201
|
Controlled and Impaired Mitochondrial Quality in Neurons: Molecular Physiology and Prospective Pharmacology. Pharmacol Res 2015; 99:410-24. [DOI: 10.1016/j.phrs.2015.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/27/2015] [Accepted: 03/27/2015] [Indexed: 01/08/2023]
|
202
|
Optical coherence tomography findings in Huntington's disease: a potential biomarker of disease progression. J Neurol 2015; 262:2457-65. [PMID: 26233693 DOI: 10.1007/s00415-015-7869-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
Previous reports of ocular abnormalities in Huntington's disease (HD) have detailed eye movement disorders. The objective of this case-control study was to investigate optic nerve and macular morphology in HD using optical coherence tomography (OCT). A total of 26 HD patients and 29 controls underwent a thorough ophthalmic examination including spectral domain OCT scans of the macula and peripapillary retinal nerve fibre layer (RNFL). Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scale motor scores were acquired for HD patients. Temporal RNFL thickness was significantly reduced in the HD group (62.3 vs. 69.8 μm, p = 0.005), and there was a significant negative correlation between temporal RNFL thickness and disease duration (R (2) = -0.51, p = 0.04). Average peripapillary RNFL thickness was not significantly different between the HD and control groups. There was a significant negative correlation between macular volume and disease duration (R (2) = -0.71, p = 0.002), and motor scores (R (2) = -0.56, p = 0.01). Colour vision was significantly poorer in the HD group. Temporal RNFL is preferentially thinned in HD patients, possibly implicating mitochondrial dysfunction as the temporal RNFL is reduced in the patients with some mitochondrial disorders, including Leber's hereditary optic neuropathy. The correlation between the decrease in macular volume and temporal RNFL, and increasing disease severity suggests that OCT may be a useful biomarker for disease progression in HD. Larger, longitudinal studies are required.
Collapse
|
203
|
Abstract
Huntington disease (HD) is an autosomal dominant inherited neurodegenerative disease characterized by progressive motor, behavioral, and cognitive decline, culminating in death. It is caused by an expanded CAG repeat in the huntingtin gene. Even years before symptoms become overt, mutation carriers show subtle but progressive striatal and cerebral white matter atrophy by volumetric MRI. Although there is currently no direct treatment of HD, management options are available for several symptoms. A better understanding of HD pathogenesis, and more sophisticated clinical trials using newer biomarkers, may lead to meaningful treatments. This article reviews the current knowledge of HD pathogenesis and treatment.
Collapse
Affiliation(s)
- Praveen Dayalu
- Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Roger L Albin
- Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; Neuroscience Research, Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, MI 48105, USA
| |
Collapse
|
204
|
Chakraborty J, Rajamma U, Jana N, Mohanakumar K. Quercetin improves the activity of the ubiquitin-proteasomal system in 150Q mutated huntingtin-expressing cells but exerts detrimental effects on neuronal survivability. J Neurosci Res 2015; 93:1581-91. [DOI: 10.1002/jnr.23618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 06/02/2015] [Accepted: 06/19/2015] [Indexed: 12/20/2022]
Affiliation(s)
- J. Chakraborty
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata India
| | - U. Rajamma
- Manovikas Biomedical Research and Diagnostic Centre; Kolkata India
| | - N. Jana
- National Brain Research Centre; Gurgaon Haryana India
| | - K.P. Mohanakumar
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata India
| |
Collapse
|
205
|
Cherubini M, Puigdellívol M, Alberch J, Ginés S. Cdk5-mediated mitochondrial fission: A key player in dopaminergic toxicity in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2145-60. [PMID: 26143143 DOI: 10.1016/j.bbadis.2015.06.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 01/04/2023]
Abstract
The molecular mechanisms underlying striatal vulnerability in Huntington's disease (HD) are still unknown. However, growing evidence suggest that mitochondrial dysfunction could play a major role. In searching for a potential link between striatal neurodegeneration and mitochondrial defects we focused on cyclin-dependent kinase 5 (Cdk5). Here, we demonstrate that increased mitochondrial fission in mutant huntingtin striatal cells can be a consequence of Cdk5-mediated alterations in Drp1 subcellular distribution and activity since pharmacological or genetic inhibition of Cdk5 normalizes Drp1 function ameliorating mitochondrial fragmentation. Interestingly, mitochondrial defects in mutant huntingtin striatal cells can be worsened by D1 receptor activation a process also mediated by Cdk5 as down-regulation of Cdk5 activity abrogates the increase in mitochondrial fission, the translocation of Drp1 to the mitochondria and the raise of Drp1 activity induced by dopaminergic stimulation. In sum, we have demonstrated a new role for Cdk5 in HD pathology by mediating dopaminergic neurotoxicity through modulation of Drp1-induced mitochondrial fragmentation, which underscores the relevance for pharmacologic interference of Cdk5 signaling to prevent or ameliorate striatal neurodegeneration in HD.
Collapse
Affiliation(s)
- Marta Cherubini
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Mar Puigdellívol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jordi Alberch
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Silvia Ginés
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
206
|
Zorzano A, Claret M. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front Aging Neurosci 2015; 7:101. [PMID: 26113818 PMCID: PMC4461829 DOI: 10.3389/fnagi.2015.00101] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/11/2015] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy (ADOA). Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.
Collapse
Affiliation(s)
- Antonio Zorzano
- Molecular Medicine Program, Institute of Research in Biomedicine (IRB Barcelona) Barcelona, Spain ; Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain ; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Barcelona, Spain
| | - Marc Claret
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Barcelona, Spain ; Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| |
Collapse
|
207
|
Hamilton J, Pellman JJ, Brustovetsky T, Harris RA, Brustovetsky N. Oxidative metabolism in YAC128 mouse model of Huntington's disease. Hum Mol Genet 2015; 24:4862-78. [PMID: 26041817 DOI: 10.1093/hmg/ddv209] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022] Open
Abstract
Alterations in oxidative metabolism are considered to be one of the major contributors to Huntington's disease (HD) pathogenesis. However, existing data about oxidative metabolism in HD are contradictory. Here, we investigated the effect of mutant huntingtin (mHtt) on oxidative metabolism in YAC128 mice. Both mHtt and wild-type huntingtin (Htt) were associated with mitochondria and the amount of bound Htt was four-times higher than the amount of bound mHtt. Percoll gradient-purified brain synaptic and non-synaptic mitochondria as well as unpurified brain, liver and heart mitochondria, isolated from 2- and 10-month-old YAC128 mice and age-matched WT littermates had similar respiratory rates. There was no difference in mitochondrial membrane potential or ADP and ATP levels. Expression of selected nuclear-encoded mitochondrial proteins in 2- and 10-month-old YAC128 and WT mice was similar. Cultured striatal and cortical neurons from YAC128 and WT mice had similar respiratory and glycolytic activities as measured with Seahorse XF24 analyzer in medium containing 10 mm glucose and 15 mm pyruvate. In the medium with 2.5 mm glucose, YAC128 striatal neurons had similar respiration, but slightly lower glycolytic activity. Striatal neurons had lower maximal respiration compared with cortical neurons. In vivo experiments with YAC128 and WT mice showed similar O2 consumption, CO2 release, physical activity, food consumption and fasted blood glucose. However, YAC128 mice were heavier and had more body fat compared with WT mice. Overall, our data argue against respiratory deficiency in YAC128 mice and, consequently, suggest that mitochondrial respiratory dysfunction is not essential for HD pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Robert A Harris
- Department of Biochemistry and Molecular Biology and Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Department of Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA and
| |
Collapse
|
208
|
Crotti A, Glass CK. The choreography of neuroinflammation in Huntington's disease. Trends Immunol 2015; 36:364-73. [PMID: 26001312 PMCID: PMC4786070 DOI: 10.1016/j.it.2015.04.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/19/2015] [Accepted: 04/19/2015] [Indexed: 01/01/2023]
Abstract
Currently, the concept of 'neuroinflammation' includes inflammation associated with neurodegenerative diseases, in which there is little or no infiltration of blood-derived immune cells into the brain. The roles of brain-resident and peripheral immune cells in these inflammatory settings are poorly understood, and it is unclear whether neuroinflammation results from immune reaction to neuronal dysfunction/degeneration, and/or represents cell-autonomous phenotypes of dysfunctional immune cells. Here, we review recent studies examining these questions in the context of Huntington's disease (HD), where mutant Huntingtin (HTT) is expressed in both neurons and glia. Insights into the cellular and molecular mechanisms underlying neuroinflammation in HD may provide a better understanding of inflammation in more complex neurodegenerative disorders, and of the contribution of the neuroinflammatory component to neurodegenerative disease pathogenesis.
