201
|
Kozak-Muiznieks NA, Morrison SS, Mercante JW, Ishaq MK, Johnson T, Caravas J, Lucas CE, Brown E, Raphael BH, Winchell JM. Comparative genome analysis reveals a complex population structure of Legionella pneumophila subspecies. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 59:172-185. [PMID: 29427765 PMCID: PMC9014860 DOI: 10.1016/j.meegid.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
The majority of Legionnaires' disease (LD) cases are caused by Legionella pneumophila, a genetically heterogeneous species composed of at least 17 serogroups. Previously, it was demonstrated that L. pneumophila consists of three subspecies: pneumophila, fraseri and pascullei. During an LD outbreak investigation in 2012, we detected that representatives of both subspecies fraseri and pascullei colonized the same water system and that the outbreak-causing strain was a new member of the least represented subspecies pascullei. We used partial sequence based typing consensus patterns to mine an international database for additional representatives of fraseri and pascullei subspecies. As a result, we identified 46 sequence types (STs) belonging to subspecies fraseri and two STs belonging to subspecies pascullei. Moreover, a recent retrospective whole genome sequencing analysis of isolates from New York State LD clusters revealed the presence of a fourth L. pneumophila subspecies that we have termed raphaeli. This subspecies consists of 15 STs. Comparative analysis was conducted using the genomes of multiple members of all four L. pneumophila subspecies. Whereas each subspecies forms a distinct phylogenetic clade within the L. pneumophila species, they share more average nucleotide identity with each other than with other Legionella species. Unique genes for each subspecies were identified and could be used for rapid subspecies detection. Improved taxonomic classification of L. pneumophila strains may help identify environmental niches and virulence attributes associated with these genetically distinct subspecies.
Collapse
Affiliation(s)
- Natalia A Kozak-Muiznieks
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Shatavia S Morrison
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jeffrey W Mercante
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Maliha K Ishaq
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Taccara Johnson
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jason Caravas
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Claressa E Lucas
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Ellen Brown
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Brian H Raphael
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jonas M Winchell
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| |
Collapse
|
202
|
Oliveira JPD, André MR, Alves Júnior JRF, Lustosa APG, Werther K. Molecular detection of hemogregarines and haemosporidians in Brazilian free-living testudines. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:75-84. [PMID: 30050752 PMCID: PMC6058349 DOI: 10.1016/j.ijppaw.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/11/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
Morphological and molecular techniques were used to investigate the presence of hemogregarines and haemosporidians in biological samples of free-living Geoffroy's side-necked turtles (Phrynops geoffroanus) and Giant Amazon turtles (Podocnemis expansa) from Brazil. No evolutionary form of haemosporidians or hemogregarines were observed in the blood smears of 83 P. geoffroanus samples, and there were no meronts in the histological sections of 31 necropsied P. geoffroanus samples. All DNA samples extracted from P. geoffroanus tissues and blood aliquots were negative in haemosporidian PCR assays (based on the mitochondrial cytochrome b gene) and hemogregarine PCR assays (based on the 18S rRNA gene). In the analysis of blood smears of all seven Podocnemis expansa evaluated, gametocytes of hemogregarines were observed. The seven P. expansa were negative in the haemosporidian PCR assays. Moreover, hemogregarine DNA was detected in blood samples from all of the sampled P. expansa. The phylogenetic maximum likelihood inference and probabilistic Bayesian inference revealed five closely related genotypes that formed a monophyletic group. There was also a sister group to the lineage that consisted of Haemogregarina spp. of freshwater turtles from Canada, Italy, Mozambique, Kenya, Gabon, Vietnam, and China. The findings suggest that free-living P. expansa were parasitized by a new genotype or even a possible new species of the genus Haemogregarina. Haemosporidians and hemogregarines are not frequently found in P. geoffroanus in the studied region under the local conditions of that period. Hemogregarines was detected in blood samples of free-living Brazilian testudines. Gametocytes of hemogregarines were observed in Podocnemis expansa blood smears. Hemogregarines DNA fragments based on the 18S rRNA gene were detected in P. expansa. We propose that P. expansa were parasitized by a new genotype of Haemogregarina. Haemosporidians was not observed in either P. expansa or Phrynops geoffroanus samples.
