201
|
Thaysen-Andersen M, Larsen MR, Packer NH, Palmisano G. Structural analysis of glycoprotein sialylation – Part I: pre-LC-MS analytical strategies. RSC Adv 2013. [DOI: 10.1039/c3ra42960a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
202
|
Hinderlich S, Weidemann W, Yardeni T, Horstkorte R, Huizing M. UDP-GlcNAc 2-Epimerase/ManNAc Kinase (GNE): A Master Regulator of Sialic Acid Synthesis. Top Curr Chem (Cham) 2013; 366:97-137. [PMID: 23842869 DOI: 10.1007/128_2013_464] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme of sialic acid biosynthesis in vertebrates. It catalyzes the first two steps of the cytosolic formation of CMP-N-acetylneuraminic acid from UDP-N-acetylglucosamine. In this review we give an overview of structure, biochemistry, and genetics of the bifunctional enzyme and its complex regulation. Furthermore, we will focus on diseases related to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase.
Collapse
Affiliation(s)
- Stephan Hinderlich
- Department of Life Sciences and Technology, Beuth Hochschule für Technik Berlin, University of Applied Sciences, Berlin, Germany,
| | | | | | | | | |
Collapse
|
203
|
Photocrosslinking approaches to interactome mapping. Curr Opin Chem Biol 2012; 17:90-101. [PMID: 23149092 DOI: 10.1016/j.cbpa.2012.10.034] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/22/2012] [Indexed: 11/21/2022]
Abstract
Photocrosslinking approaches can be used to map interactome networks within the context of living cells. Photocrosslinking methods rely on use of metabolic engineering or genetic code expansion to incorporate photocrosslinking analogs of amino acids or sugars into cellular biomolecules. Immunological and mass spectrometry techniques are used to analyze crosslinked complexes, thereby defining specific interactomes. Because photocrosslinking can be conducted in native, cellular settings, it can be used to define context-dependent interactions. Photocrosslinking methods are also ideally suited for determining interactome dynamics, mapping interaction interfaces, and identifying transient interactions in which intrinsically disordered proteins and glycoproteins engage. Here we discuss the application of cell-based photocrosslinking to the study of specific problems in immune cell signaling, transcription, membrane protein dynamics, nucleocytoplasmic transport, and chaperone-assisted protein folding.
Collapse
|
204
|
Abstract
Imaging technologies developed in the early 20th century achieved contrast solely by relying on macroscopic and morphological differences between the tissues of interest and the surrounding tissues. Since then, there has been a movement toward imaging at the cellular and molecular level in order to visualize biological processes. This rapidly growing field is known as molecular imaging. In the last decade, many methodologies for imaging proteins have emerged. However, most of these approaches cannot be extended to imaging beyond the proteome. Here, we highlight some of the recently developed technologies that enable imaging of non-proteinaceous molecules in the cell: lipids, signalling molecules, inorganic ions, glycans, nucleic acids, small-molecule metabolites, and protein post-translational modifications such as phosphorylation and methylation.
Collapse
Affiliation(s)
- Pamela V. Chang
- Department of Chemistry, University of California, Berkeley, 94720, USA
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, U.S.A
| |
Collapse
|
205
|
Mathew MP, Tan E, Shah S, Bhattacharya R, Adam Meledeo M, Huang J, Espinoza FA, Yarema KJ. Extracellular and intracellular esterase processing of SCFA-hexosamine analogs: implications for metabolic glycoengineering and drug delivery. Bioorg Med Chem Lett 2012; 22:6929-33. [PMID: 23041156 DOI: 10.1016/j.bmcl.2012.09.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/04/2012] [Indexed: 12/19/2022]
Abstract
This report provides a synopsis of the esterase processing of short chain fatty acid (SCFA)-derivatized hexosamine analogs used in metabolic glycoengineering by demonstrating that the extracellular hydrolysis of these compounds is comparatively slow (e.g., with a t(1/2) of ∼4 h to several days) in normal cell culture as well as in high serum concentrations intended to mimic in vivo conditions. Structure-activity relationship (SAR) analysis of common sugar analogs revealed that O-acetylated and N-azido ManNAc derivatives were more refractory against extracellular inactivation by FBS than their butanoylated counterparts consistent with in silico docking simulations of Ac(4)ManNAc and Bu(4)ManNAc to human carboxylesterase 1 (hCE1). By contrast, all analogs tested supported increased intracellular sialic acid production within 2h establishing that esterase processing once the analogs are taken up by cells is not rate limiting.
Collapse
Affiliation(s)
- Mohit P Mathew
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Almaraz RT, Tian Y, Bhattarcharya R, Tan E, Chen SH, Dallas MR, Chen L, Zhang Z, Zhang H, Konstantopoulos K, Yarema KJ. Metabolic flux increases glycoprotein sialylation: implications for cell adhesion and cancer metastasis. Mol Cell Proteomics 2012; 11:M112.017558. [PMID: 22457533 PMCID: PMC3394959 DOI: 10.1074/mcp.m112.017558] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/26/2012] [Indexed: 12/14/2022] Open
Abstract
This study reports a global glycoproteomic analysis of pancreatic cancer cells that describes how flux through the sialic acid biosynthetic pathway selectively modulates a subset of N-glycosylation sites found within cellular proteins. These results provide evidence that sialoglycoprotein patterns are not determined exclusively by the transcription of biosynthetic enzymes or the availability of N-glycan sequons; instead, bulk metabolic flux through the sialic acid pathway has a remarkable ability to increase the abundance of certain sialoglycoproteins while having a minimal impact on others. Specifically, of 82 glycoproteins identified through a mass spectrometry and bioinformatics approach, ≈ 31% showed no change in sialylation, ≈ 29% exhibited a modest increase, whereas ≈ 40% experienced an increase of greater than twofold. Increased sialylation of specific glycoproteins resulted in changes to the adhesive properties of SW1990 pancreatic cancer cells (e.g. increased CD44-mediated adhesion to selectins under physiological flow and enhanced integrin-mediated cell mobility on collagen and fibronectin). These results indicate that cancer cells can become more aggressively malignant by controlling the sialylation of proteins implicated in metastatic transformation via metabolic flux.
