201
|
Ibañez C, Ramos A, Acebo P, Contreras A, Casado R, Allona I, Aragoncillo C. Overall alteration of circadian clock gene expression in the chestnut cold response. PLoS One 2008; 3:e3567. [PMID: 18958171 PMCID: PMC2569414 DOI: 10.1371/journal.pone.0003567] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 10/06/2008] [Indexed: 01/16/2023] Open
Abstract
Cold acclimation in woody plants may have special features compared to similar processes in herbaceous plants. Recent studies have shown that circadian clock behavior in the chestnut tree (Castanea sativa) is disrupted by cold temperatures and that the primary oscillator feedback loop is not functional at 4 degrees C or in winter. In these conditions, CsTOC1 and CsLHY genes are constantly expressed. Here, we show that this alteration also affects CsPRR5, CsPRR7 and CsPRR9. These genes are homologous to the corresponding Arabidopsis PSEUDO-RESPONSE REGULATOR genes, which are also components of the circadian oscillator feedback network. The practically constant presence of mRNAs of the 5 chestnut genes at low temperature reveals an unknown aspect of clock regulation and suggests a mechanism regulating the transcription of oscillator genes as a whole.
Collapse
Affiliation(s)
- Cristian Ibañez
- Centro de Biotecnología y Genómica de Plantas, Departamento de Biotecnología, Universidad Politécnica de Madrid, E. T. S. Ingenieros de Montes, Madrid, Spain
| | - Alberto Ramos
- Centro de Biotecnología y Genómica de Plantas, Departamento de Biotecnología, Universidad Politécnica de Madrid, E. T. S. Ingenieros de Montes, Madrid, Spain
| | - Paloma Acebo
- Centro de Biotecnología y Genómica de Plantas, Departamento de Biotecnología, Universidad Politécnica de Madrid, E. T. S. Ingenieros de Montes, Madrid, Spain
| | - Angela Contreras
- Centro de Biotecnología y Genómica de Plantas, Departamento de Biotecnología, Universidad Politécnica de Madrid, E. T. S. Ingenieros de Montes, Madrid, Spain
| | - Rosa Casado
- Centro de Biotecnología y Genómica de Plantas, Departamento de Biotecnología, Universidad Politécnica de Madrid, E. T. S. Ingenieros de Montes, Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Departamento de Biotecnología, Universidad Politécnica de Madrid, E. T. S. Ingenieros de Montes, Madrid, Spain
| | - Cipriano Aragoncillo
- Centro de Biotecnología y Genómica de Plantas, Departamento de Biotecnología, Universidad Politécnica de Madrid, E. T. S. Ingenieros de Montes, Madrid, Spain
| |
Collapse
|
202
|
Characterization of genetic links between two clock-associated genes, GI and PRR5 in the current clock model of Arabidopsis thaliana. Biosci Biotechnol Biochem 2008; 72:2770-4. [PMID: 18838788 DOI: 10.1271/bbb.80321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The GI (GIGANTEA) and PRR5 (PSEUDO-RESPONSE REGULATOR 5) genes are crucially implicated in the Arabidopsis circadian clock. We characterized a gi prr5 double loss-of-function mutant for the first time with reference to circadian clock-associated phenotypes. The results of this study revealed the genetic linkages between GI and PRR5 in the control of free running circadian oscillation of gene expression, early photomorphogenesis and flowering time. A mathematical clock model consisting of three interactive transcriptional feedback loops has recently been proposed. The model includes the hypothetical evening Y-TOC1 feedback loop, in which "Y" is suspected to be GI and/or PRR5. This issue was also addressed in this study; perhaps GI and PRR5 are not sufficient to fulfill the Y role.
Collapse
|
203
|
Knight H, Thomson AJW, McWatters HG. Sensitive to freezing6 integrates cellular and environmental inputs to the plant circadian clock. PLANT PHYSIOLOGY 2008; 148:293-303. [PMID: 18614706 PMCID: PMC2528108 DOI: 10.1104/pp.108.123901] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/30/2008] [Indexed: 05/18/2023]
Abstract
The sensitive to freezing6 (sfr6) mutant of Arabidopsis (Arabidopsis thaliana) is late flowering in long days due to reduced expression of components in the photoperiodic flowering pathway in long-day photoperiods. Microarray analysis of gene expression showed that a circadian clock-associated motif, the evening element, was overrepresented in promoters of genes down-regulated in sfr6 plants. Analysis of leaf movement rhythms found sfr6 plants showed a sucrose (Suc)-dependent long period phenotype; unlike wild-type Arabidopsis, the clock in sfr6 plants did not have a shorter rhythm in the presence of Suc. Other developmental responses to Suc were unaltered in sfr6 plants, suggesting insensitivity to Suc is restricted to the clock. We investigated the effect of sfr6 and Suc upon clock gene expression over 24 h. The sfr6 mutation resulted in reduced expression of the clock components CIRCADIAN CLOCK ASSOCIATED1, GIGANTEA, and TIMING OF CAB1. These changes occurred independently of Suc supplementation. Wild-type plants showed small increases in clock gene expression in the presence of Suc; this response to Suc was reduced in sfr6 plants. This study shows that large changes in level and timing of clock gene expression may have little effect upon clock outputs. Moreover, although Suc influences the period and accuracy of the Arabidopsis clock, it results in relatively minor changes in clock gene expression.
Collapse
Affiliation(s)
- Heather Knight
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | | | | |
Collapse
|
204
|
Schaller GE, Kieber JJ, Shiu SH. Two-component signaling elements and histidyl-aspartyl phosphorelays. THE ARABIDOPSIS BOOK 2008; 6:e0112. [PMID: 22303237 PMCID: PMC3243373 DOI: 10.1199/tab.0112] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Two-component systems are an evolutionarily ancient means for signal transduction. These systems are comprised of a number of distinct elements, namely histidine kinases, response regulators, and in the case of multi-step phosphorelays, histidine-containing phosphotransfer proteins (HPts). Arabidopsis makes use of a two-component signaling system to mediate the response to the plant hormone cytokinin. Two-component signaling elements have also been implicated in plant responses to ethylene, abiotic stresses, and red light, and in regulating various aspects of plant growth and development. Here we present an overview of the two-component signaling elements found in Arabidopsis, including functional and phylogenetic information on both bona-fide and divergent elements.
Collapse
Affiliation(s)
- G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Joseph J. Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
205
|
Fujiwara S, Wang L, Han L, Suh SS, Salomé PA, McClung CR, Somers DE. Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. J Biol Chem 2008; 283:23073-83. [PMID: 18562312 DOI: 10.1074/jbc.m803471200] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The circadian clock controls the period, phasing, and amplitude of processes that oscillate with a near 24-h rhythm. One core group of clock components in Arabidopsis that controls the pace of the central oscillator is comprised of five PRR (pseudo-response regulator) proteins whose biochemical function in the clock remains unclear. Peak expression of TOC1 (timing of cab expression 1)/PRR1, PRR3, PRR5, PRR7, and PRR9 are each phased differently over the course of the day and loss of any PRR protein alters period. Here we show that, together with TOC1, PRR5 is the only other likely proteolytic substrate of the E3 ubiquitin ligase SCF(ZTL) within this PRR family. We further demonstrate a functional significance for the phosphorylated forms of PRR5, TOC1, and PRR3. Each PRR protein examined is nuclear-localized and is differentially phosphorylated over the circadian cycle. The more highly phosphorylated forms of PRR5 and TOC1 interact best with the F-box protein ZTL (ZEITLUPE), suggesting a mechanism to modulate their proteolysis. In vivo degradation of both PRR5 and ZTL is inhibited by blue light, likely the result of blue light photoperception by ZTL. TOC1 and PRR3 interact in vivo and phosphorylation of both is necessary for their optimal binding in vitro. Additionally, because PRR3 and ZTL both interact with TOC1 in vivo via the TOC1 N terminus, taken together these data suggest that the TOC1/PRR3 phosphorylation-dependent interaction may protect TOC1 from ZTL-mediated degradation, resulting in an enhanced amplitude of TOC1 cycling.
Collapse
Affiliation(s)
- Sumire Fujiwara
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
206
|
The function of the clock-associated transcriptional regulator CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana. Biosci Biotechnol Biochem 2008; 72:1307-16. [PMID: 18460819 DOI: 10.1271/bbb.70804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the model higher plant Arabidopsis thaliana, the CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) gene plays important circadian clock-associated roles. The CCA1 protein is a member of a small subfamily of single MYB-related transcription factors. This family consists of several homologous CCA1-like transcription factors, including the closest homolog LHY (LATE ELONGATED HYPOCOTYL). To gain insight into the molecular function of CCA1 and its homologs, here we took a unique genetic approach that was recently developed for Arabidopsis thaliana. Through this strategy, referred to as CRES-T (Chimeric REpressor Silencing Technology), a transgenic plant was constructed to produce a dominant negative transcriptional repressor (designated CCA1-SRDX). By employing the resulting transgenic lines, together with previously established cca1 lhy double mutant and CCA1-ox (over-expressing) plants, their circadian clock-associated phenotypes were examined and compared with each other. The observed clock-associated phenotypes of the CCA1-SRDX plants were very similar to those of CCA1-ox, but not to those of cca1 lhy, suggesting that CCA1 acts predominantly as a transcriptional repressor in nature. However, the developmental morphology (or architecture) of adult CCA1-SRDX plants were quite different from that of CCA1-ox, suggesting that CCA1 might also be implicated, directly or indirectly, in an as yet unknown circadian-associated output pathway at a late developmental stage.
