201
|
Ezquer F, Ezquer M, Arango-Rodriguez M, Conget P. Could donor multipotent mesenchymal stromal cells prevent or delay the onset of diabetic retinopathy? Acta Ophthalmol 2014; 92:e86-95. [PMID: 23773776 DOI: 10.1111/aos.12113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a complex metabolic disease that has become a global epidemic with more than 285 million cases worldwide. Major medical advances over the past decades have substantially improved its management, extending patients' survival. The latter is accompanied by an increased risk of developing chronic macro- and microvascular complications. Amongst them, diabetic retinopathy (DR) is the most common and frightening. Furthermore, during the past two decades, it has become the leading cause of visual loss. Irrespective of the type of diabetes, DR follows a well-known clinical and temporal course characterized by pericytes and neuronal cell loss, formation of acellular-occluded capillaries, occasional microaneurysms, increased leucostasis and thickening of the vascular basement membrane. These alterations progressively affect the integrity of retinal microvessels, leading to the breakdown of the blood-retinal barrier, widespread haemorrhage and neovascularization. Finally, tractional retinal detachment occurs leading to blindness. Nowadays, there is growing evidence that local inflammation and oxidative stress play pivotal roles in the pathogenesis of DR. Both processes have been associated with pericytes and neuronal degeneration observed early during DR progression. They may also be linked to sustained retinal vasculature damage that results in abnormal neovascularization. Currently, DR therapeutic options depend on highly invasive surgical procedures performed only at advanced stages of the disease, and which have proved to be ineffective to restore visual acuity. Therefore, the availability of less invasive and more effective strategies aimed to prevent or delay the onset of DR is highly desirable. Multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), are promising healing agents as they contribute to tissue regeneration by pleiotropic mechanisms, with no evidence of significant adverse events. Here, we revise the pathophysiology of DR to identify therapeutic targets for donor MSCs. Also, we discuss whether an MSC-based therapy could prevent or delay the onset of DR.
Collapse
Affiliation(s)
- Fernando Ezquer
- Institute of Science, Faculty of Medicine Clinica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| | | | | | | |
Collapse
|
202
|
Borodkina AV, Shatrova AN, Pugovkina NA, Zemelko VI, Nikolsky NN, Burova EB. Different protective mechanisms of human embryonic and endometrium-derived mesenchymal stem cells under oxidative stress. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1990519x14010040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
203
|
Cejkova J, Trosan P, Cejka C, Lencova A, Zajicova A, Javorkova E, Kubinova S, Sykova E, Holan V. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Exp Eye Res 2013; 116:312-23. [PMID: 24145108 DOI: 10.1016/j.exer.2013.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/27/2013] [Accepted: 10/03/2013] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to investigate whether rabbit bone marrow-derived mesenchymal stem cells (MSCs) effectively decrease alkali-induced oxidative stress in the rabbit cornea. The alkali (0.15 N NaOH) was applied on the corneas of the right eyes and then rinsed with tap water. In the first group of rabbits the injured corneas remained untreated. In the second group MSCs were applied on the injured corneal surface immediately after the injury and eyelids sutured for two days. Then the sutures were removed. In the third group nanofiber scaffolds seeded with MSCs (and in the fourth group nanofibers alone) were transferred onto the corneas immediately after the injury and the eyelids sutured. Two days later the eyelid sutures were removed together with the nanofiber scaffolds. The rabbits were sacrificed on days four, ten or fifteen after the injury, and the corneas were examined immunohistochemically, morphologically, for the central corneal thickness (taken as an index of corneal hydration) using an ultrasonic pachymeter and by real-time PCR. Results show that in untreated injured corneas the expression of malondialdehyde (MDA) and nitrotyrosine (NT) (important markers of lipid peroxidation and oxidative stress) appeared in the epithelium. The antioxidant aldehyde dehydrogenase 3A1 (ALDH3A1) decreased in the corneal epithelium, particularly in superficial parts, where apoptotic cell death (detected by active caspase-3) was high. (In control corneal epithelium MDA and NT are absent and ALDH3A1 highly present in all layers of the epithelium. Cell apoptosis are sporadic). In injured untreated cornea further corneal disturbances developed: The expressions of matrix metalloproteinase 9 (MMP9) and proinflammatory cytokines, were high. At the end of experiment (on day 15) the injured untreated corneas were vascularized and numerous inflammatory cells were present in the corneal stroma. Vascular endothelial growth factor (VEGF) expression and number of macrophages were high. The results obtained in injured corneas covered with nanofiber scaffolds alone (without MSCs) or in injured corneas treated with MSCs only (transferred without scaffolds) did not significantly differ from the results found in untreated injured corneas. In contrast, in the injured corneas treated with MSCs on nanofiber scaffolds, ALDH3A1 expression remained high in the epithelium (as in the control cornea) and positive expression of the other immunohistochemical markers employed was very low (MMP9) or absent (NT, MDA, proinflammatory cytokines), also similarly as in the control cornea. Corneal neovascularization and the infiltration of the corneal stroma with inflammatory cells were significantly suppressed in the injured corneas treated with MSCs compared to the untreated injured ones. The increased central corneal thickness together with corneal opalescency appearing after alkali injury returned to normal levels over the course of ten days only in the injured corneas treated with MSCs on nanofiber scaffolds. The expression of genes for the proinflammatory cytokines corresponded with their immunohistochemical expression. In conclusion, MSCs on nanofiber scaffolds protected the formation of toxic peroxynitrite (detected by NT residues), lowered apoptotic cell death and decreased matrix metalloproteinase and pro-inflammatory cytokine production. This resulted in reduced corneal inflammation as well as neovascularization and significantly accelerated corneal healing.
Collapse
Affiliation(s)
- Jitka Cejkova
- Institute of Experimental Medicine, Laboratory of Eye Histochemistry and Pharmacology, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Yang H, Yue C, Yang H, Xie Z, Hu H, Wei L, Wang P, Zhao C, Bi J. Intravenous Administration of Human Umbilical Cord Mesenchymal Stem Cells Improves Cognitive Impairments and Reduces Amyloid-Beta Deposition in an AβPP/PS1 Transgenic Mouse Model. Neurochem Res 2013; 38:2474-2482. [PMID: 24078266 DOI: 10.1007/s11064-013-1161-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/14/2013] [Accepted: 09/18/2013] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is characterized by Amyloid-β (Aβ) deposition in senile plaques in specific areas of the brain and by intraneuronal p-tau accumulation in neurofibrillary tangles. Cumulative evidence supports that oxidative stress is an important factor in the pathogenesis of AD and contributes to Aβ generation. However, there is no effective treatment for AD. Human umbilical cord mesenchymal stem cells (HUMSCs) have potential therapeutic value for the treatment of neurological disease. However, the therapeutic impact of systemic administration of HUMSCs and their mechanism of action in AD have not yet been determined. Here, we found that intravenous infusion of HUMSCs significantly improved spatial learning and alleviated memory decline in an AβPP/PS1 mouse model of AD. HUMSC treatment also increased glutathione (GSH) activity and ratio of GSH to oxidative glutathione as well as superoxide dismutase activity, while decreasing malondialdehyde activity and protein carbonyl level, which suggests that HUMSC infusion alleviated oxidative stress in AβPP/PS1 mice. In addition, HUMSC infusion reduced β-secretase 1 and CTFβ, thus reducing Aβ deposition in mice. HUMSCs may have beneficial effects in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Autologous transplantation of GDNF-expressing mesenchymal stem cells protects against MPTP-induced damage in cynomolgus monkeys. Sci Rep 2013; 3:2786. [PMID: 24071770 PMCID: PMC4070584 DOI: 10.1038/srep02786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/11/2013] [Indexed: 12/27/2022] Open
Abstract
Glial cell-derived neurotrophic factor (GDNF) has shown beneficial effects in models of Parkinson's disease. The mild results observed in the double-blind clinical trial by intraputamenal infusion of recombinant GDNF proteins warrant a search for alternative delivery methods. In this study, we investigated the function of autologous mesenchymal stem cells (MSCs) expressing GDNF (GDNF-MSCs) for protection against MPTP-induced injury in cynomolgus monkeys. MSCs were obtained from the bone marrow of individual monkeys and gene-modified to express GDNF. Following unilateral engraftment of GDNF-MSCs into the striatum and substantia nigra, the animals were challenged with MPTP to induce a stable systemic Parkinsonian state. The motor functions were spared in the contralateral limbs of monkeys receiving GDNF-MSCs, but not in those receiving MSCs alone. In the striatum of the grafted hemisphere, dopamine levels were higher and dopamine uptake was enhanced. The results suggest that autologous MSCs may be a safe vehicle to deliver GDNF for enhancing nigro-striatum functions.
