Interestingly, immunoprecipitation with the phospho(Ser418)-CYLD antibody, followed by immunoblotting with anti-CYLD, revealed that CYLD is phosphorylated by IKKε/TBK1 at Ser418 upon T cell stimulation, but that its direct detection with the phospho(Ser418)-CYLD-specific antibody in a western blot is masked by another inducible protein of the same size that is recognized by the same antibody.
Collapse
Affiliation(s)
- Marie Lork
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Marja Kreike
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| |
Collapse
|