201
|
Varsani A, Lefeuvre P, Roumagnac P, Martin D. Notes on recombination and reassortment in multipartite/segmented viruses. Curr Opin Virol 2018; 33:156-166. [PMID: 30237098 DOI: 10.1016/j.coviro.2018.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Besides evolving through nucleotide substitution, viruses frequently also evolve by genetic recombination which can occur when related viral variants co-infect the same cells. Viruses with segmented or multipartite genomes can additionally evolve via the reassortment of genomic components. Various computational techniques are now available for identifying and characterizing recombination and reassortment. While these techniques have revealed both that all well studied segmented and multipartite virus species show some capacity for reassortment, and that recombination is common in many multipartite species, they have indicated that recombination is either rare or does not occur in species with segmented genomes. Reassortment and recombination can make it very difficult to study segmented/multipartite viruses using metagenomics-based approaches. Notable challenges include, both the accurate identification and assignment of genomic components to individual genomes, and the differentiation between natural 'real' recombination events and artifactual 'fake' recombination events arising from the inaccurate de novo assembly of genome component sequences determined using short read sequencing.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | | | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France; BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine. University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
202
|
An Approach to In Silico Dissection of Bacterial Intelligence Through Selective Genomic Tools. Indian J Microbiol 2018; 58:278-286. [PMID: 30013271 DOI: 10.1007/s12088-018-0726-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 01/31/2023] Open
Abstract
All the genetic potential and the intelligence a bacteria can showcase in a given environment are embedded in its genome. In this study, we have presented systematic guidelines to understand a bacterial genome with the relevant set of in silico tools using a novel bacteria as an example. This study presents a multi-dimensional approach from genome annotation to tracing genes and their network of metabolism operating in an organism. It also shows how the sequence can be used to mine the enzymes and construction of its 3-dimensional structure so that its functional behavior can be predicted and compared. The discriminating algorithm allows analysis of the promoter region and provides the insight in the regulation of genes in spite of the similarity in its sequences. The ecological niche specific bacterial behavior and adapted altered physiology can be understood through the presence of secondary metabolite, antibiotic resistance genes, and viral genes; and it helps in the valorization of genetic information for developing new biological application/processes. This study provides an in silico work plan and necessary steps for genome analysis of novel bacteria without any rigorous wet lab experiments.
Collapse
|
203
|
Franzo G, Segales J, Tucciarone CM, Cecchinato M, Drigo M. The analysis of genome composition and codon bias reveals distinctive patterns between avian and mammalian circoviruses which suggest a potential recombinant origin for Porcine circovirus 3. PLoS One 2018; 13:e0199950. [PMID: 29958294 PMCID: PMC6025852 DOI: 10.1371/journal.pone.0199950] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023] Open
Abstract
Members of the genus Circovirus are host-specific viruses, which are totally dependent on cell machinery for their replication. Consequently, certain mimicry of the host genome features is expected to maximize cellular replicative system exploitation and minimize the recognition by the innate immune system. In the present study, the analysis of several genome composition and codon bias parameters of circoviruses infecting avian and mammalian species demonstrated the presence of quite distinctive patterns between the two groups. Remarkably, a higher deviation from the expected values based only on mutational patterns was observed for mammalian circoviruses both at dinucleotide and codon levels. Accordingly, a stronger selective pressure was estimated to shape the genome of mammalian circoviruses, particularly in the Cap encoding gene, compared to avian circoviruses. These differences could be attributed to different physiological and immunological features of the two host classes and suggest a trade-off between a tendency to optimize the capsid protein translation while minimizing the recognition of the genome and the transcript molecules. Interestingly, the recently identified Porcine circovirus 3 (PCV-3) had an intermediate pattern in terms of genome composition and codon bias. Particularly, its Rep gene appeared closely related to other mammalian circoviruses (especially bat circoviruses) while the Cap gene more closely resembled avian circoviruses. These evidences, coupled with the high selective forces apparently modelling the PCV-3 Cap gene composition, suggest the potential recombinant origin, followed or preceded by a host jump, of this virus.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Padua, Italy
- * E-mail:
| | - Joaquim Segales
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| |
Collapse
|
204
|
Morphologic and Genomic Analyses of New Isolates Reveal a Second Lineage of Cedratviruses. J Virol 2018; 92:JVI.00372-18. [PMID: 29695424 DOI: 10.1128/jvi.00372-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
Giant viruses have been isolated and characterized in different environments, expanding our knowledge about the biology of these unique microorganisms. In the last 2 years, a new group was discovered, the cedratviruses, currently composed of only two isolates and members of a putative new family, "Pithoviridae," along with previously known pithoviruses. Here we report the isolation and biological and genomic characterization of two novel cedratviruses isolated from samples collected in France and Brazil. Both viruses were isolated using Acanthamoeba castellanii as a host cell and exhibit ovoid particles with corks at either extremity of the particle. Curiously, the Brazilian cedratvirus is ∼20% smaller and presents a shorter genome of 460,038 bp, coding for fewer proteins than other cedratviruses. In addition, it has a completely asyntenic genome and presents a lower amino acid identity of orthologous genes (∼73%). Pangenome analysis comprising the four cedratviruses revealed an increase in the pangenome concomitant with a decrease in the core genome with the addition of the two novel viruses. Finally, phylogenetic analyses clustered the Brazilian virus in a separate branch within the group of cedratviruses, while the French isolate is closer to the previously reported Cedratvirus lausannensis Taking all together, we propose the existence of a second lineage of this emerging viral genus and provide new insights into the biodiversity and ubiquity of these giant viruses.IMPORTANCE Various giant viruses have been described in recent years, revealing a unique part of the virosphere. A new group among the giant viruses has recently been described, the cedratviruses, which is currently composed of only two isolates. In this paper, we describe two novel cedratviruses isolated from French and Brazilian samples. Biological and genomic analyses showed viruses with different particle sizes, genome lengths, and architecture, revealing the existence of a second lineage of this new group of giant viruses. Our results provide new insights into the biodiversity of cedratviruses and highlight the importance of ongoing efforts to prospect for and characterize new giant viruses.
Collapse
|
205
|
Di Giallonardo F, Audsley MD, Shi M, Young PR, McGraw EA, Holmes EC. Complete genome of Aedes aegypti anphevirus in the Aag2 mosquito cell line. J Gen Virol 2018; 99:832-836. [PMID: 29741476 DOI: 10.1099/jgv.0.001079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel negative-sense RNA virus, Aedes aegypti anphevirus, was recently identified in wild Aedes aegypti mosquitoes. We show that this virus is also present in the Aag2 Aedes aegypti cell line and characterize its complete genome and evolutionary history. The Aedes aegypti anphevirus genome is estimated to be 12 916 nucleotides in length, contains four genes and has a genome structure similar to that of other anpheviruses. Phylogenetically, Aedes aegypti anphevirus falls within an unclassified group of insect-specific viruses in the order Mononegavirales that form a sister-group to the chuviruses. Notably, the Aag2 cell line used here was also experimentally infected with dengue virus and naturally contained a Phasi Charoen-like virus and cell-fusing agent virus. All four viruses were at relatively high abundance, with 0.5 % of sequence reads assigned to Aedes aegypti anphevirus. The Aag2 cell line is therefore permissive to efficient co-infection with dengue virus and multiple insect-specific viruses.
Collapse
Affiliation(s)
| | - Michelle D Audsley
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Elizabeth A McGraw
- Department of Entomology and The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
206
|
Ibrahim B, McMahon DP, Hufsky F, Beer M, Deng L, Mercier PL, Palmarini M, Thiel V, Marz M. A new era of virus bioinformatics. Virus Res 2018; 251:86-90. [PMID: 29751021 DOI: 10.1016/j.virusres.2018.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
Despite the recognized excellence of virology and bioinformatics, these two communities have interacted surprisingly sporadically, aside from some pioneering work on HIV-1 and influenza. Bringing together the expertise of bioinformaticians and virologists is crucial, since very specific but fundamental computational approaches are required for virus research, particularly in an era of big data. Collaboration between virologists and bioinformaticians is necessary to improve existing analytical tools, cloud-based systems, computational resources, data sharing approaches, new diagnostic tools, and bioinformatic training. Here, we highlight current progress and discuss potential avenues for future developments in this promising era of virus bioinformatics. We end by presenting an overview of current technologies, and by outlining some of the major challenges and advantages that bioinformatics will bring to the field of virology.