Collapse
|
206
|
Barzilay R, Ganz J, Sadan O, Ben-Zur T, Bren Z, Hinden N, Taler M, Lev N, Gil-Ad I, Weizman A, Offen D. Mesenchymal stem cells protect from sub-chronic phencyclidine insult in vivo and counteract changes in astrocyte gene expression in vitro. Eur Neuropsychopharmacol 2013; 23:1115-23. [PMID: 23116946 DOI: 10.1016/j.euroneuro.2012.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/29/2012] [Accepted: 10/03/2012] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine strategies in brain diseases. Experimental studies have shown that repeated administration of phencyclidine (PCP) leads to schizophrenia-like behavioral changes in mice. The aim of the present study was to explore the effectiveness of MSC transplantation into the hippocampus in attenuating PCP-induced social behavior deficits. PCP was administered subcutaneously to C57bl mice (10mg/kg daily) for 2 weeks. On the first day of PCP administration, adult human MSCs were transplanted into the hippocampus. A week after the last PCP dose, the mice underwent social preference testing. MSC transplantation was associated with a significant reduction in the adverse social behavior induced by PCP. Immunohistochemical analysis revealed that the stem cells survived in the mouse brain, and hippocampal Western blot analysis revealed a statistical trend towards a decrease in cleaved caspase 3 protein levels in the stem cell treated group. Upon in vitro co-culture of astrocytes and MSCs, the MSCs, in the presence of PCP, positively regulated astrocyte expression of genes involved in glutamate metabolism and antioxidant defenses. These findings suggest that MSC transplantation into the hippocampus may serve as a novel neuroprotective tool for the treatment of the PCP-induced schizophrenia-like social endophenotype. The mechanism underlying the beneficial behavioral effect may involve modulation of host astrocyte functioning, including glutamate processing and antioxidant capacity.
Collapse
Affiliation(s)
- Ran Barzilay
- Laboratory of Neuroscience, Felsenstein Medical Research Center, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel; Research Unit at Geha Mental Health Center, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Tsai HL, Chang JW, Yang HW, Chen CW, Yang CC, Yang AH, Liu CS, Chin TW, Wei CF, Lee OK. Amelioration of Paraquat-Induced Pulmonary Injury by Mesenchymal Stem Cells. Cell Transplant 2013; 22:1667-81. [DOI: 10.3727/096368912x657765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acute paraquat (PQ) poisoning induces redox cycle and leads to fatal injury of lung. Clinical management is supportive in nature due to lack of effective antidote, and the mortality is very high. Mesenchymal stem cells (MSCs) process the properties of immunomodulation, anti-inflammatory, and antifibrotic effects and oxidative stress resistance. MSC transplantation may theoretically serve as an antidote in PQ intoxication. In this study, we examined the potential therapeutic effects of MSCs in PQ-induced lung injury. The degree of PQ toxicity in the rat type II pneumocyte cell line, L2, and MSCs was evaluated by examining cell viability, ultrastructural changes, and gene expression. L2 cells treated with 0.5 mM PQ were cocultured in the absence or presence of MSCs. For the in vivo study, adult male SD rats were administered an intraperitoneal injection of PQ (24 mg/kg body weight) and were divided into three groups: group I, control; group II, cyclophosphamide and methylprednisolone; group III, MSC transplantation 6 h after PQ exposure. MSCs were relatively resistant to PQ toxicity. Coculture with MSCs significantly inhibited PQ accumulation in L2 cells and upregulated the expression of antioxidative heme oxygenase 1 and metallothionein 1a genes, reversed epithelial-to-mesenchymal transition, and increased the viability of PQ-exposed L2 cells. Treatment with MSCs resulted in a significant reduction in severity of liver and renal function deterioration, alleviated lung injury, and prolonged the life span of rats. Altogether, our results suggest that MSCs possess antidote-like effect through multifactorial protection mechanism. The results of this preclinical study demonstrate that transplantation of MSCs may be a promising therapy and should be further validated clinically.
Collapse
Affiliation(s)
- Hsin-Lin Tsai
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jei-Wen Chang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Wen Yang
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Wei Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen-Chang Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Clinical Toxicology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - An-Hang Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Ultrastructural and Molecular Pathology, Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Su Liu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tai-Wai Chin
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chou-Fu Wei
- Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Oscar K. Lee
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
208
|
Burova E, Borodkina A, Shatrova A, Nikolsky N. Sublethal oxidative stress induces the premature senescence of human mesenchymal stem cells derived from endometrium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:474931. [PMID: 24062878 PMCID: PMC3767075 DOI: 10.1155/2013/474931] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 12/27/2022]
Abstract
The specific responses of mesenchymal stem cells to oxidative stress may play a crucial role in regulation of tissue homeostasis as well as regeneration of organs after oxidative injury. The responses of human endometrium-derived mesenchymal stem cells (hMESCs) to oxidative stress remain still unknown. Herein, we examined the impact of H2O2 on cell viability, induction of premature senescence, and apoptosis. hMESCs were highly resistant to H2O2 compared with human diploid fibroblasts. To test a hypothesis whether hMESCs may undergo oxidative stress-induced premature senescence, cells were briefly exposed to the sublethal H2O2 doses. H2O2-treated cells were permanently arrested, lost Ki67 proliferation marker, and exhibited a senescent phenotype including cell hypertrophy and increased SA- β -Gal activity. Additionally, in stressed cells the expression levels of p21Cip1, SOD1, SOD2, and GPX1 were elevated. hMESCs survived under stress were not able to resume proliferation, indicating the irreversible loss of proliferative potential. While the low H2O2 doses promoted senescence in hMESCs, the higher H2O2 doses induced also apoptosis in a part of the cell population. Of note, senescent hMESCs exhibited high resistance to apoptosis. Thus, we have demonstrated for the first time that hMESCs may enter a state of premature senescence in response to sublethal oxidative stress.