Collapse
Affiliation(s)
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, CA, USA; Department of Medicine, University of California San Diego, CA, USA.
| |
Collapse
|
209
|
Abstract
PURPOSE OF REVIEW This review highlights the recent advances in Huntington's disease, with a particular focus on development of disease biomarkers for use in therapeutic trials in the premotor phase of the disease, as well as the growing literature regarding pathophysiological mechanisms and their relevance to potential therapeutic targets. RECENT FINDINGS There have been continued advances in the development of disease biomarkers, and promising neuroprotection trials are beginning to emerge in the premotor stage of Huntington's disease. Deeper understanding of the pathophysiological mechanisms is being translated into potential therapeutic strategies. SUMMARY The premotor stage of Huntington's disease provides an ideal time to trial disease-modifying therapy, but reliable biomarkers are required for monitoring disease progression, and this remains an area of intense research. Our understanding of the underlying pathophysiological mechanisms continues to expand, and a number of promising therapeutic strategies are emerging, including strategies to silence mutant huntingtin expression.
Collapse
|
210
|
Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 2015; 21:92-105. [PMID: 25667951 DOI: 10.1016/j.mito.2015.02.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022]
Abstract
Synthesis of the iron-containing prosthetic groups-heme and iron-sulfur clusters-occurs in mitochondria. The mitochondrion is also an important producer of reactive oxygen species (ROS), which are derived from electrons leaking from the electron transport chain. The coexistence of both ROS and iron in the secluded space of the mitochondrion makes this organelle particularly prone to oxidative damage. Here, we review the elements that configure mitochondrial iron homeostasis and discuss the principles of iron-mediated ROS generation in mitochondria. We also review the evidence for mitochondrial dysfunction and iron accumulation in Alzheimer's disease, Huntington Disease, Friedreich's ataxia, and in particular Parkinson's disease. We postulate that a positive feedback loop of mitochondrial dysfunction, iron accumulation, and ROS production accounts for the process of cell death in various neurodegenerative diseases in which these features are present.
Collapse
Affiliation(s)
- Natalia P Mena
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Fernanda Lourido
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Carlos M Carrasco
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile
| | - Marco T Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Research Ring on Oxidative Stress in the Nervous System, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
211
|
Reddy PH. Inhibitors of mitochondrial fission as a therapeutic strategy for diseases with oxidative stress and mitochondrial dysfunction. J Alzheimers Dis 2015; 40:245-56. [PMID: 24413616 DOI: 10.3233/jad-132060] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mitochondria are essential cytoplasmic organelles, critical for cell survival and death. Recent mitochondrial research revealed that mitochondrial dynamics-the balance of fission and fusion in normal mitochondrial dynamics--is an important cellular mechanism in eukaryotic cell and is involved in the maintenance of mitochondrial morphology, structure, number, distribution, and function. Research into mitochondria and cell function has revealed that mitochondrial dynamics is impaired in a large number of aging and neurodegenerative diseases, and in several inherited mitochondrial diseases, and that this impairment involves excessive mitochondrial fission, resulting in mitochondrial structural changes and dysfunction, and cell damage. Attempts have been made to develop molecules to reduce mitochondrial fission while maintaining normal mitochondrial fusion and function in those diseases that involve excessive mitochondrial fission. This review article discusses mechanisms of mitochondrial fission in normal and diseased states of mammalian cells and discusses research aimed at developing therapies, such as Mdivi, Dynasore and P110, to prevent or to inhibit excessive mitochondrial fission.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
212
|
|
213
|
Baker MJ, Palmer CS, Stojanovski D. Mitochondrial protein quality control in health and disease. Br J Pharmacol 2014; 171:1870-89. [PMID: 24117041 DOI: 10.1111/bph.12430] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022] Open
Abstract
Progressive mitochondrial dysfunction is linked with the onset of many age-related pathologies and neurological disorders. Mitochondrial damage can come in many forms and be induced by a variety of cellular insults. To preserve organelle function during biogenesis or times of stress, multiple surveillance systems work to ensure the persistence of a functional mitochondrial network. This review provides an overview of these processes, which collectively contribute to the maintenance of a healthy mitochondrial population, which is critical for cell physiology and survival.
Collapse
Affiliation(s)
- Michael J Baker
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia; ARC Centre of Excellence for Coherent X-ray Science, Melbourne, VIC, Australia
| | | | | |
Collapse
|
214
|
Trujillo AS, Ramos R, Bodmer R, Bernstein SI, Ocorr K, Melkani GC. Drosophila as a potential model to ameliorate mutant Huntington-mediated cardiac amyloidosis. RARE DISEASES (AUSTIN, TEX.) 2014; 2:e968003. [PMID: 26942103 PMCID: PMC4755237 DOI: 10.4161/2167549x.2014.968003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 01/28/2023]
Abstract
Several human diseases, including Huntington's disease (HD), are associated with the expression of mutated, misfolded, and aggregation-prone amyloid proteins. Cardiac disease is the second leading cause of death in HD, which has been mainly studied as a neurodegenerative disease that is caused by expanded polyglutamine repeats in the huntingtin protein. Since the mechanistic basis of mutant HD-induced cardiomyopathy is unknown, we established a Drosophila heart model that exhibited amyloid aggregate-induced oxidative stress, resulting in myofibrillar disorganization and physiological defects upon expression of HD-causing PolyQ expression in cardiomyocytes. Using powerful Drosophila genetic techniques, we suppressed mutant HD-induced cardiomyopathy by modulating pathways associated with folding defects and oxidative stress. In this addendum, we describe additional potential molecular players that might be associated with HD cardiac amyloidosis. Drosophila, with its high degree of conservation to the human genome and many techniques to manipulate its gene expression, will be an excellent model for the suppression of cardiac amyloidosis linked to other polyglutamine expansion repeat disorders.
Collapse
Affiliation(s)
- Adriana S Trujillo
- Department of Biology; Molecular Biology and Heart Institutes; San Diego State University; San Diego, CA USA,Development and Aging Program; Sanford-Burnham Institute for Medical Research; La Jolla, CA USA
| | - Raul Ramos
- Department of Biology; Molecular Biology and Heart Institutes; San Diego State University; San Diego, CA USA
| | - Rolf Bodmer
- Development and Aging Program; Sanford-Burnham Institute for Medical Research; La Jolla, CA USA
| | - Sanford I Bernstein
- Department of Biology; Molecular Biology and Heart Institutes; San Diego State University; San Diego, CA USA
| | - Karen Ocorr
- Development and Aging Program; Sanford-Burnham Institute for Medical Research; La Jolla, CA USA
| | - Girish C Melkani
- Department of Biology; Molecular Biology and Heart Institutes; San Diego State University; San Diego, CA USA,Development and Aging Program; Sanford-Burnham Institute for Medical Research; La Jolla, CA USA,Correspondence to: Girish C Melkani;
| |
Collapse
|
215
|
Abstract
Mitochondria are highly specialized in function, but mitochondrial and, therefore, cellular integrity is maintained through their dynamic nature. Through the frequent processes of fusion and fission, mitochondria continuously change in shape and adjust function to meet cellular requirements. Abnormalities in fusion/fission dynamics generate cellular dysfunction that may lead to diseases. Mutations in the genes encoding mitochondrial fusion/fission proteins, such as MFN2 and OPA1, have been associated with an increasing number of genetic disorders, including Charcot-Marie-Tooth disease type 2A (CMT2A) and autosomal dominant optic atrophy. In this review, we address the mitochondrial dynamic changes in several important genetic diseases, which will bring the new insight of clinical relevance of mitochondrial genetics.
Collapse
Affiliation(s)
- Le Chen
- Molecular & Cellular Cardiology, University of California, Davis, One Shields Avenue Davis, CA, 95616, USA,
| | | | | |
Collapse
|
216
|
From pathways to targets: understanding the mechanisms behind polyglutamine disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:701758. [PMID: 25309920 PMCID: PMC4189765 DOI: 10.1155/2014/701758] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/03/2014] [Indexed: 12/27/2022]
Abstract
The history of polyglutamine diseases dates back approximately 20 years to the discovery of a polyglutamine repeat in the androgen receptor of SBMA followed by the identification of similar expansion mutations in Huntington's disease, SCA1, DRPLA, and the other spinocerebellar ataxias. This common molecular feature of polyglutamine diseases suggests shared mechanisms in disease pathology and neurodegeneration of disease specific brain regions. In this review, we discuss the main pathogenic pathways including proteolytic processing, nuclear shuttling and aggregation, mitochondrial dysfunction, and clearance of misfolded polyglutamine proteins and point out possible targets for treatment.
