201
|
Jiang R, Jiao Y, Zhang P, Liu Y, Wang X, Huang Y, Zhang Z, Xu F. Twin Derivatization Strategy for High-Coverage Quantification of Free Fatty Acids by Liquid Chromatography–Tandem Mass Spectrometry. Anal Chem 2017; 89:12223-12230. [DOI: 10.1021/acs.analchem.7b03020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruiqi Jiang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Jiao
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Zhang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yong Liu
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xu Wang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yin Huang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zunjian Zhang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Fengguo Xu
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
202
|
Greater expression of postprandial inflammatory genes in humans after intervention with saturated when compared to unsaturated fatty acids. Eur J Nutr 2017; 57:2887-2895. [PMID: 29098425 DOI: 10.1007/s00394-017-1559-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 10/07/2017] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Inflammation plays a key role in the development of insulin resistance and atherosclerosis. Fatty acids and fiber intake can selectively alter gene expression by modifying inflammation. PURPOSE We compared the postprandial expression of inflammatory genes after 2 distinct high-fat breakfast meals, before and after 1-month dietary interventions. METHODS This crossover clinical trial included 18 individuals at low-to-moderate cardiometabolic risk participating in evaluations before and after two 4-week breakfast interventions-one rich in saturated fatty acids (SFA) and the other in unsaturated fatty acids (unSFA) and fiber. Participants underwent meal tests with similar compositions to the breakfasts. Variables were compared by Student t test. The expression of inflammatory genes in leukocytes was analyzed using RT-PCR. RESULTS Before and after the intervention with the SFA-enriched breakfast, this meal test induced a higher relative postprandial IL-1β expression compared to the responses to the unSFA and fiber-enriched meal (p = 0.02). On the other hand, following the intervention with the unSFA-fiber-enriched breakfast, postprandial IL-6 expression showed a reduction tendency comparing to the pre-intervention value (p = 0.08). Although fasting IL-1β, IL-6, MCP-1 and IFN-γ expressions had not changed after interventions, their circulating levels increased after the SFA-enriched meal test but not after the unSFA meal (p value between changes < 0.05). CONCLUSIONS Our findings indicated that a single SFA-enriched meal is able to acutely induce the IL-1β expression and regularly consumed could trigger systemic inflammation, while increased unSFA consumption could attenuate the inflammatory status. Further investigations are needed to deepen understanding how dietary fatty acids and fiber influence cardiometabolic risk profile by modulating inflammatory gene expression and circulating biomarkers. CLINICAL TRIAL INFORMATION This study is registered at the Brazilian Registry of Clinical Trials (ReBEC ID: RBR-98x6b5). Available at: http://www.ensaiosclinicos.gov.br .
Collapse
|
203
|
Gadotti TN, Norde MM, Rogero MM, Fisberg M, Fisberg RM, Oki E, Martini LA. Dairy consumption and inflammatory profile: A cross-sectional population-based study, São Paulo, Brazil. Nutrition 2017; 48:1-5. [PMID: 29469009 DOI: 10.1016/j.nut.2017.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/21/2017] [Accepted: 10/01/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the association between dairy product consumption and plasma inflammatory biomarkers levels among a representative sample of Brazilian adults from São Paulo City. METHODS Data were acquired from the Health Survey for São Paulo, a cross-sectional population-based study. All individuals 20 to 59 y of age with complete food consumption information (24-h dietary recall and food frequency questionnaire) and blood sample analysis were included (N = 259). The sample was separated into two groups according to systemic inflammatory pattern considering plasma levels of C-reactive protein; tumor necrosis factor-α; soluble intracellular adhesion molecule; soluble vascular cell adhesion molecule, monocyte chemoattractant protein; interleukin-1β, -6, -8, -10, and -12; adiponectin; leptin; and homocysteine. Multiple logistic regression tests were conducted to estimate the odds ratio for the inflammatory cluster across tertiles of dairy consumption. RESULTS When adjusted by age, smoking status, and energy intake the odds ratio for the inflammatory cluster group in the highest tertile of yogurt consumption was 0.34 (95% confidence interval [CI], 0.14-0.81) relative to the reference tertile, demonstrating also a linear effect (Ptrend = 0.015). Cheese consumption exhibited an odds ratio of 2.49 (95% CI, 1.09-5.75) relative to the reference. CONCLUSIONS Increasing yogurt consumption might have a protective effect on inflammation, whereas cheese consumption appears to be associated with a proinflammatory status. The results of the present study aggregate a new perspective on existing evidence demonstrating the importance of assessing the contribution of dairy products on diet and their effect on the development of non-communicable diseases and associated risk factors.
Collapse
Affiliation(s)
| | | | | | - Mauro Fisberg
- Pediatrics Department, Paulista Medicine School, Federal University of São Paulo, Brazil
| | | | - Erica Oki
- Nutrition Department, Public Health School, University of São Paulo, Brazil
| | | |
Collapse
|
204
|
Kanjan P, Sahasrabudhe NM, de Haan BJ, de Vos P. Immune effects of β-glucan are determined by combined effects on Dectin-1, TLR2, 4 and 5. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
205
|
Tanaka S, Yamamoto K, Hamajima C, Takahashi F, Yamada K, Furuya K, Uyeno Y. Changes in Gut Microbial Ecology and Immunological Responses of Mice Fed the Insoluble Fraction of Brassica rapa L. that was Fermented or Not. Microbes Environ 2017; 32:268-274. [PMID: 28904265 PMCID: PMC5606697 DOI: 10.1264/jsme2.me17059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We aimed to investigate the effects of feeding fermented Brassica rapa L. on ecological and immunological changes in the mouse gut using in vitro cultivation tests and in vivo experiments in normal mice. In the preliminary in vitro study, two B. rapa L. products from different fermentation periods (one d [SF] or six months [LF]) were evaluated along with non-fermented vegetables (NF). Among the components of each product, the insoluble fraction resulted in the most prominent change such as a relative increase in butyrate production during a cultivation inoculated with mouse cecum contents. Based on this result, the boiled water-insoluble fractions of B. rapa L. (SF, LF, and NF samples) were selected as test materials for the subsequent in vivo experiment. Male C57BL/6J mice were divided into four groups and fed either a control diet (CON) or control diet plus one of the insoluble fractions for two weeks. The NF and LF groups had higher relative populations of Faecalibacterium prausnitzii than the CON group. Therefore, colonic butyrate concentrations were higher in the NF and LF groups than in the CON group. The oral administration of B. rapa L. extract induced immune regulatory effects, even when mice were fed NF and SF, but not LF, as assessed by an increase in regulatory T cell numbers. Our results indicate that feeding a purified insoluble fraction from B. rapa L. affects enteric short-chain fatty acid production and immunological responses in the mouse gut in a similar manner, regardless of the fermentation status.
Collapse
Affiliation(s)
- Sachi Tanaka
- Academic Assembly (Institute of Agriculture), Shinshu University.,Graduate School of Science and Technology, Shinshu University.,Supramolecular Complexes Unit, Research Center for Fungal and Microbial Dynamism, Shinshu University
| | - Kana Yamamoto
- Graduate School of Science and Technology, Shinshu University
| | | | - Fuka Takahashi
- Graduate School of Science and Technology, Shinshu University
| | - Kazuki Yamada
- Graduate School of Science and Technology, Shinshu University
| | - Kanon Furuya
- Graduate School of Science and Technology, Shinshu University
| | - Yutaka Uyeno
- Academic Assembly (Institute of Agriculture), Shinshu University.,Graduate School of Science and Technology, Shinshu University
| |
Collapse
|
206
|
Is cytotoxicity a determinant of the different in vitro and in vivo effects of bioactives? Altern Ther Health Med 2017; 17:453. [PMID: 28882181 PMCID: PMC5590171 DOI: 10.1186/s12906-017-1962-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Foodstuffs of both plant and animal origin contain a wide range of bioactive compounds. Although human intervention studies are mandatory to assess the health effects of bioactives, the in vitro approach is often used to select the most promising molecules to be studied in vivo. To avoid misleading results, concentration and chemical form, exposure time, and potential cytotoxicity of the tested bioactives should be carefully set prior to any other experiments. METHODS In this study the possible cytotoxicity of different bioactives (docosahexaenoic acid, propionate, cyanidin-3-O-glucoside, protocatechuic acid), was investigated in HepG2 cells using different methods. Bioactives were supplemented to cells at different concentrations within the physiological range in human blood, alone or in combination, considering two different exposure times. RESULTS Reported data clearly evidence that in vitro cytotoxicity is tightly related to the exposure time, and it varies among bioactives, which could exert a cytotoxic effect even at a concentration within the in vivo physiological blood concentration range. Furthermore, co-supplementation of different bioactives can increase the cytotoxic effect. CONCLUSIONS Our results underline the importance of in vitro cytotoxicity screening that should be considered mandatory before performing studies aimed to evaluate the effect of bioactives on other cellular parameters. Although this study is far from the demonstration of a toxic effect of the tested bioactives when administered to humans, it represents a starting point for future research aimed at verifying the existence of a potential hazard due to the wide use of high doses of multiple bioactives.