Collapse
Affiliation(s)
- Elena Burova
- Department of Intracellular Signaling and Transport, Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia.
| | | | | | | |
Collapse
|
209
|
Hunt JA, Fok M, Bryan N. Impact of cell purification technique of autologous human adult stem cells on inflammatory reaction. Biomaterials 2013; 34:7626-31. [PMID: 23871537 DOI: 10.1016/j.biomaterials.2013.06.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/27/2013] [Indexed: 12/23/2022]
Abstract
Adult stem cells have shown fantastic regenerative potential as the cellular components of biomaterial mediated tissue engineering. Realising the biomedical potential of human adult stem cells (hASCs) however will require delivery in an ultra- purified format, without competing cells which may mediate inflammation, fibrosis or tumorigenesis. Purifying ASCs involves exhuming cells from primary tissue using immunoaffinity; which isolates pure populations with the complication of retained immunoglobulin (Ig); the clinical impact of which is currently not known. One of the negative outcomes of retained surface Ig is exacerbation of inflammation by leucocyte Fc receptor (FcR) activation, with consequences ranging from inflammatory cytokine and ROS release to chronic inflammation. The balance of ROS within a tissue will impact the efficacy of a stem cell therapy as ROS play an important role in stem cell self renewal and differentiation. In this study we utilised a chemiluminescent monitoring technique based on a ROS excitable photoprotein Pholasin, to quantify leucocyte ROS production in response to xenogeneic and recombinant human Ig of varying class and isotype with applications in stem cell selection. We were able to demonstrate inter-class differences in leucocyte ROS response to Ig which also varied between donors. This study highlighted the potential for utilising this technique for personalisation of autologous ASC therapies. This would allow clinicians to perform a rapid pre-operative screen to maximise the probability for success of an ASC intervention based on cell isolation using an Ig most appropriate for a specific patient.
Collapse
Affiliation(s)
- John A Hunt
- Clinical Engineering, UKCTE, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
210
|
Majumdar D, Bhonde R, Datta I. Influence of ischemic microenvironment on human Wharton's Jelly mesenchymal stromal cells. Placenta 2013; 34:642-9. [PMID: 23702186 DOI: 10.1016/j.placenta.2013.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/13/2013] [Accepted: 04/30/2013] [Indexed: 01/01/2023]
Abstract
INTRODUCTION While in vivo studies suggest poor survival of mesenchymal stromal cells (MSCs) after transplantation in ischemic conditions, in vitro studies report diverse effects on proliferation, apoptosis and differentiation of stem/precursor cells of different tissue-origin. The present focus is to understand the influence of ischemic microenvironment on the survival, proliferation, apoptosis, ROS-generation, antioxidant levels, immunophenotypic-expression and neurotrophic factor secretion of Wharton's Jelly (WJ)-MSCs. METHOD WJ-MSCs were cultured in normoxic and hypoxic conditions in presence and absence of serum and the end-point parameters were measured at 4 time-points. Cell survival, proliferation, apoptosis, ROS-generation and immunophenotypic-expression were quantitatively detected either by fluorimetry or flow cytometry techniques. ELISA-based methods were used for detection of antioxidant-substrate glutathione (GSH) and neurotrophic factors [vascular endothelial factor (VEGF), hepatocyte growth factor (HGF) and brain-derived neurotrophic factor (BDNF)]. Expression of the antioxidants glutathione peroxidase (GPx) and superoxide dismutase 1 (SOD1), was measured by real-time RT-PCR. RESULT Immunophenotypic analysis showed reduction in mesenchymal-marker (CD73, CD90, and CD105) expression under ischemic conditions influenced mainly by hypoxia, whereas the decrease in cell-survival under ischemic condition was mainly as a result of nutrition depletion. This was associated with increased ROS-generation and apoptosis and reduction in antioxidants (GSH, GPx, SOD1). For neurotrophic factors, ELISA-readings showed that VEGF and HGF secretion (which were higher in hypoxia) peaked at 48 h and decreased from 72 h, though BDNF release did not decrease. DISCUSSION Therapeutic benefits rendered by WJ-MSCs in in vitro ischemic microenvironment are highest at the 48 h time-point, declining thereafter with time probably due to failure in cellular defense systems and the onset of apoptosis. CONCLUSION It is hence clear that the growth factor deficiency is more lethal to the cells than hypoxia in ischemic microenvironment.
Collapse
Affiliation(s)
- D Majumdar
- Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, Karnataka, India
| | | | | |
Collapse
|
211
|
Boopathy AV, Pendergrass KD, Che PL, Yoon YS, Davis ME. Oxidative stress-induced Notch1 signaling promotes cardiogenic gene expression in mesenchymal stem cells. Stem Cell Res Ther 2013; 4:43. [PMID: 23597145 PMCID: PMC3706823 DOI: 10.1186/scrt190] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/08/2013] [Indexed: 12/30/2022] Open
Abstract
Introduction Administration of bone marrow-derived mesenchymal stem cells (MSCs) after myocardial infarction (MI) results in modest functional improvements. However; the effect of microenvironment changes after MI, such as elevated levels of oxidative stress on cardiogenic gene expression of MSCs, remains unclear. Methods MSCs were isolated from the bone marrow of adult rats and treated for 1 week with H2O2 (0.1 to 100 μM) or 48 hours with glucose oxidase (GOX; 0 to 5 mU/ml) to mimic long-term pulsed or short-term continuous levels of H2O2, respectively. Results In 100 μM H2O2 or 5 mU/ml GOX-treated MSCs, mRNA expression of selected endothelial genes (Flt1, vWF, PECAM1), and early cardiac marker (nkx2-5, αMHC) increased significantly, whereas early smooth muscle markers (smooth muscle α-actin and sm22α) and fibroblast marker vimentin decreased, as measured with real-time PCR. Interestingly, mRNA expression and activity of the cell-surface receptor Notch1 were significantly increased, as were its downstream targets, Hes5 and Hey1. Co-treatment of MSCs with 100 μM H2O2 and a γ-secretase inhibitor that prevents Notch signaling abrogated the increase in cardiac and endothelial genes, while augmenting the decrease in smooth muscle markers. Further, on GOX treatment, a significant increase in Wnt11, a downstream target of Notch1, was observed. Similar results were obtained with adult rat cardiac-derived progenitor cells. Conclusions These data suggest that H2O2- or GOX-mediated oxidative stress upregulates Notch1 signaling, which promotes cardiogenic gene expression in adult stem/progenitor cells, possibly involving Wnt11. Modulating the balance between Notch activation and H2O2-mediated oxidative stress may lead to improved adult stem cell-based therapies for cardiac repair and regeneration.