Collapse
|
217
|
The Impact of Mitochondrial Fusion and Fission Modulation in Sporadic Parkinson's Disease. Mol Neurobiol 2014; 52:573-86. [PMID: 25218511 DOI: 10.1007/s12035-014-8893-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
Abstract
Accumulating data suggests that mitochondrial deficits may underline both sporadic and familial Parkinson's disease (PD) neurodegenerative process. Impairment of mitochondrial dynamics results in reactive oxygen species (ROS) production, decreases mitochondrial membrane potential, and could potentiate the accumulation of dysfunctional mitochondria. Excessive mitochondrial fragmentation is associated with the pathology of sporadic PD. Therefore, we modulated mitochondria fusion and fission in different sporadic PD cellular models. We found alterations in two proteins known to regulate mitochondrial fusion and fission events (OPA1 and Drp1, respectively). OPA1 long isoform cleavage seems to be, at least in part, responsible for mitochondrial fragmented pattern observed in sporadic PD cellular models. Moreover, mitochondrial fragmentation can also occur due to an increase in Drp1 that is translocated into the mitochondria by phosphorylation. To disclose the relevance of these alterations to the fragmentation of the mitochondrial network, we overexpressed OPA1 and knock down Drp1. OPA1 overexpression did not rescue MPP(+)-induced increase in ROS. Nevertheless, Drp1 knockdown due to an increase in mitochondrial elongation and interconnectivity rescued mitochondrial membrane potential and decreased ROS production in sporadic PD cells. Overall, our findings suggest that Drp1-dependent mitochondrial fragmentation plays a crucial role in mediating mitochondrial DNA induced mitochondria abnormalities and cellular dysfunction in sporadic PD.
Collapse
|
218
|
Swart C, Haylett W, Kinnear C, Johnson G, Bardien S, Loos B. Neurodegenerative disorders: dysregulation of a carefully maintained balance? Exp Gerontol 2014; 58:279-91. [PMID: 25219768 DOI: 10.1016/j.exger.2014.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
The aggregation of misfolded proteins has long been regarded as a pathological event in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease. However, the exact molecular mechanisms that govern protein metabolism that may lead to toxicity remain largely unclear. Originally targeted as the causative agent, it has since become evident that aggregation formation may not be necessary for disease progression and studies show that they may even serve functional and protective roles. Although the focus has since shifted to the toxicity of intermediate protein species preceding aggregation formation, many questions remain: Is the blame for the neural destruction to be put on one event alone, or rather on a state of cellular disequilibrium resulting from multiple events? If the cause is multifactorial, then what triggers the toxic cascade and how can this be targeted therapeutically? In order to understand the origin of toxicity, the exact underlying mechanism and impact of each contributing process must be assessed. Therefore, the structural properties, mechanism of formation, cytotoxic and/or protective effects, as well as the clinical impact of protein intermediates and aggregates will be reviewed here with the goal to establish a neurodegenerative disease model aimed at improving current therapeutics, which may ultimately contribute towards improved treatment modalities.
Collapse
Affiliation(s)
- Chrisna Swart
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - William Haylett
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig Kinnear
- South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa
| | - Glynis Johnson
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
219
|
Ribeiro M, Rosenstock TR, Oliveira AM, Oliveira CR, Rego AC. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells. Free Radic Biol Med 2014; 74:129-44. [PMID: 24992836 DOI: 10.1016/j.freeradbiomed.2014.06.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 06/01/2014] [Accepted: 06/21/2014] [Indexed: 12/17/2022]
Abstract
Oxidative stress and mitochondrial dysfunction have been described in Huntington's disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit.
Collapse
Affiliation(s)
- Márcio Ribeiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Tatiana R Rosenstock
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana M Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Catarina R Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
220
|
Yu-Wai-Man P, Carelli V, Chinnery PF. 197th ENMC international workshop: Neuromuscular disorders of mitochondrial fusion and fission – OPA1 and MFN2 molecular mechanisms and therapeutic strategies. Neuromuscul Disord 2014; 24:736-42. [DOI: 10.1016/j.nmd.2014.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/12/2014] [Indexed: 11/26/2022]
|
221
|
Manczak M, Sheiko T, Craigen WJ, Reddy PH. Reduced VDAC1 protects against Alzheimer's disease, mitochondria, and synaptic deficiencies. J Alzheimers Dis 2014; 37:679-90. [PMID: 23948905 DOI: 10.3233/jad-130761] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The objective of this study was to elucidate the effect of VDAC1 on Alzheimer's disease (AD)-related genes, mitochondrial activity, and synaptic viability. Recent knockout studies of VDAC1 revealed that homozygote VDAC1 knockout (VDAC1-/-) mice exhibited disrupted learning and synaptic plasticity, and in contrast, VDAC1+/- mice appeared normal in terms of lifespan, fertility, and viability relative to wild-type mice. However, the effects of reduced VDAC1 on mitochondrial/synaptic genes and mitochondrial function in AD-affected neurons are not well understood. In the present study, we characterized mitochondrial/synaptic and AD-related genes and mitochondrial function in VDAC1+/- mice and VDAC1+/+ mice. We found reduced mRNA levels in the AD-related genes, including AβPP, Tau, PS1, PS2, and BACE1; increased levels of the mitochondrial fusion genes Mfn1, Mfn2; reduced levels of the fission genes Drp1 and Fis1; and reduced levels of the mitochondrial permeability transition pore genes VDAC1, ANT, and CypD in VDAC1+/- mice relative to VDAC1+/+ mice. Hexokinase 1 and 2 were significantly upregulated in the VDAC+/- mice. The synaptic genes synaptophysin, synapsin 1 and 2, synaptobrevin 1 and 2, neurogranin, and PSD95 were also upregulated in the VDAC1+/- mice. Free radical production and lipid peroxidation levels were reduced in the VDAC1+/- mice, and cytochrome oxidase activity and ATP levels were elevated, indicating enhanced mitochondrial function in the VDAC1+/- mice. These findings suggest that reduced VDAC1 expression, such as that we found in the VDAC1+/- mice, may be beneficial to synaptic activity, may improve function, and may protect against toxicities of AD-related genes.
Collapse
Affiliation(s)
- Maria Manczak
- Neurogenetics Laboratory, Neuroscience Division, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | | | | | | |
Collapse
|
222
|
Navarro-Yepes J, Zavala-Flores L, Anandhan A, Wang F, Skotak M, Chandra N, Li M, Pappa A, Martinez-Fong D, Del Razo LM, Quintanilla-Vega B, Franco R. Antioxidant gene therapy against neuronal cell death. Pharmacol Ther 2014; 142:206-30. [PMID: 24333264 PMCID: PMC3959583 DOI: 10.1016/j.pharmthera.2013.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy.
Collapse
Affiliation(s)
- Juliana Navarro-Yepes
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Department of Toxicology, CINVESTAV-IPN, Mexico City, Mexico
| | - Laura Zavala-Flores
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Fang Wang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Maciej Skotak
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Namas Chandra
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis, Greece
| | - Daniel Martinez-Fong
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City, Mexico
| | | | | | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
223
|
Increased mitochondrial fission and neuronal dysfunction in Huntington's disease: implications for molecular inhibitors of excessive mitochondrial fission. Drug Discov Today 2014; 19:951-5. [PMID: 24681059 DOI: 10.1016/j.drudis.2014.03.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/20/2014] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is a fatal, progressive neurodegenerative disease with an autosomal dominant inheritance, characterized by chorea, involuntary movements of the limbs and cognitive impairments. Since identification of the HD gene in 1993, tremendous progress has been made in identifying underlying mechanisms involved in HD pathogenesis and progression, and in developing and testing molecular therapeutic targets, using cell and animal models of HD. Recent studies have found that mutant Huntingtin (mHtt) interacts with Dynamin-related protein 1 (Drp1), causing excessive fragmentation of mitochondria, leading to abnormal mitochondrial dynamics and neuronal damage in HD-affected neurons. Some progress has been made in developing molecules that can reduce excessive mitochondrial fission while maintaining both the normal balance between mitochondrial fusion and fission, and normal mitochondrial function in diseases in which excessive mitochondrial fission has been implicated. In this article, we highlight investigations that are determining the involvement of excessive mitochondrial fission in HD pathogenesis, and that are developing inhibitors of excessive mitochondrial fission for potential therapeutic applications.
Collapse
|
224
|
Saleh AA, Bhadra AK, Roy I. Cytotoxicity of mutant huntingtin fragment in yeast can be modulated by the expression level of wild type huntingtin fragment. ACS Chem Neurosci 2014; 5:205-15. [PMID: 24377263 PMCID: PMC3963126 DOI: 10.1021/cn400171d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/26/2013] [Indexed: 12/23/2022] Open
Abstract
Conflicting reports exist in the literature regarding the role of wild-type huntingtin in determining the toxicity of the aggregated, mutant huntingtin in Huntington's disease (HD). Some studies report the amelioration of toxicity of the mutant protein in the presence of the wild-type protein, while others indicate sequestration of the wild-type protein by mutant huntingtin. Over the years, yeast has been established as a valid model organism to study molecular changes associated with HD, especially at the protein level. We have used an inducible system to express human huntingtin fragments harboring normal (25Q) and pathogenic (103Q) polyglutamine lengths under the control of a galactose promoter in a yeast model of HD. We show that the relative expression level of each allele (wild-type/mutant) decides the cellular phenotype. When the expression level of wild-type huntingtin is high, an increase in the solubility of the mutant protein is observed. Fluorescence-recovery-after-photobleaching (FRAP) studies show that solubility reaches ∼94% in these cells. This leads to reduction in oxidative stress and cytotoxicity, and increases cell viability. In-cell FRET studies show that interaction between these proteins does not require the presence of a mediator. When the expression of wild-type huntingtin is low, it is sequestered into aggregates by the mutant protein. Even under these conditions, cytotoxicity is attenuated. Our findings indicate that the presence of wild-type huntingtin has a beneficial role even when its relative expression level is lower than that of the mutant protein.