Collapse
Affiliation(s)
| | - Yuan Tian
- §Department of Pathology, The Johns Hopkins Medical Institution
| | - Rahul Bhattarcharya
- ¶Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland
| | - Elaine Tan
- ¶Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland
| | - Shih-Hsun Chen
- From the ‡Department of Chemical and Biomolecular Engineering
| | | | - Li Chen
- §Department of Pathology, The Johns Hopkins Medical Institution
| | - Zhen Zhang
- §Department of Pathology, The Johns Hopkins Medical Institution
| | - Hui Zhang
- §Department of Pathology, The Johns Hopkins Medical Institution
| | | | - Kevin J. Yarema
- ¶Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
207
|
Abstract
Sialic acids are a diverse family of monosaccharides widely expressed on all cell surfaces of vertebrates and so-called "higher" invertebrates, and on certain bacteria that interact with vertebrates. This overview surveys examples of biological roles of sialic acids in immunity, with emphasis on an evolutionary perspective. Given the breadth of the subject, the treatment of individual topics is brief. Subjects discussed include biophysical effects regulation of factor H; modulation of leukocyte trafficking via selectins; Siglecs in immune cell activation; sialic acids as ligands for microbes; impact of microbial and endogenous sialidases on immune cell responses; pathogen molecular mimicry of host sialic acids; Siglec recognition of sialylated pathogens; bacteriophage recognition of microbial sialic acids; polysialic acid modulation of immune cells; sialic acids as pathogen decoys or biological masks; modulation of immunity by sialic acid O-acetylation; sialic acids as antigens and xeno-autoantigens; antisialoglycan antibodies in reproductive incompatibility; and sialic-acid-based blood groups.
Collapse
Affiliation(s)
- Ajit Varki
- Glycobiology Research and Training Center, Department of Medicine, University of California at San Diego, La Jolla, 92093-0687, USA.
| | | |
Collapse
|
208
|
Haga Y, Ishii K, Hibino K, Sako Y, Ito Y, Taniguchi N, Suzuki T. Visualizing specific protein glycoforms by transmembrane fluorescence resonance energy transfer. Nat Commun 2012; 3:907. [DOI: 10.1038/ncomms1906] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/14/2012] [Indexed: 11/09/2022] Open
|
209
|
Möller H, Böhrsch V, Bentrop J, Bender J, Hinderlich S, Hackenberger CPR. Glycan-Specific Metabolic Oligosaccharide Engineering of C7-Substituted Sialic Acids. Angew Chem Int Ed Engl 2012; 51:5986-90. [DOI: 10.1002/anie.201108809] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
210
|
Möller H, Böhrsch V, Bentrop J, Bender J, Hinderlich S, Hackenberger CPR. Glycan-spezifisches metabolisches Oligosaccharid-Engineering von C7-substituierten Sialinsäuren. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
211
|
Park JK, Choi DJ, Kim SM, Choi HN, Park JW, Jang SJ, Choo YK, Lee CG, Park YI. Purification and characterization of a polysialic acid-specific sialidase from Pseudomonas fluorescens JK-0412. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0495-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
212
|
Pouilly S, Bourgeaux V, Piller F, Piller V. Evaluation of analogues of GalNAc as substrates for enzymes of the mammalian GalNAc salvage pathway. ACS Chem Biol 2012; 7:753-60. [PMID: 22276930 DOI: 10.1021/cb200511t] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Changes in glycosylation are correlated to disease and associated with differentiation processes. Experimental tools are needed to investigate the physiological implications of these changes either by labeling of the modified glycans or by blocking their biosynthesis. N-Acetylgalactosamine (GalNAc) is a monosaccharide widely encountered in glycolipids, proteoglycans, and glycoproteins; once taken up by cells it can be converted through a salvage pathway to UDP-GalNAc, which is further used by glycosyltransferases to build glycans. In order to find new reporter molecules able to integrate into cellular glycans, synthetic analogues of GalNAc were prepared and tested as substrates of both enzymes acting sequentially in the GalNAc salvage pathway, galactokinase 2 (GK2) and uridylpyrophosphorylase AGX1. Detailed in vitro assays identified the GalNAc analogues that can be transformed into sugar nucleotides and revealed several bottlenecks in the pathway: a modification on C6 is not tolerated by GK2; AGX1 can use all products of GK2 although with various efficiencies; and all analogues transformed into UDP-GalNAc analogues except those with alterations on C4 are substrates for the polypeptide GalNAc transferase T1. Besides, all analogues that could be incorporated in vitro into O-glycans were also integrated into cellular O-glycans as attested by their detection on the cell surface of CHO-ldlD cells. Altogether our results show that GalNAc analogues can help to better define structural requirements of the donor substrates for the enzymes involved in GalNAc metabolism, and those that are incorporated into cells will prove valuable for the development of novel diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Sabrina Pouilly
- Centre de
Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans and INSERM, Rue Charles Sadron,
F45071 Orléans Cedex 2, France
| | - Vanessa Bourgeaux
- Centre de
Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans and INSERM, Rue Charles Sadron,
F45071 Orléans Cedex 2, France
| | - Friedrich Piller
- Centre de
Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans and INSERM, Rue Charles Sadron,
F45071 Orléans Cedex 2, France
| | - Véronique Piller
- Centre de
Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans and INSERM, Rue Charles Sadron,
F45071 Orléans Cedex 2, France
| |
Collapse
|
213
|
Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl Microbiol Biotechnol 2012; 94:887-905. [PMID: 22526796 DOI: 10.1007/s00253-012-4040-1] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
Abstract
Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases.