Collapse
|
207
|
Laranja JLQ, Amar EC, Ludevese-Pascual GL, Niu Y, Geaga MJ, De Schryver P, Bossier P. A probiotic Bacillus strain containing amorphous poly-beta-hydroxybutyrate (PHB) stimulates the innate immune response of Penaeus monodon postlarvae. FISH & SHELLFISH IMMUNOLOGY 2017; 68:202-210. [PMID: 28709724 DOI: 10.1016/j.fsi.2017.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/15/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
In this study, the PHB-accumulating Bacillus sp. JL47 strain (capable of accumulating 55% PHB on cell dry weight) was investigated for its effects on the immune response of giant tiger shrimp (Penaeus monodon) postlarvae (PL) before and after the Vibrio campbellii challenge. Briefly, shrimp PL were cultured and fed with Artemia nauplii enriched with Bacillus sp. JL47. Shrimp receiving the Artemia nauplii without JL47 enrichment were used as control. After 15 days of feeding, the shrimp were challenged with pathogenic V. campbellii LMG 21363 at 106 cells mL-1 by immersion. Relative expression of the immune related genes encoding for prophenoloxidase (proPO), transglutaminase (TGase) and heat shock protein 70 (Hsp70) in the shrimp were measured before (0 h) and after (3, 6, 9, 12, 24 h) the Vibrio challenge by quantitative real-time PCR using β-actin as the reference gene. The expressions of TGase and proPO were significantly up-regulated (p < 0.05) within 9 h and 12 h, respectively after challenge in shrimp receiving the Bacillus sp. JL47 as compared to the challenged and non-challenged controls. Hsp70 expression was significantly increased (p < 0.05) at 3 h post-challenge in all challenged shrimp. Interestingly, proPO and TGase genes were significantly up-regulated (p < 0.05) in Bacillus sp. JL47 treated shrimp even before the Vibrio challenge was applied. No up-regulation in the Hsp70 gene, however, was observed under these conditions. The data suggest that the protective effect of the PHB-accumulating Bacillus sp. JL47 in shrimp was due to its capacity to stimulate the innate immune related genes of the shrimp, specifically the proPO and TGase genes. The application of probiotic Bacillus species, capable of accumulating a significant amount of PHB, is suggested as potential immunostimulatory strategy for aquaculture.
Collapse
Affiliation(s)
- Joseph Leopoldo Q Laranja
- Aquaculture Department, Southeast Asian Fisheries Development Center, 5021 Tigbauan, Iloilo, Philippines; Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| | - Edgar C Amar
- Aquaculture Department, Southeast Asian Fisheries Development Center, 5021 Tigbauan, Iloilo, Philippines
| | - Gladys L Ludevese-Pascual
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Yufeng Niu
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Mary Joy Geaga
- Aquaculture Department, Southeast Asian Fisheries Development Center, 5021 Tigbauan, Iloilo, Philippines
| | - Peter De Schryver
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| |
Collapse
|
208
|
Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4 + T Cells. J Virol 2017; 91:JVI.01943-16. [PMID: 28539453 DOI: 10.1128/jvi.01943-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
In this study, we investigated the effect of acetate, the most concentrated short-chain fatty acid (SCFA) in the gut and bloodstream, on the susceptibility of primary human CD4+ T cells to HIV-1 infection. We report that HIV-1 replication is increased in CD3/CD28-costimulated CD4+ T cells upon acetate treatment. This enhancing effect correlates with increased expression of the early activation marker CD69 and impaired class I/II histone deacetylase (HDAC) activity. In addition, acetate enhances acetylation of histones H3 and H4 and augments HIV-1 integration into the genome of CD4+ T cells. Thus, we propose that upon antigen presentation, acetate influences class I/II HDAC activity that transforms condensed chromatin into a more relaxed structure. This event leads to a higher level of viral integration and enhanced HIV-1 production. In line with previous studies showing reactivation of latent HIV-1 by SCFAs, we provide evidence that acetate can also increase the susceptibility of primary human CD4+ T cells to productive HIV-1 infection.IMPORTANCE Alterations in the fecal microbiota and intestinal epithelial damage involved in the gastrointestinal disorder associated with HIV-1 infection result in microbial translocation that leads to disease progression and virus-related comorbidities. Indeed, notably via production of short-chain fatty acids, bacteria migrating from the lumen to the intestinal mucosa could influence HIV-1 replication by epigenetic regulatory mechanisms, such as histone acetylation. We demonstrate that acetate enhances virus production in primary human CD4+ T cells. Moreover, we report that acetate impairs class I/II histone deacetylase activity and increases integration of HIV-1 DNA into the host genome. Therefore, it can be postulated that bacterial metabolites such as acetate modulate HIV-1-mediated disease progression.
Collapse
|
209
|
Vogt LM, Elderman ME, Borghuis T, de Haan BJ, Faas MM, de Vos P. Chain length-dependent effects of inulin-type fructan dietary fiber on human systemic immune responses against hepatitis-B. Mol Nutr Food Res 2017; 61. [PMID: 28586162 DOI: 10.1002/mnfr.201700171] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/18/2017] [Accepted: 05/29/2017] [Indexed: 02/06/2023]
Abstract
SCOPE In vivo studies demonstrating that only specific dietary-fibers contribute to immunity are still inconclusive, as measuring immune effects in healthy humans remains difficult. We applied a relatively inefficacious vaccination-challenge to study chain length-dependent effects of inulin-type fructan (ITF) dietary fibers on human immunity. METHODS AND RESULTS ITFs with two different 'degree of polymerization-' (DP)-profiles were tested in vitro for effects on PBMC-cytokines and TLR2 activation. In a double-blind placebo-controlled trial, 40 healthy volunteers (18-29 years) were divided into three groups and supplemented from day 1 to day 14 with DP10-60 ITF, DP2-25 ITF (both n = 13), or fructose placebo (n = 14), 8 g/day. On day 7, all volunteers were vaccinated against hepatitis B. Anti-HbsAg-titer development and lymphocyte subsets were studied. In vitro, DP10-60 ITFs stimulated a Th1-like cytokine profile and stimulated TLR2 more strongly than DP2-25 ITFs. In vivo, DP10-60 increased anti-HBsAg titers, Th1-cells, and transitional B-cells. Both ITFs increased CD45ROhi CTLs at day 35, and CD161+ cytokine producing NK-cells at day 21 and 35. CONCLUSION Support of immunity is determined by the chain length of ITFs. Only long-chain ITFs support immunity against pathogenic hepB-epitopes introduced by vaccination. Our findings demonstrate that specific dietary fibers need to be selected for immunity support.
Collapse
Affiliation(s)
- Leonie M Vogt
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marlies E Elderman
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Theo Borghuis
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
210
|
Vientós-Plotts AI, Ericsson AC, Rindt H, Reinero CR. Oral Probiotics Alter Healthy Feline Respiratory Microbiota. Front Microbiol 2017; 8:1287. [PMID: 28744273 PMCID: PMC5504723 DOI: 10.3389/fmicb.2017.01287] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 12/14/2022] Open
Abstract
Probiotics have been advocated as a novel therapeutic approach to respiratory disease, but knowledge of how oral administration of probiotics influences the respiratory microbiota is needed. Using 16S rRNA amplicon sequencing of bacterial DNA our objective was to determine whether oral probiotics changed the composition of the upper and lower airway, rectal, and blood microbiota. We hypothesized that oral probiotics would modulate the respiratory microbiota in healthy cats, demonstrated by the detection and/or increased relative abundance of the probiotic bacterial species and altered composition of the microbial population in the respiratory tract. Six healthy young research cats had oropharyngeal (OP), bronchoalveolar lavage fluid (BALF), rectal, and blood samples collected at baseline and 4 weeks after receiving oral probiotics. 16S rRNA gene amplicon libraries were sequenced, and coverage, richness, and relative abundance of representative operational taxonomic units (OTUs) were determined. Hierarchical and principal component analyses (PCA) demonstrated relatedness of samples. Mean microbial richness significantly increased only in the upper and lower airways. The number of probiotic OTUs (out of 5 total) that significantly increased in relative abundance vs. baseline was 5 in OP, 3 in BAL and 2 in feces. Using hierarchical clustering, BALF and blood samples grouped together after probiotic administration, and PERMANOVA supported that these two sites underwent significant changes in microbial composition. PERMANOVA revealed that OP and rectal samples had microbial population compositions that did not significantly change. These findings were visualized via PCA, which revealed distinct microbiomes in each site; samples clustered more tightly at baseline and had more variation after probiotic administration. This is the first study describing the effect of oral probiotics on the respiratory microbiota via detection of probiotic species in the airways. Finding bacterial species present in the oral probiotics in the upper and lower airways provides pilot data suggesting that oral probiotics could serve as a tool to target dysbiosis occurring in inflammatory airway diseases such as feline asthma, a disease in which cats serve as an important comparative and translational model for humans.
Collapse
Affiliation(s)
- Aida I Vientós-Plotts
- College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Comparative Internal Medicine Laboratory, University of MissouriColumbia, MO, United States
| | - Aaron C Ericsson
- College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,University of Missouri Metagenomics Center, University of MissouriColumbia, MO, United States.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of MissouriColumbia, MO, United States
| | - Hansjorg Rindt
- College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Comparative Internal Medicine Laboratory, University of MissouriColumbia, MO, United States
| | - Carol R Reinero
- College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of MissouriColumbia, MO, United States.,Comparative Internal Medicine Laboratory, University of MissouriColumbia, MO, United States
| |
Collapse
|
211
|
Wen L, Duffy A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J Nutr 2017; 147:1468S-1475S. [PMID: 28615382 DOI: 10.3945/jn.116.240754] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022] Open
Abstract
The gut microbiota is a complex community of bacteria residing in the intestine. Animal models have demonstrated that several factors contribute to and can significantly alter the composition of the gut microbiota, including genetics; the mode of delivery at birth; the method of infant feeding; the use of medications, especially antibiotics; and the diet. There may exist a gut microbiota signature that promotes intestinal inflammation and subsequent systemic low-grade inflammation, which in turn promotes the development of type 2 diabetes. There are preliminary studies that suggest that the consumption of probiotic bacteria such as those found in yogurt and other fermented milk products can beneficially alter the composition of the gut microbiome, which in turn changes the host metabolism. Obesity, insulin resistance, fatty liver disease, and low-grade peripheral inflammation are more prevalent in patients with low α diversity in the gut microbiome than they are in patients with high α diversity. Fermented milk products, such as yogurt, deliver a large number of lactic acid bacteria to the gastrointestinal tract. They may modify the intestinal environment, including inhibiting lipopolysaccharide production and increasing the tight junctions of gut epithelia cells.
