201
|
Du D, Furukawa KS, Ushida T. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering. Biotechnol Bioeng 2009; 102:1670-8. [DOI: 10.1002/bit.22214] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
202
|
Walsh CL, Babin BM, Kasinskas RW, Foster JA, McGarry MJ, Forbes NS. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. LAB ON A CHIP 2009; 9:545-54. [PMID: 19190790 PMCID: PMC2855303 DOI: 10.1039/b810571e] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The heterogeneity of cellular microenvironments in tumors severely limits the efficacy of most cancer therapies. We have designed a microfluidic device that mimics the microenvironment gradients present in tumors that will enable the development of more effective cancer therapies. Tumor cell masses were formed within micron-scale chambers exposed to medium perfusion on one side to create linear nutrient gradients. The optical accessibility of the PDMS and glass device enables quantitative transmitted and fluorescence microscopy of all regions of the cell masses. Time-lapse microscopy was used to measure the growth rate and show that the device can be used for long-term efficacy studies. Fluorescence microscopy was used to demonstrate that the cell mass contained viable, apoptotic, and acidic regions similar to in vivo tumors. The diffusion coefficient of doxorubicin was accurately measured, and the accumulation of therapeutic bacteria was quantified. The device is simple to construct, and it can easily be reproduced to create an array of in vitro tumors. Because microenvironment gradients and penetration play critical roles controlling drug efficacy, we believe that this microfluidic device will be vital for understanding the behavior of common cancer drugs in solid tumors and designing novel intratumorally targeted therapeutics.
Collapse
Affiliation(s)
- Colin L Walsh
- Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant Street. Amherst, MA 01003-9303, USA
| | | | | | | | | | | |
Collapse
|
203
|
Grayson WL, Bhumiratana S, Cannizzaro C, Chao PHG, Lennon DP, Caplan AI, Vunjak-Novakovic G. Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone. Tissue Eng Part A 2009; 14:1809-20. [PMID: 18620487 DOI: 10.1089/ten.tea.2007.0255] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe a novel bioreactor system for tissue engineering of bone that enables cultivation of up to six tissue constructs simultaneously, with direct perfusion and imaging capability. The bioreactor was used to investigate the relative effects of initial seeding density and medium perfusion rate on the growth and osteogenic differentiation patterns of bone marrow-derived human mesenchymal stem cells (hMSCs) cultured on three-dimensional scaffolds. Fully decellularized bovine trabecular bone was used as a scaffold because it provided suitable "biomimetic" topography, biochemical composition, and mechanical properties for osteogenic differentiation of hMSCs. Trabecular bone plugs were completely denuded of cellular material using a serial treatment with hypotonic buffers and detergents, seeded with hMSCs, and cultured for 5 weeks. Increasing seeding density from 30 x 10(6) cells/mL to 60 x 10(6) cells/mL did not measurably influence the characteristics of tissue-engineered bone, in contrast to an increase in the perfusion rate from 100 microms(-1) to 400 microms(-1), which radically improved final cell numbers, cell distributions throughout the constructs, and the amounts of bone proteins and minerals. Taken together, these findings suggest that the rate of medium perfusion during cultivation has a significant effect on the characteristics of engineered bone.
Collapse
Affiliation(s)
- Warren L Grayson
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
204
|
|
205
|
Jungreuthmayer C, Jaasma MJ, Al-Munajjed AA, Zanghellini J, Kelly DJ, O'Brien FJ. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model. Med Eng Phys 2008; 31:420-7. [PMID: 19109048 DOI: 10.1016/j.medengphy.2008.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 04/30/2008] [Accepted: 11/11/2008] [Indexed: 11/18/2022]
Abstract
Tissue-engineered bone shows promise in meeting the huge demand for bone grafts caused by up to 4 million bone replacement procedures per year, worldwide. State-of-the-art bone tissue engineering strategies use flow perfusion bioreactors to apply biophysical stimuli to cells seeded on scaffolds and to grow tissue suitable for implantation into the patient's body. The aim of this study was to quantify the deformation of cells seeded on a collagen-GAG scaffold which was perfused by culture medium inside a flow perfusion bioreactor. Using a microCT scan of an unseeded collagen-GAG scaffold, a sequential 3D CFD-deformation model was developed. The wall shear stress and the hydrostatic wall pressure acting on the cells were computed through the use of a CFD simulation and fed into a linear elastostatics model in order to calculate the deformation of the cells. The model used numerically seeded cells of two common morphologies where cells are either attached flatly on the scaffold wall or bridging two struts of the scaffold. Our study showed that the displacement of the cells is primarily determined by the cell morphology. Although cells of both attachment profiles were subjected to the same mechanical load, cells bridging two struts experienced a deformation up to 500 times higher than cells only attached to one strut. As the scaffold's pore size determines both the mechanical load and the type of attachment, the design of an optimal scaffold must take into account the interplay of these two features and requires a design process that optimizes both parameters at the same time.
Collapse
Affiliation(s)
- C Jungreuthmayer
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
206
|
Du D, Furukawa KS, Ushida T. Oscillatory perfusion culture of CaP-based tissue engineering bone with and without dexamethasone. Ann Biomed Eng 2008; 37:146-55. [PMID: 19002585 DOI: 10.1007/s10439-008-9586-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 10/14/2008] [Indexed: 01/11/2023]
Abstract
Dexamethasone, a powerful osteogenic agent for osteoblast differentiation, has been suggested to have synergistic effects when applied together with perfusion culture. As ceramic scaffolds are widely used clinically and oscillatory flow well replicates the natural physical conditions, the biological effects of dexamethasone on oscillatory perfusion culture of CaP-based tissue engineering bone were investigated in this study. Mouse osteoblast-like cells, MC 3T3-E1, were seeded onto porous ceramic scaffolds using the oscillatory perfusion method. The seeded constructs were then either cultured by a static method or an oscillatory perfusion method at different flow rates continuously for 6 days with and without dexamethasone. The cell proliferation, early osteogenic effects, and viability were subsequently evaluated. The results showed that the oscillatory flow could enhance early osteogenesis of osteoblast-like cells in three-dimensional culture on ceramic scaffolds, with a peak function at the flow rate of 0.5 mL/min. The cell viability was significantly higher and more uniform in the perfusion groups than in the static culture groups. The uniformity decreased as the perfusion rates decreased. However, dexamethasone seems to have had no significant effects in any of the groups. Our results suggest that dexamethasone is not an efficient osteogenic supplement during perfusion culture on CaP ceramic scaffolds, and predifferentiation before seeding or additional osteogenic factors should be considered for such cultures.
Collapse
Affiliation(s)
- Dajiang Du
- Laboratory of Biomedical Engineering, Department of Mechanical Engineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | |
Collapse
|
207
|
Abstract
This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is 'biomimetic' in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2-4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research.
Collapse
|
208
|
Mathematical modelling of fibre-enhanced perfusion inside a tissue-engineering bioreactor. J Theor Biol 2008; 256:533-46. [PMID: 19014952 DOI: 10.1016/j.jtbi.2008.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 09/08/2008] [Accepted: 10/07/2008] [Indexed: 11/22/2022]
Abstract
We develop a simple mathematical model for forced flow of culture medium through a porous scaffold in a tissue-engineering bioreactor. Porous-walled hollow fibres penetrate the scaffold and act as additional sources of culture medium. The model, based on Darcy's law, is used to examine the nutrient and shear-stress distributions throughout the scaffold. We consider several configurations of fibres and inlet and outlet pipes. Compared with a numerical solution of the full Navier-Stokes equations within the complex scaffold geometry, the modelling approach is cheap, and does not require knowledge of the detailed microstructure of the particular scaffold being used. The potential of this approach is demonstrated through quantification of the effect the additional flow from the fibres has on the nutrient and shear-stress distribution.