Collapse
Affiliation(s)
- Juliana Paula de Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Studies, Jaboticabal Campus, Via de Acesso Professor Paulo Donato Castellane s/n, 14.884-900, Jaboticabal, SP, Brazil
| | - Marcos Rogério André
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Studies, Jaboticabal Campus, Via de Acesso Professor Paulo Donato Castellane s/n, 14.884-900, Jaboticabal, SP, Brazil
| | | | - Ana Paula Gomes Lustosa
- Chico Mendes Institute for Biodiversity Conservation (ICMBio), National Center for Research and Conservation of Reptiles and Amphibians (RAN), Rua 229, n 95, Setor Leste Universitário, 74.605-090, Goiânia, GO, Brazil
| | - Karin Werther
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Studies, Jaboticabal Campus, Via de Acesso Professor Paulo Donato Castellane s/n, 14.884-900, Jaboticabal, SP, Brazil
| |
Collapse
|
203
|
Chloroplast genomic resources for phylogeny and DNA barcoding: a case study on Fritillaria. Sci Rep 2018; 8:1184. [PMID: 29352182 PMCID: PMC5775360 DOI: 10.1038/s41598-018-19591-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
The genus Fritillaria comprises approximately 130 perennial herbaceous species. In the Pharmacopoeia of the People’s Republic of China, the bulbs of 11 Fritillaria species are used in Chinese herbal medicines. However, the traditional methods of morphological classification cannot accurately identify closely related species of Fritillaria. Previous studies have attempted to identify these species with universal molecular markers, but insufficient phylogenetic signal was available. In this study, the complete chloroplast genomes of eight Fritillaria species were compared. The length of the eight Fritillaria chloroplast genomes ranges from 151,009 bp to 152,224 bp. A total of 136 SSR loci were identified, including 124 polymorphic SSR loci. For large repeat sequences, 108 repeat loci and four types of repeats were observed. Ten highly variable regions were identified as potential molecular markers. These SSRs, large repeat sequences and highly variable regions provide important information for the development of genetic markers and DNA fingerprints. Phylogenetic analyses showed that the topological structures of all data sets (except the IR regions) were in complete agreement and well resolved. Overall, this study provides comprehensive chloroplast genomic resources, which will be valuable for future studies of evolution and species identification in Fritillaria.
Collapse
|
204
|
Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K. Cut-and-Paste Transposons in Fungi with Diverse Lifestyles. Genome Biol Evol 2017; 9:3463-3477. [PMID: 29228286 PMCID: PMC5751038 DOI: 10.1093/gbe/evx261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) shape genomes via recombination and transposition, lead to chromosomal rearrangements, create new gene neighborhoods, and alter gene expression. They play key roles in adaptation either to symbiosis in Amanita genus or to pathogenicity in Pyrenophora tritici-repentis. Despite growing evidence of their importance, the abundance and distribution of mobile elements replicating in a "cut-and-paste" fashion is barely described so far. In order to improve our knowledge on this old and ubiquitous class of transposable elements, 1,730 fungal genomes were scanned using both de novo and homology-based approaches. DNA TEs have been identified across the whole data set and display uneven distribution from both DNA TE classification and fungal taxonomy perspectives. DNA TE content correlates with genome size, which confirms that many transposon families proliferate simultaneously. In contrast, it is independent from intron density, average gene distance and GC content. TE count is associated with species' lifestyle and tends to be elevated in plant symbionts and decreased in animal parasites. Lastly, we found that fungi with both RIP and RNAi systems have more total DNA TE sequences but less elements retaining a functional transposase, what reflects stringent control over transposition.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Poland
| | | | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, CeNT, University of Warsaw, Poland
| |
Collapse
|
205
|
Cortes-Hernandez P, Domínguez-Ramírez L. Role of cis-trans proline isomerization in the function of pathogenic enterobacterial Periplasmic Binding Proteins. PLoS One 2017; 12:e0188935. [PMID: 29190818 PMCID: PMC5708682 DOI: 10.1371/journal.pone.0188935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Periplasmic Binding Proteins (PBPs) trap nutrients for their internalization into bacteria by ABC transporters. Ligand binding triggers PBP closure by bringing its two domains together like a Venus flytrap. The atomic determinants that control PBP opening and closure for nutrient capture and release are not known, although it is proposed that opening and ligand release occur while in contact with the ABC transporter for concurrent substrate translocation. In this paper we evaluated the effect of the isomerization of a conserved proline, located near the binding site, on the propensity of PBPs to open and close. ArgT/LAO from Salmonella typhimurium and HisJ from Escherichia coli were studied through molecular mechanics at two different temperatures: 300 and 323 K. Eight microseconds were simulated per protein to analyze protein opening and closure in the absence of the ABC transporter. We show that when the studied proline is in trans, closed empty LAO and HisJ can open. In contrast, with the proline in cis, opening transitions were much less frequent and characterized by smaller changes. The proline in trans also renders the open trap prone to close over a ligand. Our data suggest that the isomerization of this conserved proline modulates the PBP mechanism: the proline in trans allows the exploration of conformational space to produce trap opening and closure, while in cis it restricts PBP movement and could limit ligand release until in productive contact with the ABC transporter. This is the first time that a proline isomerization has been related to the control of a large conformational change like the PBP flytrap mechanism.