Collapse
|
214
|
Chen L, Liang JF. Metabolic monosaccharides altered cell responses to anticancer drugs. Eur J Pharm Biopharm 2012; 81:339-45. [PMID: 22487054 DOI: 10.1016/j.ejpb.2012.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
Metabolic glycoengineering has been used to manipulate the glycochemistry of cell surfaces and thus the cell/cell interaction, cell adhesion, and cell migration. However, potential application of glycoengineering in pharmaceutical sciences has not been studied until recently. Here, we reported that Ac(4)ManNAc, an analog of N-acetyl-D-mannosamine (ManNAc), could affect cell responses to anticancer drugs. Although cells from different tissues and organs responded to Ac(4)ManNAc treatment differently, treated cells with increased sialic acid contents showed dramatically reduced sensitivity (up to 130 times) to anti-cancer drugs as tested on various drugs with distinct chemical structures and acting mechanisms. Neither increased P-glycoprotein activity nor decreased drug uptake was observed during the course of Ac(4)ManNAc treatment. However, greatly altered intracellular drug distributions were observed. Most intracellular daunorubicin was found in the perinuclear region, but not the expected nuclei in the Ac(4)ManNAc treated cells. Since sialoglycoproteins and gangliosides were synthesized in the Golgi, intracellular glycans affected intracellular signal transduction and drug distributions seem to be the main reason for Ac(4)ManNAc affected cell sensitivity to anticancer drugs. It was interesting to find that although Ac(4)ManNAc treated breast cancer cells (MDA-MB-231) maintained the same sensitivity to 5-Fluorouracil, the IC(50) value of 5-Fluorouracil to the same Ac(4)ManNAc treated normal cells (MCF-10A) was increased by more than 20 times. Thus, this Ac(4)ManNAc treatment enlarged drug response difference between normal and tumor cells provides a unique opportunity to further improve the selectivity and therapeutic efficiency of anticancer drugs.
Collapse
Affiliation(s)
- Long Chen
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | | |
Collapse
|
215
|
Key JA, Li C, Cairo CW. Detection of Cellular Sialic Acid Content Using Nitrobenzoxadiazole Carbonyl-Reactive Chromophores. Bioconjug Chem 2012; 23:363-71. [DOI: 10.1021/bc200276k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jessie A. Key
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Caishun Li
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
216
|
Pietrancosta N, Anne C, Prescher H, Ruivo R, Sagné C, Debacker C, Bertrand HO, Brossmer R, Acher F, Gasnier B. Successful prediction of substrate-binding pocket in SLC17 transporter sialin. J Biol Chem 2012; 287:11489-97. [PMID: 22334707 DOI: 10.1074/jbc.m111.313056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secondary active transporters from the SLC17 protein family are required for excitatory and purinergic synaptic transmission, sialic acid metabolism, and renal function, and several members are associated with inherited neurological or metabolic diseases. However, molecular tools to investigate their function or correct their genetic defects are limited or absent. Using structure-activity, homology modeling, molecular docking, and mutagenesis studies, we have located the substrate-binding site of sialin (SLC17A5), a lysosomal sialic acid exporter also recently implicated in exocytotic release of aspartate. Human sialin is defective in two inherited sialic acid storage diseases and is responsible for metabolic incorporation of the dietary nonhuman sialic acid N-glycolylneuraminic acid. We built cytosol-open and lumen-open three-dimensional models of sialin based on weak, but significant, sequence similarity with the glycerol-3-phosphate and fucose permeases from Escherichia coli, respectively. Molecular docking of 31 synthetic sialic acid analogues to both models was consistent with inhibition studies. Narrowing the sialic acid-binding site in the cytosol-open state by two phenylalanine to tyrosine mutations abrogated recognition of the most active analogue without impairing neuraminic acid transport. Moreover, a pilot virtual high-throughput screening of the cytosol-open model could identify a pseudopeptide competitive inhibitor showing >100-fold higher affinity than the natural substrate. This validated model of human sialin and sialin-guided models of other SLC17 transporters should pave the way for the identification of inhibitors, glycoengineering tools, pharmacological chaperones, and fluorescent false neurotransmitters targeted to these proteins.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Centre National de la Recherche Scientifique, UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, F-75006 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Dumont A, Malleron A, Awwad M, Dukan S, Vauzeilles B. Click-Mediated Labeling of Bacterial Membranes through Metabolic Modification of the Lipopolysaccharide Inner Core. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
218
|
Dumont A, Malleron A, Awwad M, Dukan S, Vauzeilles B. Click-mediated labeling of bacterial membranes through metabolic modification of the lipopolysaccharide inner core. Angew Chem Int Ed Engl 2012; 51:3143-6. [PMID: 22323101 DOI: 10.1002/anie.201108127] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/23/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Audrey Dumont
- Aix Marseille Université, Laboratoire de Chimie, Bactérienne (UMR 7283), Institut de Microbiologie de la Méditerranée, CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | | | | | | | | |
Collapse
|
219
|
Pouilly S, Piller V, Piller F. Metabolic glycoengineering through the mammalian GalNAc salvage pathway. FEBS J 2012; 279:586-98. [PMID: 22151230 DOI: 10.1111/j.1742-4658.2011.08448.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
GalNAc is the initial sugar of mucin-type O-glycans, and is a component of several tumor antigens. The aim of this work was to determine whether synthetic GalNAc analogs could be taken up from the medium and incorporated into complex cellular O-glycans. The cell line employed was CHO ldlD, which can only use GalNAc and Gal present in the medium for the synthesis of its glycans. All GalNAc analogs with modified N-acyl groups (N-formyl, N-propionyl, N-glycolyl, N-azidoacetyl, N-bromoacetyl, and N-chloroacetyl) were incorporated into cellular O-glycans, although to different extents. The GalNAc analogs linked to Ser or Thr could be extended by the β3-galactosyltransferase glycoprotein-N-acetylgalactosamine 3β-galactosyl transferase 1 in vitro and in vivo and by α6-sialyltransferase α-N-acetylgalactosaminide-α-2,6-sialyltransferase 1. At the surface of CHO ldlD cells, all analogs were incorporated into sialylated O-glycan structures like those present on wild-type CHO cells, indicating that the GalNAc analogs do not change the overall structure of core-1 O-glycans. In addition, this study shows that the unnatural synthetic GalNAc analogs can be incorporated into human tumor cells, and that a tumor antigen modified by an analog can be readily detected by a specific antiserum. GalNAc analogs are therefore potential targets for tumor immunotherapy.