Collapse
Affiliation(s)
- Bashar Ibrahim
- European Virus Bioinformatics Center, Jena, Germany; RNA Bioinformatics and High Throughput Analysis Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Dino P McMahon
- European Virus Bioinformatics Center, Jena, Germany; Host Parasite Evolution and Ecology, Institute of Biology, Free University of Berlin, Berlin, Germany; Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Franziska Hufsky
- European Virus Bioinformatics Center, Jena, Germany; RNA Bioinformatics and High Throughput Analysis Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Beer
- European Virus Bioinformatics Center, Jena, Germany; Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Li Deng
- European Virus Bioinformatics Center, Jena, Germany; Institute of Virology, Helmholtz Zentrum Munich, Munich, Germany
| | - Philippe Le Mercier
- European Virus Bioinformatics Center, Jena, Germany; Swiss-Prot Group, SIB,CMU, University of Geneva Medical School, Geneva, Switzerland
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Volker Thiel
- European Virus Bioinformatics Center, Jena, Germany; Federal Department of Home Affairs, Institute of Virology and Immunology, Bern and Mittelhausen, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Manja Marz
- European Virus Bioinformatics Center, Jena, Germany; RNA Bioinformatics and High Throughput Analysis Jena, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
207
|
Complete sequence and diversity of a maize-associated Polerovirus in East Africa. Virus Genes 2018; 54:432-437. [PMID: 29687187 DOI: 10.1007/s11262-018-1560-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
Since 2011-2012, Maize lethal necrosis (MLN) has emerged in East Africa, causing massive yield loss and propelling research to identify viruses and virus populations present in maize. As expected, next generation sequencing (NGS) has revealed diverse and abundant viruses from the family Potyviridae, primarily sugarcane mosaic virus (SCMV), and maize chlorotic mottle virus (MCMV) (Tombusviridae), which are known to cause MLN by synergistic co-infection. In addition to these expected viruses, we identified a virus in the genus Polerovirus (family Luteoviridae) in 104/172 samples selected for MLN or other potential virus symptoms from Kenya, Uganda, Rwanda, and Tanzania. This polerovirus (MF974579) nucleotide sequence is 97% identical to maize-associated viruses recently reported in China, termed 'maize yellow mosaic virus' (MaYMV) and maize yellow dwarf virus (MaYMV; KU291101, KU291107, MYDV-RMV2; KT992824); and 99% identical to MaYMV (KY684356) infecting sugarcane and itch grass in Nigeria; 83% identical to a barley-associated polerovirus recently identified in Korea (BVG; KT962089); and 79% identical to the U.S. maize-infecting polerovirus maize yellow dwarf virus (MYDV-RMV; KT992824). Nucleotide sequences from ORF0 of 20 individual East African isolates collected from Kenya, Uganda, Rwanda, and Tanzania shared 98% or higher identity, and were detected in 104/172 (60.5%) of samples collected for virus-like symptoms, indicating extensive prevalence but limited diversity of this virus in East Africa. We refer to this virus as "MYDV-like polerovirus" until symptoms of the virus in maize are known.
Collapse
|
208
|
Mahmoudabadi G, Phillips R. A comprehensive and quantitative exploration of thousands of viral genomes. eLife 2018; 7:31955. [PMID: 29624169 PMCID: PMC5908442 DOI: 10.7554/elife.31955] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/30/2018] [Indexed: 01/27/2023] Open
Abstract
The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends – such as gene density, noncoding percentage, and abundances of functional gene categories – across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends.
Collapse
Affiliation(s)
- Gita Mahmoudabadi
- Department of Bioengineering, California Institute of Technology, Pasadena, United States
| | - Rob Phillips
- Department of Bioengineering, California Institute of Technology, Pasadena, United States.,Department of Applied Physics, California Institute of Technology, Pasadena, United States
| |
Collapse
|
209
|
Solubilisation and purification of recombinant bluetongue virus VP7 expressed in a bacterial system. Protein Expr Purif 2018; 147:85-93. [PMID: 29551716 DOI: 10.1016/j.pep.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/17/2023]
Abstract
Bluetongue virus (BTV) is an Orbivirus that has a profound economic impact due to direct loss of livestock as well as movement bans in an attempt to prevent the spread of the disease to susceptible areas. BTV VP7, along with VP3, forms the inner capsid core of the virus where it acts as the barrier between the outer layer and the inner core housing the genetic material. Purification of BTV VP7 has proven to be problematic and expensive mainly due to its insolubility is several expression systems. To overcome this, in this paper we present a protocol for the solubilisation of BTV VP7 from inclusion bodies expressed in E.coli, and subsequent purification using nickel affinity chromatography. The purified protein was then characterised using native PAGE, far ultraviolet circular dichroism (far-UV CD) and intrinsic fluorescence and found to have both secondary and tertiary structure even in the presence of 5 M urea. Both tertiary and secondary structure was further shown to be to be maintained at least to 42 °C in 5 M urea.
Collapse
|
210
|
Brüwer JD, Voolstra CR. First insight into the viral community of the cnidarian model metaorganism Aiptasia using RNA-Seq data. PeerJ 2018; 6:e4449. [PMID: 29507840 PMCID: PMC5835348 DOI: 10.7717/peerj.4449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/13/2018] [Indexed: 02/01/2023] Open
Abstract
Current research posits that all multicellular organisms live in symbioses with associated microorganisms and form so-called metaorganisms or holobionts. Cnidarian metaorganisms are of specific interest given that stony corals provide the foundation of the globally threatened coral reef ecosystems. To gain first insight into viruses associated with the coral model system Aiptasia (sensu Exaiptasia pallida), we analyzed an existing RNA-Seq dataset of aposymbiotic, partially populated, and fully symbiotic Aiptasia CC7 anemones with Symbiodinium. Our approach included the selective removal of anemone host and algal endosymbiont sequences and subsequent microbial sequence annotation. Of a total of 297 million raw sequence reads, 8.6 million (∼3%) remained after host and endosymbiont sequence removal. Of these, 3,293 sequences could be assigned as of viral origin. Taxonomic annotation of these sequences suggests that Aiptasia is associated with a diverse viral community, comprising 116 viral taxa covering 40 families. The viral assemblage was dominated by viruses from the families Herpesviridae (12.00%), Partitiviridae (9.93%), and Picornaviridae (9.87%). Despite an overall stable viral assemblage, we found that some viral taxa exhibited significant changes in their relative abundance when Aiptasia engaged in a symbiotic relationship with Symbiodinium. Elucidation of viral taxa consistently present across all conditions revealed a core virome of 15 viral taxa from 11 viral families, encompassing many viruses previously reported as members of coral viromes. Despite the non-random selection of viral genetic material due to the nature of the sequencing data analyzed, our study provides a first insight into the viral community associated with Aiptasia. Similarities of the Aiptasia viral community with those of corals corroborate the application of Aiptasia as a model system to study coral holobionts. Further, the change in abundance of certain viral taxa across different symbiotic states suggests a role of viruses in the algal endosymbiosis, but the functional significance of this remains to be determined.
Collapse
Affiliation(s)
- Jan D Brüwer
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, Saudi Arabia
| |
Collapse
|
211
|
Denny P, Feuermann M, Hill DP, Lovering RC, Plun-Favreau H, Roncaglia P. Exploring autophagy with Gene Ontology. Autophagy 2018; 14:419-436. [PMID: 29455577 PMCID: PMC5915032 DOI: 10.1080/15548627.2017.1415189] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a fundamental cellular process that is well conserved among eukaryotes. It is one of the strategies that cells use to catabolize substances in a controlled way. Autophagy is used for recycling cellular components, responding to cellular stresses and ridding cells of foreign material. Perturbations in autophagy have been implicated in a number of pathological conditions such as neurodegeneration, cardiac disease and cancer. The growing knowledge about autophagic mechanisms needs to be collected in a computable and shareable format to allow its use in data representation and interpretation. The Gene Ontology (GO) is a freely available resource that describes how and where gene products function in biological systems. It consists of 3 interrelated structured vocabularies that outline what gene products do at the biochemical level, where they act in a cell and the overall biological objectives to which their actions contribute. It also consists of ‘annotations’ that associate gene products with the terms. Here we describe how we represent autophagy in GO, how we create and define terms relevant to autophagy researchers and how we interrelate those terms to generate a coherent view of the process, therefore allowing an interoperable description of its biological aspects. We also describe how annotation of gene products with GO terms improves data analysis and interpretation, hence bringing a significant benefit to this field of study.
Collapse
Affiliation(s)
- Paul Denny
- a Functional Gene Annotation , Institute of Cardiovascular Science, University College London , London , UK
| | - Marc Feuermann
- b SIB Swiss Institute of Bioinformatics , Geneva , Switzerland
| | - David P Hill
- c The Jackson Laboratory , Bar Harbor , ME , USA.,f The Gene Ontology Consortium
| | - Ruth C Lovering
- a Functional Gene Annotation , Institute of Cardiovascular Science, University College London , London , UK
| | - Helene Plun-Favreau
- d Department of Molecular Neuroscience , UCL Institute of Neurology , London , UK
| | - Paola Roncaglia
- e European Bioinformatics Institute (EMBL-EBI) , European Molecular Biology Laboratory, Wellcome Genome Campus , Hinxton , Cambridge , UK.,f The Gene Ontology Consortium
| |
Collapse
|
212
|
Yoshida M, Mochizuki T, Urayama SI, Yoshida-Takashima Y, Nishi S, Hirai M, Nomaki H, Takaki Y, Nunoura T, Takai K. Quantitative Viral Community DNA Analysis Reveals the Dominance of Single-Stranded DNA Viruses in Offshore Upper Bathyal Sediment from Tohoku, Japan. Front Microbiol 2018; 9:75. [PMID: 29467725 PMCID: PMC5807898 DOI: 10.3389/fmicb.2018.00075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/12/2018] [Indexed: 11/25/2022] Open
Abstract
Previous studies on marine environmental virology have primarily focused on double-stranded DNA (dsDNA) viruses; however, it has recently been suggested that single-stranded DNA (ssDNA) viruses are more abundant in marine ecosystems. In this study, we performed a quantitative viral community DNA analysis to estimate the relative abundance and composition of both ssDNA and dsDNA viruses in offshore upper bathyal sediment from Tohoku, Japan (water depth = 500 m). The estimated dsDNA viral abundance ranged from 3 × 106 to 5 × 106 genome copies per cm3 sediment, showing values similar to the range of fluorescence-based direct virus counts. In contrast, the estimated ssDNA viral abundance ranged from 1 × 108 to 3 × 109 genome copies per cm3 sediment, thus providing an estimation that the ssDNA viral populations represent 96.3–99.8% of the benthic total DNA viral assemblages. In the ssDNA viral metagenome, most of the identified viral sequences were associated with ssDNA viral families such as Circoviridae and Microviridae. The principle components analysis of the ssDNA viral sequence components from the sedimentary ssDNA viral metagenomic libraries found that the different depth viral communities at the study site all exhibited similar profiles compared with deep-sea sediment ones at other reference sites. Our results suggested that deep-sea benthic ssDNA viruses have been significantly underestimated by conventional direct virus counts and that their contributions to deep-sea benthic microbial mortality and geochemical cycles should be further addressed by such a new quantitative approach.