Collapse
|
207
|
Serikawa M, Miwa K, Kondo T, Oyama T. Functional conservation of clock-related genes in flowering plants: overexpression and RNA interference analyses of the circadian rhythm in the monocotyledon Lemna gibba. PLANT PHYSIOLOGY 2008; 146:1952-63. [PMID: 18281417 PMCID: PMC2287362 DOI: 10.1104/pp.107.114611] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 02/04/2008] [Indexed: 05/18/2023]
Abstract
Circadian rhythms are found in organisms from cyanobacteria to plants and animals. In flowering plants, the circadian clock is involved in the regulation of various physiological phenomena, including growth, leaf movement, stomata opening, and floral transitions. Molecular mechanisms underlying the circadian clock have been identified using Arabidopsis (Arabidopsis thaliana); the functions and genetic networks of a number of clock-related genes, including CIRCADIAN CLOCK ASSOCIATED1, LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1, GIGANTEA (GI), and EARLY FLOWERING3 (ELF3), have been analyzed. The degree to which clock systems are conserved among flowering plants, however, is still unclear. We previously isolated homologs for Arabidopsis clock-related genes from monocotyledon Lemna plants. Here, we report the physiological roles of these Lemna gibba genes (LgLHYH1, LgLHYH2, LgGIH1, and LgELF3H1) in the circadian system. We studied the effects of overexpression and RNA interference (RNAi) of these genes on the rhythmic expression of morning- and evening-specific reporters. Overexpression of each gene disrupted the rhythmicity of either or both reporters, suggesting that these four homologs can be involved in the circadian system. RNAi of each of the genes except LgLHYH2 affected the bioluminescence rhythms of both reporters. These results indicated that these homologs are involved in the circadian system of Lemna plants and that the structure of the circadian clock is likely to be conserved between monocotyledons and dicotyledons. Interestingly, RNAi of LgGIH1 almost completely abolished the circadian rhythm; because this effect appeared to be much stronger than the phenotype observed in an Arabidopsis gi loss-of-function mutant, the precise role of each clock gene may have diverged in the clock systems of Lemna and Arabidopsis.
Collapse
Affiliation(s)
- Masayuki Serikawa
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | | | | | | |
Collapse
|
208
|
Kolmos E, Schoof H, Plümer M, Davis SJ. Structural insights into the function of the core-circadian factor TIMING OF CAB2 EXPRESSION 1 (TOC1). J Circadian Rhythms 2008; 6:3. [PMID: 18298828 PMCID: PMC2292679 DOI: 10.1186/1740-3391-6-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 02/25/2008] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The plant circadian clock has at its core a feedback loop that includes TIMING OF CAB2 EXPRESSION 1 (TOC1). This protein has an as of yet unknown biochemical activity. It has been noted that the extreme amino-terminus of this protein is distantly related in sequence to response regulators (RR), and thus TOC1 is a member of the so-called pseudo response regulator (PRR) family. As well, the extreme carboxy-terminus has a small sequence stretch related to the other PRRs and CONSTANS (CO)-like proteins, and this peptide stretch has been termed the CCT (for CONSTANS, CONSTANS-LIKE, TOC1) domain. METHODS To extend further our understanding of the TOC1 protein, we performed a ROSETTA structural prediction on TOC1 orthologues from four plant species. Phylogenetic interpretations assisted in model construction. RESULTS From our models, we suggest that TOC1 is a three-domain protein: TOC1 has an amino-terminal signaling-domain related to response receivers, a carboxy-terminal domain that could participate both in metal binding and in transcriptional regulation, and a linker domain that connects the two. CONCLUSION The models we present should prove useful in future hypothesis-driven biochemical analyses to test the predictions that TOC1 is a multi-domain signaling component of the plant circadian clock.
Collapse
Affiliation(s)
- Elsebeth Kolmos
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Heiko Schoof
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Michael Plümer
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Seth J Davis
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| |
Collapse
|
209
|
Más P. Chromatin remodelling and the Arabidopsis biological clock. PLANT SIGNALING & BEHAVIOR 2008; 3:121-123. [PMID: 19704729 PMCID: PMC2633999 DOI: 10.4161/psb.3.2.5020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 09/11/2007] [Indexed: 05/28/2023]
Abstract
Plants, as sessile organisms, rely on accurate time measurement to synchronize their physiology and development to the most favourable time-of-day or time-of-year. The biological clock is the endogenous mechanism responsible for the integration of the photoperiodic information thus coordinating metabolism in resonance with the environmental cycle. Despite the importance of circadian clock function in plant reproduction and survival, we are still far from understanding the specific molecular mechanisms governing the rhythmic expression of clock components. Recently, we have described a new mechanism of circadian regulation that involves changes in chromatin structure at the TOC1 (TIMING OF CAB EXPRESSION 1) locus. The mechanism is defined by activators and repressors that are precisely coordinated to favor a hyper- or hypo-acetylated state of histones that leads to TOC1 transcriptional activation or repression, respectively. The clockcontrolled rhythms in histone acetylation/deacetylation at the TOC1 promoter are differentially modulated by day-length or photoperiod suggesting a mechanism by which plants ensure the phase of entrainment in physiological and developmental outputs.
Collapse
Affiliation(s)
- Paloma Más
- Consorcio CSIC-IRTA; Laboratory of Plant Molecular Genetics; Institute of Molecular Biology of Barcelona (IBMB-CSIC); Barcelona, Spain
| |
Collapse
|
210
|
Ito S, Niwa Y, Nakamichi N, Kawamura H, Yamashino T, Mizuno T. Insight into Missing Genetic Links Between Two Evening-Expressed Pseudo-Response Regulator Genes TOC1 and PRR5 in the Circadian Clock-Controlled Circuitry in Arabidopsis thaliana. ACTA ACUST UNITED AC 2008; 49:201-13. [DOI: 10.1093/pcp/pcm178] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
211
|
Farré EM, Kay SA. PRR7 protein levels are regulated by light and the circadian clock in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:548-60. [PMID: 17877705 DOI: 10.1111/j.1365-313x.2007.03258.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interlocking transcriptional loops and regulated protein degradation are the principal mechanisms involved in the generation of self-sustaining circadian rhythms in many organisms. In Arabidopsis the first proposed regulatory transcriptional loop involved the transcription factors CIRCADIAN CLOCK ASSOCIATED (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) and the pseudo-response regulator TIMING OF CHLOROPHYLL A/B BINDING PROTEIN (TOC1/PRR1). Recent findings indicate that the TOC1 homologues PRR7 and PRR9 might also be involved in transcriptional regulatory loops with CCA1 and LHY. In this study we show that the overexpression of PRR7 in Arabidopsis leads to severely compromised circadian rhythms. These transgenic lines display significantly reduced levels of CCA1 and LHY RNA, providing further evidence for a transcriptional feedback loop between PRR7 and these transcription factors. In addition, we show that the PRR7 protein is phosphorylated in a circadian regulated manner and that its levels are post-translationally regulated by both diurnal and circadian mechanisms. The Arabidopsis circadian oscillator is therefore likely to be entrained to light/dark cycles both through transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Eva M Farré
- Department of Biochemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
212
|
Para A, Farré EM, Imaizumi T, Pruneda-Paz JL, Harmon FG, Kay SA. PRR3 Is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. THE PLANT CELL 2007; 19:3462-73. [PMID: 18055606 PMCID: PMC2174887 DOI: 10.1105/tpc.107.054775] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/13/2007] [Accepted: 11/02/2007] [Indexed: 05/17/2023]
Abstract
The pseudoresponse regulators (PRRs) participate in the progression of the circadian clock in Arabidopsis thaliana. The founding member of the family, TIMING OF CAB EXPRESSION1 (TOC1), is an essential component of the transcriptional network that constitutes the core mechanism of the circadian oscillator. Recent data suggest a role in circadian regulation for all five members of the PRR family; however, the molecular function of TOC1 or any other PRRs remains unknown. In this work, we present evidence for the involvement of PRR3 in the regulation of TOC1 protein stability. PRR3 was temporally coexpressed with TOC1 under different photoperiods, yet its tissue expression was only partially overlapping with that of TOC1, as PRR3 appeared restricted to the vasculature. Decreased expression of PRR3 resulted in reduced levels of TOC1 protein, while overexpression of PRR3 caused an increase in the levels of TOC1, all without affecting the amount of TOC1 transcript. PRR3 was able to bind to TOC1 in yeast and in plants and to perturb TOC1 interaction with ZEITLUPE (ZTL), which targets TOC1 for proteasome-dependent degradation. Together, our results indicate that PRR3 might function to modulate TOC1 stability by hindering ZTL-dependent TOC1 degradation, suggesting the existence of local regulators of clock activity and adding to the growing importance of posttranslational regulation in the design of circadian timing mechanisms in plants.