Collapse
Affiliation(s)
- Sabrina Pouilly
- Centre de Biophysique Moléculaire, Université d'Orléans & INSERM, France
| | | | | |
Collapse
|
220
|
Li C, Kurniyati, Hu B, Bian J, Sun J, Zhang W, Liu J, Pan Y, Li C. Abrogation of neuraminidase reduces biofilm formation, capsule biosynthesis, and virulence of Porphyromonas gingivalis. Infect Immun 2012; 80:3-13. [PMID: 22025518 PMCID: PMC3255687 DOI: 10.1128/iai.05773-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/18/2011] [Indexed: 01/27/2023] Open
Abstract
The oral bacterium Porphyromonas gingivalis is a key etiological agent of human periodontitis, a prevalent chronic disease that affects up to 80% of the adult population worldwide. P. gingivalis exhibits neuraminidase activity. However, the enzyme responsible for this activity, its biochemical features, and its role in the physiology and virulence of P. gingivalis remain elusive. In this report, we found that P. gingivalis encodes a neuraminidase, PG0352 (SiaPg). Transcriptional analysis showed that PG0352 is monocistronic and is regulated by a sigma70-like promoter. Biochemical analyses demonstrated that SiaPg is an exo-α-neuraminidase that cleaves glycosidic-linked sialic acids. Cryoelectron microscopy and tomography analyses revealed that the PG0352 deletion mutant (ΔPG352) failed to produce an intact capsule layer. Compared to the wild type, in vitro studies showed that ΔPG352 formed less biofilm and was less resistant to killing by the host complement. In vivo studies showed that while the wild type caused a spreading type of infection that affected multiple organs and all infected mice were killed, ΔPG352 only caused localized infection and all animals survived. Taken together, these results demonstrate that SiaPg is an important virulence factor that contributes to the biofilm formation, capsule biosynthesis, and pathogenicity of P. gingivalis, and it can potentially serve as a new target for developing therapeutic agents against P. gingivalis infection.
Collapse
Affiliation(s)
- Chen Li
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Kurniyati
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
| | - Bo Hu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Texas, USA
| | - Jiang Bian
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
| | - Jianlan Sun
- Department of Pathology and Anatomical Sciences
| | - Weiyan Zhang
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, New York, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Texas, USA
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Chunhao Li
- Department of Oral Biology, The State University of New York at Buffalo, New York, USA
| |
Collapse
|
221
|
Yuk HJ, Curtis-Long MJ, Ryu HW, Jang KC, Seo WD, Kim JY, Kang KY, Park KH. Pterocarpan profiles for soybean leaves at different growth stages and investigation of their glycosidase inhibitions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12683-90. [PMID: 21988571 DOI: 10.1021/jf203326c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Soybean leaves are eaten as seasonal edible greens in Korea. Analysis of the ethyl acetate extract of these leaves showed that it exhibited potent and selective neuraminidase inhibition, which began at the R3 stage and peaked at R7. Ten pterocarpans, including the new 6a-hydroxypterocarpan 10, were isolated from soybean leaves and their inhibition activities tested against a range of glycosidases. The relationship between structure and enzyme inhibition was investigated: 6a-hydroxypterocarpans exhibited much higher inhibition against neuraminidase (IC(50) = 2.4-89.4 μM) than α-glucosidase (IC(50) = 90.4- >100 μM). Glyceollin VII (7) displayed 40-fold greater activity (IC(50) = 2.4 μM) against neuraminidase than α-glucosidase (IC(50) = 90.4 μM). On the other hand, coumestanes (1-3) were good α-glucosidase inhibitors (IC(50) = 6.0-42.6 μM). In kinetic analysis, the most potent neuraminidase inhibitors (5-10) were noncompetitive. HPLC analysis indicated that most pterocarpan synthesis began from the R3 stage, and a rapid change of pterocarpan concentrations was observed between the R4 and R7 stages.
Collapse
Affiliation(s)
- Heung Joo Yuk
- Division of Applied Life Science (BK21 Program), IALS, Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Almaraz RT, Aich U, Khanna HS, Tan E, Bhattacharya R, Shah S, Yarema KJ. Metabolic oligosaccharide engineering with N-Acyl functionalized ManNAc analogs: cytotoxicity, metabolic flux, and glycan-display considerations. Biotechnol Bioeng 2011; 109:992-1006. [PMID: 22068462 DOI: 10.1002/bit.24363] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/19/2011] [Accepted: 10/24/2011] [Indexed: 12/25/2022]
Abstract
Metabolic oligosaccharide engineering (MOE) is a maturing technology capable of modifying cell surface sugars in living cells and animals through the biosynthetic installation of non-natural monosaccharides into the glycocalyx. A particularly robust area of investigation involves the incorporation of azide functional groups onto the cell surface, which can then be further derivatized using "click chemistry." While considerable effort has gone into optimizing the reagents used for the azide ligation reactions, less optimization of the monosaccharide analogs used in the preceding metabolic incorporation steps has been done. This study fills this void by reporting novel butanoylated ManNAc analogs that are used by cells with greater efficiency and less cytotoxicity than the current "gold standard," which are peracetylated compounds such as Ac₄ ManNAz. In particular, tributanoylated, N-acetyl, N-azido, and N-levulinoyl ManNAc analogs with the high flux 1,3,4-O-hydroxyl pattern of butanoylation were compared with their counterparts having the pro-apoptotic 3,4,6-O-butanoylation pattern. The results reveal that the ketone-bearing N-levulinoyl analog 3,4,6-O-Bu₃ ManNLev is highly apoptotic, and thus is a promising anti-cancer drug candidate. By contrast, the azide-bearing analog 1,3,4-O-Bu₃ ManNAz effectively labeled cellular sialoglycans at concentrations ∼3- to 5-fold lower (e.g., at 12.5-25 µM) than Ac₄ ManNAz (50-150 µM) and exhibited no indications of apoptosis even at concentrations up to 400 µM. In summary, this work extends emerging structure activity relationships that predict the effects of short chain fatty acid modified monosaccharides on mammalian cells and also provides a tangible advance in efforts to make MOE a practical technology for the medical and biotechnology communities.