Collapse
|
212
|
Kim J, Ma T. Endogenous extracellular matrices enhance human mesenchymal stem cell aggregate formation and survival. Biotechnol Prog 2013; 29:441-51. [PMID: 23296993 DOI: 10.1002/btpr.1686] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/07/2012] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem or stromal cell (hMSC) therapies have promise across a wide range of diseases. However, inefficient cell delivery and low cell survival at injury sites reduce efficacy and are the major barriers in hMSC-based therapy. Formation of three-dimensional (3D) hMSC aggregates has been found to activate hMSC functions from enhancing secretion of therapeutic factors for improving cell migration and survival. As the stromal cells in bone marrow, hMSCs are significant sources of extracellular matrix (ECM) proteins and growth factors, which form an interactive microenvironment to influence hMSC fate via paracrine and autocrine actions. To date, however, the impact of the extracellular microenvironment on hMSC properties in the aggregates remains unknown. In the present study, we investigated the role of endogenous ECM matrices on hMSC aggregate formation and survival under ischemic stress. The results demonstrated that the preservation of endogenous ECM in the aggregates formed by thermal lifting (termed TLAs) as opposed to the aggregates formed by enzymatically detached hMSCs (termed EDAs) enhanced cell proliferation, multilineage potential, and survival under ischemic stress. The improved cell proliferation and viability in the TLAs is attributed to the incorporation of endogenous ECM proteins in the TLAs and their promitotic and antioxidant properties. The results demonstrate a novel method for the formation of hMSC aggregates via thermal responsive surface and highlight the significant contribution of the ECM in preserving hMSC properties in the 3D aggregates.
Collapse
Affiliation(s)
- Junho Kim
- Dept. of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
| | | |
Collapse
|
213
|
Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, Oh WI, Park WS. Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 2013; 44:497-504. [PMID: 23287782 DOI: 10.1161/strokeaha.112.679092] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Severe intraventricular hemorrhage (IVH) in premature infants and the ensuing posthemorrhagic hydrocephalus cause significant mortality and neurological disabilities, and there are currently no effective therapies. This study determined whether intraventricular transplantation of human umbilical cord blood-derived mesenchymal stem cells prevents posthemorrhagic hydrocephalus development and attenuates brain damage after severe IVH in newborn rats. METHODS To induce severe IVH, 100 μL of blood was injected into each lateral ventricle of postnatal day 4 (P4) Sprague-Dawley rats. Human umbilical cord blood-derived mesenchymal stem cells or fibroblasts (1 × 10(5)) were transplanted intraventricularly under stereotaxic guidance at P6. Serial brain MRI and behavioral function tests, such as the negative geotaxis test and rotarod test, were performed. At P32, brain tissue and cerebrospinal fluid were obtained for histological and biochemical analyses. RESULTS Intraventricular transplantation of umbilical cord blood-derived mesenchymal stem cells, but not fibroblasts, prevented posthemorrhagic hydrocephalus development and significantly attenuated impairment on behavioral tests; the increased terminal deoxynycleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling-positive cells; increased expression of inflammatory cytokines, such as interleukin-1α, interleukin-1β, interleukin-6, and tumor necrosis factor-α; increased astrogliosis; and reduced corpus callosal thickness and myelin basic protein expression after inducing severe IVH. CONCLUSIONS Intraventricular transplantation of umbilical cord blood-derived mesenchymal stem cells significantly attenuated the posthemorrhagic hydrocephalus and brain injury after IVH. This neuroprotective mechanism appears to be mediated by the anti-inflammatory effects of these cells.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Seoul 135-710, Korea
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Abstract
This chapter broadly reviews the use of stem cells as a means to accelerate wound healing, focusing first on the properties of stem cells that make them attractive agents to influence repair, both alone and as vehicles for growth factor delivery. Major stem cell reservoirs are described, including adult, embryonic, and induced pluripotent cell sources, outlining the advantages and limitations of each source as wound healing agents, as well as the possible mechanisms responsible for wound healing acceleration. Finally, the chapter includes a materials and methods section that provides an in-depth description of adult tissue harvest techniques.
Collapse
Affiliation(s)
- Allison C Nauta
- Hagey Laboratory for Pediatric and Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
215
|
Pei M, Zhang Y, Li J, Chen D. Antioxidation of decellularized stem cell matrix promotes human synovium-derived stem cell-based chondrogenesis. Stem Cells Dev 2012; 22:889-900. [PMID: 23092115 DOI: 10.1089/scd.2012.0495] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Clinical treatment of cartilage defects is challenging due to concomitant post-traumatic joint inflammation. This study was to demonstrate that the antioxidant ability of human adult synovium-derived stem cells (SDSCs) could be enhanced by ex vivo expansion on a decellularized stem cell matrix (DSCM). Microarray was used to evaluate oxidative, antioxidative, and chondrogenic status in SDSCs after expansion on the DSCM and induction in the chondrogenic medium. Hydrogen peroxide (H2O2) was added to create oxidative stress in either expanded SDSCs or chondrogenically induced premature pellets. The effect of H2O2 on SDSC proliferation was evaluated using flow cytometry. Chondrogenic differentiation of expanded SDSCs was evaluated using histology, immunostaining, biochemical analysis, and real-time polymerase chain reaction. Mitogen-activated protein kinase signaling pathways and p21 were compared in the DSCM and plastic-flask-expanded SDSCs with or without H2O2 treatment. We found that expansion on the DSCM upregulated antioxidative gene levels and chondrogenic potential in human SDSCs (hSDSCs), retarded the decrease in the cell number and the increase in apoptosis, and rendered SDSCs resistant to cell-cycle G1 arrest resulting from H2O2 treatment. Treatment with 0.05 mM H2O2 during cell expansion yielded pellets with increased chondrogenic differentiation; treatment in premature SDSC pellets showed that the DSCM-expanded cells had a robust resistance to H2O2-induced oxidative stress. Extracellular signal-regulated kinases 1 and 2 and p38 were positively involved in antioxidative and chondrogenic potential in SDSCs expanded on the DSCM in which p21 was downregulated. DSCM could be a promising cell expansion system to provide a large number of high-quality hSDSCs for cartilage regeneration in a harsh joint environment.
Collapse
Affiliation(s)
- Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506-9196, USA.
| | | | | | | |
Collapse
|
216
|
Kaneko Y, Tajiri N, Su TP, Wang Y, Borlongan CV. Combination treatment of hypothermia and mesenchymal stromal cells amplifies neuroprotection in primary rat neurons exposed to hypoxic-ischemic-like injury in vitro: role of the opioid system. PLoS One 2012; 7:e47583. [PMID: 23077646 PMCID: PMC3471862 DOI: 10.1371/journal.pone.0047583] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022] Open
Abstract
This study was designed to reveal the therapeutic regimen and mechanism of action underlying hypothermia treatment in combination with stem cell transplantation for ameliorating neonatal hypoxic-ischemic-like injury. Primary rat neurons were exposed to oxygen-glucose deprivation (OGD), which produced hypoxic-ischemic-like injury in vitro, then incubated at 25°C (severe hypothermia), 34°C (moderate hypothermia), and 37°C (normothermia) with or without subsequent co-culture with mesenchymal stromal cells (MSCs). Combination treatment of moderate hypothermia and MSCs significantly improved cell survival and mitochondrial activity after OGD exposure. The exposure of delta opioid human embryonic kidney cells (HEK293) to moderate hypothermia attenuated OGD-mediated cell alterations, which were much more pronounced in HEK293 cells overexpressing the delta opioid receptor. Further, the addition of delta opioid peptide to 34°C hypothermia and stem cell treatment in primary rat neurons showed synergistic neuroprotective effects against OGD which were significantly more robust than the dual combination of moderate hypothermia and MSCs, and were significantly reduced, but not completely abolished, by the opioid receptor antagonist naltrexone altogether implicating a ligand-receptor mechanism of neuroprotection. Further investigations into non-opioid therapeutic signaling pathways revealed growth factor mediation and anti-apoptotic function accompanying the observed therapeutic benefits. These results support combination therapy of hypothermia and stem cells for hypoxic-ischemic-like injury in vitro, which may have a direct impact on current clinical trials using stand-alone hypothermia or stem cells for treating neonatal encephalopathy.