Collapse
Affiliation(s)
- Li Wen
- Section of Endocrinology and
| | - Andrew Duffy
- Department of Surgery, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
212
|
Abstract
Obesity and metabolic syndrome is a multisystemic disorder, that is characterized by excess caloric intake and spillover lipotoxicity caused by ectopic lipid accumulation in non-adipose tissues. Low grade chronic inflammation and insulin resistance are the hallmarks of the disorder, which further aggravate the condition. Gut microbiota constitutes an indispensible part of human superorganism's energy harvesting apparatus. The dynamic composition of microbiota changes with age, life style and host metabolic background. The wealth of genetic repertoire provided by these microorganism enables to extend host's substrate processing and harvesting capability. Some of these compounds including short chain fatty acids and indole act as signalling molecules on mammalian cells and modulate their behaviour. Nonetheless, this symbiotic style of interaction is restrained by immune system. The role of chronic low grade inflammation in metabolic syndrome is well established. Treg cells are the key players that sense and reshape the composition of microbiota. In this regard, any disturbance in Treg functionality may aggravate the inflammation and shift the symbiotic balance towards dysbiosis, which is characterized by autoimmunity and insulin resistance. Thus, immune system is responsible for the modulation of host and microbiota metabolisms and Treg cells act as a bridge in between.
Collapse
|
213
|
Maeshige N, Koga Y, Tanaka M, Aoyama-Ishikawa M, Miyoshi M, Usami M, Fujino H. Low-Intensity Ultrasound Enhances Histone Acetylation and Inhibition of Interleukin 6 Messenger RNA Expression by the Histone Deacetylase Inhibitor Sodium Butyrate in Fibroblasts. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:879-885. [PMID: 28195362 DOI: 10.7863/ultra.16.04020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES Sodium butyrate, an inhibitor of histone deacetylase, has several therapeutic actions, including anti-inflammation. These actions depend on the concentration of sodium butyrate. In addition, lower concentrations have shown no effect on inflammation. Sonoporation by ultrasound can modify the permeability of the cell plasma membrane. Thus, the effects of sodium butyrate may be enhanced by the ultrasonic acoustics. Therefore, the facilitative effects of low-intensity ultrasound on histone acetylation and interleukin 6 (IL-6) regulation by sodium butyrate were investigated in this study. METHODS Human dermal fibroblasts were treated with 1-mM sodium butyrate for 3 hours with 20 minutes of 0.1-W/cm2 pulsed or continuous ultrasound irradiation at the beginning of the sodium butyrate treatments. RESULTS The combination of treatments with sodium butyrate and ultrasound significantly increased histone acetylation in fibroblasts (P < .05), whereas sodium butyrate could not increase histone acetylation. In addition, this combined treatment significantly suppressed the IL-6 messenger RNA expression level with lipopolysaccharide stimulation for 1 hour (P < .05). Meanwhile, the treatment with sodium butyrate alone could not suppress IL-6 messenger RNA expression in fibroblasts. These effects were achieved with both 20% pulsed and continuous ultrasound but not observed with ultrasound treatment alone. CONCLUSIONS These results suggest that low-intensity ultrasound treatment promotes the physiologic actions of sodium butyrate as a histone deacetylase inhibitor.
Collapse
Affiliation(s)
- Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuka Koga
- Division of Nutrition and Metabolism , Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Michiko Aoyama-Ishikawa
- Division of Nutrition and Metabolism , Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Makoto Miyoshi
- Division of Nutrition and Metabolism , Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Makoto Usami
- Division of Nutrition and Metabolism , Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
214
|
Yarygin K, Tyakht A, Larin A, Kostryukova E, Kolchenko S, Bitner V, Alexeev D. Abundance profiling of specific gene groups using precomputed gut metagenomes yields novel biological hypotheses. PLoS One 2017; 12:e0176154. [PMID: 28448616 PMCID: PMC5407692 DOI: 10.1371/journal.pone.0176154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
The gut microbiota is essentially a multifunctional bioreactor within a human being. The exploration of its enormous metabolic potential provides insights into the mechanisms underlying microbial ecology and interactions with the host. The data obtained using “shotgun” metagenomics capture information about the whole spectrum of microbial functions. However, each new study presenting new sequencing data tends to extract only a little of the information concerning the metabolic potential and often omits specific functions. A meta-analysis of the available data with an emphasis on biomedically relevant gene groups can unveil new global trends in the gut microbiota. As a step toward the reuse of metagenomic data, we developed a method for the quantitative profiling of user-defined groups of genes in human gut metagenomes. This method is based on the quick analysis of a gene coverage matrix obtained by pre-mapping the metagenomic reads to a global gut microbial catalogue. The method was applied to profile the abundance of several gene groups related to antibiotic resistance, phages, biosynthesis clusters and carbohydrate degradation in 784 metagenomes from healthy populations worldwide and patients with inflammatory bowel diseases and obesity. We discovered country-wise functional specifics in gut resistome and virome compositions. The most distinct features of the disease microbiota were found for Crohn’s disease, followed by ulcerative colitis and obesity. Profiling of the genes belonging to crAssphage showed that its abundance varied across the world populations and was not associated with clinical status. We demonstrated temporal resilience of crAssphage and the influence of the sample preparation protocol on its detected abundance. Our approach offers a convenient method to add value to accumulated “shotgun” metagenomic data by helping researchers state and assess novel biological hypotheses.
Collapse
Affiliation(s)
- Konstantin Yarygin
- Federal Research and Clinical Centre of Physical-Chemical Medicine (FRCC CPM), Malaya Pirogovskaya 1a, Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region, 141700, Russia
- * E-mail:
| | - Alexander Tyakht
- Federal Research and Clinical Centre of Physical-Chemical Medicine (FRCC CPM), Malaya Pirogovskaya 1a, Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region, 141700, Russia
| | - Andrey Larin
- Federal Research and Clinical Centre of Physical-Chemical Medicine (FRCC CPM), Malaya Pirogovskaya 1a, Moscow 119435, Russia
| | - Elena Kostryukova
- Federal Research and Clinical Centre of Physical-Chemical Medicine (FRCC CPM), Malaya Pirogovskaya 1a, Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region, 141700, Russia
| | - Sergei Kolchenko
- Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region, 141700, Russia
- HPC HUB LLC, Prospect Mira 112, Bld.12, Moscow 129626, Russia
| | - Vilgelm Bitner
- Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region, 141700, Russia
- HPC HUB LLC, Prospect Mira 112, Bld.12, Moscow 129626, Russia
| | - Dmitry Alexeev
- Federal Research and Clinical Centre of Physical-Chemical Medicine (FRCC CPM), Malaya Pirogovskaya 1a, Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region, 141700, Russia
| |
Collapse
|
215
|
Joseph J, Depp C, Shih PAB, Cadenhead KS, Schmid-Schönbein G. Modified Mediterranean Diet for Enrichment of Short Chain Fatty Acids: Potential Adjunctive Therapeutic to Target Immune and Metabolic Dysfunction in Schizophrenia? Front Neurosci 2017; 11:155. [PMID: 28396623 PMCID: PMC5366345 DOI: 10.3389/fnins.2017.00155] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
Growing interest in gut and digestive processes and their potential link to brain and peripheral based inflammation or biobehavioral phenotypes has led to an increasing number of basic and translational scientific reports focused on the role of gut microbiota within the context of neuropsychiatric disorders. However, the effect of dietary modification on specific gut metabolites, in association with immune, metabolic, and psychopathological functioning in schizophrenia spectrum disorders has not been well characterized. The short chain fatty acids (SCFA) acetate, butyrate, and propionate, major metabolites derived from fermentation of dietary fibers by gut microbes, interact with multiple immune and metabolic pathways. The specific pathways that SCFA are thought to target, are dysregulated in cardiovascular disease, type II diabetes, and systemic inflammation. Most notably, these disorders are consistently linked to an attenuated lifespan in schizophrenia. Although, unhealthy dietary intake patterns and increased prevalence of immune and metabolic dysfunction has been observed in people with schizophrenia; dietary interventions have not been well utilized to target immune or metabolic illness. Prior schizophrenia patient trials primarily focused on the effects of gluten free diets. Findings from these studies indicate that a diet avoiding gluten benefits a limited subset of patients, individuals with celiac disease or non-celiac gluten sensitivity. Therefore, alternative dietary and nutritional modifications such as high-fiber, Mediterranean style, diets that enrich the production of SCFA, while being associated with a minimal likelihood of adverse events, may improve immune and cardiovascular outcomes linked to premature mortality in schizophrenia. With a growing literature demonstrating that SCFA can cross the blood brain barrier and target key inflammatory and metabolic pathways, this article highlights enriching dietary intake for SCFA as a potential adjunctive therapy for people with schizophrenia.