Collapse
Affiliation(s)
- Aliabbas Ahmedbhai Saleh
- Department of Biotechnology, National Institute
of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ankan Kumar Bhadra
- Department of Biotechnology, National Institute
of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute
of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| |
Collapse
|
225
|
Kumar A, Singh PK, Parihar R, Dwivedi V, Lakhotia SC, Ganesh S. Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment. J Biol Chem 2014; 289:13543-53. [PMID: 24648514 DOI: 10.1074/jbc.m114.553321] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
O-GlcNAcylation is an important post-translational modification of proteins and is known to regulate a number of pathways involved in cellular homeostasis. This involves dynamic and reversible modification of serine/threonine residues of different cellular proteins catalyzed by O-linked N-acetylglucosaminyltransferase and O-linked N-acetylglucosaminidase in an antagonistic manner. We report here that decreasing O-GlcNAcylation enhances the viability of neuronal cells expressing polyglutamine-expanded huntingtin exon 1 protein fragment (mHtt). We further show that O-GlcNAcylation regulates the basal autophagic process and that suppression of O-GlcNAcylation significantly increases autophagic flux by enhancing the fusion of autophagosome with lysosome. This regulation considerably reduces toxic mHtt aggregates in eye imaginal discs and partially restores rhabdomere morphology and vision in a fly model for Huntington disease. This study is significant in unraveling O-GlcNAcylation-dependent regulation of an autophagic process in mediating mHtt toxicity. Therefore, targeting the autophagic process through the suppression of O-GlcNAcylation may prove to be an important therapeutic approach in Huntington disease.
Collapse
Affiliation(s)
- Amit Kumar
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016 and
| | | | | | | | | | | |
Collapse
|
226
|
Eckmann J, Clemens LE, Eckert SH, Hagl S, Yu-Taeger L, Bordet T, Pruss RM, Muller WE, Leuner K, Nguyen HP, Eckert GP. Mitochondrial membrane fluidity is consistently increased in different models of Huntington disease: restorative effects of olesoxime. Mol Neurobiol 2014; 50:107-18. [PMID: 24633813 DOI: 10.1007/s12035-014-8663-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the huntingtin gene (HTT). One prominent target of the mutant huntingtin protein (mhtt) is the mitochondrion, affecting its morphology, distribution, and function. Thus, mitochondria have been suggested as potential therapeutic targets for the treatment of HD. Olesoxime, a cholesterol-like compound, promotes motor neuron survival and neurite outgrowth in vitro, and its effects are presumed to occur via a direct interaction with mitochondrial membranes (MMs). We examined the properties of MMs isolated from cell and animal models of HD as well as the effects of olesoxime on MM fluidity and cholesterol levels. MMs isolated from brains of aged Hdh Q111/Q111 knock-in mice showed a significant decrease in 1,6-diphenyl-hexatriene (DPH) anisotropy, which is inversely correlated with membrane fluidity. Similar increases in MM fluidity were observed in striatal STHdh Q111/Q111 cells as well as in MMs isolated from brains of BACHD transgenic rats. Treatment of STHdh cells with olesoxime decreased the fluidity of isolated MMs. Decreased membrane fluidity was also measured in olesoxime-treated MMs isolated from brains of HD knock-in mice. In both models, treatment with olesoxime restored HD-specific changes in MMs. Accordingly, olesoxime significantly counteracted the mhtt-induced increase in MM fluidity of MMs isolated from brains of BACHD rats after 12 months of treatment in vivo, possibly by enhancing MM cholesterol levels. Thus, olesoxime may represent a novel pharmacological tool to treat mitochondrial dysfunction in HD.
Collapse
Affiliation(s)
- Janett Eckmann
- Department of Pharmacology, Biocenter, Goethe-University Campus Riedberg, Biocentre Geb. N260, R.1.09, Max-von-Laue Str. 9, 60438, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Anderson EN, White JA, Gunawardena S. Axonal transport and neurodegenerative disease: vesicle-motor complex formation and their regulation. Degener Neurol Neuromuscul Dis 2014; 4:29-47. [PMID: 32669899 PMCID: PMC7337264 DOI: 10.2147/dnnd.s57502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022] Open
Abstract
The process of axonal transport serves to move components over very long distances on microtubule tracks in order to maintain neuronal viability. Molecular motors - kinesin and dynein - are essential for the movement of neuronal cargoes along these tracks; defects in this pathway have been implicated in the initiation or progression of some neurodegenerative diseases, suggesting that this process may be a key contributor in neuronal dysfunction. Recent work has led to the identification of some of the motor-cargo complexes, adaptor proteins, and their regulatory elements in the context of disease proteins. In this review, we focus on the assembly of the amyloid precursor protein, huntingtin, mitochondria, and the RNA-motor complexes and discuss how these may be regulated during long-distance transport in the context of neurodegenerative disease. As knowledge of these motor-cargo complexes and their involvement in axonal transport expands, insight into how defects in this pathway contribute to the development of neurodegenerative diseases becomes evident. Therefore, a better understanding of how this pathway normally functions has important implications for early diagnosis and treatment of diseases before the onset of disease pathology or behavior.
Collapse
Affiliation(s)
- Eric N Anderson
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Joseph A White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
228
|
Circadian dysfunction in response to in vivo treatment with the mitochondrial toxin 3-nitropropionic acid. ASN Neuro 2014; 6:e00133. [PMID: 24328694 PMCID: PMC3891360 DOI: 10.1042/an20130042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sleep disorders are common in neurodegenerative diseases including Huntington's disease (HD) and develop early in the disease process. Mitochondrial alterations are believed to play a critical role in the pathophysiology of neurodegenerative diseases. In the present study, we evaluated the circadian system of mice after inhibiting mitochondrial complex II of the respiratory chain with the toxin 3-nitropropionic acid (3-NP). We found that a subset of mice treated with low doses of 3-NP exhibited severe circadian deficit in behavior. The temporal patterning of sleep behavior is also disrupted in some mice with evidence of difficulty in the initiation of sleep behavior. Using the open field test during the normal sleep phase, we found that the 3-NP-treated mice were hyperactive. The molecular clockwork responsible for the generation of circadian rhythms as measured by PER2::LUCIFERASE was disrupted in a subset of mice. Within the SCN, the 3-NP treatment resulted in a reduction in daytime firing rate in the subset of mice which had a behavioral deficit. Anatomically, we confirmed that all of the treated mice showed evidence for cell loss within the striatum but we did not see evidence for gross SCN pathology. Together, the data demonstrates that chronic treatment with low doses of the mitochondrial toxin 3-NP produced circadian deficits in a subset of treated mice. This work does raise the possibility that the neural damage produced by mitochondrial dysfunction can contribute to the sleep/circadian dysfunction seen so commonly in neurodegenerative diseases.