Collapse
Affiliation(s)
- Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Tsung-Ping Su
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yun Wang
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
217
|
Jeong YM, Sung YK, Kim WK, Kim JH, Kwack MH, Yoon I, Kim DD, Sung JH. Ultraviolet B preconditioning enhances the hair growth-promoting effects of adipose-derived stem cells via generation of reactive oxygen species. Stem Cells Dev 2012; 22:158-68. [PMID: 22784094 DOI: 10.1089/scd.2012.0167] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia induces the survival and regenerative potential of adipose-derived stem cells (ASCs), but there are tremendous needs to find alternative methods for ASC preconditioning. Therefore, this work investigated: (1) the ability of low-dose ultraviolet B (UVB) radiation to stimulate the survival, migration, and tube-forming activity of ASCs in vitro; (2) the ability of UVB preconditioning to enhance the hair growth-promoting capacity of ASCs in vivo; and (3) the mechanism of action for ASC stimulation by UVB. Although high-dose UVB decreased the proliferation of ASCs, low-dose (10 or 20 mJ/cm(2)) treatment increased their survival, migration, and tube-forming activity. In addition, low-dose UVB upregulated the expression of ASC-derived growth factors, and a culture medium conditioned by UVB-irradiated ASCs increased the proliferation of dermal papilla and outer root sheet cells. Notably, injection of UVB-preconditioned ASCs into C(3)H/HeN mice significantly induced the telogen-to-anagen transition and increased new hair weight in vivo. UVB treatment significantly increased the generation of reactive oxygen species (ROS) in cultured ASCs, and inhibition of ROS generation by diphenyleneiodonium chloride (DPI) significantly attenuated UVB-induced ASC stimulation. Furthermore, NADPH oxidase 4 (Nox4) expression was induced in ASCs by UVB irradiation, and Nox4 silencing by small interfering RNA, like DPI, significantly reduced UVB-induced ROS generation. These results suggest that the primary involvement of ROS generation in UVB-mediated ASC stimulation occurs via the Nox4 enzyme. This is the first indication that a low dose of UVB radiation and/or the control of ROS generation could potentially be incorporated into a novel ASC preconditioning method for hair regeneration.
Collapse
Affiliation(s)
- Yun-Mi Jeong
- Department of Applied Bioscience, CHA University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Kim WS, Sung JH. Hypoxic Culturing Enhances the Wound-Healing Potential of Adipose-Derived Stem Cells. Adv Wound Care (New Rochelle) 2012; 1:172-176. [PMID: 24527300 DOI: 10.1089/wound.2011.0312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Adipose tissue is one of the richest sources of mesenchymal stem cells that exhibit an outstanding ability to regenerate skin. THE PROBLEM Although the anatomical sites of adipose-derived stem cells (ASCs) in the body are relatively oxygen-deficient (i.e., 1%-5% oxygen content), ASCs are usually cultured under normoxic conditions, and long-term culturing of ASCs in normoxia may induce their senescence. BASIC/CLINICAL SCIENCE ADVANCES The review is an overview of the cellular responses of ASCs during hypoxia, which collectively increase the wound-healing potential of ASCs. Furthermore, the mechanism of action for stimulation by hypoxia (i.e., a pivotal role of reactive oxygen species and related signal pathways) will be discussed. CLINICAL CARE RELEVANCE Hypoxia is a critical stimulatory factor for ASCs. Therefore, understanding the response and adaptation of ASCs to hypoxia may be invaluable for developing novel cell therapeutic strategies. CONCLUSION Culturing ASCs under hypoxia may uniquely benefit proliferation, stemness, migration, and growth factor secretion. Therefore, the preconditioning of ASCs by hypoxia shows a prominent wound-healing effect in clinical use.
Collapse
Affiliation(s)
- Won-Serk Kim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Hyuk Sung
- Laboratory of Skin Regeneration, Department of Applied Bioscience, CHA University, Seoul, Korea
- Stem Cell Research Laboratory, CHA Stem Cell Institute, Seoul, Korea
| |
Collapse
|
219
|
Tu Y, Chen C, Sun HT, Cheng SX, Liu XZ, Qu Y, Li XH, Zhang S. Combination of temperature-sensitive stem cells and mild hypothermia: a new potential therapy for severe traumatic brain injury. J Neurotrauma 2012; 29:2393-403. [PMID: 22655683 DOI: 10.1089/neu.2012.2374] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stem cell transplantation holds great potential for the treatment of traumatic brain injury (TBI). However, the micro-environment of reduced oxygen and accumulated toxins leads to low survival rates of grafted cells, which dramatically limits their clinical application. Mild hypothermia has been demonstrated to improve the micro-environment after severe TBI. Thus, we speculate that combinational therapy of mild hypothermia may promote survival of grafted cells, especially temperature-sensitive stem cells, which show the most activity in mild temperatures. In this study, we first isolated mesenchymal stem cells from umbilical cord (UCSMCs) and generated the temperature-sensitive UCSMCs (tsUCSMCs) by infection with a retrovirus carrying the temperature-sensitive tsA58 SV40 LT antigen gene. We demonstrated that tsUCSMCs grew and proliferated with more activity at 33°C than at 37°C by counting cell numbers with a hematocytometer, measuring the cell cycle with flow cytometry, and detecting proliferating cell nuclear antigen (PCNA) with immunofluorescence staining. Thereafter, we established the rat severe TBI model by fluid percussion, and injected PBS, UCSMCs, or tsUCSMCs into the injured region, and subject the animals to normothermia or mild hypothermia (33°C). We found that, compared with UCSMC or tsUCSMC treatment alone, their combination with hypothermia could significantly improve motor and cognitive function with more survival of the grafted cells. Furthermore, we observed that combined therapy with hypothermia and tsUCSMCs exerted the most protective effect on the recovery of neurological function of all the tested treatments, with the highest survival and proliferation rates, and the lowest apoptosis rate. Thus this may represent a new therapeutic strategy for the treatment of severe TBI.
Collapse
Affiliation(s)
- Yue Tu
- Institute of Traumatic Brain Injury and Neurology, Pingjin Hospital, Logistics College of the Chinese People's Armed Police Forces, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Waszak P, Alphonse R, Vadivel A, Ionescu L, Eaton F, Thébaud B. Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats. Stem Cells Dev 2012; 21:2789-97. [PMID: 22533467 DOI: 10.1089/scd.2010.0566] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains a main complication of extreme prematurity. Bone marrow derived-mesenchymal stem cells (BM-MSC) prevent lung injury in an O(2)-induced model of BPD. The low level of lung BM-MSC engraftment suggests alternate mechanisms-beyond cell replacement-to account for their therapeutic benefit. We hypothesized that BM-MSC prevent O(2)-induced BPD through a paracrine-mediated mechanism and that preconditioning of BM-MSC would further enhance this paracrine effect. To this end, conditioned medium (CM) from BM-MSC (MSCcm) or preconditioned CM harvested after 24 h of BM-MSC exposure to 95% O(2) (MSC-O2cm) were administrated for 21 days to newborn rats exposed to 95% O(2) from birth until postnatal day (P)14. Rat pups exposed to hyperoxia had fewer and enlarged air spaces and exhibited signs of pulmonary hypertension (PH), assessed by echo-Doppler, right ventricular hypertrophy, and pulmonary artery medial wall thickness. Daily intraperitoneal administration of both CM preserved alveolar growth. MSC-O2cm exerted the most potent therapeutic benefit and also prevented PH. CM of lung fibroblasts (control cells) had no effect. MSCcm had higher antioxidant capacity than control fibroblast CM. Preconditioning did not increase the antioxidant capacity in MSC-O2cm but produced higher levels of the naturally occurring antioxidant stanniocalcin-1 in MSC-O2cm. Ex vivo preconditioning enhances the paracrine effect of BM-MSC and opens new therapeutic options for cell-based therapies. Ex vivo preconditioning may also facilitate the discovery of MSC-derived repair molecules.