Collapse
Affiliation(s)
- Mitsuhiro Yoshida
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Tomohiro Mochizuki
- Project Team for Analyses of Changes in East Japan Marine Ecosystems, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Syun-Ichi Urayama
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Yukari Yoshida-Takashima
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Shinro Nishi
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Hidetaka Nomaki
- Project Team for Analyses of Changes in East Japan Marine Ecosystems, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.,Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| |
Collapse
|
213
|
Green CM, Novikova O, Belfort M. The dynamic intein landscape of eukaryotes. Mob DNA 2018; 9:4. [PMID: 29416568 PMCID: PMC5784728 DOI: 10.1186/s13100-018-0111-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Inteins are mobile, self-splicing sequences that interrupt proteins and occur across all three domains of life. Scrutiny of the intein landscape in prokaryotes led to the hypothesis that some inteins are functionally important. Our focus shifts to eukaryotic inteins to assess their diversity, distribution, and dissemination, with the aim to comprehensively evaluate the eukaryotic intein landscape, understand intein maintenance, and dissect evolutionary relationships. RESULTS This bioinformatics study reveals that eukaryotic inteins are scarce, but present in nuclear genomes of fungi, chloroplast genomes of algae, and within some eukaryotic viruses. There is a preponderance of inteins in several fungal pathogens of humans and plants. Inteins are pervasive in certain proteins, including the nuclear RNA splicing factor, Prp8, and the chloroplast DNA helicase, DnaB. We find that eukaryotic inteins frequently localize to unstructured loops of the host protein, often at highly conserved sites. More broadly, a sequence similarity network analysis of all eukaryotic inteins uncovered several routes of intein mobility. Some eukaryotic inteins appear to have been acquired through horizontal transfer with dsDNA viruses, yet other inteins are spread through intragenomic transfer. Remarkably, endosymbiosis can explain patterns of DnaB intein inheritance across several algal phyla, a novel mechanism for intein acquisition and distribution. CONCLUSIONS Overall, an intriguing picture emerges for how the eukaryotic intein landscape arose, with many evolutionary forces having contributed to its current state. Our collective results provide a framework for exploring inteins as novel regulatory elements and innovative drug targets.
Collapse
Affiliation(s)
- Cathleen M. Green
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222 USA
| |
Collapse
|
214
|
Lošdorfer Božič A, Podgornik R. Varieties of charge distributions in coat proteins of ssRNA+ viruses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:024001. [PMID: 29182522 PMCID: PMC7104810 DOI: 10.1088/1361-648x/aa9ded] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
A major part of the interactions involved in the assembly and stability of icosahedral, positive-sense single-stranded RNA (ssRNA+) viruses is electrostatic in nature, as can be inferred from the strong pH- and salt-dependence of their assembly phase diagrams. Electrostatic interactions do not act only between the capsid coat proteins (CPs), but just as often provide a significant contribution to the interactions of the CPs with the genomic RNA, mediated to a large extent by positively charged, flexible N-terminal tails of the CPs. In this work, we provide two clear and complementary definitions of an N-terminal tail of a protein, and use them to extract the tail sequences of a large number of CPs of ssRNA+ viruses. We examine the pH-dependent interplay of charge on both tails and CPs alike, and show that-in contrast to the charge on the CPs-the net positive charge on the N-tails persists even to very basic pH values. In addition, we note a limit to the length of the wild-type genomes of those viruses which utilize positively charged tails, when compared to viruses without charged tails and similar capsid size. At the same time, we observe no clear connection between the charge on the N-tails and the genome lengths of the viruses included in our study.
Collapse
Affiliation(s)
- Anže Lošdorfer Božič
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
215
|
Segobola J, Adriaenssens E, Tsekoa T, Rashamuse K, Cowan D. Exploring Viral Diversity in a Unique South African Soil Habitat. Sci Rep 2018; 8:111. [PMID: 29311639 PMCID: PMC5758573 DOI: 10.1038/s41598-017-18461-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
The Kogelberg Biosphere Reserve in the Cape Floral Kingdom in South Africa is known for its unique plant biodiversity. The potential presence of unique microbial and viral biodiversity associated with this unique plant biodiversity led us to explore the fynbos soil using metaviromic techniques. In this study, metaviromes of a soil community from the Kogelberg Biosphere Reserve has been characterised in detail for the first time. Metaviromic DNA was recovered from soil and sequenced by Next Generation Sequencing. The MetaVir, MG-RAST and VIROME bioinformatics pipelines were used to analyse taxonomic composition, phylogenetic and functional assessments of the sequences. Taxonomic composition revealed members of the order Caudovirales, in particular the family Siphoviridae, as prevalent in the soil samples and other compared viromes. Functional analysis and other metaviromes showed a relatively high frequency of phage-related and structural proteins. Phylogenetic analysis of PolB, PolB2, terL and T7gp17 genes indicated that many viral sequences are closely related to the order Caudovirales, while the remainder were distinct from known isolates. The use of single virome which only includes double stranded DNA viruses limits this study. Novel phage sequences were detected, presenting an opportunity for future studies aimed at targeting novel genetic resources for applied biotechnology.
Collapse
Affiliation(s)
- Jane Segobola
- Biosciences Unit, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Evelien Adriaenssens
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Tsepo Tsekoa
- Biosciences Unit, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Konanani Rashamuse
- Biosciences Unit, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Don Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
216
|
Lim CS, Brown CM. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs. Front Microbiol 2018; 8:2582. [PMID: 29354101 PMCID: PMC5758548 DOI: 10.3389/fmicb.2017.02582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
217
|
Chun S, Muthu M, Gopal J, Paul D, Kim DH, Gansukh E, Anthonydhason V. The unequivocal preponderance of biocomputation in clinical virology. RSC Adv 2018; 8:17334-17345. [PMID: 35539262 PMCID: PMC9080393 DOI: 10.1039/c8ra00888d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/14/2018] [Indexed: 11/22/2022] Open
Abstract
Bioinformatics and computer based data simulation and modeling are captivating biological research, delivering great results already and promising to deliver more. As biological research is a complex, intricate, diverse field, any available support is gladly taken. With recent outbreaks and epidemics, pathogens are a constant threat to the global economy and security. Virus related plagues are somehow the most difficult to handle. Biocomputation has provided appreciable help in resolving clinical virology related issues. This review, for the first time, surveys the current status of the role of computation in virus related research. Advances made in the fields of clinical virology, antiviral drug design, viral immunology and viral oncology, through input from biocomputation, have been discussed. The amount of progress made and the software platforms available are consolidated in this review. The limitations of computation based methods are presented. Finally, the challenges facing the future of biocomputation in clinical virology are speculated upon. Biocomputation in clinical virology.![]()
Collapse
Affiliation(s)
- Sechul Chun
- Department of Environmental Health Science
- Konkuk University
- Seoul 143-701
- Korea
| | - Manikandan Muthu
- Department of Environmental Health Science
- Konkuk University
- Seoul 143-701
- Korea
| | - Judy Gopal
- Department of Environmental Health Science
- Konkuk University
- Seoul 143-701
- Korea
| | - Diby Paul
- Environmental Microbiology
- Department of Environmental Engineering
- Konkuk University
- Seoul 143-701
- Korea
| | - Doo Hwan Kim
- Department of Environmental Health Science
- Konkuk University
- Seoul 143-701
- Korea
| | - Enkhtaivan Gansukh
- Department of Environmental Health Science
- Konkuk University
- Seoul 143-701
- Korea
| | - Vimala Anthonydhason
- Department of Biotechnology
- Indian Institute of Technology-Madras
- Chennai 600036
- India
| |
Collapse
|
218
|
Gurumayum S, Brahma R, Naorem LD, Muthaiyan M, Gopal J, Venkatesan A. ZikaBase: An integrated ZIKV- Human Interactome Map database. Virology 2018; 514:203-210. [DOI: 10.1016/j.virol.2017.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/08/2017] [Accepted: 11/09/2017] [Indexed: 02/05/2023]
|
219
|
Romero-Alvarez D, Escobar LE. Oropouche fever, an emergent disease from the Americas. Microbes Infect 2017; 20:135-146. [PMID: 29247710 DOI: 10.1016/j.micinf.2017.11.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 01/19/2023]
Abstract
Oropouche virus is the aetiological agent of Oropouche fever, a zoonotic disease mainly transmitted by midges of the species Culicoides paraensis. Although the virus was discovered in 1955, more attention has been given recently to both the virus and the disease due to outbreaks of Oropouche fever in different areas of Brazil and Peru. Serological studies in human and wild mammals have also found Oropouche virus in Argentina, Bolivia, Colombia, and Ecuador. Several mammals act as reservoirs of the disease, although the sylvatic cycle of Oropouche virus remains to be assessed properly. Oropouche fever lacks key symptoms to be differentiated from other arboviral febrile illnesses from the Americas. Sporadic cases of aseptic meningitis have also been described with good prognosis. Habitat loss can increase the likelihood of Oropouche virus emergence in the short-term in South America.