Collapse
Affiliation(s)
- Ruben T Almaraz
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, 5029 Robert H. & Clarice Smith Building, 400 North Broadway, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
223
|
Granell AEVB, Palter KB, Akan I, Aich U, Yarema KJ, Betenbaugh MJ, Thornhill WB, Recio-Pinto E. DmSAS is required for sialic acid biosynthesis in cultured Drosophila third instar larvae CNS neurons. ACS Chem Biol 2011; 6:1287-95. [PMID: 21919466 DOI: 10.1021/cb200238k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sialylation is an important carbohydrate modification of glycoconjugates that has been shown to modulate many cellular/molecular interactions in vertebrates. In Drosophila melanogaster (Dm), using sequence homology, several enzymes of the sialylation pathway have been cloned and their function tested in expression systems. Here we investigated whether sialic acid incorporation in cultured Dm central nervous system (CNS) neurons required endogenously expressed Dm sialic acid synthase (DmSAS). We compared neurons derived from wild type Dm larvae with those containing a DmSAS mutation (148 bp deletion). The ability of these cells to produce Sia5NAz (sialic acid form) from Ac(4)ManNAz (azide-derivatized N-acetylmannosamine) and incorporate it into their glycoconjugates was measured by tagging the azide group of Sia5NAz with fluorescent agents via Click-iT chemistry. We found that most of the wild type Dm CNS neurons incorporated Sia5NAz into their glycoconjugates. Sialic acid incorporation was higher at the soma than at the neurite and could also be detected at perinuclear regions and the plasma membrane. In contrast, neurons from the DmSAS mutant did not incorporate Sia5NAz unless DmSAS was reintroduced (rescue mutant). Most of the neurons expressed α2,6-sialyltransferase. These results confirm that the mutation was a null mutation and that no redundant sialic acid biosynthetic activity exists in Dm cells, i.e., there is only one DmSAS. They also provide the strongest proof to date that DmSAS is a key enzyme in the biosynthesis of sialic acids in Dm CNS neurons, and the observed subcellular distribution of the newly synthesized sialic acids offers insights into their biological function.
Collapse
Affiliation(s)
| | - Karen B. Palter
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Ihan Akan
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | | | | | | | - William B. Thornhill
- Department of Biological Sciences, Fordham University, Bronx, New York 10458, United States
| | | |
Collapse
|
224
|
Metabolic oligosaccharide engineering: implications for selectin-mediated adhesion and leukocyte extravasation. Ann Biomed Eng 2011; 40:806-15. [PMID: 22037949 DOI: 10.1007/s10439-011-0450-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/19/2011] [Indexed: 10/16/2022]
Abstract
Metabolic oligosaccharide engineering is an emerging technology wherein non-natural monosaccharide analogs are exogenously supplied to living cells and are biosynthetically incorporated into cell surface glycans. A recently reported application of this methodology employs fluorinated analogs of ManNAc, GlcNAc, and GalNAc to modulate selectin-mediated adhesion associated with leukocyte extravasation and cancer cell metastasis. This monograph outlines possible mechanisms underlying the altered adhesion observed in analog-treated cells; these range from the most straightforward explanation (e.g., structural changes to the selectin ligands ablate interaction with their receptors) to the alternative mechanism where the analogs inhibit or otherwise perturb ligand production to more indirect mechanisms (e.g., changes to the biophysical properties of the selectin binding partner, the nanoenviroment of the binding partners, or the entire cell surface).
Collapse
|
225
|
Woo HS, Kim DW, Curtis-Long MJ, Lee BW, Lee JH, Kim JY, Kang JE, Park KH. Potent inhibition of bacterial neuraminidase activity by pterocarpans isolated from the roots of Lespedeza bicolor. Bioorg Med Chem Lett 2011; 21:6100-3. [DOI: 10.1016/j.bmcl.2011.08.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/02/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
|
226
|
Iwasaki Y, Matsuno H. Metabolic Delivery of Methacryloyl Groups on Living Cells and Cell Surface Modification via Thiol-Ene “Click” Reaction. Macromol Biosci 2011; 11:1478-83. [DOI: 10.1002/mabi.201100242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/02/2011] [Indexed: 01/26/2023]
|
227
|
Towards in vivo imaging of cancer sialylation. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2011; 2011:283497. [PMID: 21941647 PMCID: PMC3175693 DOI: 10.1155/2011/283497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/14/2011] [Indexed: 11/17/2022]
Abstract
In vivo assessment of tumor glucose catabolism by positron emission tomography (PET) has become a highly valued study in the medical management of cancer. Emerging technologies offer the potential to evaluate in vivo another aspect of cancer carbohydrate metabolism related to the increased anabolic use of monosaccharides like sialic acid (Sia). Sia is used for the synthesis of sialylated oligosaccharides in the cell surface that in cancer cells are overexpressed and positively associated to malignancy and worse prognosis because of their role in invasion and metastasis. This paper addresses the key points of the different strategies that have been developed to image Sia expression in vivo and the perspectives to translate it from the bench to the bedside where it would offer the clinician highly valued complementary information on cancer carbohydrate metabolism that is currently unavailable in vivo.
Collapse
|
228
|
Bond MR, Zhang H, Kim J, Yu SH, Yang F, Patrie SM, Kohler JJ. Metabolism of diazirine-modified N-acetylmannosamine analogues to photo-cross-linking sialosides. Bioconjug Chem 2011; 22:1811-23. [PMID: 21838313 DOI: 10.1021/bc2002117] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Terminal sialic acid residues often mediate the interactions of cell surface glycoconjugates. Sialic acid-dependent interactions typically exhibit rapid dissociation rates, precluding the use of traditional biological techniques for complex isolation. To stabilize these transient interactions, we employ a targeted photo-cross-linking approach in which a diazirine photo-cross-linker is incorporated into cell surface sialylated glycoconjugates through the use of metabolic oligosaccharide engineering. We describe three diazirine-modified N-acetylmannosamine (ManNAc) analogues in which the length of the linker between the pyranose ring and the diazirine was varied. These analogues were each metabolized to their respective sialic acid counterparts, which were added to both glycoproteins and glycolipids. Diazirine-modified sialic acid analogues could be incorporated into both α2-3 and α2-6 linkages. Upon exposure to UV irradiation, diazirine-modified glycoconjugates were covalently cross-linked to their interaction partners. We demonstrate that all three diazirine-modified analogues were capable of competing with endogeneous sialic acid, albeit to varying degrees. We found that larger analogues were less efficiently metabolized, yet could still function as effective cross-linkers. Notably, the addition of the diazirine substituent interferes with metabolism of ManNAc analogues to glycans other than sialosides, providing fidelity to selectively incorporate the cross-linker into sialylated molecules. These compounds are nontoxic and display only minimal growth inhibition at the concentrations required for cross-linking studies. This report provides essential information for the deployment of photo-cross-linking analogues to capture and study ephemeral, yet essential, sialic acid-mediated interactions.