Collapse
Affiliation(s)
- Paulina Cortes-Hernandez
- Centro de Investigacion Biomedica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Metepec, Puebla, Mexico
| | - Lenin Domínguez-Ramírez
- Chemical and Biological Sciences, Universidad de las Américas Puebla (UDLAP), Cholula, Puebla, Mexico
- * E-mail:
| |
Collapse
|
206
|
Shen H. Recombination analysis of coxsackievirus B5 genogroup C. Arch Virol 2017; 163:539-544. [PMID: 29134337 DOI: 10.1007/s00705-017-3608-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/09/2017] [Indexed: 01/17/2023]
Abstract
Coxsackievirus B5 (CVB5) is a member of the species Enterovirus B of the genus Enterovirus, family Picornaviridae. Based on its VP1 sequence, CVB5 is divided into four genogroups: A, B, C, and D. From 2002 to 2012, CVB5 serotype genogroup C caused an outbreak of aseptic meningitis in China. In order to study the evolution of CVB5 genogroup C, phylogenetic and recombination analysis was performed using the 399 available enterovirus B genome sequences in the GenBank database. The results indicated that 10 strains of CVB5 serotype genogroup C resulted from recombination between members of genogroup B and echovirus serotype E6, and another 5 strains resulted from recombination between members of genogroup C and serotype CVB4. These recombination events were confirmed by phylogenetic analysis.
Collapse
Affiliation(s)
- Hongxing Shen
- Medical College, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, People's Republic of China.
| |
Collapse
|
207
|
Motoyama T, Nakano S, Yamamoto Y, Tokiwa H, Asano Y, Ito S. Product Release Mechanism Associated with Structural Changes in Monomeric l-Threonine 3-Dehydrogenase. Biochemistry 2017; 56:5758-5770. [DOI: 10.1021/acs.biochem.7b00832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoharu Motoyama
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Asano
Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yuta Yamamoto
- Department
of Chemistry, Rikkyo University, Nishi-ikebukuro, Toshimaku, Tokyo 171-8501, Japan
| | - Hiroaki Tokiwa
- Department
of Chemistry, Rikkyo University, Nishi-ikebukuro, Toshimaku, Tokyo 171-8501, Japan
- Research
Center of Smart Molecules, Rikkyo University, Nishi-ikebukuro, Toshimaku, Tokyo 171-8501, Japan
| | - Yasuhisa Asano
- Biotechnology
Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Asano
Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Sohei Ito
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Asano
Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
208
|
Zhang K, Ruan Z, Li J, Bian C, You X, Coon SL, Shi Q. A Comparative Genomic and Transcriptomic Survey Provides Novel Insights into N-Acetylserotonin Methyltransferase (ASMT) in Fish. Molecules 2017; 22:E1653. [PMID: 28974055 PMCID: PMC6151645 DOI: 10.3390/molecules22101653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 11/16/2022] Open
Abstract
Melatonin is a multifunctional bioactive molecule that plays comprehensive physiological roles in all living organisms. N-acetylserotonin methyltransferase (ASMT, also known as hydroxyindole O-methyltransferase or HIOMT) is the final enzyme for biosynthesis of melatonin. Here, we performed a comparative genomic and transcriptomic survey to explore the ASMT family in fish. Two ASMT isotypes (ASMT1 and ASMT2) and a new ASMT-like (ASMTL) are all extracted from teleost genomes on the basis of phylogenetic and synteny analyses. We confirmed that C-terminal of the ASMTL proteins (ASMTL-ASMT) is homology to the full length of ASMT1 and ASMT2. Our results also demonstrate that the two ASMT isotypes and their distribution in teleosts seem to be the result of combinations of whole-genome duplication (WGD) and gene loss. Differences were also observed in tissue distribution and relative transcript abundances of ASMT1, ASMT2 and ASMTL through transcriptomic analysis. Protein sequence alignment and 3D structure prediction of ASMTs and ASMTL suggest differential roles for these ASMT genes. In summary, our current work provides novel insights into the ASMT genes in fish by combination of genomic and transcriptomic data.