Collapse
Affiliation(s)
- Jamie Joseph
- Department of Psychiatry, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Colin Depp
- Department of Psychiatry, University of CaliforniaSan Diego, La Jolla, CA, USA
- Department of Psychology, VA San Diego Healthcare SystemSan Diego, CA, USA
| | - Pei-an B. Shih
- Department of Psychiatry, University of CaliforniaSan Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
216
|
Wei Z, Xiao C, Guo C, Zhang X, Wang Y, Wang J, Yang Z, Fu Y. Sodium acetate inhibits Staphylococcus aureus internalization into bovine mammary epithelial cells by inhibiting NF-κB activation. Microb Pathog 2017; 107:116-121. [PMID: 28351710 DOI: 10.1016/j.micpath.2017.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
Bovine mastitis is one of the most costly and prevalent disease affecting dairy cows worldwide. It was reported that Staphylococcus aureus could internalize into bovine mammary epithelial cells (bMEC) and induce mastitis. Some short chain fatty acids (SCFA) have shown to suppress S. aureus invasion into bMEC and regulate antimicrobial peptides expression. But it has not been evaluated that sodium acetate has the similar effect. The aim of this study was to investigate the effect of sodium acetate on the invasion of bovine mammary epithelial cells (bMEC) by S. aureus. Gentamicin protection assay showed that the invasion of S. aureus into bMEC was inhibited by sodium acetate in a dose-dependent manner. Sodium acetate (0.25-5 mM) did not affect S. aureus growth and bMEC viability. The TAP gene level was decreased, while the BNBD5 mRNA level was enhanced in sodium acetate treated bMEC. In sodium acetate treated and S. aureus challenged bMEC, the TAP gene expression was increased and BNBD5 gene expression was not modified at low concentrations, but decreased at high concentrations. The Nitric oxide (NO) production of bMEC after S. aureus stimulation was decreased by sodium acetate treatment. Furthermore, sodium acetate treatment suppressed S. aureus-induced NF-κB activation in bMEC in a dose manner. In conclusion, our results suggested that sodium acetate exerts an inhibitory property on S. aureus internalization and modulates antimicrobial peptides gene expression.
Collapse
Affiliation(s)
- Zhengkai Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Chong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Changming Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Xu Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Yanan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Jingjing Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Zhengtao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China; Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| |
Collapse
|
217
|
Valeur J, Røseth AG, Knudsen T, Malmstrøm GH, Fiennes JT, Midtvedt T, Berstad A. Fecal Fermentation in Irritable Bowel Syndrome: Influence of Dietary Restriction of Fermentable Oligosaccharides, Disaccharides, Monosaccharides and Polyols. Digestion 2017; 94:50-6. [PMID: 27487397 DOI: 10.1159/000448280] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/10/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Dietary restriction of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) may relieve symptoms in patients with irritable bowel syndrome (IBS). We investigated whether this diet alters microbial fermentation, a process that may be involved in IBS symptom generation. METHODS Patients with IBS were included consecutively to participate in a 4-week FODMAP restricted diet. IBS symptoms were evaluated by using the IBS severity scoring system (IBS-SSS). Short-chain fatty acids (SCFAs) were analyzed in fecal samples before and after the dietary intervention, both at baseline and after in vitro fermentation for 24 h. RESULTS Sixty-three patients completed the study. Following the dietary intervention, IBS-SSS scores improved significantly (p < 0.0001). Total SCFA levels were reduced in fecal samples analyzed both at baseline (p = 0.005) and after in vitro fermentation for 24 h (p = 0.013). Following diet, baseline levels of acetic (p = 0.003) and n-butyric acids (p = 0.009) decreased, whereas 24 h levels of i-butyric (p = 0.003) and i-valeric acids (p = 0.003) increased. Fecal SCFA levels and IBS symptom scores were not correlated. CONCLUSION Dietary FODMAP restriction markedly modulated fecal fermentation in patients with IBS. Saccharolytic fermentation decreased, while proteolytic fermentation increased, apparently independent of symptoms.
Collapse
Affiliation(s)
- Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
218
|
The distinct features of microbial 'dysbiosis' of Crohn's disease do not occur to the same extent in their unaffected, genetically-linked kindred. PLoS One 2017; 12:e0172605. [PMID: 28222161 PMCID: PMC5319678 DOI: 10.1371/journal.pone.0172605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 02/07/2017] [Indexed: 11/28/2022] Open
Abstract
Background/Aims Studying the gut microbiota in unaffected relatives of people with Crohn’s disease (CD) may advance our understanding of the role of bacteria in disease aetiology. Methods Faecal microbiota composition (16S rRNA gene sequencing), genetic functional capacity (shotgun metagenomics) and faecal short chain fatty acids (SCFA) were compared in unaffected adult relatives of CD children (CDR, n = 17) and adult healthy controls, unrelated to CD patients (HUC, n = 14). The microbiota characteristics of 19 CD children were used as a benchmark of CD ‘dysbiosis’. Results The CDR microbiota was less diverse (p = 0.044) than that of the HUC group. Local contribution of β-diversity analysis showed no difference in community structure between the CDR and HUC groups. Twenty one of 1,243 (1.8%) operational taxonomic units discriminated CDR from HUC. The metagenomic functional capacity (p = 0.207) and SCFA concentration or pattern were similar between CDR and HUC (p>0.05 for all SCFA). None of the KEGG metabolic pathways were different between these two groups. Both of these groups (HUC and CDR) had a higher microbiota α-diversity (CDR, p = 0.026 and HUC, p<0.001) with a community structure (β-diversity) distinct from that of children with CD. Conclusions While some alterations were observed, a distinct microbial ‘dysbiosis’, characteristic of CD patients, was not observed in their unaffected, genetically linked kindred.
Collapse
|
219
|
Fransen F, Sahasrabudhe NM, Elderman M, Bosveld M, El Aidy S, Hugenholtz F, Borghuis T, Kousemaker B, Winkel S, van der Gaast-de Jongh C, de Jonge MI, Boekschoten MV, Smidt H, Schols HA, de Vos P. β2→1-Fructans Modulate the Immune System In Vivo in a Microbiota-Dependent and -Independent Fashion. Front Immunol 2017; 8:154. [PMID: 28261212 PMCID: PMC5311052 DOI: 10.3389/fimmu.2017.00154] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022] Open
Abstract
It has been shown in vitro that only specific dietary fibers contribute to immunity, but studies in vivo are not conclusive. Here, we investigated degree of polymerization (DP) dependent effects of β2→1-fructans on immunity via microbiota-dependent and -independent effects. To this end, conventional or germ-free mice received short- or long-chain β2→1-fructan for 5 days. Immune cell populations in the spleen, mesenteric lymph nodes (MLNs), and Peyer’s patches (PPs) were analyzed with flow cytometry, genome-wide gene expression in the ileum was measured with microarray, and gut microbiota composition was analyzed with 16S rRNA sequencing of fecal samples. We found that β2→1-fructans modulated immunity by both microbiota and microbiota-independent effects. Moreover, effects were dependent on the chain-length of the β2→1-fructans type polymer. Both short- and long-chain β2→1-fructans enhanced T-helper 1 cells in PPs, whereas only short-chain β2→1-fructans increased regulatory T cells and CD11b−CD103− dendritic cells (DCs) in the MLN. A common feature after short- and long-chain β2→1-fructan treatment was enhanced 2-alpha-l-fucosyltransferase 2 expression and other IL-22-dependent genes in the ileum of conventional mice. These effects were not associated with shifts in gut microbiota composition, or altered production of short-chain fatty acids. Both short- and long-chain β2→1-fructans also induced immune effects in germ-free animals, demonstrating direct effect independent from the gut microbiota. Also, these effects were dependent on the chain-length of the β2→1-fructans. Short-chain β2→1-fructan induced lower CD80 expression by CD11b−CD103− DCs in PPs, whereas long-chain β2→1-fructan specifically modulated B cell responses in germ-free mice. In conclusion, support of immunity is determined by the chemical structure of β2→1-fructans and is partially microbiota independent.
Collapse
Affiliation(s)
- Floris Fransen
- Top Institute Food and Nutrition, Wageningen, Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Neha M Sahasrabudhe
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Marlies Elderman
- Top Institute Food and Nutrition, Wageningen, Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Margaret Bosveld
- Laboratory of Food Chemistry, Wageningen University , Wageningen , Netherlands
| | - Sahar El Aidy
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen , Groningen , Netherlands
| | - Floor Hugenholtz
- Top Institute Food and Nutrition, Wageningen, Netherlands; Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Theo Borghuis
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ben Kousemaker
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Simon Winkel
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | | | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center , Nijmegen , Netherlands
| | - Mark V Boekschoten
- Top Institute Food and Nutrition, Wageningen, Netherlands; Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Hauke Smidt
- Top Institute Food and Nutrition, Wageningen, Netherlands; Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Henk A Schols
- Top Institute Food and Nutrition, Wageningen, Netherlands; Laboratory of Food Chemistry, Wageningen University, Wageningen, Netherlands
| | - Paul de Vos
- Top Institute Food and Nutrition, Wageningen, Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
220
|
RNA-Based Stable Isotope Probing Suggests Allobaculum spp. as Particularly Active Glucose Assimilators in a Complex Murine Microbiota Cultured In Vitro. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1829685. [PMID: 28299315 PMCID: PMC5337319 DOI: 10.1155/2017/1829685] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
RNA-based stable isotope probing (RNA-SIP) and metabolic profiling were used to detect actively glucose-consuming bacteria in a complex microbial community obtained from a murine model system. A faeces-derived microbiota was incubated under anaerobic conditions for 0, 2, and 4 h with 40 mM [U13C]glucose. Isopycnic density gradient ultracentrifugation and fractionation of isolated RNA into labeled and unlabeled fractions followed by 16S rRNA sequencing showed a quick adaptation of the bacterial community in response to the added sugar, which was dominated by unclassified Lachnospiraceae species. Inspection of distinct fractions of isotope-labeled RNA revealed Allobaculum spp. as particularly active glucose utilizers in the system, as the corresponding RNA showed significantly higher proportions among the labeled RNA. With time, the labeled sugar was used by a wider spectrum of faecal bacteria. Metabolic profiling indicated rapid fermentation of [U13C]glucose, with lactate, acetate, and propionate being the principal 13C-labeled fermentation products, and suggested that "cross-feeding" occurred in the system. RNA-SIP combined with metabolic profiling of 13C-labeled products allowed insights into the microbial assimilation of a general model substrate, demonstrating the appropriateness of this technology to study assimilation processes of nutritionally more relevant substrates, for example, prebiotic carbohydrates, in the gut microbiota of mice as a model system.