Collapse
Affiliation(s)
- Paul Waszak
- Department of Pediatrics, Faculty of Medicine and Dentistry, Women and Children’s Health Research Institute, Cardiovascular Research Center, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | |
Collapse
|
221
|
Can mesenchymal stem cells reduce vulnerability of dopaminergic neurons in thesubstantia nigrato oxidative insult in individuals at risk to Parkinson's disease? Cell Biol Int 2012; 36:617-24. [DOI: 10.1042/cbi20110602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
222
|
The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer 2012; 106:1901-6. [PMID: 22596239 PMCID: PMC3388567 DOI: 10.1038/bjc.2012.201] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is becoming increasingly clear that the tumour microenvironment has a very important role in tumour progression and drug resistance. Many different cell types within the tumour stroma have an effect on tumour progression either in a positive or in a negative way. Mesenchymal stem cells (MSCs) are a distinct population of cells that have been linked with tumour growth. Mesenchymal stem cells can home to tumours where they modulate the immune system and facilitate tumour growth, angiogenesis and metastasis. Recent studies have shown that MSCs also have an important role in the resistance to various anti-cancer drugs. This mini-review provides an overview of the functional properties of MSCs in tumour progression and drug resistance.
Collapse
|
223
|
Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 2012; 21:2724-52. [PMID: 22468918 DOI: 10.1089/scd.2011.0722] [Citation(s) in RCA: 595] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) comprise a heterogeneous population of cells with multilineage differentiation potential, the ability to modulate oxidative stress, and secrete various cytokines and growth factors that can have immunomodulatory, angiogenic, anti-inflammatory and anti-apoptotic effects. Recent data indicate that these paracrine factors may play a key role in MSC-mediated effects in modulating various acute and chronic pathological conditions. MSCs are found in virtually all organs of the body. Bone marrow-derived MSCs (BM-MSCs) were discovered first, and the bone marrow was considered the main source of MSCs for clinical application. Subsequently, MSCs have been isolated from various other sources with the adipose tissue, serving as one of the alternatives to bone marrow. Adipose tissue-derived MSCs (ASCs) can be more easily isolated; this approach is safer, and also, considerably larger amounts of ASCs can be obtained compared with the bone marrow. ASCs and BM-MSCs share many biological characteristics; however, there are some differences in their immunophenotype, differentiation potential, transcriptome, proteome, and immunomodulatory activity. Some of these differences may represent specific features of BM-MSCs and ASCs, while others are suggestive of the inherent heterogeneity of both BM-MSC and ASC populations. Still other differences may simply be related to different isolation and culture protocols. Most importantly, despite the minor differences between these MSC populations, ASCs seem to be as effective as BM-MSCs in clinical application, and, in some cases, may be better suited than BM-MSCs. In this review, we will examine in detail the ontology, biology, preclinical, and clinical application of BM-MSCs versus ASCs.
Collapse
Affiliation(s)
- Marius Strioga
- Department of Immunology, Center of Oncosurgery, Institute of Oncology, Vilnius University, Vilnius, Lithuania.
| | | | | | | | | |
Collapse
|
224
|
Soler R, Füllhase C, Hanson A, Campeau L, Santos C, Andersson KE. Stem cell therapy ameliorates bladder dysfunction in an animal model of Parkinson disease. J Urol 2012; 187:1491-7. [PMID: 22341818 DOI: 10.1016/j.juro.2011.11.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Indexed: 01/01/2023]
Abstract
PURPOSE Different cell based therapies have been tested, focusing on motor function. We evaluated the effect of human amniotic fluid stem cells and bone marrow derived mesenchymal stem cells (ALLCELLS, Emeryville, California) on bladder dysfunction in a rat model of Parkinson disease. MATERIAL AND METHODS A nigrostriatal lesion was induced by 6-hydroxydopamine in 96 athymic nude female rats divided into 3 treatment groups. After 2 weeks the groups were injected with human amniotic fluid stem cells, bone marrow derived mesenchymal stem cells and vehicle for sham treatment, respectively. At 3, 7, 14 and 28 days the bladder function of 8 rats per group was analyzed by conscious cystometry. Brains were extracted for immunostaining. RESULTS The nigrostriatal lesion caused bladder dysfunction, which was consistent in sham treated animals throughout the study. Several cystometric parameters improved 14 days after human amniotic fluid stem cell or bone marrow derived mesenchymal stem cell injection, concomitant with the presence of human stem cells in the brain. At 14 days only a few cells were observed in a more caudal and lateral position. At 28 days the functional improvement subsided and human stem cells were no longer seen. Human stem cell injection improved the survival of dopaminergic neurons until 14 days. Human stem cells expressed superoxide dismutase-2 and seemed to modulate the expression of interleukin-6 and glial cell-derived neurotrophic factor by host cells. CONCLUSIONS Cell therapy with human amniotic fluid stem cells and bone marrow derived mesenchymal stem cells temporarily ameliorated bladder dysfunction in a Parkinson disease model. In contrast to integration, cells may act on the injured environment via cell signaling.