Collapse
Affiliation(s)
- Michelle R Bond
- Department of Chemistry, Stanford University , Stanford, CA 94305, United States
| | | | | | | | | | | | | |
Collapse
|
229
|
Hurum DC, Rohrer JS. Five-minute glycoprotein sialic acid determination by high-performance anion exchange chromatography with pulsed amperometric detection. Anal Biochem 2011; 419:67-9. [PMID: 21872565 DOI: 10.1016/j.ab.2011.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Glycoprotein sialylation analysis is a common analytical step in characterizing biotherapeutic products and expression experiments to optimize production. In this article, a high-throughput (5-min) high-performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD)-based analytical method for glycoprotein sialic acid determination is described. Results from this method are compared with both published HPAE-PAD and 1,2-diamino-4,5-methylenedioxybenzene (DMB) derivatization followed by ultra high-performance liquid chromatography fluorescence detection (UHPLC-FLD) assays. The quantified sialic acid amounts agree with prior HPAE-PAD analyses within replicate error and with UHPLC-FLD within an average of 24%, which are equivalent results based on assay reproducibility.
Collapse
Affiliation(s)
- Deanna C Hurum
- Dionex Products, Thermo Fisher Scientific, Sunnyvale, CA 94085, USA
| | | |
Collapse
|
230
|
Deciphering glycan linkages involved in Jurkat cell interactions with gold-coated nanofibers via sugar-displayed thiols. Bioorg Med Chem Lett 2011; 21:4980-4. [PMID: 21684742 DOI: 10.1016/j.bmcl.2011.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 01/26/2023]
Abstract
Metabolic oligosaccharide engineering (MOE) provides a method to install novel chemical functional groups into the glycocalyx of living cells. In this Letter we use this technology to compare the impact of replacing natural sialic acid, GalNAc, and GlcNAc with their thiol-bearing counterparts in Jurkat and HL-60 cells. When incubated in the presence of gold-coated nanofibers, only Jurkat cells incubated with Ac(5)ManNTGc-an analogue that installs thiols into sialosides-experienced a distinctive 'spreading' morphology. The comparison of Ac(5)ManNTGc with Ac(5)GalNTGc and Ac(5)GlcNTGc in the two cell lines implicated sialosides of N-linked glycans as critical molecular mediators of the unusual responses evoked in the Jurkat line.
Collapse
|
231
|
Möller H, Böhrsch V, Lucka L, Hackenberger CPR, Hinderlich S. Efficient metabolic oligosaccharide engineering of glycoproteins by UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) knock-down. MOLECULAR BIOSYSTEMS 2011; 7:2245-51. [PMID: 21584309 DOI: 10.1039/c1mb05059a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improving the accessibility and functions of therapeutic and diagnostic glycoproteins is one of the major goals of glycobiotechnology. Here we present that stable knock-down of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme in the sialic acid biosynthetic pathway, dramatically increases incorporation of N-acetylmannosamine analogues into glycoproteins of HEK293 cells. By means of these GNE-deficient cells highly sialylated glycoproteins can efficiently be decorated with reactive functional groups, which can be employed in bioorthogonal functionalization strategies for fluorescence labelling or biotinylation.
Collapse
Affiliation(s)
- Heinz Möller
- Beuth Hochschule für Technik Berlin (University of Applied Sciences), Department of Life Sciences and Technology, Seestrasse 64, 13347 Berlin, Germany
| | | | | | | | | |
Collapse
|
232
|
Whitman CM, Yang F, Kohler JJ. Modified GM3 gangliosides produced by metabolic oligosaccharide engineering. Bioorg Med Chem Lett 2011; 21:5006-10. [PMID: 21620696 DOI: 10.1016/j.bmcl.2011.04.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/25/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
Metabolic oligosaccharide engineering is powerful approach to altering the structure of cellular sialosides. This method relies on culturing cells with N-acetylmannosamine (ManNAc) analogs that are metabolized to their sialic acid counterparts and added to glycoproteins and glycolipids. Here we employed two cell lines that are deficient in ManNAc biosynthesis and examined their relative abilities to metabolize a panel of ManNAc analogs to sialosides. In addition to measuring global sialoside production, we also examined biosynthesis of the sialic acid-containing glycolipid, GM3. We discovered that the two cell lines differ in their ability to discriminate among the variant forms of ManNAc. Further, our data suggest that modified forms of sialic acid may be preferentially incorporated into certain sialosides and excluded from others. Taken together, our results demonstrate that global analysis of sialoside production can obscure sialoside-specific differences. These findings have implications for downstream applications of metabolic oligosaccharide engineering, including imaging and proteomics.
Collapse
Affiliation(s)
- Chad M Whitman
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9185, United States
| | | | | |
Collapse
|
233
|
Kim YS, Ryu YB, Curtis-Long MJ, Yuk HJ, Cho JK, Kim JY, Kim KD, Lee WS, Park KH. Flavanones and rotenoids from the roots of Amorpha fruticosa L. that inhibit bacterial neuraminidase. Food Chem Toxicol 2011; 49:1849-56. [PMID: 21571029 DOI: 10.1016/j.fct.2011.04.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/29/2011] [Accepted: 04/30/2011] [Indexed: 10/18/2022]
Abstract
Neuraminidase is a proven target in anti-viral drug development. It also appears to be important for infection by certain pathogenic bacteria and has been implicated in biofilm formation. Based on activity-guided fractionation, the acetone extract of Amorpha fruticosa roots gave four flavanones 1-4 and three rotenoids 5-7 which were identified as amoradicin (1), amorisin (2), isoamoritin (3), amoricin (4), amorphigeni (5), dalbinol (6), and 6-ketodehydroamorphigenin (7), respectively. All isolated inhibitors showed strong neuraminidase inhibition with IC₅₀s between 0.12 and 22.03 μM. In particular, amorisin 2 exhibited 120 nM IC(₅₀, which is 30-fold more potent than the positive control, quercetin. In addition, this is the first report detailing rotenoids (IC₅₀ = 8.34-16.74 μM) exhibiting neuraminidase inhibition. Kinetic analysis revealed that all inhibitors were noncompetitive. The most active neuraminidase inhibitors (2, 3, 5, 6) were proven to be present in the native root in high quantities by HPLC. Finally, at concentrations where no toxicity was observed, 3 and 6 inhibited Pseudomonas aeruginosa biofilm production. 29.7% and 21.0% inhibition respectively was observed at 25 μΜ.