Collapse
|
221
|
|
222
|
Ramadass B, Rani BS, Pugazhendhi S, John K, Ramakrishna BS. Faecal microbiota of healthy adults in south India: Comparison of a tribal & a rural population. Indian J Med Res 2017; 145:237-246. [PMID: 28639601 PMCID: PMC5501057 DOI: 10.4103/ijmr.ijmr_639_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND & OBJECTIVES The relevance of the gut microbiota to human health is increasingly appreciated. The objective of this study was to compare the gut microbiota of a group of adult tribals with that of healthy adult villagers in Tamil Nadu, India. METHODS Faeces were collected from 10 healthy tribal adults (TAs) in the Jawadhi hills and from 10 healthy villagers [rural adults (RAs)] in Vellore district, Tamil Nadu. DNA was extracted, and 456 bp segments comprising hypervariable regions 3 and 4 of the 16S rRNA gene were amplified, barcoded and 454 sequenced. RESULTS Totally 227,710 good-quality reads were analyzed. TAs consumed a millets-based diet, ate pork every day, and did not consume milk or milk products. RAs consumed a rice-based diet with meat intake once a week. In both groups, Firmicutes was the most abundant phylum, followed by Proteobacteria, Bacteroidetes and Actinobacteria. The median Firmicutes-to-Bacteroidetes ratio was 34.0 in TA and 92.9 in RA groups. Actinobacteria were significantly low in TA, possibly due to non-consumption of milk. Clostridium constituted the most abundant genus in both groups, but was significantly more abundant in TAs than RAs, while Streptococcus was significantly more abundant in RA (P<0.05). Analyses of genetic distance revealed that the microbiota were distinctly different between TA and RA, and principal component analysis using 550 distinct taxonomically identifiable sequences revealed a clear separation of microbiota composition in the two groups. Phylogenetic analysis of major microbiota indicated clustering of microbial groups at different major branch points for TAs and RAs. INTERPRETATION & CONCLUSIONS Phylum Firmicutes and genus Clostridium constituted the bulk of the faecal microbiota, while significant differences in composition between the groups were probably due to differences in diet and lifestyle.
Collapse
Affiliation(s)
- Balamurugan Ramadass
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - B. Sandya Rani
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | | | - K.R. John
- Department of Community Health, Christian Medical College, Vellore, Chennai, India
- Institute of Gastroenterology, SRM Institutes for Medical Science, Chennai, India
| | - Balakrishnan S. Ramakrishna
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India
- Institute of Gastroenterology, SRM Institutes for Medical Science, Chennai, India
| |
Collapse
|
223
|
Sun Y, He Y, Wang F, Zhang H, de Vos P, Sun J. Low-methoxyl lemon pectin attenuates inflammatory responses and improves intestinal barrier integrity in caerulein-induced experimental acute pancreatitis. Mol Nutr Food Res 2017; 61. [PMID: 27921358 DOI: 10.1002/mnfr.201600885] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 01/14/2023]
Abstract
SCOPE Acute pancreatitis (AP) is a common clinical acute abdominal disease. The intestinal injury associated with AP will aggravate the condition retroactively. This study investigates whether the low-methoxyl pectin (LMP) isolated from lemon could attenuate AP and associated intestinal injury. METHODS AND RESULTS Experimental AP was induced in BALB/c mice by caerulien (CAE) hyperstimulation. Nutritional prophylactic group was pre-fed with 5% LMP supplemented forage 3 days before AP induction. We found that LMP supplementation attenuated the severity of AP as evidenced by reduced serum amylase and lipase levels, pancreatic edema and myeloperoxidase activity. The protective effect was also confirmed by histological examination of pancreatic damage. LMP suppressed the production of pancreatic proinflammatory cytokines including TNF-α, IL-1β, and IL-6. Moreover, LMP supplementation restored AP-associated disruption of intestinal barrier integrity as evidenced by upregulation of tight junction modulatory proteins occludin, zonula occludens (ZO)-1, antimicrobial peptides β-defensin-1 (DEFB1) and CRAMP as well as increase in SCFAs production. LMP supplemented mice with AP exhibited suppressed intestinal inflammation as shown by decreased ileal and colon cytokine production compared with CAE group. CONCLUSION Our results support dietary LMP supplementation as an effective nutritional intervention for AP and associated intestinal injury.
Collapse
Affiliation(s)
- Yajun Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Paul de Vos
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,Jiangnan University School of Medicine, Wuxi, P. R. China
| |
Collapse
|
224
|
Supplementing the maternal diet of rats with butyrate enhances mitochondrial biogenesis in the skeletal muscles of weaned offspring. Br J Nutr 2017; 117:12-20. [DOI: 10.1017/s0007114516004402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractThe present study aimed to investigate the effects of maternal dietary butyrate supplementation on energy metabolism and mitochondrial biogenesis in offspring skeletal muscle and the possible mediating mechanisms. Virgin female rats were randomly assigned to either control or butyrate diets (1 % butyrate sodium) throughout gestation and lactation. At the end of lactation (21 d), the offspring were killed by exsanguination from the abdominal aorta under anaesthesia. The results showed that maternal butyrate supplementation throughout gestation and lactation did not affect offspring body weight. However, the protein expressions of G-protein-coupled receptors (GPR) 43 and 41 were significantly enhanced in offspring skeletal muscle of the maternal butyrate-supplemented group. The ATP content, most of mitochondrial DNA-encoded gene expressions, the cytochrome c oxidase subunit 1 and 4 protein contents and the mitochondrial DNA copy number were significantly higher in the butyrate group than in the control group. Meanwhile, the protein expressions of type 1 myosin heavy chain, mitochondrial transcription factor A, PPAR-coactivator-1α (PGC-1α) and uncoupling protein 3 were significantly increased in the gastrocnemius muscle of the treatment group compared with the control group. These results indicate for the first time that maternal butyrate supplementation during the gestation and lactation periods influenced energy metabolism and mitochondrial biogenesis through the GPR and PGC-1α pathways in offspring skeletal muscle at weaning.
Collapse
|
225
|
Dahl WJ, Agro NC, Eliasson ÅM, Mialki KL, Olivera JD, Rusch CT, Young CN. Health Benefits of Fiber Fermentation. J Am Coll Nutr 2017; 36:127-136. [PMID: 28067588 DOI: 10.1080/07315724.2016.1188737] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although fiber is well recognized for its effect on laxation, increasing evidence supports the role of fiber in the prevention and treatment of chronic disease. The aim of this review is to provide an overview of the health benefits of fiber and its fermentation, and describe how the products of fermentation may influence disease risk and treatment. Higher fiber intakes are associated with decreased risk of cardiovascular disease, type 2 diabetes, and some forms of cancer. Fiber may also have a role in lowering blood pressure and in preventing obesity by limiting weight gain. Fiber is effective in managing blood glucose in type 2 diabetes, useful for weight loss, and may provide therapeutic adjunctive roles in kidney and liver disease. In addition, higher fiber diets are not contraindicated in inflammatory bowel disease or irritable bowel syndrome and may provide some benefit. Common to the associations with disease reduction is fermentation of fiber and its potential to modulate microbiota and its activities and inflammation, specifically the production of anti-inflammatory short chain fatty acids, primarily from saccharolytic fermentation, versus the deleterious products of proteolytic activity. Because fiber intake is inversely associated with all-cause mortality, mechanisms by which fiber may reduce chronic disease risk and provide therapeutic benefit to those with chronic disease need further elucidation and large, randomized controlled trials are needed to confirm causality.Teaching Points• Strong evidence supports the association between higher fiber diets and reduced risk of cardiovascular disease, type 2 diabetes, and some forms of cancer.• Higher fiber intakes are associated with lower body weight and body mass index, and some types of fiber may facilitate weight loss.• Fiber is recommended as an adjunctive medical nutritional therapy for type 2 diabetes, chronic kidney disease, and certain liver diseases.• Fermentation and the resulting shifts in microbiota composition and its activity may be a common means by which fiber impacts disease risk and management.
Collapse
Affiliation(s)
- Wendy J Dahl
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Nicole C Agro
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Åsa M Eliasson
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Kaley L Mialki
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Joseph D Olivera
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Carley T Rusch
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Carly N Young
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| |
Collapse
|
226
|
Umu ÖCO, Rudi K, Diep DB. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2017; 28:1348886. [PMID: 28959178 PMCID: PMC5614387 DOI: 10.1080/16512235.2017.1348886] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/24/2017] [Indexed: 12/21/2022]
Abstract
The gut microbiota is considered an organ that co-develops with the host throughout its life. The composition and metabolic activities of the gut microbiota are subject to a complex interplay between the host genetics and environmental factors, such as lifestyle, diet, stress and antimicrobials. It is evident that certain prebiotics, and antimicrobials produced by lactic acid bacteria (LAB), can shape the composition of the gut microbiota and its metabolic activities to promote host health and/or prevent diseases. In this review, we aim to give an overview of the impact of prebiotic fibres, and bacteriocins from LAB, on the gut microbiota and its activities, which affect the physiology and health of the host. These represent two different mechanisms in modulating the gut microbiota, the first involving exploitative competition by which the growth of beneficial bacteria is promoted and the latter involving interference competition by which the growth of pathogens and other unwanted bacteria is prevented. For interference competition in the gut, bacteriocins offer special advantages over traditional antibiotics, in that they can be designed to act towards specific unwanted bacteria and other pathogens, without any remarkable collateral effects on beneficial microbes sharing the same niche.