Collapse
|
209
|
Biological Basis of Bone Formation, Remodeling, and Repair—Part III: Biomechanical Forces. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:285-93. [DOI: 10.1089/ten.teb.2008.0084] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
210
|
Du D, Furukawa K, Ushida T. Oscillatory perfusion seeding and culturing of osteoblast‐like cells on porous beta‐tricalcium phosphate scaffolds. J Biomed Mater Res A 2008; 86:796-803. [DOI: 10.1002/jbm.a.31641] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
211
|
Abstract
Interfacial zones between tissues provide specialized, transitional junctions central to normal tissue function. Regenerative medicine strategies focused on multiple cell types and/or bi/tri-layered scaffolds do not provide continuously graded interfaces, severely limiting the integration and biological performance of engineered tissue substitutes. Inspired by the bone-soft tissue interface, we describe a biomaterial-mediated gene transfer strategy for spatially regulated genetic modification and differentiation of primary dermal fibroblasts within tissue-engineered constructs. We demonstrate that zonal organization of osteoblastic and fibroblastic cellular phenotypes can be engineered by a simple, one-step seeding of fibroblasts onto scaffolds containing a spatial distribution of retrovirus encoding the osteogenic transcription factor Runx2/Cbfa1. Gradients of immobilized retrovirus, achieved via deposition of controlled poly(L-lysine) densities, resulted in spatial patterns of transcription factor expression, osteoblastic differentiation, and mineralized matrix deposition. Notably, this graded distribution of mineral deposition and mechanical properties was maintained when implanted in vivo in an ectopic site. Development of this facile and robust strategy is significant toward the regeneration of continuous interfacial zones that mimic the cellular and microstructural characteristics of native tissue.
Collapse
|
212
|
Laganà K, Moretti M, Dubini G, Raimondi MT. A new bioreactor for the controlled application of complex mechanical stimuli for cartilage tissue engineering. Proc Inst Mech Eng H 2008; 222:705-15. [DOI: 10.1243/09544119jeim383] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanical stimuli have been shown to enhance chondrogenesis on both animal and human chondrocytes cultured in vitro. Different mechanical stimuli act simultaneously in vivo in cartilage tissue and their effects have been extensively studied in vitro, although often in a separated manner. A new bioreactor is described where different mechanical stimuli, i.e. shear stress and hydrostatic pressure, can be combined in different ways to study the mechanobiology of tissue engineered cartilage. Shear stress is imposed on cells by forcing the culture medium through the scaffolds, whereas a high hydrostatic pressure up to 15 MPa is generated by pressurizing the culture medium. Fluid-dynamic experimental tests have been performed and successful validation of the bioreactor has been carried out by dynamic culture of tissue-engineered cartilage constructs. The bioreactor system allows the investigation of the combined effects of different mechanical stimuli on the development of engineered cartilage, as well as other possible three-dimensional tissue-engineered constructs.
Collapse
Affiliation(s)
- K Laganà
- Politecnico di Milano, Department of Structural Engineering, Laboratory of Biological Structure Mechanics, Milano, Italy
| | - M Moretti
- I.R.C.C.S. Galeazzi Orthopaedic, Milano, Italy
| | - G Dubini
- Politecnico di Milano, Department of Structural Engineering, Laboratory of Biological Structure Mechanics, Milano, Italy
| | - M T Raimondi
- Politecnico di Milano, Department of Structural Engineering, Laboratory of Biological Structure Mechanics, Milano, Italy
| |
Collapse
|
213
|
Brown MA, Iyer RK, Radisic M. Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol Prog 2008; 24:907-20. [PMID: 19194900 DOI: 10.1002/btpr.11] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiovascular disease is the number one cause of mortality in North America. Cardiac tissue engineering aims to engineer a contractile patch of physiological thickness to use in surgical repair of diseased heart tissue. We previously reported that perfusion of engineered cardiac constructs resulted in improved tissue assembly. Because heart tissues respond to mechanical stimuli in vitro and experience rhythmic mechanical forces during contraction in vivo, we hypothesized that provision of pulsatile interstitial medium flow to an engineered cardiac patch would result in enhanced tissue assembly by way of mechanical conditioning and improved mass transport. Thus, we constructed a novel perfusion bioreactor capable of providing pulsatile fluid flow at physiologically relevant shear stresses and flow rates. Pulsatile perfusion (PP) was achieved by incorporation of a normally closed solenoid pinch valve into the perfusion loop and was carried out at a frequency of 1 Hz and a flow rate of 1.50 mL/min (PP) or 0.32 mL/min (PP-LF). Nonpulsatile flow at 1.50 mL/min (NP) or 0.32 mL/min (NP-LF) served as controls. Static controls were cultivated in well plates. The main experimental groups were seeded with cells enriched for cardiomyocytes by one preplating step (64% cardiac Troponin I+, 34% prolyl-4-hydroxylase+), whereas pure cardiac fibroblasts and cells enriched for cardiomyocytes by two preplating steps (81% cardiac Troponin I+, 16% prolyl-4-hydroxylase+) served as controls. Cultivation under pulsatile flow had beneficial effects on contractile properties. Specifically, the excitation threshold was significantly lower in the PP condition (pulsatile perfusion at 1.50 mL/min) than in the Static control, and the contraction amplitude was the highest; whereas high maximum capture rate was observed for the PP-LF conditions (pulsatile perfusion at 0.32 mL/min). The enhanced hypertrophy index observed for the PP-LF group was consistent with the highest cellular length and diameter in this group. Within the same cultivation groups (Static, NP-LF, PP-LF, PP, and NP) there were no significant differences in the diameter between fibroblasts and cardiomyocytes, although cardiomyocytes were significantly more elongated than fibroblasts under PP-LF conditions. Cultivation of control cell populations resulted in noncontractile constructs when cardiac fibroblasts were used (as expected) and no overall improvement in functional properties when two steps of preplating were used to enrich for cardiomyocytes in comparison with only one step of preplating.
Collapse
Affiliation(s)
- Melissa A Brown
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
214
|
Jaasma MJ, O'Brien FJ. Mechanical Stimulation of Osteoblasts Using Steady and Dynamic Fluid Flow. Tissue Eng Part A 2008; 14:1213-23. [DOI: 10.1089/ten.tea.2007.0321] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michael J. Jaasma
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Department of Mechanical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Fergal J. O'Brien
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Department of Mechanical Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
215
|
Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Biomaterials 2008; 29:2616-27. [DOI: 10.1016/j.biomaterials.2008.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 03/04/2008] [Indexed: 11/18/2022]
|
216
|
Ichinohe N, Takamoto T, Tabata Y. Proliferation, osteogenic differentiation, and distribution of rat bone marrow stromal cells in nonwoven fabrics by different culture methods. Tissue Eng Part A 2008; 14:107-16. [PMID: 18333809 DOI: 10.1089/ten.a.2007.0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proliferation, osteogenic differentiation, and distribution patterns of stromal cells from rat bone marrow were investigated in a three-dimensional nonwoven fabric of polyethylene terephthalate fiber by the static, agitated, and stirred culture methods; stirring speeds were 10, 50, and 100 rpm in the stirred culture method. The culture method affected the time profile of proliferation and osteogenic differentiation of cells or their distribution in the fabric. The extent of cell proliferation and osteogenic differentiation became higher in order of the stirred at 100 rpm = the stirred at 50 rpm > the stirred at 10 rpm > the agitated > the static methods. In addition, the cells were more uniformly proliferated in the fabric by the stirred culture method with time than they were proliferated in the fabric by other methods. The alkaline phosphatase (ALP) activity and calcium content were higher for cells cultured by the stirred culture method than those cultured by other methods. The total ALP activity, calcium content, and bone mineral density were higher for every stirred method than those for other methods. However, the distribution uniformity of cells differentiated was low irrespective of the culture method. It is concluded that the extent of proliferation and differentiation of cells or their distribution uniformity in the nonwoven fabrics was influenced by the culture method.