Collapse
|
229
|
Tian Y, Huang Z, Wang Z, Yin C, Zhou L, Zhang L, Huang K, Zhou H, Jiang X, Li J, Liao L, Yang M, Meng F. Identification of novel molecular markers for prognosis estimation of acute myeloid leukemia: over-expression of PDCD7, FIS1 and Ang2 may indicate poor prognosis in pretreatment patients with acute myeloid leukemia. PLoS One 2014; 9:e84150. [PMID: 24416201 PMCID: PMC3885535 DOI: 10.1371/journal.pone.0084150] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 11/13/2013] [Indexed: 11/21/2022] Open
Abstract
Numerous factors impact on the prognosis of acute myeloid leukemia (AML), among which molecular genetic abnormalities are developed increasingly, however, accurate prediction for newly diagnosed AML patients remains unsatisfied. For further improving the prognosis evaluation system, we investigated the transcripts levels of PDCD7, FIS1, FAM3A, CA6, APP, KLRF1, ATCAY, GGT5 and Ang2 in 97 AML patients and 30 non-malignant controls, and validated using the published microarray data from 225 cytogenetically normal AML (CN-AML) patients treated according to the German AMLCG-1999 protocol. Real-time quantitative polymerase chain reaction and western blot were carried out, and clinical data were collected and analyzed. High Ang2 and FIS1 expression discriminated the CR rate of AML patients (62.5% versus 82.9% for Ang2, P = 0.011; 61.4% versus 82.2% for FIS1, P = 0.029). In CN-AML, patients with high FIS1 expression were more likely to be resistant to two courses of induction (P = 0.035). Overall survival (OS) and relapse-free survival (RFS) were shorter in CN-AML patients with high PDCD7 expression (P<0.001; P = 0.006), and PDCD7 was revealed to be an independent risk factor for OS in CN-AML (P = 0.004). In the analysis of published data from 225 CN-AML patients, PDCD7 remained independently predicting OS in CN-AML (P = 0.039). As a conclusion, Ang2 and FIS1 seem related to decreased CR rate of AML patients, and PDCD7 is associated with shorter OS and RFS in CN-AML. Hence, PDCD7, Ang2 and FIS1 may indicate a more aggressive form and poor prognosis of AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Cytogenetic Analysis
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Immunoblotting
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Multivariate Analysis
- Oligonucleotide Array Sequence Analysis
- Prognosis
- Receptors, Natural Killer Cell/genetics
- Receptors, Natural Killer Cell/metabolism
- Recurrence
- Reproducibility of Results
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Analysis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Treatment Outcome
- Vesicular Transport Proteins/genetics
- Vesicular Transport Proteins/metabolism
- Young Adult
Collapse
Affiliation(s)
- Yiming Tian
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zoufang Huang
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhixiang Wang
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Changxin Yin
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lanlan Zhou
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lingxiu Zhang
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Kaikai Huang
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hongsheng Zhou
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xuejie Jiang
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jinming Li
- Bioinformatics Department, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Libin Liao
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mo Yang
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fanyi Meng
- Hematology Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- * E-mail:
| |
Collapse
|
230
|
Bereiter-Hahn J. Do we age because we have mitochondria? PROTOPLASMA 2014; 251:3-23. [PMID: 23794102 DOI: 10.1007/s00709-013-0515-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
The process of aging remains a great riddle. Production of reactive oxygen species (ROS) by mitochondria is an inevitable by-product of respiration, which has led to a hypothesis proposing the oxidative impairment of mitochondrial components (e.g., mtDNA, proteins, lipids) that initiates a vicious cycle of dysfunctional respiratory complexes producing more ROS, which again impairs function. This does not exclude other processes acting in parallel or targets for ROS action in other organelles than mitochondria. Given that aging is defined as the process leading to death, the role of mitochondria-based impairments in those organ systems responsible for human death (e.g., the cardiovascular system, cerebral dysfunction, and cancer) is described within the context of "garbage" accumulation and increasing insulin resistance, type 2 diabetes, and glycation of proteins. Mitochondrial mass, fusion, and fission are important factors in coping with impaired function. Both biogenesis of mitochondria and their degradation are important regulatory mechanisms stimulated by physical exercise and contribute to healthy aging. The hypothesis of mitochondria-related aging should be revised to account for the limitations of the degradative capacity of the lysosomal system. The processes involved in mitochondria-based impairments are very similar across a large range of organisms. Therefore, studies on model organisms from yeast, fungi, nematodes, flies to vertebrates, and from cells to organisms also add considerably to the understanding of human aging.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Institut für Zellbiologie und Neurowissenschaften, Goethe Universität Frankfurt am Main, Max-von-Lauestrasse 13, 60438, Frankfurt am Main, Germany,
| |
Collapse
|
231
|
Chakraborty J, Rajamma U, Mohanakumar KP. A mitochondrial basis for Huntington's disease: therapeutic prospects. Mol Cell Biochem 2013; 389:277-91. [PMID: 24374792 DOI: 10.1007/s11010-013-1951-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/19/2013] [Indexed: 01/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant disease, with overt movement dysfunctions. Despite focused research on the basis of neurodegeneration in HD for last few decades, the mechanism for the site-specific lesion of neurons in the brain is not clear. All the explanations that partially clarify the phenomenon of neurodegeneration leads to one organelle, mitochondrion, which is severely affected in HD at the level of electron transport chain, Ca(2+) buffering efficiency and morphology. But, with the existing knowledge, it is not clear whether the cell death processes in HD initiate from mitochondria, though the Huntingtin (Htt) aggregates show close proximity to this organelle, or do some extracellular stimuli like TNFα or FasL trigger the process. Mainly because of the disparity in the different available experimental models, the results are quite confusing or at least inconsistent to a great extent. The fact remains that the mutant Htt protein was seen to be associated with mitochondria directly, and as the striatum is highly enriched with dopamine and glutamate, it may make the striatal mitochondria more vulnerable because of the presence of dopa-quinones, and due to an imbalance in Ca(2+). The current therapeutic strategies are based on symptomatic relief, and, therefore, mainly target neurotransmitter(s) and their receptors to modulate behavioral outputs, but none of them targets mitochondria or try to address the basic molecular events that cause neurons to die in discrete regions of the brain, which could probably be resulting from grave mitochondrial dysfunctions. Therefore, targeting mitochondria for their protection, while addressing symptomatic recovery, holds a great potential to tone down the progression of the disease, and to provide better relief to the patients and caretakers.
Collapse
Affiliation(s)
- J Chakraborty
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Rooms 117&119, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | | | | |
Collapse
|
232
|
Soluble N-terminal fragment of mutant Huntingtin protein impairs mitochondrial axonal transport in cultured hippocampal neurons. Neurosci Bull 2013; 30:74-80. [PMID: 24362588 DOI: 10.1007/s12264-013-1393-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/24/2013] [Indexed: 01/03/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant, progressive, neurodegenerative disorder caused by an unstable expansion of CAG repeats (>35 repeats) within exon 1 of the interesting transcript 15 (IT15) gene. This gene encodes a protein called Huntingtin (Htt), and mutation of the gene results in a polyglutamine (polyQ) near the N-terminus of Htt. The N-terminal fragments of mutant Htt (mHtt), which tend to aggregate, are sufficient to cause HD. Whether these aggregates are causal or protective for HD remains hotly debated. Dysfunctional mitochondrial axonal transport is associated with HD. It remains unknown whether the soluble or aggregated form of mHtt is the primary cause of the impaired mitochondrial axonal transport in HD pathology. Here, we investigated the impact of soluble and aggregated N-terminal fragments of mHtt on mitochondrial axonal transport in cultured hippocampal neurons. We found that the N-terminal fragment of mHtt formed aggregates in almost half of the transfected neurons. Overexpression of the N-terminal fragment of mHtt decreased the velocity of mitochondrial axonal transport and mitochondrial mobility in neurons regardless of whether aggregates were formed. However, the impairment of mitochondrial axonal transport in neurons expressing the soluble and aggregated N-terminal fragments of mHtt did not differ. Our findings indicate that both the soluble and aggregated N-terminal fragments of mHtt impair mitochondrial axonal transport in cultured hippocampal neurons. We predict that dysfunction of mitochondrial axonal transport is an early-stage event in the progression of HD, even before mHtt aggregates are formed.