Collapse
Affiliation(s)
- Daniel Romero-Alvarez
- Department of Ecology and Evolutionary Biology-Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA.
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
220
|
New Targets for Zika Virus Determined by Human-Viral Interactomic: A Bioinformatics Approach. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1734151. [PMID: 29379794 PMCID: PMC5742907 DOI: 10.1155/2017/1734151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023]
Abstract
Identifying ZIKV factors interfering with human host pathways represents a major challenge in understanding ZIKV tropism and pathogenesis. The integration of proteomic, gene expression and Protein-Protein Interactions (PPIs) established between ZIKV and human host proteins predicted by the OralInt algorithm identified 1898 interactions with medium or high score (≥0.7). Targets implicated in vesicular traffic and docking were identified. New receptors involved in endocytosis pathways as ZIKV entry targets, using both clathrin-dependent (17 receptors) and independent (10 receptors) pathways, are described. New targets used by the ZIKV to undermine the host's antiviral immune response are proposed based on predicted interactions established between the virus and host cell receptors and/or proteins with an effector or signaling role in the immune response such as IFN receptors and TLR. Complement and cytokines are proposed as extracellular potential interacting partners of the secreted form of NS1 ZIKV protein. Altogether, in this article, 18 new human targets for structural and nonstructural ZIKV proteins are proposed. These results are of great relevance for the understanding of viral pathogenesis and consequently the development of preventive (vaccines) and therapeutic targets for ZIKV infection management.
Collapse
|
221
|
Baikerikar S. Curcumin and Natural Derivatives Inhibit Ebola Viral Proteins: An In silico Approach. Pharmacognosy Res 2017; 9:S15-S22. [PMID: 29333037 PMCID: PMC5757320 DOI: 10.4103/pr.pr_30_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Ebola viral disease is a severe and mostly fatal disease in humans caused by Ebola virus. This virus belongs to family Filoviridae and is a single-stranded negative-sense virus. There is no single treatment for this disease which puts forth the need to identify new therapy to control and treat this fatal condition. Curcumin, one of the bioactives of turmeric, has proven antiviral property. OBJECTIVE The current study evaluates the inhibitory activity of curcumin, bisdemethoxycurcumin, demethoxycurcumin, and tetrahydrocurcumin against Zaire Ebola viral proteins (VPs). MATERIALS AND METHODS Molecular simulation of the Ebola VPs followed by docking studies with ligands comprising curcumin and related compounds was performed. RESULTS The highest binding activity for VP40 is -6.3 kcal/mol, VP35 is -8.3 kcal/mol, VP30 is -8.0 kcal/mol, VP24 is -7.7 kcal/mol, glycoprotein is -7.1 kcal/mol, and nucleoprotein is 6.8 kcal/mol. CONCLUSION Bisdemethoxycurcumin shows better binding affinity than curcumin for most VPs. Metabolite tetrahydrocurcumin also shows binding affinity comparable to curcumin. These results indicate that curcumin, curcuminoids, and metabolite tetrahydrocurcumin can be potential lead compounds for developing a new therapy for Ebola viral disease. SUMMARY Curcumin, bisdemethoxycurcumin, and demethoxycurcumin are active constituents of turmeric. Tetrahydrocurcumin is the major metabolite of curcumin formed in the body after consumption and absorption of curcuminoidsCurcuminoids have proven antiviral activityBisdemethoxycurcumin showed maximum inhibition of Ebola viral proteins (VPs) among the curcuminoids in the docking procedure with a docking score as high as -8.3 kcal/molTetrahydrocurcumin showed inhibitory activity against Ebola VPs close to that of curcumin's inhibitory action. Abbreviations Used: EBOV: Ebola virus, GP: Glycoprotein, NP: Nucleoprotein, NPT: Isothermal-isobaric Ensemble, amount of substance (N), pressure (P) and temperature (T) conserved, NVE: Canonical ensemble, amount of substance (N), volume (V) and temperature (T) conserved, VP: Viral protein.
Collapse
Affiliation(s)
- Shruti Baikerikar
- Department of Biotechnology, Thadomal Shahani Engineering College, Mumbai, Maharashtra, India
| |
Collapse
|
222
|
Sobhy H. A comparative review of viral entry and attachment during large and giant dsDNA virus infections. Arch Virol 2017; 162:3567-3585. [PMID: 28866775 PMCID: PMC5671522 DOI: 10.1007/s00705-017-3497-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Viruses enter host cells via several mechanisms, including endocytosis, macropinocytosis, and phagocytosis. They can also fuse at the plasma membrane and can spread within the host via cell-to-cell fusion or syncytia. The mechanism used by a given viral strain depends on its external topology and proteome and the type of cell being entered. This comparative review discusses the cellular attachment receptors and entry pathways of dsDNA viruses belonging to the families Adenoviridae, Baculoviridae, Herpesviridae and nucleocytoplasmic large DNA viruses (NCLDVs) belonging to the families Ascoviridae, Asfarviridae, Iridoviridae, Phycodnaviridae, and Poxviridae, and giant viruses belonging to the families Mimiviridae and Marseilleviridae as well as the proposed families Pandoraviridae and Pithoviridae. Although these viruses have several common features (e.g., topology, replication and protein sequence similarities) they utilize different entry pathways to infect wide-range of hosts, including humans, other mammals, invertebrates, fish, protozoa and algae. Similarities and differences between the entry methods used by these virus families are highlighted, with particular emphasis on viral topology and proteins that mediate viral attachment and entry. Cell types that are frequently used to study viral entry are also reviewed, along with other factors that affect virus-host cell interactions.
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
223
|
Lucía-Sanz A, Manrubia S. Multipartite viruses: adaptive trick or evolutionary treat? NPJ Syst Biol Appl 2017; 3:34. [PMID: 29263796 PMCID: PMC5680193 DOI: 10.1038/s41540-017-0035-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Multipartitism counts amongst the weirdest lifestyles found in the virosphere. Multipartite viruses have genomes segmented in pieces enclosed in different capsids that are independently transmitted. Since all segments have to meet in the host for complementation and completion of the viral cycle, multipartite viruses are bound to fight the loss of genomic information. While this is an obvious disadvantage of this strategy, no consensus on its actual advantages has been reached. In this review we present an exhaustive summary of all multipartite viruses described to date. Based on evidence, we discuss possible mechanistic and evolutionary origins of different groups, as well as their mutual relationships. We argue that the ubiquitous interactions of viruses with other unrelated viruses and with subviral elements might be regarded as a plausible first step towards multipartitism. In agreement with the view of the Virosphere as a deeply entangled network of gene sharing, we contend that the power of multipartitism relies on its dynamical and opportunistic nature, because it enables immediate adaptive responses to environmental changes. As such, perhaps the reasons for its success should be shought in multipartitism itself as an adaptive mechanism, to which its evolutionarily short-lived products (that is, the extant ensemble of multipartite viral species) are subordinated. We close by discussing how our understanding of multipartitism would improve by using concepts and tools from systems biology. The faithful transmission of the genome of an organism is a fundamental step to preserve information essential for survivability. However, multipartite viruses thrive with segmented genomes that propagate in independent viral particles. Though this adaptive strategy appears as counterintuitive and suboptimal, multipartitism is common in the viral world and has very likely arisen several times. Here we review the distribution and abundance of multipartite viruses and discuss possible evolutionary pathways for their emergence. Though no clear advantage of multipartitism has been identified, we suggest that the high prevalence of this strategy relies on its dynamic and opportunistic nature, and that it can only be understood in an ecological context. A systems biology perspective could help understanding some of the open questions regarding this weird lifestyle, while multipartitism could in turn inspire design principles based on the simultaneous exploration of an exploding number of transient collaborative associations.