Collapse
Affiliation(s)
- Norihisa Ichinohe
- Department of Pathophysiology, Cancer Research Institute, Sapporo Medical University, Sapporo, Japan
| | | | | |
Collapse
|
217
|
Kalyanaraman B, Supp DM, Boyce ST. Medium Flow Rate Regulates Viability and Barrier Function of Engineered Skin Substitutes in Perfusion Culture. Tissue Eng Part A 2008; 14:583-93. [DOI: 10.1089/tea.2007.0237] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Balaji Kalyanaraman
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Dorothy M. Supp
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
- Shriners Hospitals for Children, Cincinnati, Ohio
| | - Steven T. Boyce
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
- Shriners Hospitals for Children, Cincinnati, Ohio
| |
Collapse
|
218
|
Design of a Modular Bioreactor to Incorporate Both Perfusion Flow and Hydrostatic Compression for Tissue Engineering Applications. Ann Biomed Eng 2008; 36:1228-41. [DOI: 10.1007/s10439-008-9505-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
|
219
|
|
220
|
Chung CA, Chen CP, Lin TH, Tseng CS. A compact computational model for cell construct development in perfusion culture. Biotechnol Bioeng 2008; 99:1535-41. [PMID: 17972333 DOI: 10.1002/bit.21701] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A problem nowadays tissue engineers encounter in developing sizable tissue implants is the nonuniform spread of cells and/or extracellular matrices. Research shows such a nutrients transport restriction may be improved by employing hydrodynamic culture systems. We propose a compact model for the simulation of cell growth in a porous construct under direct perfusion. Unlike the previous model proposed in the literature, which composes a cellular scaffold sandwiched between two culture media layers, the current model includes only the scaffold layer to simplify the mathematical and computational complex. Results show the present single-layer model can predict cell spreads and the nutrient and metabolic waste distribution as accurately as does the three-layer model. Only if the hydrodynamic aspects such as the pressure and viscous stress are prominent to know, should the more sophisticated analyses with the three-layer model be employed. The compact model provides comparable investigations for the tissue-engineering construct developments.
Collapse
Affiliation(s)
- C A Chung
- Department of Mechanical Engineering, National Central University, Jhongli 32001, Taiwan.
| | | | | | | |
Collapse
|
221
|
A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J Biomech 2008; 41:1005-14. [PMID: 18255075 DOI: 10.1016/j.jbiomech.2007.12.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 12/12/2007] [Accepted: 12/12/2007] [Indexed: 11/21/2022]
Abstract
Mechanical stimuli are one of the factors that affect cell proliferation and differentiation in the process of bone tissue regeneration. Knowledge on the specific deformation sensed by cells at a microscopic level when mechanical loads are applied is still missing in the development of biomaterials for bone tissue engineering. The objective of this study was to analyze the behavior of the mechanical stimuli within some calcium phosphate-based scaffolds in terms of stress and strain distributions in the solid material phase and fluid velocity, fluid pressure and fluid shear stress distributions in the pores filled of fluid, by means of micro computed tomographed (CT)-based finite element (FE) models. Two samples of porous materials, one of calcium phosphate-based cement and another of biodegradable glass, were used. Compressive loads equivalent to 0.5% of compression applied to the solid material phase and interstitial fluid flows with inlet velocities of 1, 10 and 100 microm/s applied to the interconnected pores were simulated, changing also the inlet side and the viscosity of the medium. Similar strain distributions for both materials were found, with compressive and tensile strain maximal values of 1.6% and 0.6%, respectively. Mean values were consistent with the applied deformation. When 10 microm/s of inlet fluid velocity and 1.45 Pas viscosity, maximal values of fluid velocity were 12.76 mm/s for CaP cement and 14.87 mm/s for glass. Mean values were consistent with the inlet ones applied, and mean values of shear stress were around 5 x 10(-5)Pa. Variations on inlet fluid velocity and fluid viscosity produce proportional and independent changes in fluid velocity, fluid shear stress and fluid pressure. This study has shown how mechanical loads and fluid flow applied on the scaffolds cause different levels of mechanical stimuli within the samples according to the morphology of the materials.
Collapse
|
222
|
Jaasma MJ, Plunkett NA, O’Brien FJ. Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds. J Biotechnol 2008; 133:490-6. [DOI: 10.1016/j.jbiotec.2007.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/12/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
|
223
|
Rath B, Nam J, Knobloch TJ, Lannutti JJ, Agarwal S. Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J Biomech 2008; 41:1095-103. [PMID: 18191137 DOI: 10.1016/j.jbiomech.2007.11.024] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 11/29/2007] [Accepted: 11/29/2007] [Indexed: 11/28/2022]
Abstract
Bone cells and their precursors are sensitive to changes in their biomechanical environment. The importance of mechanical stimuli has been observed in bone homeostasis and osteogenesis, but the mechanisms responsible for osteogenic induction in response to mechanical signals are poorly understood. We hypothesized that compressive forces could exert an osteogenic effect on osteoblasts and act in a dose-dependent manner. To test our hypothesis, electrospun poly(epsilon-caprolactone) (PCL) scaffolds were used as a 3-D microenvironment for osteoblast culture. The scaffolds provided a substrate allowing cell exposure to levels of externally applied compressive force. Pre-osteoblasts adhered, proliferated and differentiated in the scaffolds and showed extensive matrix synthesis by scanning electron microscopy (SEM) and increased Young's modulus (136.45+/-9.15 kPa) compared with acellular scaffolds (24.55+/-8.5 kPa). Exposure of cells to 10% compressive strain (11.81+/-0.42 kPa) resulted in a rapid induction of bone morphogenic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), and MAD homolog 5 (Smad5). These effects further enhanced the expression of genes and proteins required for extracellular matrix (ECM) production, such as alkaline phosphatase (Akp2), collagen type I (Col1a1), osteocalcin/bone gamma carboxyglutamate protein (OC/Bglap), osteonectin/secreted acidic cysteine-rich glycoprotein (ON/Sparc) and osteopontin/secreted phosphoprotein 1 (OPN/Spp1). Exposure of cell-scaffold constructs to 20% compressive strain (30.96+/-2.82 kPa) demonstrated that these signals are not osteogenic. These findings provide the molecular basis for the experimental and clinical observations that appropriate physical activities or microscale compressive loading can enhance fracture healing due in part to the anabolic osteogenic effects.
Collapse
Affiliation(s)
- Bjoern Rath
- Biomechanics and Tissue Engineering Laboratory, The Ohio State University, 4010 Postle Hall, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
224
|
Ichinohe N, Takamoto T, Tabata Y. Proliferation, Osteogenic Differentiation, and Distribution of Rat Bone Marrow Stromal Cells in Nonwoven Fabrics by Different Culture Methods. ACTA ACUST UNITED AC 2008. [DOI: 10.1089/ten.2007.0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
225
|
Bernhardt A, Lode A, Boxberger S, Pompe W, Gelinsky M. Mineralised collagen--an artificial, extracellular bone matrix--improves osteogenic differentiation of bone marrow stromal cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:269-75. [PMID: 17597360 DOI: 10.1007/s10856-006-0059-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 11/29/2006] [Indexed: 05/16/2023]
Abstract
In the field of bone tissue engineering there is a high demand on bone graft materials which promote bone formation. By combination of collagen type I with nanocrystalline hydroxyapatite (HA) we generated a resorbable material which structure and composition is close to those of the extracellular bone matrix. This nanocomposite material was produced in a biomimetic process in which collagen fibril assembly and mineralisation with hydroxyapatite occur simultaneously. In this study the proliferation and osteogenic differentiation of human bone marrow-derived stromal cells (hBMSC) on membranes of biomimetically mineralised collagen type I was investigated. To this end, we optimised biochemical assays for determination of cell number and alkaline phosphatase activity corresponding to the special properties of this biomaterial. For cell experiments hBMSC were seeded on the mineralised collagen membranes and cultivated over 35 days, both in static and perfusion culture, in the presence and absence of dexamethasone, beta-glycerophosphate and ascorbate. Compared to cells grown on tissue culture polystyrene we found attenuated proliferation rates, but markedly increased activity of alkaline phosphatase on the mineralised collagen indicating its promoting effect on the osteogenic differentiation of hBMSC. Therefore this bone-like material may act as a suitable artificial extracellular matrix for bone tissue engineering. Perfusion of the 2D cell matrix constructs with cell culture medium did not improve proliferation and osteogenic differentiation of the hBMSC.