Collapse
|
233
|
Huntington's disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genet 2013; 9:e1004024. [PMID: 24367279 PMCID: PMC3868535 DOI: 10.1371/journal.pgen.1004024] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
Amyloid-like inclusions have been associated with Huntington's disease (HD), which is caused by expanded polyglutamine repeats in the Huntingtin protein. HD patients exhibit a high incidence of cardiovascular events, presumably as a result of accumulation of toxic amyloid-like inclusions. We have generated a Drosophila model of cardiac amyloidosis that exhibits accumulation of PolyQ aggregates and oxidative stress in myocardial cells, upon heart-specific expression of Huntingtin protein fragments (Htt-PolyQ) with disease-causing poly-glutamine repeats (PolyQ-46, PolyQ-72, and PolyQ-102). Cardiac expression of GFP-tagged Htt-PolyQs resulted in PolyQ length-dependent functional defects that included increased incidence of arrhythmias and extreme cardiac dilation, accompanied by a significant decrease in contractility. Structural and ultrastructural analysis of the myocardial cells revealed reduced myofibrillar content, myofibrillar disorganization, mitochondrial defects and the presence of PolyQ-GFP positive aggregates. Cardiac-specific expression of disease causing Poly-Q also shortens lifespan of flies dramatically. To further confirm the involvement of oxidative stress or protein unfolding and to understand the mechanism of PolyQ induced cardiomyopathy, we co-expressed expanded PolyQ-72 with the antioxidant superoxide dismutase (SOD) or the myosin chaperone UNC-45. Co-expression of SOD suppressed PolyQ-72 induced mitochondrial defects and partially suppressed aggregation as well as myofibrillar disorganization. However, co-expression of UNC-45 dramatically suppressed PolyQ-72 induced aggregation and partially suppressed myofibrillar disorganization. Moreover, co-expression of both UNC-45 and SOD more efficiently suppressed GFP-positive aggregates, myofibrillar disorganization and physiological cardiac defects induced by PolyQ-72 than did either treatment alone. Our results demonstrate that mutant-PolyQ induces aggregates, disrupts the sarcomeric organization of contractile proteins, leads to mitochondrial dysfunction and increases oxidative stress in cardiomyocytes leading to abnormal cardiac function. We conclude that modulation of both protein unfolding and oxidative stress pathways in the Drosophila heart model can ameliorate the detrimental PolyQ effects, thus providing unique insights into the genetic mechanisms underlying amyloid-induced cardiac failure in HD patients. Huntington's disease (HD) is associated with amyloid-like inclusions in the brain and heart, and accumulation of amyloid protein is associated with neurodegeneration and cardiomyopathy. Recent studies suggest that HD patients show increased susceptibility to cardiac failure. However, the mechanisms by which disease-causing poly-glutamine repeats (PolyQ) cause heart dysfunction in these patients are unclear. We have developed a novel Drosophila heart model that exhibits significant GFP-positive aggregates upon HD-causing PolyQ expression in myocardial cells resulting in PolyQ length-dependent physiological defects. Modulation of protein folding and oxidative stress pathways in this system reduced the number of aggregates and reversed the cardiac dysfunction in response to expression of disease-causing PolyQ. The ability to explore PolyQ-associated mechanisms of cardiomyopathy in a genetically tractable whole organism, Drosophila melanogaster, promises to provide novel insights into the relationship between amyloid accumulation and heart dysfunction. Our findings not only impact the understanding of PolyQ-induced cardiomyopathy but also other human cardiac diseases associated with oxidative stress, mitochondrial defects and protein homeostasis.
Collapse
|
234
|
Quintanilla RA, Jin YN, von Bernhardi R, Johnson GVW. Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease. Mol Neurodegener 2013; 8:45. [PMID: 24330821 PMCID: PMC3878840 DOI: 10.1186/1750-1326-8-45] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022] Open
Abstract
Background Mitochondrial impairment has been implicated in the pathogenesis of Huntington’s disease (HD). However, how mutant huntingtin impairs mitochondrial function and thus contributes to HD has not been fully elucidated. In this study, we used striatal cells expressing wild type (STHdhQ7/Q7) or mutant (STHdhQ111/Q111) huntingtin protein, and cortical neurons expressing the exon 1 of the huntingtin protein with physiological or pathological polyglutamine domains, to examine the interrelationship among specific mitochondrial functions. Results Depolarization induced by KCl resulted in similar changes in calcium levels without compromising mitochondrial function, both in wild type and mutant cells. However, treatment of mutant cells with thapsigargin (a SERCA antagonist that raises cytosolic calcium levels), resulted in a pronounced decrease in mitochondrial calcium uptake, increased production of reactive oxygen species (ROS), mitochondrial depolarization and fragmentation, and cell viability loss. The mitochondrial dysfunction in mutant cells was also observed in cortical neurons expressing exon 1 of the huntingtin protein with 104 Gln residues (Q104-GFP) when they were exposed to calcium stress. In addition, calcium overload induced opening of the mitochondrial permeability transition pore (mPTP) in mutant striatal cells. The mitochondrial impairment observed in mutant cells and cortical neurons expressing Q104-GFP was prevented by pre-treatment with cyclosporine A (CsA) but not by FK506 (an inhibitor of calcineurin), indicating a potential role for mPTP opening in the mitochondrial dysfunction induced by calcium stress in mutant huntingtin cells. Conclusions Expression of mutant huntingtin alters mitochondrial and cell viability through mPTP opening in striatal cells and cortical neurons.
Collapse
Affiliation(s)
- Rodrigo A Quintanilla
- Department of Anesthesiology, University of Rochester Medical Center, 601 Elmwood Ave, Box 604 (for courier: Rm 4-6314), Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
235
|
Zhang B, Davidson MM, Zhou H, Wang C, Walker WF, Hei TK. Cytoplasmic irradiation results in mitochondrial dysfunction and DRP1-dependent mitochondrial fission. Cancer Res 2013; 73:6700-10. [PMID: 24080278 PMCID: PMC3934017 DOI: 10.1158/0008-5472.can-13-1411] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Direct DNA damage is often considered the primary cause of cancer in patients exposed to ionizing radiation or environmental carcinogens. Although mitochondria are known to play an important role in radiation-induced cellular response, the mechanisms by which cytoplasmic stimuli modulate mitochondrial dynamics and functions are largely unknown. In the present study, we examined changes in mitochondrial dynamics and functions triggered by α particle damage to the mitochondria in human small airway epithelial cells, using a precision microbeam irradiator with a beam width of 1 μm. Targeted cytoplasmic irradiation using this device resulted in mitochondrial fragmentation and a reduction of cytochrome c oxidase and succinate dehydrogenase activity, when compared with nonirradiated controls, suggesting a reduction in respiratory chain function. In addition, mitochondrial fragmentation or fission was associated with increased expression of the dynamin-like protein DRP1, which promotes mitochondrial fission. DRP1 inhibition by the drug mdivi-1 prevented radiation-induced mitochondrial fission, but respiratory chain function in mitochondria inhibited by radiation persisted for 12 hours. Irradiated cells also showed an increase in mitochondria-derived superoxide that could be quenched by dimethyl sulfoxide. Taken together, our results provide a mechanistic explanation for the extranuclear, nontargeted effects of ionizing radiation.
Collapse
Affiliation(s)
- Bo Zhang
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, VC 11-205/218, New York, N.Y. 10032
| | - Mercy M. Davidson
- Department of Radiation Oncology, Columbia University, 630 West 168th Street, P&S 11-451, New York, N.Y. 10032
| | - Hongning Zhou
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, VC 11-205/218, New York, N.Y. 10032
| | - Chunxin Wang
- Biochemistry Section, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Winsome F. Walker
- Department of Radiation Oncology, Columbia University, 630 West 168th Street, P&S 11-451, New York, N.Y. 10032
| | - Tom K. Hei
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, VC 11-205/218, New York, N.Y. 10032
| |
Collapse
|
236
|
Inhibition of mitochondrial fission attenuates Aβ-induced microglia apoptosis. Neuroscience 2013; 256:36-42. [PMID: 24144623 DOI: 10.1016/j.neuroscience.2013.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/15/2013] [Accepted: 10/03/2013] [Indexed: 01/08/2023]
Abstract
Mitochondrial division inhibitor 1 (mdivi-1), a selective inhibitor of mitochondrial fission protein dynamin-related protein 1 (Drp1), has been reported to display neuroprotective properties in different animal models. In the present study, we investigated the protective effect of mdivi-1 on β-amyloid protein (Aβ)-induced cytotoxicity and its potential mechanisms in BV-2 and primary microglial cells. We found that mitochondrial fission was increased in Aβ treatment and inhibition of mitochondrial fission by mdivi-1 significantly reduced Aβ-induced expression of CD11b (a marker of microglial activation), viability loss and apoptotic rate increase in BV-2 and primary microglial cells. Moreover, we also found that mdivi-1 treatment markedly reversed mitochondrial membrane potential loss, cytochrome c (CytC) release and caspase-3 activation. Altogether, our data suggested that mdivi-1 exerts neuroprotective effects against Aβ-induced microglial apoptosis, and the underlying mechanism may be through inhibiting mitochondrial membrane potential loss, CytC release and suppression of the mitochondrial apoptosis pathway.
Collapse
|
237
|
Chaturvedi RK, Flint Beal M. Mitochondrial diseases of the brain. Free Radic Biol Med 2013; 63:1-29. [PMID: 23567191 DOI: 10.1016/j.freeradbiomed.2013.03.018] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are debilitating diseases of the brain, characterized by behavioral, motor and cognitive impairments. Ample evidence underpins mitochondrial dysfunction as a central causal factor in the pathogenesis of neurodegenerative disorders including Parkinson's disease, Huntington's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, Friedreich's ataxia and Charcot-Marie-Tooth disease. In this review, we discuss the role of mitochondrial dysfunction such as bioenergetics defects, mitochondrial DNA mutations, gene mutations, altered mitochondrial dynamics (mitochondrial fusion/fission, morphology, size, transport/trafficking, and movement), impaired transcription and the association of mutated proteins with mitochondria in these diseases. We highlight the therapeutic role of mitochondrial bioenergetic agents in toxin and in cellular and genetic animal models of neurodegenerative disorders. We also discuss clinical trials of bioenergetics agents in neurodegenerative disorders. Lastly, we shed light on PGC-1α, TORC-1, AMP kinase, Nrf2-ARE, and Sirtuins as novel therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Rajnish K Chaturvedi
- CSIR-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India.
| | | |
Collapse
|
238
|
Cho B, Choi SY, Cho HM, Kim HJ, Sun W. Physiological and pathological significance of dynamin-related protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Exp Neurobiol 2013; 22:149-57. [PMID: 24167410 PMCID: PMC3807002 DOI: 10.5607/en.2013.22.3.149] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are essential for proper neuronal morphogenesis and functions, as they are the major source of energy for neural development. The dynamic morphology of mitochondria determines the key functions of mitochondria. Several regulatory proteins such as dynamin-related protein 1 (Drp1) are required to maintain mitochondrial morphology via a balance between continuous fusion and fission. Activity of Drp1, a key regulator in mitochondrial fission, is modulated by multiple post-translation modifications and receptor interactions. In addition, numerous researches have revealed that the regulation of Drp1 activity and mitochondrial dynamics is closely associated with several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. In this article, we concisely review the recent findings about the biological importance of Drp1-mediated mitochondrial fission in neurons under physiological and pathological conditions.