Collapse
Affiliation(s)
- Young Soo Kim
- Division of Applied Life Science (BK21 Program), IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Du J, Che PL, Wang ZY, Aich U, Yarema KJ. Designing a binding interface for control of cancer cell adhesion via 3D topography and metabolic oligosaccharide engineering. Biomaterials 2011; 32:5427-37. [PMID: 21549424 DOI: 10.1016/j.biomaterials.2011.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/05/2011] [Indexed: 01/12/2023]
Abstract
This study combines metabolic oligosaccharide engineering (MOE), a technology where the glycocalyx of living cells is endowed with chemical features not normally found in sugars, with custom-designed three-dimensional biomaterial substrates to enhance the adhesion of cancer cells and control their morphology and gene expression. Specifically, Ac(5)ManNTGc, a thiol-bearing analog of N-acetyl-d-mannosamine (ManNAc) was used to introduce thiolated sialic acids into the glycocalyx of human Jurkat T-lymphoma derived cells. In parallel 2D films and 3D electrospun nanofibrous scaffolds were prepared from polyethersulfone (PES) and (as controls) left unmodified or aminated. Alternately, the materials were malemided or gold-coated to provide bio-orthogonal binding partners for the thiol groups newly expressed on the cell surface. Cell attachment was modulated by both the topography of the substrate surface and by the chemical compatibility of the binding interface between the cell and the substrate; a substantial increase in binding for normally non-adhesive Jurkat line for 3D scaffold compared to 2D surfaces with an added degree of adhesion resulting from chemoselective binding to malemidede-derivatived or gold-coated surfaces. In addition, the morphology of the cells attached to the 3D scaffolds via MOE-mediated adhesion was dramatically altered and the expression of genes involved in cell adhesion changed in a time-dependent manner. This study showed that cell adhesion could be enhanced, gene expression modulated, and cell fate controlled by introducing the 3D topograhical cues into the growth substrate and by creating a glycoengineered binding interface where the chemistry of both the cell surface and biomaterials scaffold was controlled to facilitate a new mode of carbohydrate-mediated adhesion.
Collapse
Affiliation(s)
- Jian Du
- Department of Biomedical Engineering, The Johns Hopkins University,400 North Broadway, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
235
|
Möller H, Böhrsch V, Hackenberger CPR, Hinderlich S. N-Azidoacetylmannosamine and N-Azidoacetylgalactosamine Incorporation into N-Glycans of Recombinantly Expressed Human Lactotransferrin by Metabolic Oligosaccharide Engineering. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.608140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
236
|
Wang X, Ding B, Yu J, Yang J. Large-scale fabrication of two-dimensional spider-web-like gelatin nano-nets via electro-netting. Colloids Surf B Biointerfaces 2011; 86:345-52. [PMID: 21550787 DOI: 10.1016/j.colsurfb.2011.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 11/30/2022]
Abstract
For the first time, two-dimensional (2D) gelatin nano-nets are fabricated by regulating the solution properties and several process parameters during electrospinning/electro-netting. The spider-web-like nano-nets that comprise interlinked one-dimensional (1D) ultrathin nanowires (10-35 nm) are stacked layer-by-layer and widely distributed in the three-dimensional (3D) porous membranes. The final morphology of the gelatin nano-nets, including nanowire diameter, area density and pore-width of the nano-nets, is highly dependent on the solution concentration, salt concentration, kinds of solvents, applied voltage, ambient temperature and relative humidity (RH). The occurrence of rapid phase separation on the splitting-film and the formation of hydrogen bond among gelatin molecules during electro-netting are proposed as the possible mechanisms for the formation of these spider-web-like nano-nets.
Collapse
Affiliation(s)
- Xianfeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | | | | | | |
Collapse
|
237
|
Neves AA, Stöckmann H, Harmston RR, Pryor HJ, Alam IS, Ireland‐Zecchini H, Lewis DY, Lyons SK, Leeper FJ, Brindle KM. Imaging sialylated tumor cell glycans
in vivo. FASEB J 2011; 25:2528-37. [DOI: 10.1096/fj.10-178590] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- André A. Neves
- Cancer Research UKCambridge Research InstituteLi Ka Shing CentreCambridgeUK
| | - Henning Stöckmann
- Cancer Research UKCambridge Research InstituteLi Ka Shing CentreCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Helen J. Pryor
- Cancer Research UKCambridge Research InstituteLi Ka Shing CentreCambridgeUK
| | - Israt S. Alam
- Cancer Research UKCambridge Research InstituteLi Ka Shing CentreCambridgeUK
| | | | - David Y. Lewis
- Cancer Research UKCambridge Research InstituteLi Ka Shing CentreCambridgeUK
| | - Scott K. Lyons
- Cancer Research UKCambridge Research InstituteLi Ka Shing CentreCambridgeUK
| | | | - Kevin M. Brindle
- Cancer Research UKCambridge Research InstituteLi Ka Shing CentreCambridgeUK
- Department of ChemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
238
|
Morley TJ, Withers SG. Chemoenzymatic synthesis and enzymatic analysis of 8-modified cytidine monophosphate-sialic acid and sialyl lactose derivatives. J Am Chem Soc 2010; 132:9430-7. [PMID: 20557044 DOI: 10.1021/ja102644a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The sialic acids found on eukaryotic glycans have remarkably diverse core structures, with a range of modifications at C5, C7, C8 and C9. These carbohydrates have been found to play key roles in cell-cell interactions within eukaryotes and often serve as the initial site of attachment for viruses and bacteria. Consequently simple changes to the structures of the sialic acids can result in profoundly different and often opposing biological effects. Of particular importance are modifications at the 8-position. These include O-acetylation, carried out by an acetyl transferase, and particularly polysialylation, catalyzed by a polysialyltransferase. As part of a structural and mechanistic study of sialyltransferases and polysialyltransferases, access was needed to sialic acid-containing oligosaccharides that are modified at the 8-position of the sialic acid to render this center non-nucleophilic. The free 8-modified sialic acid analogues were synthesized using a concise, divergent chemical synthetic approach, and each was converted to its cytidine monophosphate (CMP) sugar donor form using a bacterial CMP-sialic acid synthetase. The transfer of each of the modified donors to lactose by each of two sialyltransferases was investigated, and kinetic parameters were determined. These yielded insights into the roles of interactions occurring at that position during enzymatic sialyl transfer. A transferase from Campylobacter jejuni was identified as the most suitable for the enzymatic coupling and utilized to synthesize the 8''-modified sialyl lactose trisaccharides in multimilligram amounts.