Collapse
Affiliation(s)
- Kai Zhang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI-Zhenjiang Institute of Hydrobiology, BGI Marine, Zhenjiang 212000, China.
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Steven L Coon
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
- Molecular Genomics Laboratory, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI-Zhenjiang Institute of Hydrobiology, BGI Marine, Zhenjiang 212000, China.
| |
Collapse
|
209
|
Horreo JL. Revisiting the mitogenomic phylogeny of Salmoninae: new insights thanks to recent sequencing advances. PeerJ 2017; 5:e3828. [PMID: 28948107 PMCID: PMC5609519 DOI: 10.7717/peerj.3828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022] Open
Abstract
The phylogeny of the Salmonidae family, the only living one of the Order Salmoniformes, remains still unclear because of several reasons. Such reasons include insufficient taxon sampling and/or DNA information. The use of complete mitochondrial genomes (mitogenomics) could provide some light on it, but despite the high number of mitogenomes of species belonging to this family published during last years, an integrative work containing all this information has not been done. In this work, the phylogeny of 46 Salmonidae species was inferred from their mitogenomic sequences. Results include a Bayesian molecular-dated phylogenetic tree with very high statistical support showing Coregoninae and Salmoninae as sister subfamilies, as well as several new phylogenetic relationships among species and genus of the family. All these findings contribute to improve our understanding of the Salmonidae systematics and could have consequences on related evolutionary studies, as well as highlight the importance of revisiting phylogenies with integrative studies.
Collapse
Affiliation(s)
- Jose L. Horreo
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences (CSIC), Madrid, Spain
| |
Collapse
|
210
|
Characterization of a novel botybirnavirus isolated from a phytopathogenic Alternaria fungus. Arch Virol 2017; 162:3907-3911. [DOI: 10.1007/s00705-017-3543-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
|
211
|
Khusnutdinova AN, Flick R, Popovic A, Brown G, Tchigvintsev A, Nocek B, Correia K, Joo JC, Mahadevan R, Yakunin AF. Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids. Biotechnol J 2017; 12. [PMID: 28762640 DOI: 10.1002/biot.201600751] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/31/2017] [Indexed: 11/12/2022]
Abstract
Carboxylic acid reductases (CARs) selectively reduce carboxylic acids to aldehydes using ATP and NADPH as cofactors under mild conditions. Although CARs attracts significant interest, only a few enzymes have been characterized to date, whereas the vast majority of CARs have yet to be examined. Herein the authors report that 12 bacterial CARs reduces a broad range of bifunctional carboxylic acids containing oxo-, hydroxy-, amino-, or second carboxyl groups with several enzymes showing activity toward 4-hydroxybutanoic (4-HB) and adipic acids. These CARs exhibits significant reductase activity against substrates whose second functional group is separated from the carboxylate by at least three carbons with both carboxylate groups being reduced in dicarboxylic acids. Purified CARs supplemented with cofactor regenerating systems (for ATP and NADPH), an inorganic pyrophosphatase, and an aldo-keto reductase catalyzes a high conversion (50-76%) of 4-HB to 1,4-butanediol (1,4-BDO) and adipic acid to 1,6-hexanediol (1,6-HDO). Likewise, Escherichia coli strains expressing eight different CARs efficiently reduces 4-HB to 1,4-BDO with 50-95% conversion, whereas adipic acid is reduced to a mixture of 6-hydroxyhexanoic acid (6-HHA) and 1,6-HDO. Thus, our results illustrate the broad biochemical diversity of bacterial CARs and their compatibility with other enzymes for applications in biocatalysis.