Collapse
Affiliation(s)
- Roberto Soler
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
225
|
Kim JH, Song SY, Park SG, Song SU, Xia Y, Sung JH. Primary involvement of NADPH oxidase 4 in hypoxia-induced generation of reactive oxygen species in adipose-derived stem cells. Stem Cells Dev 2012; 21:2212-21. [PMID: 22181007 DOI: 10.1089/scd.2011.0561] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously demonstrated that hypoxia stimulates adipose-derived stem cells (ASCs) through the generation of reactive oxygen species (ROS). However, the precise mechanism involved in the ROS generation by ASCs is not well understood. We sought to investigate in this work: (1) which subtype of NADPH oxidase (Nox) is primarily expressed in ASCs; (2) where Nox4 is localized in ASCs; and (3) whether silencing of Nox4 attenuates hypoxia-enhanced function of ASC. We used 2',7'-dichlorofluorescin diacetate (DCF-DA) as an indicator of ROS generation and found that the fluorescence intensity of DCF-DA was significantly increased after hypoxia exposure (2% oxygen). In addition, hypoxia enhanced the proliferation and migration of ASCs and upregulated the mRNA expression of Oct4 and Rex1. Quantitative analysis of mRNA expression of Nox family in ASCs demonstrated that Nox4 is primarily expressed in ASCs, while immunofluorescence assay showed that Nox4 is mainly localized in the perinuclear region and overlaps with Mitotracker, a mitochondria marker. Silencing of Nox4 by siRNA treatment downregulated the RNA and protein expression of Nox4, which significantly reduced the ROS generation under hypoxia. In addition, Nox4 silencing significantly reduced the proliferation and migration of ASCs and downregulated the mRNA expression of Oct4 and Rex1. Phosphorylation of platelet-derived growth factor receptor-β, AKT, and ERK1/2 also diminished following Nox4 silencing. In a nutshell, these results suggest that Nox4 is primarily expressed in ASCs and plays a pivotal role in the hypoxia-enhanced stimulation of ASCs.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Applied Bioscience, CHA University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
226
|
Nightingale H, Kemp K, Gray E, Hares K, Mallam E, Scolding N, Wilkins A. Changes in expression of the antioxidant enzyme SOD3 occur upon differentiation of human bone marrow-derived mesenchymal stem cells in vitro. Stem Cells Dev 2012; 21:2026-35. [PMID: 22132904 DOI: 10.1089/scd.2011.0516] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The discovery that mesenchymal stem cells (MSCs) secrete SOD3 may help explain studies in which MSCs have direct antioxidant activities both in vivo and in vitro. SOD3 is an antioxidant enzyme that dismutes toxic free radicals produced during inflammatory processes. Therefore, MSC production and secretion of active and therapeutically significant levels of SOD3 would further support the use of MSCs as a cellular based antioxidant therapy. The aim of this study was therefore to investigate in vitro if MSC differentiation down the adipogenic, chondrogenic, and osteogenic lineages influences the expression of the antioxidant molecule SOD3. Human bone marrow MSCs and their differentiated progeny were cultured under standard conditions and both the SOD3 gene and protein expression examined. Following adipogenesis, cultures demonstrated that both SOD3 protein and gene expression are significantly increased, and conversely, following chondrogenesis SOD3 protein and gene expression is significantly decreased. Following osteogenesis there were no significant changes in SOD3 protein or gene expression. This in vitro study describes the initial characterization of SOD3 expression and secretion by differentiated MSCs. This should help guide further in vivo work establishing the therapeutic and antioxidative potential of MSC and their differentiated progeny.
Collapse
Affiliation(s)
- Helen Nightingale
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristo, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
227
|
Ko E, Lee KY, Hwang DS. Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev 2011; 21:1877-86. [PMID: 22066510 DOI: 10.1089/scd.2011.0284] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Since human mesenchymal stem cells (MSCs) are therapeutically attractive for tissue regeneration and repair, we examined the physiological responses of human umbilical cord blood-derived MSCs (hUCB-MSCs) to genotoxic stress. We found that that sublethal doses of reactive oxygen species (ROS) and ionizing radiation cause DNA damage and reduce DNA synthesis and cell proliferation in hUCB-MSCs, resulting in cellular senescence. In contrast, these physiological changes were limited in human fibroblast and cancer cells. Our data show that reduced activities of antioxidant enzymes, which may occur due to low gene expression levels, cause hUCB-MSCs to undergo cellular senescence in response to oxidative stress and ionizing radiation. Resistance of hUCB-MSCs to oxidative stresses was restored by increasing the intracellular antioxidant activity in hUCB-MSCs via exogenous addition of antioxidants. Therefore, the proliferation and fate of hUCB-MSCs can be controlled by exposure to oxidative stresses.
Collapse
Affiliation(s)
- Eun Ko
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
228
|
Zanier ER, Montinaro M, Vigano M, Villa P, Fumagalli S, Pischiutta F, Longhi L, Leoni ML, Rebulla P, Stocchetti N, Lazzari L, De Simoni MG. Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit Care Med 2011; 39:2501-10. [PMID: 21725237 DOI: 10.1097/ccm.0b013e31822629ba] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate whether human umbilical cord blood mesenchymal stem cells, a novel source of progenitors with multilineage potential: 1) decrease traumatic brain injury sequelae and restore brain function; 2) are able to survive and home to the lesioned region; and 3) induce relevant changes in the environment in which they are infused. DESIGN Prospective experimental study. SETTING Research laboratory. SUBJECTS Male C57Bl/6 mice. INTERVENTIONS Mice were subjected to controlled cortical impact/sham brain injury. At 24 hrs postinjury, human umbilical cord blood mesenchymal stem cells (150,000/5 μL) or phosphate-buffered saline (control group) were infused intracerebroventricularly contralateral to the injured side. Immunosuppression was achieved by cyclosporine A (10 mg/kg intraperitoneally). MEASUREMENTS AND MAIN RESULTS After controlled cortical impact, human umbilical cord blood mesenchymal stem cell transplantation induced an early and long-lasting improvement in sensorimotor functions assessed by neuroscore and beam walk tests. One month postinjury, human umbilical cord blood mesenchymal stem cell mice showed attenuated learning dysfunction at the Morris water maze and reduced contusion volume compared with controls. Hoechst positive human umbilical cord blood mesenchymal stem cells homed to lesioned tissue as early as 1 wk after injury in 67% of mice and survived in the injured brain up to 5 wks. By 3 days postinjury, cell infusion significantly increased brain-derived neurotrophic factor concentration into the lesioned tissue, restoring its expression close to the levels observed in sham operated mice. By 7 days postinjury, controlled cortical impact human umbilical cord blood mesenchymal stem cell mice showed a nonphagocytic activation of microglia/macrophages as shown by a selective rise (260%) in CD11b staining (a marker of microglia/macrophage activation/recruitment) associated with a decrease (58%) in CD68 (a marker of active phagocytosis). Thirty-five days postinjury, controlled cortical impact human umbilical cord blood mesenchymal stem cell mice showed a decrease of glial fibrillary acidic protein positivity in the scar region compared with control mice. CONCLUSIONS These findings indicate that human umbilical cord blood mesenchymal stem cells stimulate the injured brain and evoke trophic events, microglia/macrophage phenotypical switch, and glial scar inhibitory effects that remodel the brain and lead to significant improvement of neurologic outcome.
Collapse
Affiliation(s)
- Elisa R Zanier
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Ezquer M, Ezquer F, Ricca M, Allers C, Conget P. Intravenous administration of multipotent stromal cells prevents the onset of non-alcoholic steatohepatitis in obese mice with metabolic syndrome. J Hepatol 2011; 55:1112-20. [PMID: 21356258 DOI: 10.1016/j.jhep.2011.02.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 01/22/2011] [Accepted: 02/11/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Metabolic syndrome is secondary to obesity and characterized by dyslipidemia, insulin resistance, and hypertension. Non-alcoholic fatty liver disease is its hepatic manifestation, whose progression-limiting step is non-alcoholic steatohepatitis (NASH). The latter is characterized by lipid accumulation, hepatocyte damage, leukocyte infiltration, and fibrosis. NASH is a prodrome to cirrhosis and hepatocellular carcinoma. Multipotent stromal cells (MSCs) have been shown to be immunomodulatory and contribute to liver regeneration in acute failure conditions. Our aim was to evaluate whether MSC administration prevents the onset of NASH in obese mice with metabolic syndrome. METHODS C57BL/6 mice were chronically fed with high-fat diet. At week 33, mice received intravenously either the vehicle (obese untreated) or two doses of 0.5×10(6) syngeneic MSCs (obese MSC-treated). Four months later, liver function and structure, and metabolic syndrome markers were assessed. The persistence of donor MSCs(GFP) in obese mice was evaluated 17 weeks after their administration. RESULTS Obese untreated mice presented high plasma levels of hepatic enzyme, hepatomegaly, liver fibrosis, inflammatory cell infiltration, and hepatic triglyceride accumulation. Furthermore, they showed high expression levels of fibrosis markers and pro-inflammatory cytokines. By contrast, obese MSC-treated mice only presented steatosis. Mice kept obese, hypercholesterolemic, hyperglycemic, and insulin resistant irrespective of whether they received MSCs or not. Donor MSCs(GFP) were found in liver, bone marrow, heart, and kidney of obese mice. CONCLUSIONS MSC administration prevents the onset of NASH in obese mice. Observed hepatoprotection is not related to a reversion of the metabolic syndrome but to the preclusion of the inflammatory process.