Collapse
Affiliation(s)
- Özgün C. O. Umu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
227
|
Taylor SL, Wesselingh S, Rogers GB. Host-microbiome interactions in acute and chronic respiratory infections. Cell Microbiol 2016; 18:652-62. [PMID: 26972325 DOI: 10.1111/cmi.12589] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/03/2016] [Indexed: 12/11/2022]
Abstract
Respiratory infection is a leading cause of global morbidity and mortality. Understanding the factors that influence risk and outcome of these infections is essential to improving care. We increasingly understand that interactions between the microbial residents of our mucosal surfaces and host regulatory systems is fundamental to shaping local and systemic immunity. These mechanisms are most well defined in the gastrointestinal tract, however analogous systems also occur in the airways. Moreover, we now appreciate that the host-microbiota interactions at a given mucosal surface influence systemic host processes, in turn, affecting the course of infection at other anatomical sites. This review discusses the mechanisms by which the respiratory microbiome influences acute and chronic airway disease and examines the contribution of cross-talk between the gastrointestinal and respiratory compartments to microbe-mucosa interactions.
Collapse
Affiliation(s)
- Steven L Taylor
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia
| | - Steve Wesselingh
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia
| | - Geraint B Rogers
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia
| |
Collapse
|
228
|
Bai J, Zhu Y, Dong Y. Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:717-726. [PMID: 27751827 DOI: 10.1016/j.jep.2016.10.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/13/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bitter melon (Momordica charantia L.) is rich in a variety of biologically active ingredients, and has been widely used in traditional Chinese medicine (TCM) to treat various diseases, including type 2 diabetes and obesity. AIM OF THE STUDY We aimed to investigate how bitter melon powder (BMP) could affect obesity-associated inflammatory responses to ameliorate high-fat diet (HFD)-induced insulin resistance, and investigated whether its anti-inflammatory properties were effected by modulating the gut microbiota. MATERIALS AND METHODS Obese SD rats (Sprague-Dawley rats, rattus norregicus) were randomly divided into four groups: (a) normal control diet (NCD) and distilled water, (b) HFD and distilled water, (c) HFD and 300mg BMP/kg body weight (bw), (d) HFD and 10mg pioglitazone (PGT)/kg bw. RESULTS We observed remarkable decreases in the fasting glucose, fasting insulin, HOMA-IR index, serum lipid levels, and cell sizes of epididymal adipose tissues in the BMP and PGT groups after 8 weeks. BMP could significantly improve the proinflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), anti-inflammatory cytokine interleukin-10 (IL-10), and local endotoxin levels compared to the HFD group (p<0.05). BMP suppressed the activation of nuclear factor-κB (NF-κB) by inhibiting inhibitor of NF-κB alpha (IκBα) degradation and phosphorylation of c-Jun N-terminal kinase/ p38 mitogen-activated protein kinases (JNK/p38 MAPKs) in adipose tissue. Sequencing results illustrated that BMP treatment markedly decreased the proportion of the endotoxin-producing opportunistic pathogens and increased butyrate producers. CONCLUSIONS These results demonstrate that BMP ameliorates insulin sensitivity partly via relieving the inflammatory status in the system and in white adipose tissues of obese rats, and is associated with a proportional regulation of specific gut microbiota.
Collapse
Affiliation(s)
- Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
229
|
Maniar K, Moideen A, Mittal A, Patil A, Chakrabarti A, Banerjee D. A story of metformin-butyrate synergism to control various pathological conditions as a consequence of gut microbiome modification: Genesis of a wonder drug? Pharmacol Res 2016; 117:103-128. [PMID: 27939359 DOI: 10.1016/j.phrs.2016.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022]
Abstract
The most widely prescribed oral anti-diabetic agent today in the world today is a member of the biguanide class of drugs called metformin. Apart from its use in diabetes, it is currently being investigated for its potential use in many diseases such as cancer, cardiovascular diseases, Alzheimer's disease, obesity, comorbidities of diabetes such as retinopathy, nephropathy to name a few. Numerous in-vitro and in-vivo studies as well as clinical trials have been and are being conducted with a vast amount of literature being published every day. Numerous mechanisms for this drug have been proposed, but they have been unable to explain all the actions observed clinically. It is of interest that insulin has a stimulatory effect on cellular growth. Metformin sensitizes the insulin action but believed to be beneficial in cancer. Like -wise metformin is shown to have beneficial effects in opposite sets of pathological scenario looking from insulin sensitization point of view. This requires a comprehensive review of the disease conditions which are claimed to be affected by metformin therapy. Such a comprehensive review is presently lacking. In this review, we begin by examining the history of metformin before it became the most popular anti-diabetic medication today followed by a review of its relevant molecular mechanisms and important clinical trials in all areas where metformin has been studied and investigated till today. We also review novel mechanistic insight in metformin action in relation to microbiome and elaborate implications of such aspect in various disease states. Finally, we highlight the quandaries and suggest potential solutions which will help the researchers and physicians to channel their research and put this drug to better use.
Collapse
Affiliation(s)
- Kunal Maniar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Amal Moideen
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Ankur Mittal
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Amol Patil
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Amitava Chakrabarti
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, India.
| |
Collapse
|
230
|
Neis EPJG, Bloemen JG, Rensen SS, van der Vorst JR, van den Broek MA, Venema K, Buurman WA, Dejong CHC. Effects of Liver Resection on Hepatic Short-Chain Fatty Acid Metabolism in Humans. PLoS One 2016; 11:e0166161. [PMID: 27835668 PMCID: PMC5105994 DOI: 10.1371/journal.pone.0166161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/24/2016] [Indexed: 01/14/2023] Open
Abstract
AIM To determine whether acute loss of liver tissue affects hepatic short-chain fatty acid (SCFA) clearance. METHODS Blood was sampled from the radial artery, portal vein, and hepatic vein before and after hepatic resection in 30 patients undergoing partial liver resection. Plasma SCFA levels were measured by liquid chromatography-mass spectrometry. SCFA exchange across gut and liver was calculated from arteriovenous differences and plasma flow. Liver volume was estimated by CT liver volumetry. RESULTS The gut produced significant amounts of acetate, propionate, and butyrate (39.4±13.5, 6.2±1.3, and 9.5±2.6 μmol·kgbw-1·h-1), which did not change after partial hepatectomy (p = 0.67, p = 0.59 and p = 0.24). Hepatic propionate uptake did not differ significantly before and after resection (-6.4±1.4 vs. -8.4±1.5 μmol·kgbw-1·h-1, p = 0.49). Hepatic acetate and butyrate uptake increased significantly upon partial liver resection (acetate: -35.1±13.0 vs. -39.6±9.4 μmol·kgbw-1·h-1, p = 0.0011; butyrate: -9.9±2.7 vs. -11.5±2.4 μmol·kgbw-1·h-1, p = 0.0006). Arterial SCFA concentrations were not different before and after partial liver resection (acetate: 176.9±17.3 vs. 142.3±12.5 μmol/L, p = 0.18; propionate: 7.2±1.4 vs. 5.6±0.6 μmol/L, p = 0.38; butyrate: 4.3±0.7 vs. 3.6±0.6 μmol/L, p = 0.73). CONCLUSION The liver maintains its capacity to clear acetate, propionate, and butyrate from the portal blood upon acute loss of liver tissue.
Collapse
Affiliation(s)
- Evelien P. J. G. Neis
- TI Food and Nutrition, 6709 PA Wageningen, The Netherlands
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- * E-mail:
| | - Johanne G. Bloemen
- TI Food and Nutrition, 6709 PA Wageningen, The Netherlands
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Sander S. Rensen
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Maartje A. van den Broek
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- Department of Surgery, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Koen Venema
- TI Food and Nutrition, 6709 PA Wageningen, The Netherlands
- Beneficial Microbes Consultancy, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Wim A. Buurman
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | | |
Collapse
|
231
|
Liu D, Andrade SP, Castro PR, Treacy J, Ashworth J, Slevin M. Low Concentration of Sodium Butyrate from Ultrabraid+NaBu suture, Promotes Angiogenesis and Tissue Remodelling in Tendon-bones Injury. Sci Rep 2016; 6:34649. [PMID: 27694930 PMCID: PMC5046145 DOI: 10.1038/srep34649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
Sodium butyrate (NaBu), a form of short-chain fatty acid (SCFA), acts classically as a potent anti-angiogenic agent in tumour angiogenesis models, some authors demonstrated that low concentrations of NaBu may contribute to healing of tendon-bone injury in part at least through promotion of tissue remodelling. Here, we investigated the effects of low-range concentrations of NaBu using in vitro and in vivo assays using angiogenesis as the primary outcome measure and the mechanisms through which it acts. We demonstrated that NaBu, alone or perfused from the UltraBraid+NaBu suture was pro-angiogenic at very low-range doses promoting migration, tube formation and cell invasion in bovine aortic endothelial cells (BAECs). Furthermore, cell exposure to low NaBu concentrations increased expression of proteins involved in angiogenic cell signalling, including p-PKCβ1, p-FAK, p-ERK1/2, p-NFκβ, p-PLCγ1 and p-VEGFR2. In addition, inhibitors of both VEGFR2 and PKCβ1 blocked the angiogenic response. In in vivo assays, low concentrations of NaBu induced neovascularization in sponge implants in mice, evidenced by increased numbers of vessels and haemoglobin content in these implants. The findings in this study indicate that low concentrations of NaBu could be an important compound to stimulate angiogenesis at a site where vasculature is deficient and healing is compromised.