Collapse
Affiliation(s)
- Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Ana Popovic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Kevin Correia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Jeong C Joo
- Center for Bio-Based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| |
Collapse
|
212
|
Bouer A, André MR, Gonçalves LR, Luzzi MDC, Oliveira JPD, Rodrigues AC, Varani ADM, Miranda VFOD, Perles L, Werther K, Machado RZ. Hepatozoon caimani in Caiman crocodilus yacare (Crocodylia, Alligatoridae) from North Pantanal, Brazil. ACTA ACUST UNITED AC 2017; 26:352-358. [PMID: 28902260 DOI: 10.1590/s1984-29612017041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/29/2017] [Indexed: 11/22/2022]
Abstract
Hepatozoon species are the most common intracellular hemoparasite found in reptiles. Hepatozoon caimani, whose vectors are Culex mosquitoes, has been detected in a high prevalence among caimans in Brazil by blood smears examinations. The present work aimed to detect and characterize the Hepatozoon spp. found in 33 caimans (24 free-ranging and 9 captive; 28 males and 5 females) (Caiman crocodilus yacare) sampled at Poconé, North Pantanal, state of Mato Grosso, Brazil, using blood smears examinations and molecular techniques. Hepatozoon spp.-gametocytes were found in 70.8% (17/24) and 88.8% (8/9) of blood smears from free-ranging and captive caimans, respectively. Hepatozoon spp. 18S rRNA DNA was found in 79.2% (19/24) and 88.8% (8/9) of free-ranging and captive caimans, respectively. Comparative analysis of parasitized and non-parasitized erythrocytes showed that all analyzed features were significantly different (P<0.05) for both linear and area dimensions. Phylogenetic analysis based on 18S rRNA sequences grouped the Hepatozoon spp. sequences detected in the present study together with H. caimani, recently detected in caimans in southern Pantanal.
Collapse
Affiliation(s)
- Andréa Bouer
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Marcos Rogério André
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Luiz Ricardo Gonçalves
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Mayara de Cássia Luzzi
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Juliana Paula de Oliveira
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Adriana Carlos Rodrigues
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Alessandro de Melo Varani
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | | | - Lívia Perles
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Karin Werther
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Rosangela Zacarias Machado
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| |
Collapse
|
213
|
Abstract
Fungi are able to switch between different lifestyles in order to adapt to environmental changes. Their ecological strategy is connected to their secretome as fungi obtain nutrients by secreting hydrolytic enzymes to their surrounding and acquiring the digested molecules. We focus on fungal serine proteases (SPs), the phylogenetic distribution of which is barely described so far. In order to collect a complete set of fungal proteases, we searched over 600 fungal proteomes. Obtained results suggest that serine proteases are more ubiquitous than expected. From 54 SP families described in MEROPS Peptidase Database, 21 are present in fungi. Interestingly, 14 of them are also present in Metazoa and Viridiplantae - this suggests that, except one (S64), all fungal SP families evolved before plants and fungi diverged. Most representatives of sequenced eukaryotic lineages encode a set of 13-16 SP families. The number of SPs from each family varies among the analysed taxa. The most abundant are S8 proteases. In order to verify hypotheses linking lifestyle and expansions of particular SP, we performed statistical analyses and revealed previously undescribed associations. Here, we present a comprehensive evolutionary history of fungal SP families in the context of fungal ecology and fungal tree of life.
Collapse
|
214
|
Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment. Cell Death Discov 2017; 3:17036. [PMID: 28811933 PMCID: PMC5554797 DOI: 10.1038/cddiscovery.2017.36] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/30/2017] [Indexed: 02/08/2023] Open
Abstract
Matrix metalloproteinase (MMP) is defined as an endopeptidase in the extracellular matrix (ECM), which plays essential roles in physiological processes such as organogenesis, wound healing, angiogenesis, apoptosis and motility. MMPs are produced and assembled in the cytoplasm as proenzymes with a cytoplasmic domain and require extracellular activation. MMPs can degrade receptors, extracellular matrix proteins, PARPs and release apoptotic substances. MMPs have been found in the cytosol, organelles and extracellular compartments and recently many types of MMPs have been found in the nucleus. However, the mechanisms and roles of MMPs inside the cell nucleus are still poorly understood. Here we summarized the nuclear localization mechanisms of MMPs and their functions in the nucleus such as apoptosis, tissue remodeling upon injury and cancer progression. Most importantly, we found that nuclear MMPs have evolved to translocate to membrane and target ECM possibly through evolution of nuclear localization signal (NLS), natural selection and anti-apoptotic survival. Thus, the knowledge about the evolution and regulation of nuclear MMPs appears to be essential in understanding a variety of cellular processes along with the development of MMP-targeted therapeutic drugs against the progression of certain diseases.