Collapse
Affiliation(s)
- Alessia Para
- Department of Biochemistry, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
213
|
Ito S, Nakamichi N, Kiba T, Yamashino T, Mizuno T. Rhythmic and light-inducible appearance of clock-associated pseudo-response regulator protein PRR9 through programmed degradation in the dark in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2007; 48:1644-51. [PMID: 17890242 DOI: 10.1093/pcp/pcm122] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In Arabidopsis thaliana, it is currently believed that the members of a small family of PSEUDO-RESPONSE REGULATOR (PRR) proteins, including TOC1 (TIMING OF CAB EXPRESSION 1), coordinately play roles close to the circadian clock. Among these PRR members, the PRR9 gene is unique in that not only does its transcription oscillate diurnally, but it is also rapidly induced by light in a manner dependent on phytochromes. These events at the level of transcription must be crucial for the clock-associated functions of PRR9. Nonetheless, little is known about the expression of the PRR9 protein product itself in plant cells. Here, we show that PRR9 polypeptides themselves oscillate diurnally, and that they accumulate rapidly in response to light. Our work further suggests that the presence of PRR9 polypeptides is controlled through proteasome-mediated programmed degradation in the dark.
Collapse
Affiliation(s)
- Shogo Ito
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan.
| | | | | | | | | |
Collapse
|
214
|
Beales J, Turner A, Griffiths S, Snape JW, Laurie DA. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:721-33. [PMID: 17634915 DOI: 10.1007/s00122-007-0603-4] [Citation(s) in RCA: 439] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/25/2007] [Indexed: 05/16/2023]
Abstract
Ppd-D1 on chromosome 2D is the major photoperiod response locus in hexaploid wheat (Triticum aestivum). A semi-dominant mutation widely used in the "green revolution" converts wheat from a long day (LD) to a photoperiod insensitive (day neutral) plant, providing adaptation to a broad range of environments. Comparative mapping shows Ppd-D1 to be colinear with the Ppd-H1 gene of barley (Hordeum vulgare) which is a member of the pseudo-response regulator (PRR) gene family. To investigate the relationship between wheat and barley photoperiod genes we isolated homologues of Ppd-H1 from a 'Chinese Spring' wheat BAC library and compared them to sequences from other wheat varieties with known Ppd alleles. Varieties with the photoperiod insensitive Ppd-D1a allele which causes early flowering in short (SD) or LDs had a 2 kb deletion upstream of the coding region. This was associated with misexpression of the 2D PRR gene and expression of the key floral regulator FT in SDs, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. Five Ppd-D1 alleles were found but only the 2 kb deletion was associated with photoperiod insensitivity. Photoperiod insensitivity can also be conferred by mutation at a homoeologous locus on chromosome 2B (Ppd-B1). No candidate mutation was found in the 2B PRR gene but polymorphism within the 2B PRR gene cosegregated with the Ppd-B1 locus in a doubled haploid population, suggesting that insensitivity on 2B is due to a mutation outside the sequenced region or to a closely linked gene.
Collapse
Affiliation(s)
- James Beales
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
215
|
Kevei E, Gyula P, Fehér B, Tóth R, Viczián A, Kircher S, Rea D, Dorjgotov D, Schäfer E, Millar AJ, Kozma-Bognár L, Nagy F. Arabidopsis thaliana Circadian Clock Is Regulated by the Small GTPase LIP1. Curr Biol 2007; 17:1456-64. [PMID: 17683937 DOI: 10.1016/j.cub.2007.07.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/20/2007] [Accepted: 07/06/2007] [Indexed: 01/17/2023]
Abstract
BACKGROUND At the core of the eukaryotic circadian network, clock genes/proteins form multiple transcriptional/translational negative-feedback loops and generate a basic approximately 24 hr oscillation, which provides daily regulation for a wide range of processes. This temporal organization enhances the fitness of the organism only if it corresponds to the natural day/night cycles. Light is the most effective signal in synchronizing the oscillator to environmental cycles. RESULTS The lip1-1 (light insensitive period 1) mutant isolated from the model plant Arabidopsis thaliana displays novel circadian phenotypes arising from specific defects in the light input pathway to the oscillator. In wild-type plants, period length shortens with increasing light fluence rates and the phase of rhythms can be shifted by light pulses administered to dark-adapted plants. In contrast, in lip1-1, period length is nearly insensitive to light intensity and significantly larger phase shifts (delays) can be induced during the subjective night. The mutant also displays elevated photomorphogenic responses to red and blue light, which cannot be explained by the circadian defect, suggesting distinct functions for LIP1 in the circadian light input and photomorphogenesis. The LIP1 gene encodes a functional, plant-specific atypical small GTPase, and therefore we postulate that it acts similarly to ZEITLUPE at postranscriptional level. CONCLUSIONS LIP1 represents the first small GTPase implicated in the circadian system of plants. LIP1 plays a unique negative role in controlling circadian light input and is required for precise entrainment of the plant clock.
Collapse
Affiliation(s)
- Eva Kevei
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Niwa Y, Ito S, Nakamichi N, Mizoguchi T, Niinuma K, Yamashino T, Mizuno T. Genetic Linkages of the Circadian Clock-Associated Genes, TOC1, CCA1 and LHY, in the Photoperiodic Control of Flowering Time in Arabidopsis thaliana. ACTA ACUST UNITED AC 2007; 48:925-37. [PMID: 17540692 DOI: 10.1093/pcp/pcm067] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In Arabidopsis thaliana, the flowering time is regulated through the circadian clock that measures day-length and modulates the photoperiodic CO-FT output pathway in accordance with the external coincidence model. Nevertheless, the genetic linkages between the major clock-associated TOC1, CCA1 and LHY genes and the canonical CO-FT flowering pathway are less clear. By employing a set of mutants including an extremely early flowering toc1 cca1 lhy triple mutant, here we showed that CCA1 and LHY act redundantly as negative regulators of the photoperiodic flowering pathway. The partly redundant CCA1/LHY functions are largely, but not absolutely, dependent on the upstream TOC1 gene that serves as an activator. The results of examination with reference to the expression profiles of CO and FT in the mutants indicated that this clock circuitry is indeed linked to the CO-FT output pathway, if not exclusively. For this linkage, the phase control of certain flowering-associated genes, GI, CDF1 and FKF1, appears to be crucial. Furthermore, the genetic linkage between TOC1 and CCA1/LHY is compatible with the negative and positive feedback loop, which is currently believed to be a core of the circadian clock. The results of this study suggested that the circadian clock might open an exit for a photoperiodic output pathway during the daytime. In the context of the current clock model, these results will be discussed in connection with the previous finding that the same clock might open an exit for the early photomorphogenic output pathway during the night-time.
Collapse
Affiliation(s)
- Yusuke Niwa
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | | | | | |
Collapse
|
217
|
Nakamichi N, Kita M, Niinuma K, Ito S, Yamashino T, Mizoguchi T, Mizuno T. Arabidopsis Clock-Associated Pseudo-Response Regulators PRR9, PRR7 and PRR5 Coordinately and Positively Regulate Flowering Time Through the Canonical CONSTANS-Dependent Photoperiodic Pathway. ACTA ACUST UNITED AC 2007; 48:822-32. [PMID: 17504813 DOI: 10.1093/pcp/pcm056] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photoperiodism allows organisms to measure daylength, or external photoperiod, and to anticipate coming seasons. Daylength measurement requires the integration of light signal and temporal information by the circadian clock. In the long-day plant Arabidopsis thaliana, CONSTANS (CO) plays a crucial role in integrating the circadian rhythm and environmental light signals into the photoperiodic flowering pathway. Nevertheless, the molecular mechanism by which the circadian clock modulates the cyclic expression profile of CO is poorly understood. Here, we first showed that the clock-associated genes PSEUDO-RESPONSE REGULATOR (PRR) PRR9, PRR7 and PRR5 are involved in activation of CO expression during the daytime. Then, extensive genetic studies using CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) double mutants (cca1/lhy) and prr7/prr5 were conducted. The results suggested that PRR genes act coordinately in a manner parallel with and antagonistic to CCA/LHY, upstream of the canonical CO-FLOWERING LOCUS T (FT) photoperiodic flowering pathway. Finally, we provided evidence to propose a model, in which CCA1/LHY repress CO through GIGANTEA (GI), while PRR9, PRR7 and PRR5 activate CO predominantly by repressing CYCLING DOF FACTOR1 (CDF1) encoding a DNA-binding transcriptional repressor.