Collapse
Affiliation(s)
- Anne Bernhardt
- Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, Budapester-Str. 27, 01069 Dresden, Germany.
| | | | | | | | | |
Collapse
|
226
|
Li D, Dai K, Tang T. Effects of dextran on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Cytotherapy 2008; 10:587-96. [DOI: 10.1080/14653240802238330] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
227
|
Pierre J, Oddou C. Engineered bone culture in a perfusion bioreactor: a 2D computational study of stationary mass and momentum transport. Comput Methods Biomech Biomed Engin 2007; 10:429-38. [PMID: 17852175 DOI: 10.1080/10255840701494635] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Successful bone cell culture in large implants still is a challenge to biologists and requires a strict control of the physicochemical and mechanical environments. This study analyses from the transport phenomena viewpoint the limiting factors of a perfusion bioreactor for bone cell culture within fibrous and porous large implants (2.5 cm in length, a few cubic centimetres in volume, 250 microm in fibre diameter with approximately 60% porosity). A two-dimensional mathematical model, based upon stationary mass and momentum transport in these implants is proposed and numerically solved. Cell oxygen consumption, in accordance theoretically with the Michaelis-Menten law, generates non linearity in the boundary conditions of the convection diffusion equation. Numerical solutions are obtained with a commercial code (Femlab 3.1; Comsol AB, Stockholm, Sweden). Moreover, based on the simplification of transport equations, a simple formula is given for estimating the length of the oxygen penetration within the implant. Results show that within a few hours of culture process and for a perfusion velocity of the order of 10(-4) m s(-1), the local oxygen concentration is everywhere sufficiently high to ensure a suitable cell metabolism. But shear stresses induced by the fluid flow with such a perfusion velocity are found to be locally too large (higher than 10(-3) Pa). Suitable shear stresses are obtained by decreasing the velocity at the inlet to around 2 x 10(-5) m s(-1). But consequently hypoxic regions (low oxygen concentrations) appear at the downstream part of the implant. Thus, it is suggested here that in the determination of the perfusion flow rate within a large implant, a compromise between oxygen supply and shear stress effects must be found in order to obtain a successful cell culture.
Collapse
Affiliation(s)
- J Pierre
- Laboratoire B2OA, UMR CNRS 7052, Faculté des Sciences et Technologie, Université Paris 12, Créteil Cedex, France.
| | | |
Collapse
|
228
|
Cimetta E, Flaibani M, Mella M, Serena E, Boldrin L, De Coppi P, Elvassore N. Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor. Int J Artif Organs 2007; 30:415-28. [PMID: 17551905 DOI: 10.1177/039139880703000509] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to develop a methodology for the in vitro expansion of skeletal-muscle precursor cells (SMPC) in a three-dimensional (3D) environment in order to fabricate a cellularized artificial graft characterized by high density of viable cells and uniform cell distribution over the entire 3D domain. Cell seeding and culture within 3D porous scaffolds by conventional static techniques can lead to a uniform cell distribution only on the scaffold surface, whereas dynamic culture systems have the potential of allowing a uniform growth of SMPCs within the entire scaffold structure. In this work, we designed and developed a perfusion bioreactor able to ensure long-term culture conditions and uniform flow of medium through 3D collagen sponges. A mathematical model to assist the design of the experimental setup and of the operative conditions was developed. The effects of dynamic vs static culture in terms of cell viability and spatial distribution within 3D collagen scaffolds were evaluated at 1, 4 and 7 days and for different flow rates of 1, 2, 3.5 and 4.5 ml/min using C2C12 muscle cell line and SMPCs derived from satellite cells. C2C12 cells, after 7 days of culture in our bioreactor, perfused applying a 3.5 ml/min flow rate, showed a higher viability resulting in a three-fold increase when compared with the same parameter evaluated for cultures kept under static conditions. In addition, dynamic culture resulted in a more uniform 3D cell distribution. The 3.5 ml/min flow rate in the bioreactor was also applied to satellite cell-derived SMPCs cultured on 3D collagen scaffolds. The dynamic culture conditions improved cell viability leading to higher cell density and uniform distribution throughout the entire 3D collagen sponge for both C2C12 and satellite cells.
Collapse
Affiliation(s)
- E Cimetta
- Department of Chemical Engineering, University of Padova, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
229
|
Duty AO, Oest ME, Guldberg RE. Cyclic mechanical compression increases mineralization of cell-seeded polymer scaffolds in vivo. J Biomech Eng 2007; 129:531-9. [PMID: 17655474 DOI: 10.1115/1.2746375] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite considerable documentation of the ability of normal bone to adapt to its mechanical environment, very little is known about the response of bone grafts or their substitutes to mechanical loading even though many bone defects are located in load-bearing sites. The goal of this research was to quantify the effects of controlled in vivo mechanical stimulation on the mineralization of a tissue-engineered bone replacement and identify the tissue level stresses and strains associated with the applied loading. A novel subcutaneous implant system was designed capable of intermittent cyclic compression of tissue-engineered constructs in vivo. Mesenchymal stem cell-seeded polymeric scaffolds with 8 weeks of in vitro preculture were placed within the loading system and implanted subcutaneously in male Fisher rats. Constructs were subjected to 2 weeks of loading (3 treatments per week for 30 min each, 13.3 N at 1 Hz) and harvested after 6 weeks of in vivo growth for histological examination and quantification of mineral content. Mineralization significantly increased by approximately threefold in the loaded constructs. The finite element method was used to predict tissue level stresses and strains within the construct resulting from the applied in vivo load. The largest principal strains in the polymer were distributed about a modal value of -0.24% with strains in the interstitial space being about five times greater. Von Mises stresses in the polymer were distributed about a modal value of 1.6 MPa, while stresses in the interstitial tissue were about three orders of magnitude smaller. This research demonstrates the ability of controlled in vivo mechanical stimulation to enhance mineralized matrix production on a polymeric scaffold seeded with osteogenic cells and suggests that interactions with the local mechanical environment should be considered in the design of constructs for functional bone repair.
Collapse
Affiliation(s)
- Angel O Duty
- Biomedical Engineering Department, Georgia Institute of Technology, IBB Room 2414, 315 Ferst Drive NW, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|
230
|
Timmins NE, Scherberich A, Früh JA, Heberer M, Martin I, Jakob M. Three-dimensional cell culture and tissue engineering in a T-CUP (tissue culture under perfusion). ACTA ACUST UNITED AC 2007; 13:2021-8. [PMID: 17590148 DOI: 10.1089/ten.2006.0158] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study was to develop and validate a simple and compact bioreactor system for perfusion cell seeding and culture through 3-dimensional porous scaffolds. The developed Tissue Culture Under Perfusion (T-CUP) bioreactor is based on the concept of controlled and confined alternating motion of scaffolds through a cell suspension or culture medium, as opposed to pumping of the fluid through the scaffolds. Via the T-CUP, articular chondrocytes and bone marrow stromal cells could be seeded into porous scaffolds of different compositions and architectures (chronOS, Hyaff-11, and Polyactive) at high efficiency (greater than 75%), uniformity (cells were well distributed throughout the scaffold pores), and viability (greater than 97%). Culture of articular chondrocytes seeded into 4-mm thick Polyactive scaffolds for 2 weeks in the T-CUP resulted in uniform deposition of cartilaginous matrix. Cultivation of freshly isolated human bone marrow nucleated cells seeded into ENGipore ceramic scaffolds for 19 days in the T-CUP resulted in stromal cell-populated constructs capable of inducing ectopic bone formation in nude mice. The T-CUP bioreactor represents an innovative approach to simple, efficient, and reliable 3D cell culture, and could be used either as a model to investigate mechanisms of tissue development or as a graft manufacturing system in the context of regenerative medicine.