Collapse
Affiliation(s)
- Bongki Cho
- Department of Anatomy, Korea University College of Medicine, Seoul 136-705, Korea
| | | | | | | | | |
Collapse
|
239
|
Johri A, Chandra A, Flint Beal M. PGC-1α, mitochondrial dysfunction, and Huntington's disease. Free Radic Biol Med 2013; 62:37-46. [PMID: 23602910 PMCID: PMC3722269 DOI: 10.1016/j.freeradbiomed.2013.04.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/06/2013] [Accepted: 04/12/2013] [Indexed: 12/15/2022]
Abstract
The constant high energy demand of neurons makes them rely heavily on their mitochondria. Dysfunction of mitochondrial energy metabolism leads to reduced ATP production, impaired calcium buffering, and generation of reactive oxygen species. There is strong evidence that mitochondrial dysfunction results in neurodegeneration and may contribute to the pathogenesis of Huntington's disease (HD). Studies over the past few years have implicated an impaired function of peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), a transcriptional master coregulator of mitochondrial biogenesis, metabolism, and antioxidant defenses, in causing mitochondrial dysfunction in HD. Here we have attempted to discuss in a nutshell, the key findings on the role of PGC-1α in mitochondrial dysfunction in HD and its potential as a therapeutic target to cure HD.
Collapse
Affiliation(s)
- Ashu Johri
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10065, USA.
| | - Abhishek Chandra
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10065, USA
| | - M Flint Beal
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10065, USA
| |
Collapse
|
240
|
Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J Biol Chem 2013; 288:27584-27593. [PMID: 23921378 DOI: 10.1074/jbc.m113.479873] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Drp1 (dynamin-related protein 1) is recruited to both mitochondrial and peroxisomal membranes to execute fission. Fis1 and Mff are Drp1 receptor/effector proteins of mitochondria and peroxisomes. Recently, MiD49 and MiD51 were also shown to recruit Drp1 to the mitochondrial surface; however, different reports have ascribed opposing roles in fission and fusion. Here, we show that MiD49 or MiD51 overexpression blocked fission by acting in a dominant-negative manner by sequestering Drp1 specifically at mitochondria, causing unopposed fusion events at mitochondria along with elongation of peroxisomes. Mitochondrial elongation caused by MiD49/51 overexpression required the action of fusion mediators mitofusins 1 and 2. Furthermore, at low level overexpression when MiD49 and MiD51 form discrete foci at mitochondria, mitochondrial fission events still occurred. Unlike Fis1 and Mff, MiD49 and MiD51 were not targeted to the peroxisomal surface, suggesting that they specifically act to facilitate Drp1-directed fission at mitochondria. Moreover, when MiD49 or MiD51 was targeted to the surface of peroxisomes or lysosomes, Drp1 was specifically recruited to these organelles. Moreover, the Drp1 recruitment activity of MiD49/51 appeared stronger than that of Mff or Fis1. We conclude that MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and suggest that they provide specificity to the division of mitochondria.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry, La Trobe Institute for Molecular Science; ARC Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne, Victoria 3086
| | - Kirstin D Elgass
- Department of Biochemistry, La Trobe Institute for Molecular Science; ARC Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne, Victoria 3086
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Laura D Osellame
- Department of Biochemistry, La Trobe Institute for Molecular Science
| | - Diana Stojanovski
- Department of Biochemistry, La Trobe Institute for Molecular Science; ARC Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne, Victoria 3086
| | - Michael T Ryan
- Department of Biochemistry, La Trobe Institute for Molecular Science; ARC Centre of Excellence for Coherent X-ray Science, La Trobe University, Melbourne, Victoria 3086.
| |
Collapse
|
241
|
Guedes-Dias P, Oliveira JM. Lysine deacetylases and mitochondrial dynamics in neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1345-59. [DOI: 10.1016/j.bbadis.2013.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/30/2013] [Accepted: 04/02/2013] [Indexed: 11/28/2022]
|
242
|
Mourkioti F, Kustan J, Kraft P, Day JW, Zhao MM, Kost-Alimova M, Protopopov A, DePinho RA, Bernstein D, Meeker AK, Blau HM. Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy. Nat Cell Biol 2013; 15:895-904. [PMID: 23831727 PMCID: PMC3774175 DOI: 10.1038/ncb2790] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 05/17/2013] [Indexed: 12/24/2022]
Abstract
Duchenne muscular dystrophy (DMD), the most common inherited muscular dystrophy of childhood, leads to death due to cardiorespiratory failure. Paradoxically, mdx mice with the same genetic deficiency of dystrophin exhibit minimal cardiac dysfunction, impeding the development of therapies. We postulated that the difference between mdx and DMD might result from differences in telomere lengths in mice and humans. We show here that, like DMD patients, mice that lack dystrophin and have shortened telomeres (mdx/mTR(KO)) develop severe functional cardiac deficits including ventricular dilation, contractile and conductance dysfunction, and accelerated mortality. These cardiac defects are accompanied by telomere erosion, mitochondrial fragmentation and increased oxidative stress. Treatment with antioxidants significantly retards the onset of cardiac dysfunction and death of mdx/mTR(KO) mice. In corroboration, all four of the DMD patients analysed had 45% shorter telomeres in their cardiomyocytes relative to age- and sex-matched controls. We propose that the demands of contraction in the absence of dystrophin coupled with increased oxidative stress conspire to accelerate telomere erosion culminating in cardiac failure and death. These findings provide strong support for a link between telomere length and dystrophin deficiency in the etiology of dilated cardiomyopathy in DMD and suggest preventive interventions.
Collapse
Affiliation(s)
- Foteini Mourkioti
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jackie Kustan
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peggy Kraft
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John W. Day
- Department of Neurology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Ming-Ming Zhao
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA 94305, USA
| | - Maria Kost-Alimova
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Alexei Protopopov
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Ronald A. DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA 94305, USA
| | - Alan K. Meeker
- Department of Pathology, Department of Oncology, Johns Hopkins Medical Institution, Baltimore, MD 21231, USA
| | - Helen M. Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
243
|
Li JY, Conforti L. Axonopathy in Huntington's disease. Exp Neurol 2013; 246:62-71. [DOI: 10.1016/j.expneurol.2012.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 06/27/2012] [Accepted: 08/11/2012] [Indexed: 02/02/2023]
|
244
|
Qiu X, Cao L, Yang X, Zhao X, Liu X, Han Y, Xue Y, Jiang H, Chi Z. Role of mitochondrial fission in neuronal injury in pilocarpine-induced epileptic rats. Neuroscience 2013; 245:157-65. [DOI: 10.1016/j.neuroscience.2013.04.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 12/18/2022]
|
245
|
Haun F, Nakamura T, Lipton SA. Dysfunctional Mitochondrial Dynamics in the Pathophysiology of Neurodegenerative Diseases. J Cell Death 2013; 6:27-35. [PMID: 24587691 PMCID: PMC3935363 DOI: 10.4137/jcd.s10847] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mitochondrial dysfunction occurs in neurodegenerative diseases, however molecular mechanisms underlying this process remain elusive. Emerging evidence suggests that nitrosative stress, mediated by reactive nitrogen species (RNS), may play a role in mitochondrial pathology. Here, we review findings that highlight the abnormal mitochondrial morphology observed in many neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s diseases. One mechanism whereby RNS can affect mitochondrial function and thus neuronal survival occurs via protein S-nitrosylation, representing chemical reaction of a nitric oxide (NO) group with a critical cysteine thiol. In this review, we focus on the signaling pathway whereby S-nitrosylation of the mitochondrial fission protein Drp1 (dynamin-related protein 1; forming S-nitrosothiol (SNO)-Drp1) precipitates excessive mitochondrial fission or fragmentation and consequent bioenergetic compromise. Subsequently, the formation of SNO-Drp1 leads to synaptic damage and neuronal death. Thus, intervention in the SNO-Drp1 pathway may provide therapeutic benefit in neurodegenerative diseases.