Collapse
Affiliation(s)
- Norihito Nakamichi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | | | | | | | | | | | | |
Collapse
|
218
|
Hecht V, Knowles CL, Vander Schoor JK, Liew LC, Jones SE, Lambert MJM, Weller JL. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. PLANT PHYSIOLOGY 2007; 144:648-61. [PMID: 17468223 PMCID: PMC1914181 DOI: 10.1104/pp.107.096818] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 04/17/2007] [Indexed: 05/15/2023]
Abstract
Genes controlling the transition to flowering have been studied in several species, including Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but have not yet received much attention in legumes. Here, we describe a new allelic series of late-flowering, photoperiod-insensitive mutants in the pea (Pisum sativum) LATE BLOOMER1 (LATE1) gene and show that LATE1 is an ortholog of Arabidopsis GIGANTEA. Mutants display defects in phytochrome B-dependent deetiolation under red light and in the diurnal regulation of pea homologs of several Arabidopsis circadian clock genes, including TIMING OF CAB1, EARLY FLOWERING4, and CIRCADIAN CLOCK ASSOCIATED1/LATE ELONGATED HYPOCOTYL. LATE1 itself shows strongly rhythmic expression with a small but distinct acute peak following dark-to-light transfer. Mutations in LATE1 prevent the induction of a FLOWERING LOCUS T (FT) homolog FTL in long days but cause only minor alteration to the rhythmic expression pattern of the only known group Ia CONSTANS homolog COLa. The late-flowering phenotype of late1 mutants can be completely rescued by grafting to the wild type, but this rescue is not associated with a significant increase in FTL transcript level in shoot apices. Genetic interactions of late1 with the photoperiod-insensitive, early-flowering sterile nodes (sn) mutant and impairment of the LATE1 diurnal expression rhythm in sn plants suggest that SN may also affect the circadian clock. These results show that several functions of Arabidopsis GIGANTEA are conserved in its pea ortholog and demonstrate that genetic pathways for photoperiodic flowering are likely to be conserved between these two species. They also suggest that in addition to its role in the floral transition, LATE1 also acts throughout reproductive development.
Collapse
Affiliation(s)
- Valérie Hecht
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | | | | | | | |
Collapse
|
219
|
Du L, Jiao F, Chu J, Jin G, Chen M, Wu P. The two-component signal system in rice (Oryza sativa L.): A genome-wide study of cytokinin signal perception and transduction. Genomics 2007; 89:697-707. [PMID: 17408920 DOI: 10.1016/j.ygeno.2007.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 02/11/2007] [Accepted: 02/22/2007] [Indexed: 02/03/2023]
Abstract
In this report we define the genes of two-component regulatory systems in rice through a comprehensive computational analysis of rice (Oryza sativa L.) genome sequence databases. Thirty-seven genes were identified, including 5 HKs (cytokinin-response histidine protein kinase) (OsHK1-4, OsHKL1), 5 HPs (histidine phosphotransfer proteins) (OsHP1-5), 15 type-A RRs (response regulators) (OsRR1-15), 7 type B RR genes (OsRR16-22), and 5 predicted pseudo-response regulators (OsPRR1-5). Protein motif organization, gene structure, phylogenetic analysis, chromosomal location, and comparative analysis between rice, maize, and Arabidopsis are described. Full-length cDNA clones of each gene were isolated from rice. Heterologous expression of each of the OsHKs in yeast mutants conferred histidine kinase function in a cytokinin-dependent manner. Nonconserved regions of individual cDNAs were used as probes in expression profiling experiments. This work provides a foundation for future functional dissection of the rice cytokinin two-component signaling pathway.
Collapse
Affiliation(s)
- Liming Du
- The Key State Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|
220
|
Ding Z, Doyle MR, Amasino RM, Davis SJ. A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation. Genetics 2007; 176:1501-10. [PMID: 17483414 PMCID: PMC1931532 DOI: 10.1534/genetics.107.072769] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It has been proposed that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) together with TIMING OF CAB EXPRESSION 1 (TOC1) make up the central oscillator of the Arabidopsis thaliana circadian clock. These genes thus drive rhythmic outputs, including seasonal control of flowering and photomorphogenesis. To test various clock models and to disclose the genetic relationship between TOC1 and CCA1/LHY in floral induction and photomorphogenesis, we constructed the cca1 lhy toc1 triple mutant and cca1 toc1 and lhy toc1 double mutants and tested various rhythmic responses and circadian output regulation. Here we report that rhythmic activity was dramatically attenuated in cca1 lhy toc1. Interestingly, we also found that TOC1 regulates the floral transition in a CCA1/LHY-dependent manner while CCA1/LHY functions upstream of TOC1 in regulating a photomorphogenic process. This suggests to us that TOC1 and CCA1/LHY participate in these two processes through different strategies. Collectively, we have used genetics to provide direct experimental support of previous modeling efforts where CCA1/LHY, along with TOC1, drives the circadian oscillator and have shown that this clock is essential for correct output regulation.
Collapse
Affiliation(s)
- Zhaojun Ding
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | | |
Collapse
|
221
|
Ding Z, Millar AJ, Davis AM, Davis SJ. TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock. THE PLANT CELL 2007; 19:1522-36. [PMID: 17496120 PMCID: PMC1913727 DOI: 10.1105/tpc.106.047241] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The plant circadian clock is required for daily anticipation of the diurnal environment. Mutation in Arabidopsis thaliana TIME FOR COFFEE (TIC) affects free-running circadian rhythms. To investigate how TIC functions within the circadian system, we introduced markers for the evening and morning phases of the clock into tic and measured evident rhythms. The phases of evening clock genes in tic were all advanced under light/dark cycles without major expression level defects. With regard to morning-acting genes, we unexpectedly found that TIC has a closer relationship with LATE ELONGATED HYPOCOTYL (LHY) than with CIRCADIAN CLOCK ASSOCIATED1, as tic has a specific LHY expression level defect. Epistasis analysis demonstrated that there were no clear rhythms in double mutants of tic and evening-acting clock genes, although double mutants of tic and morning-acting genes exhibited a similar free-running period as tic. We isolated TIC and found that its mRNA expression is continuously present over the diurnal cycle, and the encoded protein appears to be strictly localized to the nucleus. Neither its abundance nor its cellular distribution was found to be clock regulated. We suggest that TIC encodes a nucleus-acting clock regulator working close to the central oscillator.
Collapse
Affiliation(s)
- Zhaojun Ding
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne D-50829, Germany
| | | | | | | |
Collapse
|
222
|
Hotta CT, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, Dodd AN, Webb AAR. Modulation of environmental responses of plants by circadian clocks. PLANT, CELL & ENVIRONMENT 2007; 30:333-349. [PMID: 17263778 DOI: 10.1111/j.1365-3040.2006.01627.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Circadian clocks are signalling networks that enhance an organism's relationship with the rhythmic environment. The plant circadian clock modulates a wide range of physiological and biochemical events, such as stomatal and organ movements, photosynthesis and induction of flowering. Environmental signals regulate the phase and period of the plant circadian clock, which results in an approximate synchronization of clock outputs with external events. One of the consequences of circadian control is that stimuli of the same strength applied at different times of the day can result in responses of different intensities. This is known as 'gating'. Gating of a signal may allow plants to better process and react to the wide range and intensities of environmental signals to which they are constantly subjected. Light signalling, stomatal movements and low-temperature responses are examples of signalling pathways that are gated by the circadian clock. In this review, we describe the many levels at which the circadian clock interacts with responses to the environment. We discuss how environmental rhythms of temperature and light intensity entrain the circadian clock, how photoperiodism may be regulated by the relationship between environmental rhythms and the phasing of clock outputs, and how gating modulates the sensitivity of the clock and other responses to environmental and physiological signals. Finally, we describe evidence that the circadian clock can increase plant fitness.
Collapse
Affiliation(s)
- Carlos T Hotta
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Michael J Gardner
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Katharine E Hubbard
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Seong Jin Baek
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Neil Dalchau
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Dontamala Suhita
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Antony N Dodd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
223
|
Vandepoele K, Casneuf T, Van de Peer Y. Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics. Genome Biol 2007; 7:R103. [PMID: 17090307 PMCID: PMC1794593 DOI: 10.1186/gb-2006-7-11-r103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/15/2006] [Accepted: 11/07/2006] [Indexed: 11/30/2022] Open
Abstract
A strategy combining classical motif overrepresentation in co-regulated genes with comparative footprinting is applied to identify 80 transcription factor binding sites and 139 regulatory modules in Arabidopsis thaliana. Background Transcriptional regulation plays an important role in the control of many biological processes. Transcription factor binding sites (TFBSs) are the functional elements that determine transcriptional activity and are organized into separable cis-regulatory modules, each defining the cooperation of several transcription factors required for a specific spatio-temporal expression pattern. Consequently, the discovery of novel TFBSs in promoter sequences is an important step to improve our understanding of gene regulation. Results Here, we applied a detection strategy that combines features of classic motif overrepresentation approaches in co-regulated genes with general comparative footprinting principles for the identification of biologically relevant regulatory elements and modules in Arabidopsis thaliana, a model system for plant biology. In total, we identified 80 TFBSs and 139 regulatory modules, most of which are novel, and primarily consist of two or three regulatory elements that could be linked to different important biological processes, such as protein biosynthesis, cell cycle control, photosynthesis and embryonic development. Moreover, studying the physical properties of some specific regulatory modules revealed that Arabidopsis promoters have a compact nature, with cooperative TFBSs located in close proximity of each other. Conclusion These results create a starting point to unravel regulatory networks in plants and to study the regulation of biological processes from a systems biology point of view.