Collapse
Affiliation(s)
- Nicholas E Timmins
- Tissue Engineering, Laboratory 405, Departments of Surgery and of Research, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
231
|
Phillips JE, Guldberg RE, García AJ. Dermal fibroblasts genetically modified to express Runx2/Cbfa1 as a mineralizing cell source for bone tissue engineering. ACTA ACUST UNITED AC 2007; 13:2029-40. [PMID: 17516856 DOI: 10.1089/ten.2006.0041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cell-based bone tissue engineering strategies have been effectively applied toward the development of grafting templates for skeletal repair and regeneration, but remain limited by inadequate availability of a robust mineralizing cell source. Dermal fibroblasts have emerged as a particularly promising cell alternative because they are harvested from autologous donors through minimally invasive skin biopsy and display a high capacity for in vitro expansion. In the present study, we investigated retroviral gene delivery of the osteogenic transcription factor Runx2 as a mineralization induction strategy in primary dermal fibroblasts. We demonstrate that constitutive overexpression of Runx2 induced osteogenic gene expression and mineralized nodule deposition in fibroblasts cultured on 3-dimensional fibrous collagen disks in vitro. Fourier transform infrared analysis revealed that Runx2 expressing fibroblasts deposit a carbonate-containing, poorly crystalline hydroxyapatite, whereas control constructs did not contain biologically-equivalent mineral. Importantly, Runx2-transduced fibroblasts formed mineralized templates in vivo after implantation in a subcutaneous, heterotopic site, whereas minimal mineralization was evident in control constructs. Furthermore, immunohistochemical analysis indicated that Runx2-engineered cells co-localized with mineral deposits in vivo, suggesting that nodule formation primarily originated from transplanted donor cells. These results establish Runx2-genetic engineering as a strategy for the conversion of a non-osteogenic cellular phenotype into a mineralizing cell source for bone repair applications. Cellular therapies based on primary dermal fibroblasts would be particularly beneficial for patients with compromised ability to recruit endogenous osteoprogenitors to the site of injury as a result of extreme trauma, age, radiation treatment, or osteolytic disease.
Collapse
Affiliation(s)
- Jennifer E Phillips
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
232
|
Chung CA, Chen CW, Chen CP, Tseng CS. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation. Biotechnol Bioeng 2007; 97:1603-16. [PMID: 17304558 DOI: 10.1002/bit.21378] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Perfusion bioreactors improve mass transfer in cell-scaffold constructs. We developed a mathematical model to simulate nutrient flow through cellular constructs. Interactions among cell proliferation, nutrient consumption, and culture medium circulation were investigated. The model incorporated modified Contois cell-growth kinetics that includes effects of nutrient saturation and limited cell growth. Nutrient uptake was depicted through the Michaelis-Menton kinetics. To describe the culture medium convection, the fluid flow outside the cell-scaffold construct was described by the Navier-Stokes equations, while the fluid dynamics within the construct was modeled by Brinkman's equation for porous media flow. Effects of the media perfusion were examined by including time-dependant porosity and permeability changes due to cell growth. The overall cell volume was considered to consist of cells and extracellular matrices (ECM) as a whole without treating ECM separately. Numerical simulations show when cells were cultured subjected to direct perfusion, they penetrated to a greater extent into the scaffold and resulted in a more uniform spatial distribution. The cell amount was increased by perfusion and ultimately approached an asymptotic value as the perfusion rates increased in terms of the dimensionless Peclet number that accounts for the ratio of nutrient perfusion to diffusion. In addition to enhancing the nutrient delivery, perfusion simultaneously imposes flow-mediated shear stress to the engineered cells. Shear stresses were found to increase with cell growth as the scaffold void space was occupied by the cell and ECM volumes. The macro average stresses increased from 0.2 mPa to 1 mPa at a perfusion rate of 20 microm/s with the overall cell volume fraction growing from 0.4 to 0.7, which made the overall permeability value decrease from 1.35 x 10(-2)cm(2) to 5.51 x 10(-4)cm(2). Relating the simulation results with perfusion experiments in literature, the average shear stresses were below the critical value that would induce the chondrocyte necrosis.
Collapse
Affiliation(s)
- C A Chung
- Department of Mechanical Engineering, National Central University, Jhongli 32001, Taiwan.
| | | | | | | |
Collapse
|
233
|
Dvir T, Benishti N, Shachar M, Cohen S. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration. ACTA ACUST UNITED AC 2007; 12:2843-52. [PMID: 17518653 DOI: 10.1089/ten.2006.12.2843] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We developed a novel perfusion bioreactor that is capable of cultivating multiple 3-dimensional (3D) cellular constructs in one flow chamber with a total cross-section area of 20 cm(2). Two unique features integrated into the bioreactor provided a homogenous fluid flow along the bioreactor cross-section and maximal exposure of the cellular constructs to the perfusing medium. Mathematical modeling of the fluid flow regime in the perfusion bioreactor showed that integrating a flow-distributing mesh 1.5 cm upstream from the construct compartment imposed an equal medium flow and shear stress of 0.6 dynes /cm(2) along the entire cell construct cross-section area. The design of 95.8%open-pore-area fixing nets enabled the exposure of 99.88% of the cell construct volume to the perfusing medium. Cardiac cell constructs seeded with physiologically relevant cell density (0.7 x 10(8) cells/cm(3)) in alginate scaffolds developed into homogenous compacted cardiac tissue, as judged using cell staining with fluorescein diacetate and hematoxylin-eosin histology. The cell constructs maintained 80% viability for nearly 2 weeks, whereas in static-cultivated cell constructs, only 50% of the initial cells remained, as determined according to total DNA content and MTT viability assay. Medium perfusion resulted in better cell viability, presumably due to the convective-diffusive transport of oxygen, compared with oxygen diffusion within the static-cultivated cell constructs, as well as due to efficient removal of harmful cell secretions. It is envisioned that this bioreactor would be useful for 3D cultivation of different mammalian cells for purposes of tissue engineering or production of valuable biologicals.
Collapse
Affiliation(s)
- Tal Dvir
- Department of Biotechnology Engineering, Ben-Gurion University of Negev, Beer Sheva, Israel
| | | | | | | |
Collapse
|
234
|
Alvarez-Barreto JF, Sikavitsas VI. Improved Mesenchymal Stem Cell Seeding on RGD-Modified Poly(L-lactic acid) Scaffolds using Flow Perfusion. Macromol Biosci 2007; 7:579-88. [PMID: 17457938 DOI: 10.1002/mabi.200600280] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Arg-Gly-Asp (RGD) has been widely utilized to increase cell adhesion to three-dimensional scaffolds for tissue engineering. However, cell seeding on these scaffolds has only been carried out statically, which yields low cell seeding efficiencies. We have characterized, for the first time, the seeding of rat mesenchymal stem cells on RGD-modified poly(L-lactic acid) (PLLA) foams using oscillatory flow perfusion. The incorporation of RGD on the PLLA foams improves scaffold cellularity in a dose-dependent manner under oscillatory flow perfusion seeding. When compared to static seeding, oscillatory flow perfusion is the most efficient seeding technique. Cell detachment studies show that cell adhesion is dependent on the applied flow rate, and that cell attachment is strengthened at higher levels of RGD modification.