Collapse
|
215
|
Santiago-Frangos A, Jeliazkov JR, Gray JJ, Woodson SA. Acidic C-terminal domains autoregulate the RNA chaperone Hfq. eLife 2017; 6:27049. [PMID: 28826489 PMCID: PMC5606850 DOI: 10.7554/elife.27049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/03/2017] [Indexed: 11/15/2022] Open
Abstract
The RNA chaperone Hfq is an Sm protein that facilitates base pairing between bacterial small RNAs (sRNAs) and mRNAs involved in stress response and pathogenesis. Hfq possesses an intrinsically disordered C-terminal domain (CTD) that may tune the function of the Sm domain in different organisms. In Escherichia coli, the Hfq CTD increases kinetic competition between sRNAs and recycles Hfq from the sRNA-mRNA duplex. Here, de novo Rosetta modeling and competitive binding experiments show that the acidic tip of the E. coli Hfq CTD transiently binds the basic Sm core residues necessary for RNA annealing. The CTD tip competes against non-specific RNA binding, facilitates dsRNA release, and prevents indiscriminate DNA aggregation, suggesting that this acidic peptide mimics nucleic acid to auto-regulate RNA binding to the Sm ring. The mechanism of CTD auto-inhibition predicts the chaperone function of Hfq in bacterial genera and illuminates how Sm proteins may evolve new functions.
Collapse
Affiliation(s)
- Andrew Santiago-Frangos
- Cell, Molecular and Developmental Biology and Biophysics Program, Johns Hopkins University, Baltimore, United States
| | - Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, United States
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, United States
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
216
|
Rubio-Largo Á, Vanneschi L, Castelli M, Vega-Rodríguez MA. Reducing Alignment Time Complexity of Ultra-Large Sets of Sequences. J Comput Biol 2017; 24:1144-1154. [PMID: 28686466 DOI: 10.1089/cmb.2017.0097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The alignment of three or more protein or nucleotide sequences is known as Multiple Sequence Alignment problem. The complexity of this problem increases exponentially with the number of sequences; therefore, many of the current approaches published in the literature suffer a computational overhead when thousands of sequences are required to be aligned. We introduce a new approach for dealing with ultra-large sets of sequences. A two-level clustering method is considered. The first level clusters the input sequences by using their biological composition, that is, the number of positive, negative, polar, special, and hydrophobic amino acids. In the second level, each cluster is divided into different clusters according to their similarity. Then, each cluster is aligned by using any method/aligner. After aligning the centroid sequences of each second-level cluster, we extrapolate the new gaps to each cluster of sequences to obtain the final alignment. We present a study on biological data with up to ∼100,000 sequences, showing that the proposed approach is able to obtain accurate alignments in a reduced amount of time; for example, in >10,000 sequences datasets, it is able to reduce up to ∼45 times the required runtime of the well-known Kalign.