Collapse
Affiliation(s)
- Klaas Vandepoele
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark, B-9052 Ghent, Belgium
| | - Tineke Casneuf
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark, B-9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark, B-9052 Ghent, Belgium
| |
Collapse
|
224
|
Schöning JC, Streitner C, Staiger D. Clockwork green—the circadian oscillator inArabidopsis. BIOL RHYTHM RES 2007. [DOI: 10.1080/09291010600804577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
225
|
|
226
|
|
227
|
Murakami M, Tago Y, Yamashino T, Mizuno T. Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. PLANT & CELL PHYSIOLOGY 2007; 48:110-21. [PMID: 17132630 DOI: 10.1093/pcp/pcl043] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In higher plants, circadian rhythms are highly relevant to a wide range of biological processes. To such circadian rhythms, the clock (oscillator) is central, and recent intensive studies on the model higher plant Arabidopsis thaliana have begun to shed light on the molecular mechanisms underlying the functions of the central clock. Such representative clock-associated genes of A. thaliana are the homologous CCA1 and LHY genes, and five PRR genes that belong to a small family of pseudo-response regulators including TOC1. Others are GI, ZTL, ELF3, ELF4, LUX/PCL1, etc. In this context, a simple question arose as to whether or not the molecular picture of the model Arabidopsis clock is conserved in other higher plants. Here we made an effort to answer the question with special reference to Oryza sativa, providing experimental evidence that this model monocot also has a set of highly conserved clock-associated genes, such as those designated as OsCCA1, OsPRR-series including OsTOC1/OsPRR1, OsZTLs, OsPCL1 as well as OsGI. These results will provide us with insight into the general roles of plant circadian clocks, such as those for the photoperiodic control of flowering time that has a strong impact on the reproduction and yield in many higher plants.
Collapse
Affiliation(s)
- Masaya Murakami
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | |
Collapse
|
228
|
Ishikawa M, Kiba T, Chua NH. The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:736-46. [PMID: 16709190 DOI: 10.1111/j.1365-313x.2006.02737.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Arabidopsis phytochrome A (phyA) regulates not only seed germination and seedling de-etiolation but also circadian rhythms and flowering time in adult plants. The SUPPRESSOR OF PHYA-105 (SPA1) acts as a negative regulator of phyA-mediated de-etiolation of young seedlings, but its roles in adult plants have not yet been described. Here, we show that SPA1 is involved in regulating circadian rhythms and flowering time in plants. Under constant light, the abundance of SPA1 protein exhibited circadian regulation, whereas under constant darkness, SPA1 protein levels remained unchanged. These results indicate that the SPA1 protein is controlled by the circadian clock and light signals. In addition, the spa1-3 mutation slightly shortened the circadian period of CCA1, TOC1/PRR1 and SPA1 transcript accumulation under constant light. Phenotypic analysis showed that the spa1-3 mutant flowers early under short-day (SD) but not long-day (LD) conditions. Consistent with this finding, transcripts encoding flowering locus T (FT), which promotes flowering, increased in spa1-3 under only SD conditions, although the CONSTANS (CO) transcript level was not affected under either SD nor LD conditions. Our results indicate that SPA1 not only negatively controls phyA-mediated signaling in seedlings, but also regulates circadian rhythms and flowering time in plants.
Collapse
Affiliation(s)
- Masaki Ishikawa
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
229
|
Miwa K, Serikawa M, Suzuki S, Kondo T, Oyama T. Conserved expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses. PLANT & CELL PHYSIOLOGY 2006; 47:601-12. [PMID: 16524874 DOI: 10.1093/pcp/pcj027] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The Lemna genus is a group of monocotyledonous plants with tiny, floating bodies. Lemna gibba G3 and L. paucicostata 6746 were once intensively analyzed for physiological timing systems of photoperiodic flowering and circadian rhythms since they showed obligatory and sensitive photoperiodic responses of a long-day and a short-day plant, respectively. We attempted to approach the divergence of biological timing systems at the molecular level using these plants. We first employed molecular techniques to study their circadian clock systems. We developed a convenient bioluminescent reporter system to monitor the circadian rhythms of Lemna plants. As in Arabidopsis, the Arabidopsis CCA1 promoter produced circadian expression in Lemna plants, though the phases and the sustainability of bioluminescence rhythms were somewhat diverged between them. Lemna homologs of the Arabidopsis clock-related genes LHY/CCA1, GI, ELF3 and PRRs were then isolated as candidates for clock-related genes in these plants. These genes showed rhythmic expression profiles that were basically similar to those of Arabidopsis under light-dark conditions. Results from co-transfection assays using the bioluminescence reporter and overexpression effectors suggested that the LHY and GI homologs of Lemna can function in the circadian clock system like the counterparts of Arabidopsis. All these results suggested that the frame of the circadian clock appeared to be conserved not only between the two Lemna plants but also between monocotyledons and dicotyledons. However, divergence of gene numbers and expression profiles for LHY/CCA1 homologs were found between Lemna, rice and Arabidopsis, suggesting that some modification of clock-related components occurred through their evolution.
Collapse
Affiliation(s)
- Kumiko Miwa
- Department of Biological Science, Graduate School of Science, Nagoya University and CREST, Japan Science and Technology Corporation (JST), Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | | | | | | | | |
Collapse
|
230
|
Darrah C, Taylor BL, Edwards KD, Brown PE, Hall A, McWatters HG. Analysis of phase of LUCIFERASE expression reveals novel circadian quantitative trait loci in Arabidopsis. PLANT PHYSIOLOGY 2006; 140:1464-74. [PMID: 16461388 PMCID: PMC1435814 DOI: 10.1104/pp.105.074518] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/26/2006] [Accepted: 01/26/2006] [Indexed: 05/06/2023]
Abstract
In response to exogenous rhythms of light and temperature, most organisms exhibit endogenous circadian rhythms (i.e. cycles of behavior and gene expression with a periodicity of approximately 24 h). One of the defining characteristics of the circadian clock is its ability to synchronize (entrain) to an environmental rhythm. Entrainment is arguably the most salient feature of the clock in evolutionary terms. Previous quantitative trait studies of circadian characteristics in Arabidopsis (Arabidopsis thaliana) considered leaf movement under constant (free-running) conditions. This study, however, addressed the important circadian parameter of phase, which reflects the entrained relationship between the clock and the external cycle. Here it is shown that, when exposed to the same photoperiod, Arabidopsis accessions differ dramatically in phase. Variation in the timing of circadian LUCIFERASE expression was used to map loci affecting the entrained phase of the clock in a recombinant population derived from two geographically distant accessions, Landsberg erecta and Cape Verde Islands. Four quantitative trait loci (QTL) were found with major effects on circadian phase. A QTL on chromosome 5 contained SIGNALING IN RED LIGHT REDUCED 1 and PSEUDORESPONSE REGULATOR 3, both genes known to affect the circadian clock. Previously unknown polymorphisms were found in both genes, making them candidates for the effect on phase. Fine mapping of two other QTL highlighted genomic regions not previously identified in any circadian screens, indicating their effects are likely due to genes not hitherto considered part of the circadian system.
Collapse
Affiliation(s)
- Chiarina Darrah
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | | | | | | | | |
Collapse
|
231
|
Salomé PA, To JPC, Kieber JJ, McClung CR. Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. THE PLANT CELL 2006; 18:55-69. [PMID: 16326927 PMCID: PMC1323484 DOI: 10.1105/tpc.105.037994] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Light and temperature are potent environmental signals used to synchronize the circadian oscillator with external time and photoperiod. Phytochrome and cryptochrome photoreceptors integrate light quantity and quality to modulate the pace and phase of the clock. PHYTOCHROME B (phyB) controls period length in red light as well as the phase of the clock in white light. phyB interacts with ARABIDOPSIS RESPONSE REGULATOR4 (ARR4) in a light-dependent manner. Accordingly, we tested ARR4 and other members of the type-A ARR family for roles in clock function and show that ARR4 and its closest relative, ARR3, act redundantly in the Arabidopsis thaliana circadian system. Loss of ARR3 and ARR4 lengthens the period of the clock even in the absence of light, demonstrating that they do so independently of active phyB. In addition, in white light, arr3,4 mutants show a leading phase similar to phyB mutants, suggesting that circadian light input is modulated by the interaction of phyB with ARR4. Although type-A ARRs are involved in cytokinin signaling, the circadian defects appear to be independent of cytokinin, as exogenous cytokinin affects the phase but not the period of the clock. Therefore, ARR3 and ARR4 are critical for proper circadian period and define an additional level of regulation of the circadian clock in Arabidopsis.