Collapse
Affiliation(s)
- Jose F Alvarez-Barreto
- School of Chemical, Biological and Materials Engineering, University of Oklahoma Bioengineering Center, University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|
235
|
Niemeyer P, Kasten P, Simank HG, Fellenberg J, Seckinger A, Kreuz PC, Mehlhorn A, Südkamp NP, Krause U. Transplantation of mesenchymal stromal cells on mineralized collagen leads to ectopic matrix synthesis in vivo independently from prior in vitro differentiation. Cytotherapy 2007; 8:354-66. [PMID: 16923611 DOI: 10.1080/14653240600845187] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tissue engineering using mesenchymal stromal cells (MSC) represents a promising approach for bone regeneration. Nevertheless, the optimal constructs have yet to be determined. It still remains unclear if there is a benefit of in vitro differentiation of MSC prior to transplantation or if undifferentiated MSC hold the optimal potential concerning new tissue formation. METHODS After isolation and in vitro expansion, MSC were seeded on mineralized collagen sponges and transplanted in a heterotopic SCID mice model (n=12). While group A contained undifferentiated MSC, in group B cells were cultivated for 14 days in vitro under osteogenic conditions prior to implantation. Results were compared with non-loaded scaffolds (group C). Animals were killed for investigation at 4 and at 8 weeks. RESULTS In situ hybridization demonstrated integration of MSC for up to 8 weeks in groups A and B. Histology revealed significantly more extracellular matrix synthesis in MSC-seeded scaffolds containing calcium phosphate and collagen type I at 4 and 8 weeks after transplantation compared with unloaded controls. At a biochemical level, higher levels of specific alkaline phosphatase expression were detected in MSC-loaded scaffolds (P<0.05). Scaffolds containing undifferentiated and differentiated MSC did not appear to differ in terms of matrix synthesis and protein expression, while the number of avital cells was significant higher in those probes loaded with differentiated MSC (P<0.01). DISCUSSION The integration of transplanted cells and MSC-associated matrix synthesis encourages the use of MSC-loaded mineralized collagen for tissue engineering of bone. Furthermore, our data suggest that in vitro differentiation of MSC does not have a positive influence in terms of improved matrix synthesis.
Collapse
Affiliation(s)
- P Niemeyer
- Department of Orthopaedic Surgery and Traumatology, Freiburg University Hospital, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Kazakia GJ, Lee JJ, Singh M, Bigley RF, Martin RB, Keaveny TM. Automated high-resolution three-dimensional fluorescence imaging of large biological specimens. J Microsc 2007; 225:109-17. [PMID: 17359245 DOI: 10.1111/j.1365-2818.2007.01721.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We describe a novel automated technique for visualizing the three-dimensional distribution of fluorochrome-labelled components, in which image resolution is uncoupled from specimen size. This method is based on computer numerically controlled milling technology and combines an arrayed imaging technique with fluorescence capabilities. Fluorescent signals are segmented by emission spectra such that multiple fluorochromes present within a single specimen may be reconstructed and visualized individually or as a group. The automated nature of the system minimizes the workload and time involved in image capture and volume reconstruction. As an application, the system was used to image zones of fluorochrome-labelled microdamage within an 8-mm diameter cylinder of trabecular bone at a voxel size of 3 x 3 x 8 microm3. Our reconstruction of this specimen provides a visual map and quantitative measures of the volume of damage present throughout the cylinder, clearly demonstrating the interpretive power afforded by three-dimensional visualization. The three-dimensional nature of this highly automated and adaptable system has the potential to facilitate new diagnostic tools and techniques with application to a wide range of biological and medical research fields.
Collapse
Affiliation(s)
- G J Kazakia
- Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA.
| | | | | | | | | | | |
Collapse
|
237
|
Cullen DK, Vukasinovic J, Glezer A, Laplaca MC. Microfluidic engineered high cell density three-dimensional neural cultures. J Neural Eng 2007; 4:159-72. [PMID: 17409489 DOI: 10.1088/1741-2560/4/2/015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three-dimensional (3D) neural cultures with cells distributed throughout a thick, bioactive protein scaffold may better represent neurobiological phenomena than planar correlates lacking matrix support. Neural cells in vivo interact within a complex, multicellular environment with tightly coupled 3D cell-cell/cell-matrix interactions; however, thick 3D neural cultures at cell densities approaching that of brain rapidly decay, presumably due to diffusion limited interstitial mass transport. To address this issue, we have developed a novel perfusion platform that utilizes forced intercellular convection to enhance mass transport. First, we demonstrated that in thick (>500 microm) 3D neural cultures supported by passive diffusion, cell densities <or=5.0 x 10(3) cells mm(-3) were required for survival. In 3D neuronal and neuronal-astrocytic co-cultures with increased cell density (10(4) cells mm(-3)), continuous medium perfusion at 2.0-11.0 microL min(-1) improved viability compared to non-perfused cultures (p < 0.01), which exhibited widespread cell death and matrix degradation. In perfused cultures, survival was dependent on proximity to the perfusion source at 2.00-6.25 microL min(-1) (p < 0.05); however, at perfusion rates of 10.0-11.0 microL min(-1) survival did not depend on the distance from the perfusion source, and resulted in a preservation of cell density with >90% viability in both neuronal cultures and neuronal-astrocytic co-cultures. This work demonstrates the utility of forced interstitial convection in improving the survival of high cell density 3D engineered neural constructs and may aid in the development of novel tissue-engineered systems reconstituting 3D cell-cell/cell-matrix interactions.
Collapse
Affiliation(s)
- D Kacy Cullen
- Wallace H Coulter Department of Biomedical Engineering, Parket H Petit Institute for Bioengineering and Bioscience, Laboratory for Neuroengineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
238
|
Coleman RM, Case ND, Guldberg RE. Hydrogel effects on bone marrow stromal cell response to chondrogenic growth factors. Biomaterials 2007; 28:2077-86. [PMID: 17257670 DOI: 10.1016/j.biomaterials.2007.01.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 01/01/2007] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the effects of alginate and agarose on the response of bone marrow stromal cells (BMSCs) to chondrogenic stimuli. Rat BMSCs were expanded in monolayer culture with or without FGF-2 supplementation. Cells were then seeded in 2% alginate and agarose gels and cultured in media with or without TGF-beta1 or dexamethasone (Dex). Sulfated glycosaminoglycans (sGAGs), collagen type II, and aggrecan were expressed in all groups that received TGF-beta1 treatment during hydrogel culture. Expansion of rat BMSCs in the presence of FGF-2 increased production of sGAG in TGF-beta1-treated groups over those cultures that were treated with TGF-beta1 alone in alginate cultures. However, in agarose, cells exposed to FGF-2 during expansion produced less sGAG within TGF-beta1-supplemented groups over those cultures treated with TGF-beta1 alone. Dex was required for optimal matrix synthesis in both hydrogels, but was found to decrease cell viability in agarose constructs. These results indicate that the response of BMSCs to a chondrogenic growth factor regimen is scaffold dependent.
Collapse
Affiliation(s)
- Rhima M Coleman
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
239
|
Link DP, van den Dolder J, Wolke JGC, Jansen JA. The Cytocompatibility and Early Osteogenic Characteristics of an Injectable Calcium Phosphate Cement. ACTA ACUST UNITED AC 2007; 13:493-500. [PMID: 17362133 DOI: 10.1089/ten.2006.0015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, the cytocompatibility and early osteogenic characteristics of rat bone marrow cells (RBMCs) on injectable calcium phosphate (CaP) cement (Calcibon) were investigated. In addition to unmodified CaP cement discs, 2 other treatments were given to the discs: preincubation in MilliQ and sintering at different temperatures. After primary culture, RBMCs were dropwise seeded on the discs and cultured for 12 days. The samples were evaluated in terms of cell viability, morphology (live and dead assays and scanning electron microscopy (SEM)), cell proliferation (deoxyribonucleic acid (DNA) analyses), early cell differentiation (alkaline phosphatase (ALP) activity), and physicochemical analyses (x-ray diffraction (XRD)). The live and dead, DNA, and SEM results showed that Calcibon discs without any additional treatment were not supporting osteoblast-like cells in vitro. There were fewer cells, and cell layers were detached from the disc surface. Therefore, different preincubation periods and sintering temperatures were evaluated to improve the cytocompatibility of the CaP cement. Preincubating discs in MilliQ for periods of 1, 4, 8, and 12 weeks resulted in the hydrolysis of alpha-tri calcium phosphate (TCP) into an apatite-like structure with some beta-TCP, as shown with XRD, but the material was not cytocompatible. Sintering the discs between 800 degrees C and 1100 degrees C resulted in conversion of alpha-TCP to beta-TCP with some hydroxyapatite and an increase in crystallinity. Eventually, the discs sintered at 1100 degrees C achieved better cell attachment, more-abundant cell proliferation, and earlier differentiation than other sintered (600 degrees C, 800 degrees C, and 1000 degrees C), preincubated, and unmodified specimens. On basis of our results, we conclude that in vivo results with CaP-based cements do not guarantee in vitro applicability. Furthermore, unmodified Calcibon is not cytocompatible in vitro, although preincubation of the material results in a more-favorable cell response, sintering of the material at 1100 degrees C results in the best osteogenic properties. In contrast to in vivo studies, the Calcibon CaP cement is not suitable as a scaffold for cell-based tissue-engineering strategies.