Collapse
Affiliation(s)
- Álvaro Rubio-Largo
- 1 Nova Information Management School-NOVA IMS , Universidade Nova de Lisboa, Lisboa, Portugal
| | - Leonardo Vanneschi
- 1 Nova Information Management School-NOVA IMS , Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mauro Castelli
- 1 Nova Information Management School-NOVA IMS , Universidade Nova de Lisboa, Lisboa, Portugal
| | - Miguel A Vega-Rodríguez
- 2 Department of Technologies of Computers and Communications, University of Extremadura , Cáceres, Spain
| |
Collapse
|
217
|
Li Y, Hansson B, Ghatnekar L, Prentice HC. Contrasting patterns of nucleotide polymorphism suggest different selective regimes within different parts of the PgiC1 gene in Festuca ovina L. Hereditas 2017; 154:11. [PMID: 28529468 PMCID: PMC5437402 DOI: 10.1186/s41065-017-0032-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/13/2017] [Indexed: 01/11/2023] Open
Abstract
Background Phosphoglucose isomerase (PGI, EC 5.3.1.9) is an essential metabolic enzyme in all eukaryotes. An earlier study of the PgiC1 gene, which encodes cytosolic PGI in the grass Festuca ovina L., revealed a marked difference in the levels of nucleotide polymorphism between the 5’ and 3’ portions of the gene. Methods In the present study, we characterized the sequence polymorphism in F. ovina PgiC1 in more detail and examined possible explanations for the non-uniform pattern of nucleotide polymorphism across the gene. Results Our study confirms that the two portions of the PgiC1 gene show substantially different levels of DNA polymorphism and also suggests that the peptide encoded by the 3’ portion of PgiC1 is functionally and structurally more important than that encoded by the 5’ portion. Although there was some evidence of purifying selection (dN/dS test) on the 5’ portion of the gene, the signature of purifying selection was considerably stronger on the 3’ portion of the gene (dN/dS and McDonald–Kreitman tests). Several tests support the action of balancing selection within the 5’ portion of the gene. Wall’s B and Q tests were significant only for the 5’ portion of the gene. There were also marked peaks of nucleotide diversity, Tajima’s D and the dN/dS ratio at or around a PgiC1 codon site (within the 5’ portion of the gene) that a previous study had suggested was subject to positive diversifying selection. Conclusions Our results suggest that the two portions of the gene have been subject to different selective regimes. Purifying selection appears to have been the main force contributing to the relatively low level of polymorphism within the 3’ portion of the sequence. In contrast, it is possible that balancing selection has contributed to the maintenance of the polymorphism within the 5’ portion of the gene. Electronic supplementary material The online version of this article (doi:10.1186/s41065-017-0032-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Li
- Department of Biology, Lund University, Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
218
|
Kotliński M, Knizewski L, Muszewska A, Rutowicz K, Lirski M, Schmidt A, Baroux C, Ginalski K, Jerzmanowski A. Phylogeny-Based Systematization of Arabidopsis Proteins with Histone H1 Globular Domain. PLANT PHYSIOLOGY 2017; 174:27-34. [PMID: 28298478 PMCID: PMC5411143 DOI: 10.1104/pp.16.00214] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/10/2017] [Indexed: 05/19/2023]
Abstract
H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis (Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species.
Collapse
Affiliation(s)
- Maciej Kotliński
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Lukasz Knizewski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Anna Muszewska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Kinga Rutowicz
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Maciej Lirski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Anja Schmidt
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Célia Baroux
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.);
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.);
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.);
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Krzysztof Ginalski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.)
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.)
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.)
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| | - Andrzej Jerzmanowski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland (M.K., A.J.);
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland (L.K., K.G.);
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland (A.M., K.R., M.L., A.J.);
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, 8008 Zurich, Switzerland (K.R., C.B.); and
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany (A.S.)
| |
Collapse
|
219
|
Sharip A, Abdukhakimova D, Wang X, Kim A, Kim Y, Sharip A, Orakov A, Miao L, Sun Q, Chen Y, Chen Z, Xie Y. Analysis of origin and protein-protein interaction maps suggests distinct oncogenic role of nuclear EGFR during cancer evolution. J Cancer 2017; 8:903-912. [PMID: 28382154 PMCID: PMC5381180 DOI: 10.7150/jca.17961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
Receptor tyrosine kinase EGFR usually is localized on plasma membrane to induce progression of many cancers including cancers in children (Bodey et al. In Vivo. 2005, 19:931-41), but it contains a nuclear localization signal (NLS) that mediates EGFR nuclear translocation (Lin et al. Nat Cell Biol. 2001, 3:802-8). Here we report that NLS of EGFR has its old evolutionary origin. Protein-protein interaction maps suggests that nEGFR pathways are different from membrane EGFR and EGF is not found in nEGFR network while androgen receptor (AR) is found, which suggests the evolution of prostate cancer, a well-known AR driven cancer, through changes in androgen- or EGF-dependence. Database analysis suggests that nEGFR correlates with the tumor grades especially in prostate cancer patients. Structural predication analysis suggests that NLS can compromise the differential protein binding to EGFR through stretch linkers with evolutionary mutation from N to V. In experiment, elevation of nEGFR but not membrane EGFR was found in castration resistant prostate cancer cells. Finally, systems analysis of NLS and transmembrane domain (TM) suggests that NLS has old origin while NLS neighboring domain of TM has been undergone accelerated evolution. Thus nEGFR has an old origin resembling the cancer evolution but TM may interfere with NLS driven signaling for natural selection of survival to evade NLS induced aggressive cancers. Our data suggest NLS is a dynamic inducer of EGFR oncogenesis during evolution for advanced cancers. Our model provides novel insights into the evolutionary role of NLS of oncogenic kinases in cancers.