Collapse
Affiliation(s)
- Adriana Lucía-Sanz
- Grupo Interdisciplinar de Sistemas Complejos (GISC), National Centre for Biotechnology (CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), National Centre for Biotechnology (CSIC), c/Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
224
|
Aggarwala V, Liang G, Bushman FD. Viral communities of the human gut: metagenomic analysis of composition and dynamics. Mob DNA 2017; 8:12. [PMID: 29026445 PMCID: PMC5627405 DOI: 10.1186/s13100-017-0095-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/24/2017] [Indexed: 01/17/2023] Open
Abstract
Background The numerically most abundant biological entities on Earth are viruses. Vast populations prey on the cellular microbiota in all habitats, including the human gut. Main body Here we review approaches for studying the human virome, and some recent results on movement of viral sequences between bacterial cells and eukaryotic hosts. We first overview biochemical and bioinformatic methods, emphasizing that specific choices in the methods used can have strong effects on the results obtained. We then review studies characterizing the virome of the healthy human gut, which reveal that most of the viruses detected are typically uncharacterized phage - the viral dark matter - and that viruses that infect human cells are encountered only rarely. We then review movement of phage between bacterial cells during antibiotic treatment. Here a radical proposal for extensive movement of antibiotic genes on phage has been challenged by a careful reanalysis of the metagenomic annotation methods used. We then review two recent studies of movement of whole phage communities between human individuals during fecal microbial transplantation, which emphasize the possible role of lysogeny in dispersal. Short conclusion Methods for studying the human gut virome are improving, yielding interesting data on movement of phage genes between cells and mammalian host organisms. However, viral populations are vast, and studies of their composition and function are just beginning.
Collapse
Affiliation(s)
- Varun Aggarwala
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| | - Guanxiang Liang
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA.,Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA 19104-4319 USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| |
Collapse
|
225
|
Abstract
Computer-assisted technologies of the genomic structure, biological function, and evolution of viruses remain a largely neglected area of research. The attention of bioinformaticians to this challenging field is currently unsatisfying in respect to its medical and biological importance. The power of new genome sequencing technologies, associated with new tools to handle "big data", provides unprecedented opportunities to address fundamental questions in virology. Here, we present an overview of the current technologies, challenges, and advantages of Next-Generation Sequencing (NGS) in relation to the field of virology. We present how viral sequences can be detected de novo out of current short-read NGS data. Furthermore, we discuss the challenges and applications of viral quasispecies and how secondary structures, commonly shaped by RNA viruses, can be computationally predicted. The phylogenetic analysis of viruses, as another ubiquitous field in virology, forms an essential element of describing viral epidemics and challenges current algorithms. Recently, the first specialized virus-bioinformatic organizations have been established. We need to bring together virologists and bioinformaticians and provide a platform for the implementation of interdisciplinary collaborative projects at local and international scales. Above all, there is an urgent need for dedicated software tools to tackle various challenges in virology.
Collapse
Affiliation(s)
- Martin Hölzer
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany; FLI Leibniz Institute for Age Research, Jena, Germany.
| |
Collapse
|
226
|
Pawitwar SS, Dhar S, Tiwari S, Ojha CR, Lapierre J, Martins K, Rodzinski A, Parira T, Paudel I, Li J, Dutta RK, Silva MR, Kaushik A, El-Hage N. Overview on the Current Status of Zika Virus Pathogenesis and Animal Related Research. J Neuroimmune Pharmacol 2017; 12:371-388. [PMID: 28444557 DOI: 10.1007/s11481-017-9743-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/23/2017] [Indexed: 11/28/2022]
Abstract
There is growing evidence that Zika virus (ZIKV) infection is linked with activation of Guillan-Barré syndrome (GBS) in adults infected with the virus and microcephaly in infants following maternal infection. With the recent outpour in publications by numerous research labs, the association between microcephaly in newborns and ZIKV has become very apparent in which large numbers of viral particles were found in the central nervous tissue of an electively aborted microcephalic ZIKV-infected fetus. However, the underlying related mechanisms remain poorly understood. Thus, development of ZIKV-infected animal models are urgently required. The need to develop drugs and vaccines of high efficacy along with efficient diagnostic tools for ZIKV treatment and management raised the demand for a very selective animal model for exploring ZIKV pathogenesis and related mechanisms. In this review, we describe recent advances in animal models developed for studying ZIKV pathogenesis and evaluating potential interventions against human infection, including during pregnancy. The current research directions and the scientific challenges ahead in developing effective vaccines and therapeutics are also discussed.
Collapse
Affiliation(s)
- Shashank S Pawitwar
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Supurna Dhar
- Department of Human and Molecular Genetics, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Sneham Tiwari
- Deparment of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Chet Raj Ojha
- Deparment of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Jessica Lapierre
- Deparment of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Kyle Martins
- Department of Human and Molecular Genetics, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Alexandra Rodzinski
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Tiyash Parira
- Deparment of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Iru Paudel
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Jiaojiao Li
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Rajib Kumar Dutta
- Deparment of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Monica R Silva
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Ajeet Kaushik
- Deparment of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Deparment of Immunology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA.
| |
Collapse
|
227
|
Jacomin AC, Samavedam S, Charles H, Nezis IP. iLIR@viral: A web resource for LIR motif-containing proteins in viruses. Autophagy 2017; 13:1782-1789. [PMID: 28806134 PMCID: PMC5640201 DOI: 10.1080/15548627.2017.1356978] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Macroautophagy/autophagy has been shown to mediate the selective lysosomal degradation of pathogenic bacteria and viruses (xenophagy), and to contribute to the activation of innate and adaptative immune responses. Autophagy can serve as an antiviral defense mechanism but also as a proviral process during infection. Atg8-family proteins play a central role in the autophagy process due to their ability to interact with components of the autophagy machinery as well as selective autophagy receptors and adaptor proteins. Such interactions are usually mediated through LC3-interacting region (LIR) motifs. So far, only one viral protein has been experimentally shown to have a functional LIR motif, leaving open a vast field for investigation. Here, we have developed the iLIR@viral database ( http://ilir.uk/virus/ ) as a freely accessible web resource listing all the putative canonical LIR motifs identified in viral proteins. Additionally, we used a curated text-mining analysis of the literature to identify novel putative LIR motif-containing proteins (LIRCPs) in viruses. We anticipate that iLIR@viral will assist with elucidating the full complement of LIRCPs in viruses.
Collapse
Affiliation(s)
| | - Siva Samavedam
- a School of Life Sciences , University of Warwick , Coventry , UK
| | - Hannah Charles
- a School of Life Sciences , University of Warwick , Coventry , UK
| | - Ioannis P Nezis
- a School of Life Sciences , University of Warwick , Coventry , UK
| |
Collapse
|
228
|
Abstract
Circular single-stranded DNA viruses infect archaea, bacteria, and eukaryotic organisms. The relatively recent emergence of single-stranded DNA viruses, such as chicken anemia virus (CAV) and porcine circovirus 2 (PCV2), as serious pathogens of eukaryotes is due more to growing awareness than to the appearance of new pathogens or alteration of existing pathogens. In the case of the ubiquitous human circular single-stranded DNA virus family Anelloviridae, there is still no convincing direct causal relation to any specific disease. However, infections may play a role in autoimmunity by changing the homeostatic balance of proinflammatory cytokines and the human immune system, indirectly affecting the severity of diseases caused by other pathogens. Infections with CAV (family Anelloviridae, genus Gyrovirus) and PCV2 (family Circoviridae, genus Circovirus) are presented here because they are immunosuppressive and affect health in domesticated animals. CAV shares genomic organization, genomic orientation, and common features of major proteins with human anelloviruses, and PCV2 DNA may be present in human food and vaccines.
Collapse
Affiliation(s)
- L M Shulman
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel; .,Laboratory of Environmental Virology, Central Virology Laboratory, Sheba Medical Center Public Health Services, Israel Ministry of Health, Tel Hashomer, 52621, Israel
| | - I Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, 50250, Israel;
| |
Collapse
|
229
|
Orosco FL, Lluisma AO. Variation in virome diversity in wild populations of Penaeus monodon (Fabricius 1798) with emphasis on pathogenic viruses. Virusdisease 2017; 28:262-271. [PMID: 29291212 DOI: 10.1007/s13337-017-0389-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/20/2017] [Indexed: 11/28/2022] Open
Abstract
Marine animals typically harbor a community of viruses, a number of which are known to cause diseases. In shrimp aquaculture, viral pathogens are the principal causes of major economic losses. However, the composition of the viral load of shrimps in wild population is poorly known. In this study, we explored the viral diversity in the microbiome of wild Penaeus monodon collected from six sites in the Philippines, with a view to detecting pathogenic forms. We employed a metagenomic approach via particle-associated nucleic acid isolation, sequence-independent single primer amplification, and pyrosequencing. Virome analysis of shrimp samples from different sites revealed distinct virome profiles, and hence significant differences in diversity, among the various sites based on number of OTUs, Shannon-Weaver Index, and Inverse Simpson Index. Sequences of key shrimp pathogens were detected such as the white spot syndrome virus (WSSV), and Penaeus stylirostris densovirus (PstDV). However, the patterns of distribution of the pathogenic viruses varied; whereas WSSV was found only in three out of six sites and PstDV were found in all but one site. The results also revealed shrimp-associated viruses that have not yet been observed in P. monodon such as avian virus-like, insect virus-like, plankton virus-like and bacteriophage-like sequences. Despite the diverse array of viruses detected in the study, a large proportion remains unidentified (i.e., similarity to sequences in the database was lower than the threshold required for definitive identification), and therefore could represent unexplored virus sequences and viral genomes in the environment.