Collapse
Affiliation(s)
- Dennis P Link
- Radboud University Nijmegen Medical Center, Department of Periodontology and Biomaterials, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
240
|
Alvarez-Barreto JF, Linehan SM, Shambaugh RL, Sikavitsas VI. Flow Perfusion Improves Seeding of Tissue Engineering Scaffolds with Different Architectures. Ann Biomed Eng 2007; 35:429-42. [PMID: 17216348 DOI: 10.1007/s10439-006-9244-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Engineered bone grafts have been generated in static and dynamic systems by seeding and culturing osteoblastic cells on 3-D scaffolds. Seeding determines initial cellularity and cell spatial distribution throughout the scaffold, and affects cell-matrix interactions. Static seeding often yields low seeding efficiencies and poor cell distributions; thus creating a need for techniques that can improve these parameters. We have evaluated the effect of oscillating flow perfusion on seeding efficiency and spatial distribution of MC3T3-E1 pre-osteoblastic cells in fibrous polystyrene matrices (20, 35 and 50-microm fibers) and foams prepared by salt leaching, using as controls statically seeded scaffolds. An additional control was investigated where static seeding was followed by unidirectional perfusion. Oscillating perfusion resulted in the most efficient technique by yielding higher seeding efficiencies, more homogeneous distribution and stronger cell-matrix interactions. Cell surface density increased with inoculation cell number and then reached a maximum, but significant detachment occurred at greater flow rates. Oxygen plasma treatment of the fibers greatly improved seeding efficiency. Having similar porosity and dimensions, fibrous matrices yielded higher cell surface densities than foams. Fluorescence microscopy and histological analyses in polystyrene and PLLA scaffolds demonstrated that perfusion seeding produced more homogeneous cell distribution, with fibrous matrices presenting greater uniformity than the foams.
Collapse
Affiliation(s)
- Jose F Alvarez-Barreto
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Bioengineering Center, 100 E. Boyd, Rm T-335, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
241
|
Mechanical strains induced in osteoblasts by use of point femtosecond laser targeting. Int J Biomed Imaging 2006; 2006:10427. [PMID: 23165014 PMCID: PMC2324012 DOI: 10.1155/ijbi/2006/21304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/03/2006] [Accepted: 09/17/2006] [Indexed: 11/25/2022] Open
Abstract
A study demonstrating how ultrafast laser radiation stimulates osteoblasts is presented. The study employed a custom made optical system that allowed for simultaneous confocal cell imaging and targeted femtosecond pulse laser irradiation. When femtosecond laser light was
focused onto a single cell, a rise in intracellular Ca2+ levels was observed followed by contraction of the targeted cell. This contraction
caused deformation of neighbouring cells leading to a heterogeneous strain field throughout the
monolayer. Quantification of the strain fields in the monolayer using digital image correlation revealed local
strains much higher than threshold values typically reported to stimulate extracellular bone matrix production
in vitro. This use of point targeting with femtosecond pulse lasers could provide a new method for stimulating cell
activity in orthopaedic tissue engineering.
Collapse
|
242
|
Stephens JS, Cooper JA, Phelan FR, Dunkers JP. Perfusion flow bioreactor for 3D in situ imaging: Investigating cell/biomaterials interactions. Biotechnol Bioeng 2006; 97:952-61. [PMID: 17149772 DOI: 10.1002/bit.21252] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue.
Collapse
Affiliation(s)
- J S Stephens
- Polymers Division, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, Maryland 20899, USA
| | | | | | | |
Collapse
|
243
|
Coletti F, Macchietto S, Elvassore N. Mathematical Modeling of Three-Dimensional Cell Cultures in Perfusion Bioreactors. Ind Eng Chem Res 2006. [DOI: 10.1021/ie051144v] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francesco Coletti
- Dipartimento di Principi e Impianti di Ingegneria Chimica, Università di Padova, via Marzolo, 9 I-35131, Padova, Italy, and Department of Chemical Engineering, Imperial College London, South Kensington campus, London SW7 2AZ, U.K
| | - Sandro Macchietto
- Dipartimento di Principi e Impianti di Ingegneria Chimica, Università di Padova, via Marzolo, 9 I-35131, Padova, Italy, and Department of Chemical Engineering, Imperial College London, South Kensington campus, London SW7 2AZ, U.K
| | - Nicola Elvassore
- Dipartimento di Principi e Impianti di Ingegneria Chimica, Università di Padova, via Marzolo, 9 I-35131, Padova, Italy, and Department of Chemical Engineering, Imperial College London, South Kensington campus, London SW7 2AZ, U.K
| |
Collapse
|
244
|
Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y. Ectopic bone formation in collagen sponge self-assembled peptide–amphiphile nanofibers hybrid scaffold in a perfusion culture bioreactor. Biomaterials 2006; 27:5089-98. [PMID: 16782187 DOI: 10.1016/j.biomaterials.2006.05.050] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 05/29/2006] [Indexed: 11/19/2022]
Abstract
The objective of this study was to enhance ectopic bone formation in a three-dimensional (3-D) hybrid scaffold in combination with bioreactor perfusion culture system. The hybrid scaffold consists of two biomaterials, a hydrogel formed through self-assembly of peptide-amphiphile (PA) with cell suspensions in media, and a collagen sponge reinforced with poly(glycolic acid) (PGA) fiber incorporation. PA was synthesized by standard solid-phase chemistry that ends with the alkylation of the NH2 terminus of the peptide. A 3-D network of nanofibers was formed by mixing cell suspensions in media with dilute aqueous solution of PA. Scanning electron microscopy (SEM) observation revealed the formation of fibrous assemblies with an extremely high aspect ratio and high surface areas. Osteogenic differentiation of mesenchymal stem cells (MSC) in the hybrid scaffold was greatly influenced by the perfusion culture method compared with static culture method. When the osteoinduction activity of hybrid scaffold was studied following the implantation into the back subcutis of rats in terms of histological and biochemical examinations, significantly homogeneous bone formation was histologically observed throughout the hybrid scaffolds when perfusion culture was used compared with static culture method. The level of alkaline phosphatase activity and osteocalcin content at the implanted sites of hybrid scaffolds were significantly high for the perfusion group compared with those in static culture method. We conclude that combination of MSC-seeded hybrid scaffold and the perfusion method was promising to enhance in vitro osteogenic differentiation of MSC and in vivo ectopic bone formation.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Nano and Biomaterials Research Building, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
245
|
Meretoja VV, Helminen AO, Korventausta JJ, Haapa-aho V, Seppälä JV, Närhi TO. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering. J Biomed Mater Res A 2006; 77:261-8. [PMID: 16392138 DOI: 10.1002/jbm.a.30630] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A series of elastic polymer and composite scaffolds for bone tissue engineering applications were designed. Two crosslinked copolymer matrices with 90/10 and 30/70 mol % of epsilon-caprolactone (CL) and D,L-lactide (DLLA) were prepared with porosities from 45 to 85 vol % and their mechanical and degradation properties were tested. Corresponding composite scaffolds with 20-50 wt % of particulate bioactive glass (BAG) were also characterized. Compressive modulus of polymer scaffolds ranged from 190+/-10 to 900+/-90 kPa. Lactide rich scaffolds absorbed up to 290 wt % of water in 4 weeks and mainly lost their mechanical properties. Caprolactone rich scaffolds absorbed no more than 110 wt % of water in 12 weeks and kept their mechanical integrity. Polymer and composite scaffolds prepared with P(CL/DLLA 90/10) matrix and 60 vol % porosity were further analyzed in simulated body fluid and in osteoblast culture. Cell growth was compromised inside the 2 mm thick three-dimensional scaffold specimens as a static culture model was used. However, composite scaffolds with BAG showed increased osteoblast adhesion and mineralization when compared to neat polymer scaffolds.