Collapse
Affiliation(s)
- Patrice A Salomé
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755-3576, USA
| | | | | | | |
Collapse
|
232
|
Mizoguchi T, Putterill J, Ohkoshi Y. Kinase and Phosphatase: The Cog and Spring of the Circadian Clock. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 250:47-72. [PMID: 16861063 DOI: 10.1016/s0074-7696(06)50002-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Reversible phosphorylation is an important regulatory mechanism for many biological processes in eukaryotic organisms. The phosphorylation state of a protein is controlled dynamically by both protein kinases and phosphatases. Phosphorylation of circadian clock proteins is an essential posttranscriptional mechanism in the regulation of circadian clocks, and several protein kinases and phosphatases have been shown to regulate key clock components in eukaryotic systems, including Arabidopsis, Neurospora, Drosophila, and mice. In this review, recent progress in the characterization of protein kinases and phosphatases involved in circadian rhythms is summarized. The protein kinase CK2 has been proposed as an evolutionary link between the divergent circadian systems of plants, animals, and fungi. The roles of CK2 in this process are discussed here in detail.
Collapse
Affiliation(s)
- Tsuyoshi Mizoguchi
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
233
|
Lee BH, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. THE PLANT CELL 2005; 17:3155-75. [PMID: 16214899 PMCID: PMC1276035 DOI: 10.1105/tpc.105.035568] [Citation(s) in RCA: 488] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To understand the gene network controlling tolerance to cold stress, we performed an Arabidopsis thaliana genome transcript expression profile using Affymetrix GeneChips that contain approximately 24,000 genes. We statistically determined 939 cold-regulated genes with 655 upregulated and 284 downregulated. A large number of early cold-responsive genes encode transcription factors that likely control late-responsive genes, suggesting a multitude of transcriptional cascades. In addition, many genes involved in chromatin level and posttranscriptional regulation were also cold regulated, suggesting their involvement in cold-responsive gene regulation. A number of genes important for the biosynthesis or signaling of plant hormones, such as abscisic acid, gibberellic acid, and auxin, are regulated by cold stress, which is of potential importance in coordinating cold tolerance with growth and development. We compared the cold-responsive transcriptomes of the wild type and inducer of CBF expression 1 (ice1), a mutant defective in an upstream transcription factor required for chilling and freezing tolerance. The transcript levels of many cold-responsive genes were altered in the ice1 mutant not only during cold stress but also before cold treatments. Our study provides a global picture of the Arabidopsis cold-responsive transcriptome and its control by ICE1 and will be valuable for understanding gene regulation under cold stress and the molecular mechanisms of cold tolerance.
Collapse
Affiliation(s)
- Byeong-ha Lee
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
234
|
Harmer SL, Kay SA. Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. THE PLANT CELL 2005; 17:1926-40. [PMID: 15923346 PMCID: PMC1167542 DOI: 10.1105/tpc.105.033035] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The circadian clock exerts a major influence on transcriptional regulation in plants and other organisms. We have previously identified a motif called the evening element (EE) that is overrepresented in the promoters of evening-phased genes. Here, we demonstrate that multimerized EEs are necessary and sufficient to confer evening-phased circadian regulation. Although flanking sequences are not required for EE function, they can modulate EE activity. One flanking sequence, taken from the PSEUDORESPONSE REGULATOR 9 promoter, itself confers dawn-phased rhythms and has allowed us to define a new clock promoter motif (the morning element [ME]). Scanning mutagenesis reveals that both activators and repressors of gene expression act through the ME and EE. Although our experiments confirm that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) are likely to act as repressors via the EE, they also show that they have an unexpected positive effect on EE-mediated gene expression as well. We have identified a clock-regulated activity in plant extracts that binds specifically to the EE and has a phase consistent with it being an activator of expression through the EE. This activity is reduced in CCA1/LHY null plants, suggesting it may itself be part of a circadian feedback loop and perhaps explaining the reduction in EE activity in these double mutant plants.
Collapse
Affiliation(s)
- Stacey L Harmer
- Section of Plant Biology, University of California, Davis 95616, USA.
| | | |
Collapse
|
235
|
Masaki T, Tsukagoshi H, Mitsui N, Nishii T, Hattori T, Morikami A, Nakamura K. Activation tagging of a gene for a protein with novel class of CCT-domain activates expression of a subset of sugar-inducible genes in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:142-52. [PMID: 15960623 DOI: 10.1111/j.1365-313x.2005.02439.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the current studies, we examined sugar-inducible gene expression using the Arabidopsis thaliana line sGsL, which carries luciferase (LUC) and beta-glucuronidase (GUS) reporter genes under the control of a 210-bp promoter derived from the sweet potato sporamin gene (Spo(min)). We isolated an enhancer activation-tagged mutant of this line that showed high-level expression of LUC and GUS under non-inducing low-sugar conditions. The Activator ofSpo(min)::LUC2 (ASML2) gene located close to the enhancer encodes a protein belonging to a previously uncharacterized class of CCT (CONSTANS, CONSTANS-like, TOC1) domain proteins. Overexpression of ASML2 cDNA in the sGsL line resulted in enhanced expression of not only LUC and GUS reporters but also several endogenous sugar-inducible genes, including Atbeta-Amy, ApL3, and VSP2. Transient co-expression of 35S::ASML2 with the Spo(min)::LUC or Atbeta-Amy::LUC reporter in protoplasts resulted in an approximately 2.4 or 5.6-fold transactivation of LUC expression, respectively. Expression of ASML2 was high in reproductive organs, and expression in seedlings was slightly enhanced by sugars, but not by abscisic acid. These results suggest that ASML2 functions as a transcriptional activator and regulates the expression of at least a subset of sugar-inducible genes.
Collapse
Affiliation(s)
- Takeshi Masaki
- Laboratory of Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
236
|
Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 2005; 15:47-54. [PMID: 15649364 DOI: 10.1016/j.cub.2004.12.067] [Citation(s) in RCA: 311] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The core mechanism of the circadian oscillators described to date rely on transcriptional negative feedback loops with a delay between the negative and the positive components . In plants, the first suggested regulatory loop involves the transcription factors CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) and the pseudo-response regulator TIMING OF CAB EXPRESSION 1 (TOC1/PRR1). TOC1 is a member of the Arabidopsis circadian-regulated PRR gene family . Analysis of single and double mutants in PRR7 and PRR9 indicates that these morning-expressed genes play a dual role in the circadian clock, being involved in the transmission of light signals to the clock and in the regulation of the central oscillator. Furthermore, CCA1 and LHY had a positive effect on PRR7 and PRR9 expression levels, indicating that they might form part of an additional regulatory feedback loop. We propose that the Arabidopsis circadian oscillator is composed of several interlocking positive and negative feedback loops, a feature of clock regulation that appears broadly conserved between plants, fungi, and animals.
Collapse
Affiliation(s)
- Eva M Farré
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
237
|
Mizuno T, Nakamichi N. Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs). PLANT & CELL PHYSIOLOGY 2005; 46:677-85. [PMID: 15767264 DOI: 10.1093/pcp/pci087] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In Arabidopsis thaliana, AUTHENTIC RESPONSE REGULATORS (ARRs) act as downstream components of the His-to-Asp phosphorelay (two-component) signaling pathway that is propagated primarily by the cytokinin receptor kinases, AUTHENTIC HIS-KINASES (AHK2, AHK3 and AHK4/CRE1). Thus, this bacterial type of signaling system is essential for responses to a class of hormones in plants. Interestingly, this higher plant has also evolved its own atypical (or unique) variants of two-component signal transducers, PSEUDO-RESPONSE REGULATORS (PRRs). Several lines of recent results suggest that the functions of PRRs are closely relevant to the plant clock (oscillator) that is central to circadian rhythms, the underlying mechanisms of which have long been the subject of debate. Through an overview of recent results, the main issue addressed here is whether or not the pseudo-response regulators (PRRs) are true oscillator components (TOCs).
Collapse
Affiliation(s)
- Takeshi Mizuno
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan.
| | | |
Collapse
|
238
|
Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, Together Play Essential Roles Close to the Circadian Clock of Arabidopsis thaliana. ACTA ACUST UNITED AC 2005; 46:686-98. [PMID: 15767265 DOI: 10.1093/pcp/pci086] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In Arabidopsis thaliana, a number of clock-associated protein components have been identified. Among them, CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1)/LHY (LATE ELONGATED HYPOCOTYL) and TOC1 (TIMING OF CAB EXPRESSION 1) are believed to be the essential components of the central oscillator. CCA1 and LHY are homologous and partially redundant Myb-related DNA-binding proteins, whereas TOC1 is a member of a small family of proteins, designated as PSEUDO-RESPONSE REGULATOR. It is also believed that these two different types of clock components form an autoregulatory positive/negative feedback loop at the levels of transcription/translation that generates intrinsic rhythms. Nonetheless, it was not yet certain whether or not other PRR family members (PRR9, PRR7, PRR5 and PRR3) are implicated in clock function per se. Employing a set of prr9, prr7 and prr5 mutant alleles, here we established all possible single, double and triple prr mutants. They were examined extensively by comparing them with each other with regard to their phenotypes of circadian rhythms, photoperiodicity-dependent control of flowering time and photomorphogenic responses to red light during de-etiolation. Notably, the prr9 prr7 prr5 triple lesions in plants resulted in severe phenotypes: (i) arrhythmia in the continuous light conditions, and an anomalous phasing of diurnal oscillation of certain circadian-controlled genes even in the entrained light/dark cycle conditions; (ii) late flowering that was no longer sensitive to the photoperiodicity; and (iii) hyposensitivity (or blind) to red light in the photomorphogenic responses. The phenotypes of the single and double mutants were also characterized extensively, showing that they exhibited circadian-associated phenotypes characteristic for each. These results are discussed from the viewpoint that PRR9/PRR7/PRR5 together act as period-controlling factors, and they play overlapping and distinctive roles close to (or within) the central oscillator in which the relative, PRR1/TOC1, plays an essential role.