Collapse
Affiliation(s)
- Fredmoore L Orosco
- Marine Genomics and Molecular Genetics Laboratory, Marine Science Institute, University of the Philippines - Diliman, 1101 Quezon City, Philippines.,Institute of Biology, University of the Philippines - Diliman, 1101 Quezon City, Philippines
| | - Arturo O Lluisma
- Marine Genomics and Molecular Genetics Laboratory, Marine Science Institute, University of the Philippines - Diliman, 1101 Quezon City, Philippines
| |
Collapse
|
230
|
Hulo C, Masson P, Toussaint A, Osumi-Sutherland D, de Castro E, Auchincloss AH, Poux S, Bougueleret L, Xenarios I, Le Mercier P. Bacterial Virus Ontology; Coordinating across Databases. Viruses 2017; 9:E126. [PMID: 28545254 PMCID: PMC5490803 DOI: 10.3390/v9060126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
Bacterial viruses, also called bacteriophages, display a great genetic diversity and utilize unique processes for infecting and reproducing within a host cell. All these processes were investigated and indexed in the ViralZone knowledge base. To facilitate standardizing data, a simple ontology of viral life-cycle terms was developed to provide a common vocabulary for annotating data sets. New terminology was developed to address unique viral replication cycle processes, and existing terminology was modified and adapted. Classically, the viral life-cycle is described by schematic pictures. Using this ontology, it can be represented by a combination of successive events: entry, latency, transcription/replication, host-virus interactions and virus release. Each of these parts is broken down into discrete steps. For example enterobacteria phage lambda entry is broken down in: viral attachment to host adhesion receptor, viral attachment to host entry receptor, viral genome ejection and viral genome circularization. To demonstrate the utility of a standard ontology for virus biology, this work was completed by annotating virus data in the ViralZone, UniProtKB and Gene Ontology databases.
Collapse
Affiliation(s)
- Chantal Hulo
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, 1211 Geneva, Switzerland.
| | - Patrick Masson
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, 1211 Geneva, Switzerland.
| | - Ariane Toussaint
- University Libre de Bruxelles, Génétique et Physiologie Bactérienne (LGPB), 12 rue des Professeurs Jeener et Brachet, 6041 Charleroi, Belgium.
| | - David Osumi-Sutherland
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK.
| | - Edouard de Castro
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, 1211 Geneva, Switzerland.
| | - Andrea H Auchincloss
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, 1211 Geneva, Switzerland.
| | - Sylvain Poux
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, 1211 Geneva, Switzerland.
| | - Lydie Bougueleret
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, 1211 Geneva, Switzerland.
| | - Ioannis Xenarios
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, 1211 Geneva, Switzerland.
| | - Philippe Le Mercier
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, CMU, University of Geneva Medical School, 1211 Geneva, Switzerland.
| |
Collapse
|
231
|
Nasir A, Caetano-Anollés G. Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification. Front Microbiol 2017; 8:380. [PMID: 28344575 PMCID: PMC5344890 DOI: 10.3389/fmicb.2017.00380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/23/2017] [Indexed: 12/31/2022] Open
Abstract
The viral supergroup includes the entire collection of known and unknown viruses that roam our planet and infect life forms. The supergroup is remarkably diverse both in its genetics and morphology and has historically remained difficult to study and classify. The accumulation of protein structure data in the past few years now provides an excellent opportunity to re-examine the classification and evolution of viruses. Here we scan completely sequenced viral proteomes from all genome types and identify protein folds involved in the formation of viral capsids and virion architectures. Viruses encoding similar capsid/coat related folds were pooled into lineages, after benchmarking against published literature. Remarkably, the in silico exercise reproduced all previously described members of known structure-based viral lineages, along with several proposals for new additions, suggesting it could be a useful supplement to experimental approaches and to aid qualitative assessment of viral diversity in metagenome samples.
Collapse
Affiliation(s)
- Arshan Nasir
- Department of Crop Sciences, Evolutionary Bioinformatics Laboratory, University of Illinois at Urbana-ChampaignUrbana, IL, USA; Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| | - Gustavo Caetano-Anollés
- Department of Crop Sciences, Evolutionary Bioinformatics Laboratory, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
232
|
The ins and outs of eukaryotic viruses: Knowledge base and ontology of a viral infection. PLoS One 2017; 12:e0171746. [PMID: 28207819 PMCID: PMC5313201 DOI: 10.1371/journal.pone.0171746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 12/19/2022] Open
Abstract
Viruses are genetically diverse, infect a wide range of tissues and host cells and follow unique processes for replicating themselves. All these processes were investigated and indexed in ViralZone knowledge base. To facilitate standardizing data, a simple ontology of viral life-cycle terms was developed to provide a common vocabulary for annotating data sets. New terminology was developed to address unique viral replication cycle processes, and existing terminology was modified and adapted. The virus life-cycle is classically described by schematic pictures. Using this ontology, it can be represented by a combination of successive terms: “entry”, “latency”, “transcription”, “replication” and “exit”. Each of these parts is broken down into discrete steps. For example Zika virus “entry” is broken down in successive steps: “Attachment”, “Apoptotic mimicry”, “Viral endocytosis/ macropinocytosis”, “Fusion with host endosomal membrane”, “Viral factory”. To demonstrate the utility of a standard ontology for virus biology, this work was completed by annotating virus data in the ViralZone, UniProtKB and Gene Ontology databases.
Collapse
|
233
|
[Ocular manifestations of Zika virus: What we do and do not know]. J Fr Ophtalmol 2017; 40:138-145. [PMID: 28189347 DOI: 10.1016/j.jfo.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/12/2017] [Indexed: 11/24/2022]
Abstract
Zika virus (ZIKV) disease outbreak, which was declared by the end of 2015 in Brazil, has become the largest one to date. Being reported in the Americas and in certain islands of the Pacific, it has the potential to spread worldwide. Although ZIKV infections are mostly self-limiting and/or asymptomatic in the healthy adult, they are responsible for devastating congenital neurologic malformations ZIKV (mainly microcephaly) when contracted during the first months of pregnancy. Ocular manifestations during the acute adult infection include conjunctivitis and more rarely ocular inflammation. Congenital infection is associated with chorioretinal atrophy pigment mottling of the retina retinal vasculature abnormalities and optic nerve atrophy. Therefore, complete ophthalmological evaluation is recommended for suspected congenital infections.
Collapse
|
234
|
Passi D, Sharma S, Dutta SR, Ahmed M. Zika Virus Diseases - The New Face of an Ancient Enemy as Global Public Health Emergency (2016): Brief Review and Recent Updates. Int J Prev Med 2017; 8:6. [PMID: 28250906 PMCID: PMC5320867 DOI: 10.4103/2008-7802.199641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/16/2016] [Indexed: 11/23/2022] Open
Abstract
Zika virus (ZIKV) disease is caused by a virus transmitted by Aedes mosquito. It presents as flu-like symptoms lasting for 5-7 days and shows potential association with neurological and autoimmune complications such as congenital microcephaly and adult paralysis disorder, Guillain-Barré syndrome. Treatment measures are conservative as the disease is self-limiting. ZIKV earlier affected several tropical regions of Africa and Asia from 1951 to 2006. Subsequently, it moved out from these regions to land as outbreaks in Yap Island, French Polynesia, South America, and most recently in Brazil. The WHO declared it as an international public health emergency in 2016 and an extraordinary event with recommendations for improving communications, tightening vigil on ZIKV infections, and improving mosquito control measures. The authors in this article aim to briefly discuss ZIKV infection, its epidemiology, clinical manifestations, management, and prevention.
Collapse
Affiliation(s)
- Deepak Passi
- Department of Oral and Maxillofacial Surgery, ESIC Dental College and Hospital, New Delhi, India
| | - Sarang Sharma
- Department of Conservative Dentistry and Endodontics, ESIC Dental College and Hospital, New Delhi, India
| | - Shubha Ranjan Dutta
- Department of Oral and Maxillofacial Surgery, MB Kedia Dental College, Birgunj, Nepal
| | - Musharib Ahmed
- Department of Pedodontics, Inderprastha Dental College and Hospital, Sahibabad, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
235
|
Ren JX, Zhang RT, Zhang H, Cao XS, Liu LK, Xie Y. Identification of novel VP35 inhibitors: Virtual screening driven new scaffolds. Biomed Pharmacother 2016; 84:199-207. [DOI: 10.1016/j.biopha.2016.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/24/2016] [Accepted: 09/11/2016] [Indexed: 11/28/2022] Open
|
236
|
Forterre P. To be or not to be alive: How recent discoveries challenge the traditional definitions of viruses and life. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:100-108. [PMID: 26996409 DOI: 10.1016/j.shpsc.2016.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Three major discoveries have recently profoundly modified our perception of the viral world: molecular ecologists have shown that viral particles are more abundant than cells in natural environments; structural biologists have shown that some viruses from the three domains of life, Bacteria, Eukarya and Archaea, are evolutionarily related, and microbiologists have discovered giant viruses that rival with cells in terms of size and gene content. I discuss here the scientific and philosophical impact of these discoveries on the debates over the definition, nature (living or not), and origin of viruses. I suggest that viruses have often been considered non-living, because they are traditionally assimilated to their virions. However, the term virus describes a biological process and should integrate all aspects of the viral reproduction cycle. It is especially important to focus on the intracellular part of this cycle, the virocell, when viral information is actively expressed and reproduced, allowing the emergence of new viral genes. The virocell concept theoretically removes roadblocks that prevent defining viruses as living organisms. However, defining a "living organism" remains challenging, as indicated by the case of organelles that evolved from intracellular bacteria. To bypass this problem, I suggest considering that all biological entities that actively participate in the process of life are living.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F-75015, Paris, France.