Collapse
Affiliation(s)
- V V Meretoja
- Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, FI-20520 Turku, Finland.
| | | | | | | | | | | |
Collapse
|
246
|
Gersbach CA, Le Doux JM, Guldberg RE, García AJ. Inducible regulation of Runx2-stimulated osteogenesis. Gene Ther 2006; 13:873-82. [PMID: 16496016 DOI: 10.1038/sj.gt.3302725] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ex vivo gene therapy is a promising approach to orthopedic regenerative medicine. These strategies typically focus on the constitutive overexpression of osteogenic factors to induce osteoblastic differentiation and matrix mineralization. However, the unregulated production of osteoinductive molecules has also resulted in abnormal bone formation and tumorigenesis. To address these limitations, this work describes a retroviral system to deliver the Runx2 osteoblastic transcription factor under control of the tetracycline-inducible (tet-off) promoter in primary skeletal myoblasts. Runx2 expression was tightly regulated by anhydrotetracyline (aTc) concentration in cell culture media. Osteoblastic gene expression, alkaline phosphatase activity, and matrix mineralization were also controlled by aTc in a dose-dependent manner. Additionally, osteoblastic differentiation was temporally regulated by adding and removing aTc from the culture media. Engineered cells were seeded onto collagen scaffolds and implanted intramuscularly in the hind limbs of syngeneic mice. In vivo mineralization by these constructs was regulated by supplementing the drinking water with aTc, as demonstrated by micro-computed tomography and histological analyses. Collectively, these results present a novel system for regulating osteoblastic differentiation of a clinically relevant autologous cell source. This system is significant to developing controlled and effective orthopedic gene therapy strategies and studying the regulation of osteoblastic differentiation.
Collapse
Affiliation(s)
- C A Gersbach
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 315 Ferst Drive, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
247
|
Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A. Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun 2006; 349:1-5. [PMID: 16930556 DOI: 10.1016/j.bbrc.2006.07.214] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 07/24/2006] [Indexed: 11/17/2022]
Abstract
Several in vivo and in vitro studies with different loading regimens showed that mechanical stimuli have an influence on proliferation and differentiation of bone cells. Prerequisite for this influence is the transduction of mechanical signals into the cell, a phenomenon that is termed mechanotransduction, which is essential for the maintenance of skeletal homeostasis in adults. Mechanoreceptors, such as the integrins, cadherins, and stretch-activated Ca2+ channels, together with various signal transduction pathways, are involved in the mechanotransduction process that ultimately regulates gene expression in the nucleus. Mechanotransduction itself is considered to be regulated by hormones, the extracellular matrix of the osteoblastic cells and the mode of the mechanical stimulus.
Collapse
Affiliation(s)
- Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Germany.
| | | | | | | | | |
Collapse
|
248
|
Phillips JE, Hutmacher DW, Guldberg RE, García AJ. Mineralization capacity of Runx2/Cbfa1-genetically engineered fibroblasts is scaffold dependent. Biomaterials 2006; 27:5535-45. [PMID: 16857257 DOI: 10.1016/j.biomaterials.2006.06.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 06/20/2006] [Indexed: 01/02/2023]
Abstract
Development of tissue-engineered constructs for skeletal regeneration of large critical-sized defects requires the identification of a sustained mineralizing cell source and careful optimization of scaffold architecture and surface properties. We have recently reported that Runx2-genetically engineered primary dermal fibroblasts express a mineralizing phenotype in monolayer culture, highlighting their potential as an autologous osteoblastic cell source which can be easily obtained in large quantities. The objective of the present study was to evaluate the osteogenic potential of Runx2-expressing fibroblasts when cultured in vitro on three commercially available scaffolds with divergent properties: fused deposition-modeled polycaprolactone (PCL), gas-foamed polylactide-co-glycolide (PLGA), and fibrous collagen disks. We demonstrate that the mineralization capacity of Runx2-engineered fibroblasts is scaffold dependent, with collagen foams exhibiting ten-fold higher mineral volume compared to PCL and PLGA matrices. Constructs were differentially colonized by genetically modified fibroblasts, but scaffold-directed changes in DNA content did not correlate with trends in mineral deposition. Sustained expression of Runx2 upregulated osteoblastic gene expression relative to unmodified control cells, and the magnitude of this expression was modulated by scaffold properties. Histological analyses revealed that matrix mineralization co-localized with cellular distribution, which was confined to the periphery of fibrous collagen and PLGA sponges and around the circumference of PCL microfilaments. Finally, FTIR spectroscopy verified that mineral deposits within all Runx2-engineered scaffolds displayed the chemical signature characteristic of carbonate-containing, poorly crystalline hydroxyapatite. These results highlight the important effect of scaffold properties on the capacity of Runx2-expressing primary dermal fibroblasts to differentiate into a mineralizing osteoblastic phenotype for bone tissue engineering applications.
Collapse
Affiliation(s)
- Jennifer E Phillips
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|
249
|
Byers BA, Guldberg RE, Hutmacher DW, García AJ. Effects of Runx2 genetic engineering and in vitro maturation of tissue-engineered constructs on the repair of critical size bone defects. J Biomed Mater Res A 2006; 76:646-55. [PMID: 16287095 DOI: 10.1002/jbm.a.30549] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic and tissue engineering strategies are being pursued to address the clinical limitations of current bone grafting materials. Based on our previous work demonstrating that overexpression of the Runx2 osteoblastic transcription factor and in vitro construct maturation synergistically enhanced in vivo mineralization in an ectopic site (Byers et al., Tissue Eng 2004;10:1757-1766), we examined the effects of these two parameters on the repair of critical size bone defects. Primary rat bone marrow stromal cells transduced with Runx2 or control (no Runx2 insert) retroviral vector were seeded onto 3D fused deposition-modeled polycaprolactone scaffolds. Runx2-modified cells produced biologically-equivalent mineralized matrices at nearly 2-fold higher rates than control cells. Constructs cultured in vitro for 1 day (immature) or 21 days (mineralized) were subsequently implanted into critical size calvaria defects in syngeneic rats, and bone healing was analyzed by micro-CT and histomorphometry at 28 days. Runx2-modified and control constructs precultured for 1 day healed to a greater extent than defects receiving no implant. Cell-free scaffolds yielded equivalent levels of bone formation as constructs precultured for 1 day. Interestingly, defects treated with control cell-seeded constructs precultured for 21 days exhibited low bone formation compared to other construct treatments, and repair was comparable to empty defects. In contrast, Runx2-modified constructs precultured for 21 days contained twice as much bone as control constructs precultured for 21 days and equivalent levels of new bone as cell-free and 1 day precultured constructs. These results demonstrate interplay between Runx2 genetically-modified cells and in vitro construct maturation in bone healing responses.
Collapse
Affiliation(s)
- Benjamin A Byers
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
250
|
Abstract
The emergence of tissue engineering raises new possibilities for the study of complex physiological and pathophysiological processes in vitro. Many tools are now available to create 3D tissue models in vitro, but the blueprints for what to make have been slower to arrive. We discuss here some of the 'design principles' for recreating the interwoven set of biochemical and mechanical cues in the cellular microenvironment, and the methods for implementing them. We emphasize applications that involve epithelial tissues for which 3D models could explain mechanisms of disease or aid in drug development.
Collapse
Affiliation(s)
- Linda G Griffith
- Biological Engineering Division, Mechanical Engineering Department and Biotech/Pharma Engineering Center, Massachusetts Institute of Technology, 16-429, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|