Collapse
Affiliation(s)
- Norihito Nakamichi
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | |
Collapse
|
239
|
Ramos A, Pérez-Solís E, Ibáñez C, Casado R, Collada C, Gómez L, Aragoncillo C, Allona I. Winter disruption of the circadian clock in chestnut. Proc Natl Acad Sci U S A 2005; 102:7037-42. [PMID: 15860586 PMCID: PMC1100755 DOI: 10.1073/pnas.0408549102] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Circadian clock performance during winter dormancy has been investigated in chestnut by using as marker genes CsTOC1 and CsLHY, which are homologous to essential components of the central circadian oscillator in Arabidopsis. During vegetative growth, mRNA levels of these two genes in chestnut seedlings and adult plants cycled daily, as expected. However, during winter dormancy, CsTOC1 and CsLHY mRNA levels were high and did not oscillate, indicating that the circadian clock was altered. A similar disruption was induced by chilling chestnut seedlings (to 4 degrees C). Normal cycling resumed when endodormant or cold-treated plants were returned to 22 degrees C. The behavior of CsTOC1 and CsLHY during a cold response reveals a relevant aspect of clock regulation not yet encountered in Arabidopsis.
Collapse
Affiliation(s)
- Alberto Ramos
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Kucho KI, Okamoto K, Tsuchiya Y, Nomura S, Nango M, Kanehisa M, Ishiura M. Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2005; 187:2190-9. [PMID: 15743968 PMCID: PMC1064041 DOI: 10.1128/jb.187.6.2190-2199.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are the only bacterial species found to have a circadian clock. We used DNA microarrays to examine circadian expression patterns in the cyanobacterium Synechocystis sp. strain PCC 6803. Our analysis identified 54 (2%) and 237 (9%) genes that exhibited circadian rhythms under stringent and relaxed filtering conditions, respectively. The expression of most cycling genes peaked around the time of transition from subjective day to night, suggesting that the main role of the circadian clock in Synechocystis is to adjust the physiological state of the cell to the upcoming night environment. There were several chromosomal regions where neighboring genes were expressed with similar circadian patterns. The physiological functions of the cycling genes were diverse and included a wide variety of metabolic pathways, membrane transport, and signal transduction. Genes involved in respiration and poly(3-hydroxyalkanoate) synthesis showed coordinated circadian expression, suggesting that the regulation is important for the supply of energy and carbon source in the night. Genes involved in transcription and translation also followed circadian cycling patterns. These genes may be important for output of the rhythmic information generated by the circadian clock. Our findings provided critical insights into the importance of the circadian clock on cellular physiology and the mechanism of clock-controlled gene regulation.
Collapse
Affiliation(s)
- Ken-ichi Kucho
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
241
|
Nakamichi N, Kita M, Ito S, Sato E, Yamashino T, Mizuno T. The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function. PLANT & CELL PHYSIOLOGY 2005; 46:609-19. [PMID: 15695441 DOI: 10.1093/pcp/pci061] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, a number of clock-associated protein factors have been identified. Among them, TOC1 (TIMING OF CAB EXPRESSION 1) is believed to be a component of the central oscillator. TOC1 is a member of a small family of proteins, designated as ARABIDOPSIS PSEUDO-RESPONSE REGULATOR, including PRR1/TOC1, PRR3, PRR5, PRR7 and PRR9. It has not been certain whether or not other PRR family members are also implicated in clock function per se. To clarify this problem, here we constructed a double mutant line, which is assumed to have severe lesions in both the PRR5 and PRR7 genes. Resulting homozygous prr5-11 prr7-11 young seedlings showed a marked phenotype of hyposensitivity to red light during de-etiolation. In addition, they displayed a phenotype of extremely late flowering under long-day photoperiod conditions, but not short-day conditions. The rhythms at the level of transcription of certain clock-controlled genes were severely perturbed in the double mutant plants when they were released into continuous light (LL) and darkness (DD). The observed phenotype was best interpreted as 'arrhythmic in both LL and DD' and/or 'very short period with markedly reduced amplitude'. Even under the light entrainment (LD) conditions, the mutant plants showed anomalous diurnal oscillation profiles with altered amplitude and/or phase with regard to certain clock-controlled genes, including the clock component CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) gene. Such events were observed even under temperature entrainment conditions, suggesting that the prr5-11 prr7-11 lesions cannot simply be attributed to a defect in the light signal input pathway. These pleiotropic circadian-associated phenotypes of the double mutant were very remarkable, as compared with those observed previously for each single mutant. Taking these results together, we propose for the first time that PRR5 and PRR7 coordinately (or synergistically) play essential clock-associated roles close to the central oscillator.
Collapse
Affiliation(s)
- Norihito Nakamichi
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | | | |
Collapse
|
242
|
Abstract
A combination of forward and reverse genetic approaches together with transcriptome-scale gene expression analyses have allowed the elaboration of a model for the Arabidopsis thaliana circadian clock. The working model largely conforms to the expected negative feedback loop model that has emerged from studies in other model systems. Although a core loop has emerged, it is clear that additional components remain to be identified and that the workings of the Arabidopsis clock have been established only in outline. Similarly, the details of resetting by light and temperature are only incompletely known. In contrast, the mechanism of photoperiodic induction of flowering is known in considerable detail and is consistent with the external coincidence model.
Collapse
Affiliation(s)
- Patrice A Salomé
- Department of Biological Sciences, 6044 Gilman Laboratories, Dartmouth College, Hanover, NH 03755-3576, USA
| | | |
Collapse
|
243
|
Locke JCW, Millar AJ, Turner MS. Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. J Theor Biol 2005; 234:383-93. [PMID: 15784272 DOI: 10.1016/j.jtbi.2004.11.038] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 10/08/2004] [Accepted: 11/23/2004] [Indexed: 12/23/2022]
Abstract
Circadian clocks in all organisms include feedback loops that generate rhythmic expression of key genes. We model the first such loop proposed for the clock of Arabidopsis thaliana, the experimental model species for circadian timing in higher plants. As for many biological systems, there are no experimental values for the parameters in our model, and the data available for parameter fitting is noisy and varied. To tackle this we constructed a cost function, which quantifies the agreement between our model and various key experimental features. We then undertook an efficient global search of parameter space, to test whether the proposed circuit can fit the experimental data. Using this approach we show that circadian clock models can function well with low cooperativity in transcriptional regulation, whereas high cooperativity has been a feature of previous (hand-fitted) clock models in other species. Our optimized solution for the Arabidopsis clock model fits several, but not all, of the key experimental features. We test the predicted effects of well-characterized mutations in the clock circuit and show the phases of the circadian cycle where additional components that are yet to be identified experimentally must be present to complete the circadian feedback loop.
Collapse
Affiliation(s)
- J C W Locke
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| | | | | |
Collapse
|
244
|
Welch SM, Dong Z, Roe JL, Das S. Flowering time control: gene network modelling and the link to quantitative genetics. ACTA ACUST UNITED AC 2005. [DOI: 10.1071/ar05155] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Flowering is a key stage in plant development that initiates grain production and is vulnerable to stress. The genes controlling flowering time in the model plant Arabidopsis thaliana are reviewed. Interactions between these genes have been described previously by qualitative network diagrams. We mathematically relate environmentally dependent transcription, RNA processing, translation, and protein–protein interaction rates to resultant phenotypes. We have developed models (reported elsewhere) based on these concepts that simulate flowering times for novel A. thaliana genotype–environment combinations. Here we draw 12 contrasts between genetic network (GN) models of this type and quantitative genetics (QG), showing that both have equal contributions to make to an ideal theory. Physiological dominance and additivity are examined as emergent properties in the context of feed-forwards networks, an instance of which is the signal-integration portion of the A. thaliana flowering time network. Additivity is seen to be a complex, multi-gene property with contributions from mass balance in transcript production, the feed-forwards structure itself, and downstream promoter reaction thermodynamics. Higher level emergent properties are exemplified by critical short daylength (CSDL), which we relate to gene expression dynamics in rice (Oryza sativa). Next to be discussed are synergies between QG and GN relating to the quantitative trait locus (QTL) mapping of model coefficients. This suggests a new verification test useful in GN model development and in identifying needed updates to existing crop models. Finally, the utility of simple models is evinced by 80 years of QG theory and mathematical ecology.