Collapse
Affiliation(s)
- Ainur Sharip
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
| | - Diyora Abdukhakimova
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
| | - Xiao Wang
- Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan, 250014, P.R. China
| | - Alexey Kim
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
| | - Yevgeniy Kim
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
| | - Aigul Sharip
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
| | - Askarbek Orakov
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
| | - Lixia Miao
- College of Basic Medicine, Wuhan University, Wuhan, 430071, P.R. China
| | - Qinglei Sun
- Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan, 250014, P.R. China
| | - Yue Chen
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37203, USA
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37201, USA
| | - Yingqiu Xie
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
| |
Collapse
|
220
|
Gudyś A, Deorowicz S. QuickProbs 2: Towards rapid construction of high-quality alignments of large protein families. Sci Rep 2017; 7:41553. [PMID: 28139687 PMCID: PMC5282490 DOI: 10.1038/srep41553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023] Open
Abstract
The ever-increasing size of sequence databases caused by the development of high throughput sequencing, poses to multiple alignment algorithms one of the greatest challenges yet. As we show, well-established techniques employed for increasing alignment quality, i.e., refinement and consistency, are ineffective when large protein families are investigated. We present QuickProbs 2, an algorithm for multiple sequence alignment. Based on probabilistic models, equipped with novel column-oriented refinement and selective consistency, it offers outstanding accuracy. When analysing hundreds of sequences, Quick-Probs 2 is noticeably better than ClustalΩ and MAFFT, the previous leaders for processing numerous protein families. In the case of smaller sets, for which consistency-based methods are the best performing, QuickProbs 2 is also superior to the competitors. Due to low computational requirements of selective consistency and utilization of massively parallel architectures, presented algorithm has similar execution times to ClustalΩ, and is orders of magnitude faster than full consistency approaches, like MSAProbs or PicXAA. All these make QuickProbs 2 an excellent tool for aligning families ranging from few, to hundreds of proteins.
Collapse
Affiliation(s)
- Adam Gudyś
- Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Sebastian Deorowicz
- Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
221
|
Nguyen Quang N, Perret G, Ducongé F. Applications of High-Throughput Sequencing for In Vitro Selection and Characterization of Aptamers. Pharmaceuticals (Basel) 2016; 9:ph9040076. [PMID: 27973417 PMCID: PMC5198051 DOI: 10.3390/ph9040076] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022] Open
Abstract
Aptamers are identified through an iterative process of evolutionary selection starting from a random pool containing billions of sequences. Simultaneously to the amplification of high-affinity candidates, the diversity in the pool is exponentially reduced after several rounds of in vitro selection. Until now, cloning and Sanger sequencing of about 100 sequences was usually used to identify the enriched candidates. However, High-Throughput Sequencing (HTS) is now extensively used to replace such low throughput sequencing approaches. Providing a deeper analysis of the library, HTS is expected to accelerate the identification of aptamers as well as to identify aptamers with higher affinity. It is also expected that it can provide important information on the binding site of the aptamers. Nevertheless, HTS requires handling a large amount of data that is only possible through the development of new in silico methods. Here, this review presents these different strategies that have been recently developed to improve the identification and characterization of aptamers using HTS.
Collapse
Affiliation(s)
- Nam Nguyen Quang
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), 18 route du panorama, 92260 Fontenay-aux-Roses, France.
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Université Paris-Sud, UMR 9199, 92260 Fontenay-aux-Roses, France.
| | - Gérald Perret
- LFB Biotechnologies, 3 avenue des Tropiques, 91958 Courtaboeuf CEDEX, France.
| | - Frédéric Ducongé
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), 18 route du panorama, 92260 Fontenay-aux-Roses, France.
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Université Paris-Sud, UMR 9199, 92260 Fontenay-aux-Roses, France.
| |
Collapse
|