Collapse
Affiliation(s)
- Florian Haun
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, CA ; Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, Freiburg, Germany ; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany ; Faculty of Biology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Tomohiro Nakamura
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, CA
| | - Stuart A Lipton
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, CA
| |
Collapse
|
246
|
Maresca A, la Morgia C, Caporali L, Valentino ML, Carelli V. The optic nerve: a "mito-window" on mitochondrial neurodegeneration. Mol Cell Neurosci 2013; 55:62-76. [PMID: 22960139 PMCID: PMC3629569 DOI: 10.1016/j.mcn.2012.08.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/27/2012] [Accepted: 08/06/2012] [Indexed: 01/16/2023] Open
Abstract
Retinal ganglion cells (RGCs) project their long axons, composing the optic nerve, to the brain, transmitting the visual information gathered by the retina, ultimately leading to formed vision in the visual cortex. The RGC cellular system, representing the anterior part of the visual pathway, is vulnerable to mitochondrial dysfunction and optic atrophy is a very frequent feature of mitochondrial and neurodegenerative diseases. The start of the molecular era of mitochondrial medicine, the year 1988, was marked by the identification of a maternally inherited form of optic atrophy, Leber's hereditary optic neuropathy, as the first disease due to mitochondrial DNA point mutations. The field of mitochondrial medicine has expanded enormously over the last two decades and many neurodegenerative diseases are now known to have a primary mitochondrial etiology or mitochondrial dysfunction plays a relevant role in their pathogenic mechanism. Recent technical advancements in neuro-ophthalmology, such as optical coherence tomography, prompted a still ongoing systematic re-investigation of retinal and optic nerve involvement in neurodegenerative disorders. In addition to inherited optic neuropathies, such as Leber's hereditary optic neuropathy and dominant optic atrophy, and in addition to the syndromic mitochondrial encephalomyopathies or mitochondrial neurodegenerative disorders such as some spinocerebellar ataxias or familial spastic paraparesis and other disorders, we draw attention to the involvement of the optic nerve in classic age-related neurodegenerative disorders such as Parkinson and Alzheimer disease. We here provide an overview of optic nerve pathology in these different clinical settings, and we review the possible mechanisms involved in the pathogenesis of optic atrophy. This may be a model of general value for the field of neurodegeneration. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
| | | | | | | | - Valerio Carelli
- Corresponding author at: IRCCS Institute of Neurological Sciences of Bologna, Department of Neurological Sciences, University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy. Fax: + 39 051 2092751.
| |
Collapse
|
247
|
Kasote DM, Hegde MV, Katyare SS. Mitochondrial dysfunction in psychiatric and neurological diseases: cause(s), consequence(s), and implications of antioxidant therapy. Biofactors 2013; 39:392-406. [PMID: 23460132 DOI: 10.1002/biof.1093] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/25/2012] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction is at the base of development and progression of several psychiatric and neurologic diseases with different etiologies. MtDNA/nDNA mutational damage, failure of endogenous antioxidant defenses, hormonal malfunction, altered membrane permeability, metabolic dysregulation, disruption of calcium buffering capacity and ageing have been found to be the root causes of mitochondrial dysfunction in psychatric and neurodegenerative diseases. However, the overall consequences of mitochondrial dysfunction are only limited to increase in oxidative/nitrosative stress and cellular energy crises. Thus far, extensive efforts have been made to improve mitochondrial function through specific cause-dependent antioxidant therapy. However, owing to complex genetic and interlinked causes of mitochondrial dysfunction, it has not been possible to achieve any common, unique supportive antioxidant therapeutic strategy for the treatment of psychiatric and neurologic diseases. Hence, we propose an antioxidant therapeutic strategy for management of consequences of mitochondrial dysfunction in psychiatric and neurologic diseases. It is expected that this will not only reduces oxidative stress, but also promote anaerobic energy production.
Collapse
Affiliation(s)
- Deepak M Kasote
- MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, MS, India.
| | | | | |
Collapse
|
248
|
Bender A, Desplats P, Spencer B, Rockenstein E, Adame A, Elstner M, Laub C, Mueller S, Koob AO, Mante M, Pham E, Klopstock T, Masliah E. TOM40 mediates mitochondrial dysfunction induced by α-synuclein accumulation in Parkinson's disease. PLoS One 2013; 8:e62277. [PMID: 23626796 PMCID: PMC3633917 DOI: 10.1371/journal.pone.0062277] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/19/2013] [Indexed: 12/31/2022] Open
Abstract
Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery--TOM40--might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies.
Collapse
Affiliation(s)
- Andreas Bender
- Department of Neurology with Friedrich-Baur-Institute, University of Munich, Munich, Germany
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Paula Desplats
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Anthony Adame
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Matthias Elstner
- Department of Neurology with Friedrich-Baur-Institute, University of Munich, Munich, Germany
| | - Christoph Laub
- Department of Neurology with Friedrich-Baur-Institute, University of Munich, Munich, Germany
| | - Sarina Mueller
- Department of Neurology with Friedrich-Baur-Institute, University of Munich, Munich, Germany
| | - Andrew O. Koob
- Department of Neurology with Friedrich-Baur-Institute, University of Munich, Munich, Germany
| | - Michael Mante
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Emily Pham
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Thomas Klopstock
- Department of Neurology with Friedrich-Baur-Institute, University of Munich, Munich, Germany
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
249
|
Aidt FH, Nielsen SMB, Kanters J, Pesta D, Nielsen TT, Nørremølle A, Hasholt L, Christiansen M, Hagen CM. Dysfunctional mitochondrial respiration in the striatum of the Huntington's disease transgenic R6/2 mouse model. PLOS CURRENTS 2013; 5. [PMID: 23568011 PMCID: PMC3614423 DOI: 10.1371/currents.hd.d8917b4862929772c5a2f2a34ef1c201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metabolic dysfunction and mitochondrial involvement are recognised as part of the pathology in Huntington's Disease (HD). Post-mortem examinations of the striatum from end-stage HD patients have shown a decrease in the in vitro activity of complexes II, III and IV of the electron transport system (ETS). In different models of HD, evidence of enzyme defects have been reported in complex II and complex IV using enzyme assays. However, such assays are highly variable and results have been inconsistent.
We investigated the integrated ETS function ex vivo using a sensitive high-resolution respirometric (HRR) method. The O2 flux in a whole-cell sample combined with the addition of mitochondrial substrates, uncouplers and inhibitors enabled us to accurately quantitate the function of individual mitochondrial complexes in intact mitochondria, while retaining mitochondrial regulation and compensatory mechanisms.
We used HRR to examine the mitochondrial function in striata from 12-week old R6/2 mice expressing exon 1 of human HTT with 130 CAG repeats. A significant reduction in complex II and complex IV flux control ratios was found in the R6/2 mouse striatum at 12 weeks of age compared to controls, confirming previous findings obtained with spectrophotometric enzyme assays.
Collapse
Affiliation(s)
- Frederik Heurlin Aidt
- Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen; Section of Molecular Medicine, Department of Clinical Biochemistry, Genetics and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Cagalinec M, Safiulina D, Liiv M, Liiv J, Choubey V, Wareski P, Veksler V, Kaasik A. Principles of the mitochondrial fusion and fission cycle in neurons. J Cell Sci 2013; 126:2187-97. [PMID: 23525002 DOI: 10.1242/jcs.118844] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial fusion-fission dynamics play a crucial role in many important cell processes. These dynamics control mitochondrial morphology, which in turn influences several important mitochondrial properties including mitochondrial bioenergetics and quality control, and they appear to be affected in several neurodegenerative diseases. However, an integrated and quantitative understanding of how fusion-fission dynamics control mitochondrial morphology has not yet been described. Here, we took advantage of modern visualisation techniques to provide a clear explanation of how fusion and fission correlate with mitochondrial length and motility in neurons. Our main findings demonstrate that: (1) the probability of a single mitochondrion splitting is determined by its length; (2) the probability of a single mitochondrion fusing is determined primarily by its motility; (3) the fusion and fission cycle is driven by changes in mitochondrial length and deviations from this cycle serves as a corrective mechanism to avoid extreme mitochondrial length; (4) impaired mitochondrial motility in neurons overexpressing 120Q Htt or Tau suppresses mitochondrial fusion and leads to mitochondrial shortening whereas stimulation of mitochondrial motility by overexpressing Miro-1 restores mitochondrial fusion rates and sizes. Taken together, our results provide a novel insight into the complex crosstalk between different processes involved in mitochondrial dynamics. This knowledge will increase understanding of the dynamic mitochondrial functions in cells and in particular, the pathogenesis of mitochondrial-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Pharmacology, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 19, Tartu, Estonia
| | | | | | | | | | | | | | | |
Collapse
|