Collapse
Affiliation(s)
- Thomas J Morley
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | | |
Collapse
|
239
|
Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2010; 40:301-70. [DOI: 10.1007/s00726-010-0707-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023]
|
240
|
Bond MR, Whitman CM, Kohler JJ. Metabolically incorporated photocrosslinking sialic acid covalently captures a ganglioside-protein complex. MOLECULAR BIOSYSTEMS 2010; 6:1796-9. [PMID: 20625600 DOI: 10.1039/c0mb00069h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
When photoirradiated, an unnatural sialic acid analog can covalently capture the complex formed by ganglioside GM1 and cholera toxin subunit B.
Collapse
Affiliation(s)
- Michelle R Bond
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9185, USA.
| | | | | |
Collapse
|
241
|
Du J, Yarema KJ. Carbohydrate engineered cells for regenerative medicine. Adv Drug Deliv Rev 2010; 62:671-82. [PMID: 20117158 PMCID: PMC3032398 DOI: 10.1016/j.addr.2010.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/12/2010] [Accepted: 01/24/2010] [Indexed: 12/16/2022]
Abstract
Carbohydrates are integral components of the stem cell niche on several levels; proteoglycans are a major constituent of the extracellular matrix (ECM) surrounding a cell, glycosoaminoglycans (GAGs) help link cells to the ECM and the neighboring cells, and small but informationally-rich oligosaccharides provide a "sugar code" that identifies each cell and provides it with unique functions. This article samples roles that glycans play in development and then describes how metabolic glycoengineering - a technique where monosaccharide analogs are introduced into the metabolic pathways of a cell and are biosynthetically incorporated into the glycocalyx - is overcoming many of the long-standing barriers to manipulating carbohydrates in living cells and tissues and is becoming an intriguing new tool for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jian Du
- Department of Biomedical Engineering, The Johns Hopkins University
| | - Kevin J. Yarema
- Department of Biomedical Engineering, The Johns Hopkins University
| |
Collapse
|
242
|
Development of delivery methods for carbohydrate-based drugs: controlled release of biologically-active short chain fatty acid-hexosamine analogs. Glycoconj J 2010; 27:445-59. [PMID: 20458533 DOI: 10.1007/s10719-010-9292-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/10/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
Carbohydrates are attractive candidates for drug development because sugars are involved in many, if not most, complex human diseases including cancer, immune dysfunction, congenital disorders, and infectious diseases. Unfortunately, potential therapeutic benefits of sugar-based drugs are offset by poor pharmacologic properties that include rapid serum clearance, poor cellular uptake, and relatively high concentrations required for efficacy. To address these issues, pilot studies are reported here where 'Bu(4)ManNAc', a short chain fatty acid-monosaccharide hybrid molecule with anti-cancer activities, was encapsulated in polyethylene glycol-sebacic acid (PEG-SA) polymers. Sustained release of biologically active compound was achieved for over a week from drug-laden polymer formulated into microparticles thus offering a dramatic improvement over the twice daily administration currently used for in vivo studies. In a second strategy, a tributanoylated ManNAc analog (3,4,6-O-Bu(3)ManNAc) with anti-cancer activities was covalently linked to PEG-SA and formulated into nanoparticles suitable for drug delivery; once again release of biologically active compound was demonstrated.
Collapse
|
243
|
Yu SH, Bond MR, Whitman CM, Kohler JJ. Metabolic labeling of glycoconjugates with photocrosslinking sugars. Methods Enzymol 2010; 478:541-62. [PMID: 20816498 DOI: 10.1016/s0076-6879(10)78026-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein-carbohydrate interactions play essential roles in a variety of biological processes. This class of interactions is particularly important in development, immunology, infection, and carcinogenesis. However, the transient nature of glycan-dependent interactions hampers efforts to detect and characterize these complexes. Photocrosslinking is emerging as a powerful tool to discover and study glycan-dependent complexes. Through the use of photocrosslinking groups, UV irradiation can be employed to introduce a covalent bond between two transiently interacting molecules. Here we describe the use of metabolic oligosaccharide engineering to incorporate a photocrosslinkable sugar into cellular glycoconjugates and the use of this photocrosslinker to covalently capture glycan-mediated interactions.
Collapse
Affiliation(s)
- Seok-Ho Yu
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | | | |
Collapse
|
244
|
Boons GJ. Bioorthogonal chemical reporter methodology for visualization, isolation and analysis of glycoconjugates. CARBOHYDRATE CHEMISTRY 2010; 36:152-167. [PMID: 21785678 PMCID: PMC3142093 DOI: 10.1039/9781849730891-00152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The recent development of metabolic oligosaccharide engineering combined with bioorthogonal reactions is providing unique opportunities to detect, image, and isolate glycoconjugates of living cells, tissues, and model organisms. In this methodology, exogenously-supplied non-natural sugars are fed to cells and employed by the biosynthetic machinery for the biosynthesis of neoglycoconjugates. In this way, reactive functional groups such as ketones, azides, and thiols have been incorporated into sialic acid, galactosamine, glucosamine, and fucose moieties of glycoconjugates. A range of bioorthogonal reactions have been described that functionalize the chemical 'tags' for imaging, isolation, and drug delivery.
Collapse
Affiliation(s)
- Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens Georgia 30606, USA
| |
Collapse
|