Collapse
Affiliation(s)
- Marcelo Ezquer
- Instituto de Ciencias, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | | | | | | |
Collapse
|
230
|
Wong VW, Rustad KC, Glotzbach JP, Sorkin M, Inayathullah M, Major MR, Longaker MT, Rajadas J, Gurtner GC. Pullulan hydrogels improve mesenchymal stem cell delivery into high-oxidative-stress wounds. Macromol Biosci 2011; 11:1458-66. [PMID: 21994074 DOI: 10.1002/mabi.201100180] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/27/2011] [Indexed: 01/10/2023]
Abstract
Cell-based therapies for wound repair are limited by inefficient delivery systems that fail to protect cells from the acute inflammatory environment. Here, a biomimetic hydrogel system is described that is based on the polymer pullulan, a carbohydrate glucan known to exhibit potent antioxidant capabilities. It is shown that pullulan hydrogels are an effective cell delivery system and improve mesenchymal stem cell survival and engraftment in high-oxidative-stress environments. The results suggest that glucan hydrogel systems may prove beneficial for progenitor-cell-based approaches to skin regeneration.
Collapse
Affiliation(s)
- Victor W Wong
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Park SG, Kim JH, Xia Y, Sung JH. Generation of reactive oxygen species in adipose-derived stem cells: friend or foe? Expert Opin Ther Targets 2011; 15:1297-306. [PMID: 21981031 DOI: 10.1517/14728222.2011.628315] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Reactive oxygen species (ROS) participate in cellular apoptosis and are involved in pathophysiological etiology of degenerative diseases. However, recent studies suggest that ROS at low levels may play a pivotal role as second messengers and activate normal cellular processes. Intracellular ROS increase the proliferation, migration, and regenerative potential of adipose-derived stem cells (ASCs). In contrast, manipulations that diminish intracellular ROS levels interfere with normal ASC function. ROS generation therefore acts like a double-edged sword. AREAS COVERED This review discusses the following research questions: i) Do ROS stimulate or suppress ASCs? ii) How are ROS generated from ASCs? iii) Which function(s) is/are regulated by intracellular ROS generation? In addition, the antioxidant/antiapoptotic effect of ASCs is briefly introduced. EXPERT OPINION Whether ROS is harmful or beneficial is primarily a question of dosage. Low or moderate ROS generation increases the proliferation, migration and regenerative potential of ASCs. Therefore, it is beneficial to expose ASCs to moderate oxidative stress during manipulation. The addition of a ROS donor in culture can reduce the cost for the expansion of ASCs and a ROS preconditioning can enhance the regenerative potential of ASCs.
Collapse
Affiliation(s)
- Sang Gyu Park
- CHA University, Department of Biomedical Science, Seoul, Korea
| | | | | | | |
Collapse
|
232
|
The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood 2011; 117:4826-35. [PMID: 21389316 DOI: 10.1182/blood-2010-12-324038] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are characterized by their manifold immunomodulatory and regenerative properties. The stress-responsive, cytoprotective, and immunoregulatory molecule heme oxygenase-1 (HO-1) was recently identified as a key contributor for MSC-mediated suppression of alloactivated T cells. As HO-1 has also been implicated in the induction of regulatory T cells (Tregs), we sought to examine its impact on MSC-driven promotion of Tregs. Human MSCs were shown to induce, in a HO-1-dependent fashion, IL-10(+) Tr1 and transforming growth factor-β(+) Th3 Treg-subsets in allo- and T-cell receptor-activated lymphocytes. Because inflammatory stimuli modulate ("license") human MSCs, we were interested in whether an in vitro alloreactive micro-milieu within mixed lymphocyte reactions (MLRs) alters the HO-1 expression. We observed a substantial down-regulation of HO-1 facilitated by yet unidentified soluble factor(s) produced in an MLR, and most probably occurring at the level of its major transcription-factor NF-E2-related factor 2. Interestingly, HO-1 lost its impact regarding suppressiveness, Treg induction, and promotion of IL-10 production for MSCs, which were prelicensed in an MLR environment. Taken together, we show that HO-1 produced by human MSCs beyond its direct suppressive function promotes formation of Tr1 and Th3 Tregs and IL-10 production, functions, which are taken over by other molecules, among them COX-2, after an alloreactive priming.
Collapse
|
233
|
Sokolov MV, Neumann RD. Radiation-induced bystander effects in cultured human stem cells. PLoS One 2010; 5:e14195. [PMID: 21152027 PMCID: PMC2996280 DOI: 10.1371/journal.pone.0014195] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/09/2010] [Indexed: 01/06/2023] Open
Abstract
Background The radiation-induced “bystander effect” (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed. Methodology/Principal Findings Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05). Conclusions/Significance These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative-based therapies.
Collapse
Affiliation(s)
- Mykyta V Sokolov
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | |
Collapse
|
234
|
Sullivan JM, Cohen MA, Pandit SR, Sahota RS, Borecki AA, Oleskevich S. Effect of epithelial stem cell transplantation on noise-induced hearing loss in adult mice. Neurobiol Dis 2010; 41:552-9. [PMID: 21059389 DOI: 10.1016/j.nbd.2010.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 10/19/2010] [Accepted: 11/01/2010] [Indexed: 12/20/2022] Open
Abstract
Noise trauma in mammals can result in damage to multiple epithelial cochlear cell types, producing permanent hearing loss. Here we investigate whether epithelial stem cell transplantation can ameliorate noise-induced hearing loss in mice. Epithelial stem/progenitor cells isolated from adult mouse tongue displayed extensive proliferation in vitro as well as positive immunolabelling for the epithelial stem cell marker p63. To examine the functional effects of cochlear transplantation of these cells, mice were exposed to noise trauma and the cells were transplanted via a lateral wall cochleostomy 2 days post-trauma. Changes in auditory function were assessed by determining auditory brainstem response (ABR) threshold shifts 4 weeks after stem cell transplantation or sham surgery. Stem/progenitor cell transplantation resulted in a significantly reduced permanent ABR threshold shift for click stimuli compared to sham-injected mice, as corroborated using two distinct analyses. Cell fate analyses revealed stem/progenitor cell survival and integration into suprastrial regions of the spiral ligament. These results suggest that transplantation of adult epithelial stem/progenitor cells can attenuate the ototoxic effects of noise trauma in a mammalian model of noise-induced hearing loss.
Collapse
Affiliation(s)
- Jeremy M Sullivan
- Hearing Research Group, Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | |
Collapse
|