Collapse
Affiliation(s)
- Donghui Liu
- School of Healthcare Science, GMBC, Manchester Metropolitan University, Manchester, United Kingdom
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - John Treacy
- Smith &Nephew Research Centre, York Science, Park Heslington, York, UK
| | - Jason Ashworth
- School of Healthcare Science, GMBC, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mark Slevin
- School of Healthcare Science, GMBC, Manchester Metropolitan University, Manchester, United Kingdom.,University of Medicine and Pharmacy, Tirgu Mures, Romania
| |
Collapse
|
232
|
Samuelson DR, Charles TP, de la Rua NM, Taylor CM, Blanchard EE, Luo M, Shellito JE, Welsh DA. Analysis of the intestinal microbial community and inferred functional capacities during the host response to Pneumocystis pneumonia. Exp Lung Res 2016; 42:425-439. [PMID: 27925857 PMCID: PMC5304582 DOI: 10.1080/01902148.2016.1258442] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pneumocystis pneumonia is a major cause of morbidity and mortality in patients infected with HIV/AIDS. In this study, we evaluated the intestinal microbial communities associated with the development of experimental Pneumocystis pneumonia, as there is growing evidence that the intestinal microbiota is critical for host defense against fungal pathogens. METHODS C57BL/6 mice were infected with live Pneumocystis murina (P. murina) via intratracheal inoculation and sacrificed 7 and 14 days postinfection for microbiota analysis. In addition, we evaluated the intestinal microbiota from CD4+ T cell depleted mice infected with P. murina. RESULTS We found that the diversity of the intestinal microbial community was significantly altered by respiratory infection with P. murina. Specifically, mice infected with P. murina had altered microbial populations, as judged by changes in diversity metrics and relative taxa abundances. We also found that CD4+ T cell depleted mice infected with P. murina exhibited significantly altered intestinal microbiota that was distinct from immunocompetent mice infected with P. murina, suggesting that loss of CD4+ T cells may also affects the intestinal microbiota in the setting of Pneumocystis pneumonia. Finally, we employed a predictive metagenomics approach to evaluate various microbial features. We found that Pneumocystis pneumonia significantly alters the intestinal microbiota's inferred functional potential for carbohydrate, energy, and xenobiotic metabolism, as well as signal transduction pathways. CONCLUSIONS Our study provides insight into specific-microbial clades and inferred microbial functional pathways associated with Pneumocystis pneumonia. Our data also suggest a role for the gut-lung axis in host defense in the lung.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA, 70112
| | - Tysheena P. Charles
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA, 70112
| | - Nicholas M. de la Rua
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA, 70112
| | - Christopher M. Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA, 70112
| | - Eugene E. Blanchard
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA, 70112
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA, 70112
| | - Judd E. Shellito
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA, 70112
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA, 70112
| | - David A. Welsh
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA, 70112
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA, 70112
| |
Collapse
|
233
|
Shima K, Coopmeiners J, Graspeuntner S, Dalhoff K, Rupp J. Impact of micro-environmental changes on respiratory tract infections with intracellular bacteria. FEBS Lett 2016; 590:3887-3904. [PMID: 27509029 DOI: 10.1002/1873-3468.12353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022]
Abstract
Community-acquired pneumonia is caused by intra- and extracellular bacteria, with some of these bacteria also being linked to the pathogenesis of chronic lung diseases, including asthma and chronic obstructive pulmonary disease. Chlamydia pneumoniae is an obligate intracellular pathogen that is highly sensitive to micro-environmental conditions controlling both pathogen growth and host immune responses. The availability of nutrients, as well as changes in oxygen, pH and interferon-γ levels, have been shown to directly influence the chlamydial life cycle and clearance. Although the lung has been traditionally regarded as a sterile environment, sequencing approaches have enabled the identification of a large number of bacteria in healthy and diseased lungs. The influence of the lung microbiota on respiratory infections has not been extensively studied so far and data on chlamydial infections are currently unavailable. In the present study, we speculate on how lung microbiota might interfere with acute and chronic infections by focusing exemplarily on the obligate intracellular C. pneumoniae. Furthermore, we consider changes in the gut microbiota as an additional player in the control of lung infections, especially in view the increasing evidence suggesting the involvement of the gut microbiota in various immunological processes throughout the human body.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Jonas Coopmeiners
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| | - Klaus Dalhoff
- Medical Clinic III, University-Hospital Schleswig-Holstein/Campus Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Germany
| |
Collapse
|
234
|
Lowry CA, Smith DG, Siebler PH, Schmidt D, Stamper CE, Hassell JE, Yamashita PS, Fox JH, Reber SO, Brenner LA, Hoisington AJ, Postolache TT, Kinney KA, Marciani D, Hernandez M, Hemmings SMJ, Malan-Muller S, Wright KP, Knight R, Raison CL, Rook GAW. The Microbiota, Immunoregulation, and Mental Health: Implications for Public Health. Curr Environ Health Rep 2016; 3:270-86. [PMID: 27436048 PMCID: PMC5763918 DOI: 10.1007/s40572-016-0100-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hygiene or "Old Friends" hypothesis proposes that the epidemic of inflammatory disease in modern urban societies stems at least in part from reduced exposure to microbes that normally prime mammalian immunoregulatory circuits and suppress inappropriate inflammation. Such diseases include but are not limited to allergies and asthma; we and others have proposed that the markedly reduced exposure to these Old Friends in modern urban societies may also increase vulnerability to neurodevelopmental disorders and stress-related psychiatric disorders, such as anxiety and affective disorders, where data are emerging in support of inflammation as a risk factor. Here, we review recent advances in our understanding of the potential for Old Friends, including environmental microbial inputs, to modify risk for inflammatory disease, with a focus on neurodevelopmental and psychiatric conditions. We highlight potential mechanisms, involving bacterially derived metabolites, bacterial antigens, and helminthic antigens, through which these inputs promote immunoregulation. Though findings are encouraging, significant human subjects' research is required to evaluate the potential impact of Old Friends, including environmental microbial inputs, on biological signatures and clinically meaningful mental health prevention and intervention outcomes.
Collapse
Affiliation(s)
- Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA.
| | - David G Smith
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Philip H Siebler
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Dominic Schmidt
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Christopher E Stamper
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - James E Hassell
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Paula S Yamashita
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - James H Fox
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, D-89081, Ulm, Germany
| | - Lisa A Brenner
- Departments of Psychiatry, Physical Medicine & Rehabilitation, University of Colorado, Anschutz School of Medicine, Aurora, CO, 80045, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Denver, CO, 80220, USA
| | - Andrew J Hoisington
- Department of Civil and Environmental Engineering, United States Air Force Academy, Colorado Springs, CO, 80840, USA
| | - Teodor T Postolache
- University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain MIRECC, Denver, CO, 80220, USA
- VISN 5 MIRECC, Baltimore, MD, 21201, USA
| | - Kerry A Kinney
- Civil, Architectural and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | | | - Mark Hernandez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| | - Stefanie Malan-Muller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| | - Kenneth P Wright
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
| | - Charles L Raison
- School of Human Ecology and School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Graham A W Rook
- Center for Clinical Microbiology, UCL (University College London), WC1E 6BT, London, UK
| |
Collapse
|
235
|
Tong LC, Wang Y, Wang ZB, Liu WY, Sun S, Li L, Su DF, Zhang LC. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress. Front Pharmacol 2016; 7:253. [PMID: 27574508 PMCID: PMC4983549 DOI: 10.3389/fphar.2016.00253] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
Propionate is a short chain fatty acid that is abundant as butyrate in the gut and blood. However, propionate has not been studied as extensively as butyrate in the treatment of colitis. The present study was to investigate the effects of sodium propionate on intestinal barrier function, inflammation and oxidative stress in dextran sulfate sodium (DSS)-induced colitis mice. Animals in DSS group received drinking water from 1 to 6 days and DSS [3% (w/v) dissolved in double distilled water] instead of drinking water from 7 to 14 days. Animals in DSS+propionate (DSS+Prop) group were given 1% sodium propionate for 14 consecutive days and supplemented with 3% DSS solution on day 7–14. Intestinal barrier function, proinflammatory factors, oxidative stress, and signal transducer and activator of transcription 3 (STAT3) signaling pathway in the colon were determined. It was found that sodium propionate ameliorated body weight loss, colon-length shortening and colonic damage in colitis mice. Sodium propionate significantly inhibited the increase of FITC-dextran in serum and the decrease of zonula occludens-1 (ZO-1), occludin, and E-cadherin expression in the colonic tissue. It also inhibited the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA and phosphorylation of STAT3 in colitis mice markedly, reduced the myeloperoxidase (MPO) level, and increased the superoxide dismutase and catalase level in colon and serum compared with DSS group. Sodium propionate inhibited macrophages with CD68 marker infiltration into the colonic mucosa of colitis mice. These results suggest that oral administration of sodium propionate could ameliorate DSS-induced colitis mainly by improving intestinal barrier function and reducing inflammation and oxidative stress via the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ling-Chang Tong
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai, China; Department of Pharmacology, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Yue Wang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai, China; Department of Pharmacy, Ningxia Medical UniversityYinchuan, China
| | - Zhi-Bin Wang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University Shanghai, China
| | - Wei-Ye Liu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University Shanghai, China
| | - Sheng Sun
- Department of Pharmacology, College of Pharmacy, Second Military Medical University Shanghai, China
| | - Ling Li
- Department of Pharmacology, College of Pharmacy, Second Military Medical University Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacology, College of Pharmacy, Second Military Medical University Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine Shanghai, China
| |
Collapse
|
236
|
Janssen AWF, Kersten S. Potential mediators linking gut bacteria to metabolic health: a critical view. J Physiol 2016; 595:477-487. [PMID: 27418465 PMCID: PMC5233664 DOI: 10.1113/jp272476] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests that the bacteria present in our gut may play a role in mediating the effect of genetics and lifestyle on obesity and metabolic diseases. Most of the current literature on gut bacteria consists of cross‐sectional and correlative studies, rendering it difficult to make any causal inferences as to the influence of gut bacteria on obesity and related metabolic disorders. Interventions with germ‐free animals, treatment with antibiotic agents, and microbial transfer experiments have provided some evidence that disturbances in gut bacteria may causally contribute to obesity‐related insulin resistance and adipose tissue inflammation. Several potential mediators have been hypothesized to link the activity and composition of gut bacteria to insulin resistance and adipose tissue function, including lipopolysaccharide, angiopoietin‐like protein 4, bile acids and short‐chain fatty acids. In this review we critically evaluate the current evidence related to the direct role of gut bacteria in obesity‐related metabolic perturbations, with a focus on insulin resistance and adipose tissue inflammation. It is concluded that the knowledge base in support of a role for the gut microbiota in metabolic regulation and in particular insulin resistance and adipose tissue inflammation needs to be strengthened.