| |
Collapse
|
237
|
Sakthivel S, Habeeb S. SeeHaBITaT: A server on bioinformatics applications for Tospoviruses and other species. Appl Transl Genom 2016; 9:30-2. [PMID: 27354938 PMCID: PMC4912379 DOI: 10.1016/j.atg.2016.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/06/2016] [Indexed: 11/17/2022]
Abstract
Plant viruses are important limiting factors in agricultural productivity. Tospovirus is one of the severe plant pathogens, causing damage to economically important food and ornamental crops worldwide through thrips as vectors. Database application resources exclusively on this virus would help to design better control measures, which aren't available. SeeHaBITaT is a unique and exclusive web based server providing work bench to perform computational research on tospoviruses and its species. SeeHaBITaT hosts Tospoviruses specific database Togribase, MOLBIT, SRMBIT and SS with PDB. These applications would be of immense help to the Tospovirus scientific community. The server could be accessed at http://bit.srmuniv.ac.in/.
Collapse
|
238
|
Druce M, Hulo C, Masson P, Sommer P, Xenarios I, Le Mercier P, De Oliveira T. Improving HIV proteome annotation: new features of BioAfrica HIV Proteomics Resource. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw045. [PMID: 27087306 PMCID: PMC4834208 DOI: 10.1093/database/baw045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/11/2016] [Indexed: 02/06/2023]
Abstract
The Human Immunodeficiency Virus (HIV) is one of the pathogens that cause the greatest global concern, with approximately 35 million people currently infected with HIV. Extensive HIV research has been performed, generating a large amount of HIV and host genomic data. However, no effective vaccine that protects the host from HIV infection is available and HIV is still spreading at an alarming rate, despite effective antiretroviral (ARV) treatment. In order to develop effective therapies, we need to expand our knowledge of the interaction between HIV and host proteins. In contrast to virus proteins, which often rapidly evolve drug resistance mutations, the host proteins are essentially invariant within all humans. Thus, if we can identify the host proteins needed for virus replication, such as those involved in transporting viral proteins to the cell surface, we have a chance of interrupting viral replication. There is no proteome resource that summarizes this interaction, making research on this subject a difficult enterprise. In order to fill this gap in knowledge, we curated a resource presents detailed annotation on the interaction between the HIV proteome and host proteins. Our resource was produced in collaboration with ViralZone and used manual curation techniques developed by UniProtKB/Swiss-Prot. Our new website also used previous annotations of the BioAfrica HIV-1 Proteome Resource, which has been accessed by approximately 10 000 unique users a year since its inception in 2005. The novel features include a dedicated new page for each HIV protein, a graphic display of its function and a section on its interaction with host proteins. Our new webpages also add information on the genomic location of each HIV protein and the position of ARV drug resistance mutations. Our improved BioAfrica HIV-1 Proteome Resource fills a gap in the current knowledge of biocuration. Database URL: http://www.bioafrica.net/proteomics/HIVproteome.html
Collapse
Affiliation(s)
- Megan Druce
- Africa Centre for Population Health, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa Division of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chantal Hulo
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Patrick Masson
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Paula Sommer
- Division of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ioannis Xenarios
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Philippe Le Mercier
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Tulio De Oliveira
- Africa Centre for Population Health, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
239
|
Ylä-Pelto J, Tripathi L, Susi P. Therapeutic Use of Native and Recombinant Enteroviruses. Viruses 2016; 8:57. [PMID: 26907330 PMCID: PMC4810247 DOI: 10.3390/v8030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these “viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.
Collapse
Affiliation(s)
- Jani Ylä-Pelto
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Lav Tripathi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Petri Susi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
- Biomaterials and Diagnostics Group, Turku University of Applied Sciences, 20520 Turku, Finland.
| |
Collapse
|
240
|
Setlur AS, Naik SY, Skariyachan S. Herbal Lead as Ideal Bioactive Compounds Against Probable Drug Targets of Ebola Virus in Comparison with Known Chemical Analogue: A Computational Drug Discovery Perspective. Interdiscip Sci 2016; 9:254-277. [DOI: 10.1007/s12539-016-0149-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
|
241
|
Lachnit T, Thomas T, Steinberg P. Expanding our Understanding of the Seaweed Holobiont: RNA Viruses of the Red Alga Delisea pulchra. Front Microbiol 2016; 6:1489. [PMID: 26779145 PMCID: PMC4705237 DOI: 10.3389/fmicb.2015.01489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023] Open
Abstract
Marine seaweeds are holobionts comprised of the macroalgal hosts and their associated microbiota. While the composition of the bacterial component of seaweed microbiomes is increasingly studied, almost nothing is known about the presence, diversity and composition of viruses in macroalgae in situ. In this study, we characterize for the first time the viruses associated with a red macroalga, Delisea pulchra. Using transmission electron microscopy we identified diverse morphotypes of virus-like particles in D. pulchra ranging from icosahedral to bacilliform to coiled pleomorphic as well as bacteriophages. Virome sequencing revealed the presence of a diverse group of dsRNA viruses affiliated to the genus Totivirus, known to infect plant pathogenic fungi. We further identified a ssRNA virus belonging to the order Picornavirales with a close phylogenetic relationship to a pathogenic virus infecting marine diatoms. The results of this study shed light on a so far neglected part of the seaweed holobiont, and suggest that some of the identified viruses may be possible pathogens for a host that is already known to be significantly impacted by bacterial infections.
Collapse
Affiliation(s)
- Tim Lachnit
- Centre for Marine Bio-Innovation, University of New South Wales, SydneyNSW, Australia
- Zoological Institute, Christian-Albrechts-University KielKiel, Germany
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, University of New South Wales, SydneyNSW, Australia
- School for Biotechnology and Biomolecular Science, University of New South Wales, SydneyNSW, Australia
| | - Peter Steinberg
- Centre for Marine Bio-Innovation, University of New South Wales, SydneyNSW, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, SydneyNSW, Australia
- Sydney Institute of Marine Science, MosmanNSW, Australia
| |
Collapse
|
242
|
Zhang H, El Zowalaty ME. DNA-based influenza vaccines as immunoprophylactic agents toward universality. Future Microbiol 2015; 11:153-64. [PMID: 26673424 DOI: 10.2217/fmb.15.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza is an illness of global public health concern. Influenza viruses have been responsible for several pandemics affecting humans. Current influenza vaccines have proved satisfactory safety; however, they have limitations and do not provide protection against unexpected emerging influenza virus strains. Therefore, there is an urgent need for alternative approaches to conventional influenza vaccines. The development of universal influenza vaccines will help alleviate the severity of influenza pandemics. Influenza DNA vaccines have been the subject of many studies over the past decades due to their ability to induce broad-based protective immune responses in various animal models. The present review highlights the recent advances in influenza DNA vaccine research and its potential as an affordable universal influenza vaccine.
Collapse
Affiliation(s)
- Han Zhang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mohamed E El Zowalaty
- Biomedical Research Center, Vice President Office for Research, Qatar University, Doha 2713, Qatar
| |
Collapse
|
243
|
Ou HD, Deerinck TJ, Bushong E, Ellisman MH, O'Shea CC. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy. Methods 2015; 90:39-48. [PMID: 26066760 PMCID: PMC4655137 DOI: 10.1016/j.ymeth.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023] Open
Abstract
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication.
Collapse
Affiliation(s)
- Horng D Ou
- Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Eric Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mark H Ellisman
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Neurosciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
244
|
Kristensen DM, Saeed U, Frishman D, Koonin EV. A census of α-helical membrane proteins in double-stranded DNA viruses infecting bacteria and archaea. BMC Bioinformatics 2015; 16:380. [PMID: 26554846 PMCID: PMC4641393 DOI: 10.1186/s12859-015-0817-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/06/2015] [Indexed: 01/21/2023] Open
Abstract
Background Viruses are the most abundant and genetically diverse biological entities on earth, yet the repertoire of viral proteins remains poorly explored. As the number of sequenced virus genomes grows into the thousands, and the number of viral proteins into the hundreds of thousands, we report a systematic computational analysis of the point of first-contact between viruses and their hosts, namely viral transmembrane (TM) proteins. Results The complement of α-helical TM proteins in double-stranded DNA viruses infecting bacteria and archaea reveals large-scale trends that differ from those of their hosts. Viruses typically encode a substantially lower fraction of TM proteins than archaea or bacteria, with the notable exception of viruses with virions containing a lipid component such as a lipid envelope, internal lipid core, or inner membrane vesicle. Compared to bacteriophages, archaeal viruses are substantially enriched in membrane proteins. However, this feature is not always stable throughout the evolution of a viral lineage; for example, TM proteins are not part of the common heritage shared between Lipothrixviridae and Rudiviridae. In contrast to bacteria and archaea, viruses almost completely lack proteins with complicated membrane topologies composed of more than 4 TM segments, with the few detected exceptions being obvious cases of relatively recent horizontal transfer from the host. Conclusions The dramatic differences between the membrane proteomes of cells and viruses stem from the fact that viruses do not depend on essential membranes for energy transformation, ion homeostasis, nutrient transport and signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0817-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M Kristensen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA. .,Current address: Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.