Collapse
|
245
|
Mizuno T. Plant response regulators implicated in signal transduction and circadian rhythm. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:499-505. [PMID: 15337091 DOI: 10.1016/j.pbi.2004.07.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The so-called 'response regulators' were originally discovered as common components of the widespread histidine (His)-->aspartate (Asp) phosphorelay signal transduction system in prokaryotes. Through the course of evolution, higher plants have also come to employ such prokaryotic response regulators (RRs) for their own signal transduction, such as the elicitation of plant hormone (e.g. cytokinin) responses. Furthermore, plants have evolved their own atypical variants of response regulators, pseudo response regulators (PRRs), which are used to modulate sophisticated biological processes, including circadian rhythms and other light-signal responses. Recent studies using the model plant Arabidopsis thaliana have begun to shed light on the interesting functions of these plant response regulators.
Collapse
Affiliation(s)
- Takeshi Mizuno
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
246
|
Han L, Mason M, Risseeuw EP, Crosby WL, Somers DE. Formation of an SCF(ZTL) complex is required for proper regulation of circadian timing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:291-301. [PMID: 15447654 DOI: 10.1111/j.1365-313x.2004.02207.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The circadian timing system involves an autoregulatory transcription/translation feedback loop that incorporates a diverse array of factors to maintain a 24-h periodicity. In Arabidopsis a novel F-box protein, ZEITLUPE (ZTL), plays an important role in the control of the free-running period of the circadian clock. As a class, F-box proteins are well-established components of the Skp/Cullin/F-box (SCF) class of E3 ubiquitin ligases that link the target substrates to the core ubiquitinating activity of the ligase complex via direct association with the Skp protein. Here we identify and characterize the SCFZTL complex in detail. Yeast two-hybrid tests demonstrate the sufficiency and necessity of the F-box domain for Arabidopsis Skp-like protein (ASK) interactions and the dispensability of the unique N-terminal LOV domain in this association. Co-immunoprecipitation of full-length (FL) ZTL with the three known core components of SCF complexes (ASK1, AtCUL1 and AtRBX1) demonstrates that ZTL can assemble into an SCF complex in vivo. F-box-containing truncated versions of ZTL (LOV-F and F-kelch) can complex with SCF components in vivo, whereas stably expressed LOV or kelch domains alone cannot. Stable expression of F-box-mutated FL ZTL eliminates the shortened period caused by mild ZTL overexpression and also abolishes ASK1 interaction in vivo. Reduced levels of the core SCF component AtRBX1 phenocopy the long period phenotype of ztl loss-of-function mutations, demonstrating the functional significance of the SCFZTL complex. Taken together, our data establish SCFZTL as an essential SCF class E3 ligase controlling circadian period in plants.
Collapse
Affiliation(s)
- Linqu Han
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
247
|
Liu J, Blaylock LA, Harrison MJ. cDNA arrays as a tool to identify mycorrhiza-regulated genes: identification of mycorrhiza-induced genes that encode or generate signaling molecules implicated in the control of root growth. ACTA ACUST UNITED AC 2004. [DOI: 10.1139/b04-048] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arbuscular mycorrhizas (AM) are symbiotic associations formed by fungi from the Glomeromycota and most angiosperms. Despite the widespread occurrence of the association, its ecological significance, and its potential importance in agriculture, relatively little is known at the molecular level about the development, functioning, and regulation of the symbiosis. We have selected Medicago truncatula Gaertn. 'Jemalong' and an AM fungus, Glomus versiforme (Karsten) Berch, for molecular genetic analyses of the AM symbiosis. Here we used macroarrays as a screening tool to enable the rapid identification of genes that show differential expression in mycorrhizal roots. Forty-three genes showing increased transcript levels and 18 genes showing decreased transcripts in mycorrhizal roots were identified. This set contained several genes predicted to encode regulatory proteins including an alpha-fucosidase implicated in the generation of signaling molecules that modulate plant growth and a gene encoding a putative peptide also implicated in the control of plant growth.Key words: legume, symbiosis, arbuscular mycorrhizal fungi.
Collapse
|
248
|
Fujimori T, Yamashino T, Kato T, Mizuno T. Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2004; 45:1078-86. [PMID: 15356333 DOI: 10.1093/pcp/pch124] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PHYTOCHROME-INTERACTING FACTOR-LIKE 6 (PIL6) is a member of the large family of basic/helix-loop-helix (bHLH) factors in Arabidopsis thaliana. This circadian-controlled transcription factor was previously suggested to interact with the clock component, TIMING OF CAB EXPRESSION 1 (TOC1). In this study, we isolated a loss-of-function mutant of PIL6, together with a transgenic line aberrantly expressing PIL6 in a manner independent of circadian rhythm. These mutant plants were simultaneously examined with special reference to circadian rhythm and light-signal transduction. The results suggested that PIL6 appears to be not directly involved in the clock function per se. However, the loss-of-function mutant (pil6-1) showed a remarkable phenotype in that it is hypersensitive to red light in seedling de-etiolation. This phenotype was similar to that observed for transgenic lines overexpressing TOC1 (or APRR1). Conversely, transgenic plants overexpressing PIL6 (PIL6-ox) are hyposensitive to red light under the same conditions. This phenotype was very similar to that observed for phyB mutants. The developmental morphologies of PIL6-ox, including the phenotype of early flowering, were also similar to those of phyB mutants. We propose that PIL6 acts as a negative regulator for a red light-mediated morphogenic response (e.g., elongation of hypocotyls in de-etiolation). Taken together, PIL6 might function at an interface between the circadian clock and red light-signal transduction pathways.
Collapse
Affiliation(s)
- Toru Fujimori
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | |
Collapse
|
249
|
Mason MG, Li J, Mathews DE, Kieber JJ, Schaller GE. Type-B response regulators display overlapping expression patterns in Arabidopsis. PLANT PHYSIOLOGY 2004; 135:927-37. [PMID: 15173562 PMCID: PMC514127 DOI: 10.1104/pp.103.038109] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 01/29/2004] [Accepted: 03/03/2004] [Indexed: 05/18/2023]
Abstract
Two-component signaling systems, involving His kinases, His-containing phosphotransfer proteins, and response regulators, have been implicated in plant responses to hormones and environmental factors. Genomic analysis of Arabidopsis supports the existence of 22 response regulators (ARRs) that can be divided into at least two distinct groups designated type-A and type-B. Phylogenetic analysis indicates that the type-B family is composed of one major and two minor subfamilies. The expression of the type-B ARRs was examined by using both reverse transcription-PCR and beta-glucuronidase fusion constructs. The major subfamily of type-B ARRs showed particularly high expression in regions where cytokinins play a significant role, including cells in the apical meristem region and in young leaves that would be undergoing cell division. Multiple members within this same subfamily of type-B ARRs were expressed near the root tip with highest expression in the root elongation zone. beta-Glucuronidase-fusions to full-length ARR2, ARR12, and ARR19 were nuclear localized, consistent with a role in transcriptional regulation. These data suggest that differing expression levels of the type-B ARRs may play a role in modulating the cellular responses to cytokinin.
Collapse
Affiliation(s)
- Michael G Mason
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
250
|
Murakami M, Yamashino T, Mizuno T. Characterization of Circadian-Associated APRR3 Pseudo-Response Regulator Belonging to the APRR1/TOC1 Quintet in Arabidopsis thaliana. ACTA ACUST UNITED AC 2004; 45:645-50. [PMID: 15169947 DOI: 10.1093/pcp/pch065] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In higher plants, there are wide ranges of biological processes that are controlled through the circadian clock. In this connection, we have been characterizing a small family of proteins, designated as ARABIDOPSIS PSEUDO-RESPONSE REGULATORS (APRR1, APRR3, APRR5, APRR7, and APRR9), among which APRR1 is identical to TOC1 (TIMING OF CAB EXPRESSION1) that is believed to be a component of the central oscillator. Through previous genetic studies, several lines of evidence have already been provided to support the view that, not only APRR1/TOC1, but also other APRR1/TOC1 quintet members are important for a better understanding of the molecular links between circadian rhythm, control of flowering time, and also photomorphogenesis. However, the least characterized one was APRR3 in that no genetic study has been conducted to see if APRR3 also plays an important role in the circadian-associated biological events. Here we show that APRR3-overexpressing transgenic plants (APRR3-ox) exhibited: (i). a phenotype of longer period (and/or delayed phase) of rhythms of certain circadian-controlled genes under continuous white light, (ii). a phenotype of late flowering under long-day photoperiod conditions, (iii). a phenotype of hypo-sensitiveness to red light during early photomorphogenesis of de-etiolated seedlings, supporting the current idea as to the APRR1/TOC1 quintet described above.
Collapse
Affiliation(s)
- Masaya Murakami
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | |
Collapse
|