| | - Usman Saeed
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftzentrum Weihenstephan, Maximus-von-Imhof-Forum 3, D-85354, Freising, Germany. .,Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.
| | - Dmitrij Frishman
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftzentrum Weihenstephan, Maximus-von-Imhof-Forum 3, D-85354, Freising, Germany. .,Helmholtz Center Munich - German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
245
|
Bengyella L, Waikhom SD, Allie F, Rey C. Virus tolerance and recovery from viral induced-symptoms in plants are associated with transcriptome reprograming. PLANT MOLECULAR BIOLOGY 2015; 89:243-52. [PMID: 26358043 DOI: 10.1007/s11103-015-0362-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/08/2015] [Indexed: 05/07/2023]
Abstract
Plant recovery from viral infection is characterized by initial severe systemic symptoms which progressively decrease, leading to reduced symptoms or symptomless leaves at the apices. A key feature to plant recovery from invading nucleic acids such as viruses is the degree of the host's initial basal immunity response. We review current links between RNA silencing, recovery and tolerance, and present a model in which, in addition to regulation of resistance (R) and other defence-related genes by RNA silencing, viral infections incite perturbations of the host physiological state that trigger reprogramming of host responses to by-pass severe symptom development, leading to partial or complete recovery. Recovery, in particular in perennial hosts, may trigger tolerance or virus accommodation. We discuss evidence suggesting that plant viruses can avoid total clearance but persistently replicate at low levels, thereby modulating the host transcriptome response which minimizes fitness cost and triggers recovery from viral-symptoms. In some cases a susceptible host may fail to recover from initial viral systemic symptoms, yet, accommodates the persistent virus throughout the life span, a phenomenon herein referred to as non-recovery accommodation, which differs from tolerance in that there is no distinct recovery phase, and differs from susceptibility in that the host is not killed. Recent advances in plant recovery from virus-induced symptoms involving host transcriptome reprogramming are discussed.
Collapse
Affiliation(s)
- Louis Bengyella
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts 6, Ave, Johannesburg, Braamfontein, 2000, South Africa
| | - Sayanika D Waikhom
- Centre of Advanced Study in Life Sciences, Manipur University, Imphal, Manipur, 795003, India
- School of Basic and Biomedical Science, University of Health and Allied Sciences, PMB 31, Ho, Volta Region, Ghana
| | - Farhahna Allie
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts 6, Ave, Johannesburg, Braamfontein, 2000, South Africa
| | - Chrissie Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, 1, Jan Smuts 6, Ave, Johannesburg, Braamfontein, 2000, South Africa.
| |
Collapse
|
246
|
Rousseau A, Labetoulle M. Manifestations oculaires de la maladie à virus Ebola : les leçons de la dernière épidémie. J Fr Ophtalmol 2015; 38:758-63. [DOI: 10.1016/j.jfo.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
|
247
|
Tubiana L, Božič AL, Micheletti C, Podgornik R. Synonymous mutations reduce genome compactness in icosahedral ssRNA viruses. Biophys J 2015; 108:194-202. [PMID: 25564866 DOI: 10.1016/j.bpj.2014.10.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that single-stranded (ss) viral RNAs fold into more compact structures than random RNA sequences with similar chemical composition and identical length. Based on this comparison, it has been suggested that wild-type viral RNA may have evolved to be atypically compact so as to aid its encapsidation and assist the viral assembly process. To further explore the compactness selection hypothesis, we systematically compare the predicted sizes of >100 wild-type viral sequences with those of their mutants, which are evolved in silico and subject to a number of known evolutionary constraints. In particular, we enforce mutation synonynimity, preserve the codon-bias, and leave untranslated regions intact. It is found that progressive accumulation of these restricted mutations still suffices to completely erase the characteristic compactness imprint of the viral RNA genomes, making them in this respect physically indistinguishable from randomly shuffled RNAs. This shows that maintaining the physical compactness of the genome is indeed a primary factor among ssRNA viruses' evolutionary constraints, contributing also to the evidence that synonymous mutations in viral ssRNA genomes are not strictly neutral.
Collapse
Affiliation(s)
- Luca Tubiana
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia.
| | - Anže Lošdorfer Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; Department of Physics, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
248
|
Nasir A, Caetano-Anollés G. A phylogenomic data-driven exploration of viral origins and evolution. SCIENCE ADVANCES 2015; 1:e1500527. [PMID: 26601271 PMCID: PMC4643759 DOI: 10.1126/sciadv.1500527] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/30/2015] [Indexed: 05/05/2023]
Abstract
The origin of viruses remains mysterious because of their diverse and patchy molecular and functional makeup. Although numerous hypotheses have attempted to explain viral origins, none is backed by substantive data. We take full advantage of the wealth of available protein structural and functional data to explore the evolution of the proteomic makeup of thousands of cells and viruses. Despite the extremely reduced nature of viral proteomes, we established an ancient origin of the "viral supergroup" and the existence of widespread episodes of horizontal transfer of genetic information. Viruses harboring different replicon types and infecting distantly related hosts shared many metabolic and informational protein structural domains of ancient origin that were also widespread in cellular proteomes. Phylogenomic analysis uncovered a universal tree of life and revealed that modern viruses reduced from multiple ancient cells that harbored segmented RNA genomes and coexisted with the ancestors of modern cells. The model for the origin and evolution of viruses and cells is backed by strong genomic and structural evidence and can be reconciled with existing models of viral evolution if one considers viruses to have originated from ancient cells and not from modern counterparts.
Collapse
|
249
|
Raj U, Varadwaj PK. Flavonoids as Multi-target Inhibitors for Proteins Associated with Ebola Virus: In Silico Discovery Using Virtual Screening and Molecular Docking Studies. Interdiscip Sci 2015; 8:132-141. [PMID: 26286008 DOI: 10.1007/s12539-015-0109-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/15/2014] [Accepted: 01/14/2015] [Indexed: 10/23/2022]
Abstract
Ebola virus is a single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever in humans and non-human primates. This virus is unreceptive to a large portion of the known antiviral drugs, and there is no valid treatment as on date for disease created by this pathogen. Looking into its ability to create a pandemic scenario across globe, there is an utmost need for new drugs and therapy to combat this life-threatening infection. The current study deals with the evaluation of the inhibitory activity of flavonoids against the four selected Ebola virus receptor proteins, using in silico studies. The viral proteins VP40, VP35, VP30 and VP24 were docked with small molecules obtained from flavonoid class and its derivatives and evaluated on the basis of energetics, stereochemical considerations and pharmacokinetic properties to identify potential lead compounds. The results showed that both top-ranking screened flavonoids, i.e., Gossypetin and Taxifolin, showed better docking scores and binding energies in all the EBOV receptors when compared to those of the reported compound. All the screened flavonoids have known antiviral activity, acceptable pharmacokinetic properties and are being used on human and thus can be taken as anti-Ebola therapy without the time lag for clinical trial.
Collapse
Affiliation(s)
- Utkarsh Raj
- Bioinformatics Division, Indian Institute of Information Technology, Allahabad, India.
| | | |
Collapse
|
250
|
Foulger RE, Osumi-Sutherland D, McIntosh BK, Hulo C, Masson P, Poux S, Le Mercier P, Lomax J. Representing virus-host interactions and other multi-organism processes in the Gene Ontology. BMC Microbiol 2015; 15:146. [PMID: 26215368 PMCID: PMC4517558 DOI: 10.1186/s12866-015-0481-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/10/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The Gene Ontology project is a collaborative effort to provide descriptions of gene products in a consistent and computable language, and in a species-independent manner. The Gene Ontology is designed to be applicable to all organisms but up to now has been largely under-utilized for prokaryotes and viruses, in part because of a lack of appropriate ontology terms. METHODS To address this issue, we have developed a set of Gene Ontology classes that are applicable to microbes and their hosts, improving both coverage and quality in this area of the Gene Ontology. Describing microbial and viral gene products brings with it the additional challenge of capturing both the host and the microbe. Recognising this, we have worked closely with annotation groups to test and optimize the GO classes, and we describe here a set of annotation guidelines that allow the controlled description of two interacting organisms. CONCLUSIONS Building on the microbial resources already in existence such as ViralZone, UniProtKB keywords and MeGO, this project provides an integrated ontology to describe interactions between microbial species and their hosts, with mappings to the external resources above. Housing this information within the freely-accessible Gene Ontology project allows the classes and annotation structure to be utilized by a large community of biologists and users.
Collapse
Affiliation(s)
- R E Foulger
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - D Osumi-Sutherland
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - B K McIntosh
- Department of Biochemistry and Biophysics, Texas Agrilife Research, Texas A&M University, College Station, TX, 77843, USA.
| | - C Hulo
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland.
| | - P Masson
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland.
| | - S Poux
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland.
| | - P Le Mercier
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland.
| | - J Lomax
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|