![]()
Collapse
Affiliation(s)
- Aafke W F Janssen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
237
|
Young RP, Hopkins RJ, Marsland B. The Gut-Liver-Lung Axis. Modulation of the Innate Immune Response and Its Possible Role in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2016; 54:161-9. [PMID: 26473323 DOI: 10.1165/rcmb.2015-0250ps] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Evidence from epidemiological studies suggests that a diet high in fiber is associated with better lung function and reduced risk of chronic obstructive pulmonary disease (COPD). The mechanism for this benefit remains unknown, but, as fiber is not absorbed by the gut, this finding suggests that the gut may play an active role in pathogenic pathways underlying COPD. There is a growing awareness that aberrant activity of the innate immune system, characterized by increased neutrophil and macrophage activation, may contribute to the development or progression of COPD. Innate immunity is modulated in large part by the liver, where hepatic cells function in immune surveillance of the portal circulation, as well as providing a rich source of systemic inflammatory cytokines and immune mediators (notably, IL-6 and C-reactive protein). We believe that the beneficial effect of dietary fiber on lung function is through modulation of innate immunity and subsequent attenuation of the pulmonary response to inflammatory stimuli, most apparent in current or former smokers. We propose that the "gut-liver-lung axis" may play a modifying role in the pathogenesis of COPD. In this review, we summarize lines of evidence that include animal models, large prospective observational studies, and clinical trials, supporting the hypothesis that the gut-liver-lung axis plays an integral part in the pathogenic mechanisms underlying the pathogenesis of COPD.
Collapse
Affiliation(s)
- Robert P Young
- 1 School of Biological Science and the Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; and
| | - Raewyn J Hopkins
- 1 School of Biological Science and the Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; and
| | - Benjamin Marsland
- 2 Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universataire Vaudois, Epalinges, Switzerland
| |
Collapse
|
238
|
Xiong H, Guo B, Gan Z, Song D, Lu Z, Yi H, Wu Y, Wang Y, Du H. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition. Sci Rep 2016; 6:27070. [PMID: 27230284 PMCID: PMC4882515 DOI: 10.1038/srep27070] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/15/2016] [Indexed: 01/05/2023] Open
Abstract
Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition.
Collapse
Affiliation(s)
- Haitao Xiong
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Bingxiu Guo
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Zhenshun Gan
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Deguang Song
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Zeqing Lu
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Hongbo Yi
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yueming Wu
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Huahua Du
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
239
|
The Relationship between Dietary Fiber Intake and Lung Function in the National Health and Nutrition Examination Surveys. Ann Am Thorac Soc 2016; 13:643-50. [DOI: 10.1513/annalsats.201509-609oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
240
|
Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L. Appl Environ Microbiol 2016; 82:2693-2699. [PMID: 26921420 DOI: 10.1128/aem.03343-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/19/2016] [Indexed: 12/12/2022] Open
Abstract
This study was performed to determine the effects of feeding a fiber-rich fraction of Brassica vegetables on the immune response through changes in enteric bacteria and short-chain fatty acid (SCFA) production in normal mice. The boiled-water-insoluble fraction of Brassica rapa L. (nozawana), which consists mainly of dietary fiber, was chosen as a test material. A total of 31 male C57BL/6J mice were divided into two groups and housed in a specific-pathogen-free facility. The animals were fed either a control diet or the control diet plus the insoluble B. rapa L. fraction for 2 weeks and sacrificed to determine microbiological and SCFA profiles in lower-gut samples and immunological molecules. rRNA-based quantification indicated that the relative population of Bacteroidetes was markedly lower in the colon samples of the insoluble B. rapa L. fraction-fed group than that in the controls. Populations of the Eubacterium rectale group and Faecalibacterium prausnitzii, both of which are representative butyrate-producing bacteria, doubled after 2 weeks of fraction intake, accompanying a marginal increase in the proportion of colonic butyrate. In addition, feeding with the fraction significantly increased levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and tended to increase splenic regulatory T cell numbers but significantly reduced the population of cells expressing activation markers. We demonstrated that inclusion of the boiled-water-insoluble fraction of B. rapa L. can alter the composition of the gut microbiota to decrease the numbers of Bacteroidetes and to increase the numbers of butyrate-producing bacteria, either of which may be involved in the observed shift in the production of splenic IL-10.
Collapse
|
241
|
Dion C, Chappuis E, Ripoll C. Does larch arabinogalactan enhance immune function? A review of mechanistic and clinical trials. Nutr Metab (Lond) 2016; 13:28. [PMID: 27073407 PMCID: PMC4828828 DOI: 10.1186/s12986-016-0086-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/30/2016] [Indexed: 02/08/2023] Open
Abstract
The common cold is a viral infection with important economic burdens in Western countries. The research and development of nutritional solutions to reduce the incidence and severity of colds today is a major focus of interest, and larch arabinogalactan seems to be a promising supportive agent. Arabinogalactan has been consumed by humans for thousands of years and is found in a variety of common vegetables as well as in medicinal herbs. The major commercial sources of this long, densely branched, high-molecular-weight polysaccharide are North American larch trees. The aim of this article is to review the immunomodulatory effects of larch arabinogalactan derived from Larix laricina and Larix occidentalis (North American Larix species) and more specifically its role in the resistance to common cold infections. In cell and animal models, larch arabinogalactan is capable of enhancing natural killer cells and macrophages as well as the secretion of pro-inflammatory cytokines. In humans a clinical study demonstrated that larch arabinogalactan increased the body’s potential to defend against common cold infection. Larch arabinogalactan decreased the incidence of cold episodes by 23 %. Improvements of serum antigen-specific IgG and IgE response to Streptococcus pneumoniae and tetanus vaccination suggesting a B cell dependent mechanism have been reported in vaccination studies with larch arabinogalactan, while the absence of response following influenza vaccination suggests the involvement of a T cell dependent mechanism. These observations suggest a role for larch arabinogalactan in the improvement of cold infections, although the mode of action remains to be further explored. Different hypotheses can be envisaged as larch arabinogalactan can possibly act indirectly through microbiota-dependent mechanisms and/or have a direct effect on the immune system via the gut-associated lymphoid tissue (GALT).
Collapse
Affiliation(s)
- Carine Dion
- Naturalpha SAS, Parc Eurasanté, 885 avenue Eugène Avinée, 59120 Loos, France
| | - Eric Chappuis
- Naturalpha SAS, Parc Eurasanté, 885 avenue Eugène Avinée, 59120 Loos, France
| | - Christophe Ripoll
- Naturalpha SAS, Parc Eurasanté, 885 avenue Eugène Avinée, 59120 Loos, France
| |
Collapse
|
242
|
Thakur BK, Dasgupta N, Ta A, Das S. Physiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms. Nucleic Acids Res 2016; 44:5658-72. [PMID: 27060138 PMCID: PMC4937308 DOI: 10.1093/nar/gkw189] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/10/2016] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptor 5 (TLR5) expression in the intestinal epithelial cells (IECs) is critical to maintain health, as underscored by multiple intestinal and extra-intestinal diseases in mice genetically engineered for IEC-specific TLR5 knockout. A gradient of expression exists in the colonic epithelial cells from the cecum to the distal colon. Intriguingly, an identical gradient for the dietary metabolite, butyrate also exists in the luminal contents. However, both being critical for intestinal homeostasis and immune response, no studies examined the role of butyrate in the regulation of TLR5 expression. We showed that butyrate transcriptionally upregulates TLR5 in the IECs and augments flagellin-induced immune responses. Both basal and butyrate-induced transcription is regulated by differential binding of Sp-family transcription factors to the GC-box sequences over the TLR5 promoter. Butyrate activates two different protein kinase C isoforms to dephosphorylate/acetylate Sp1 by serine/threonine phosphatases and phosphorylate Sp3 by ERK-MAPK, respectively. This resulted in Sp1 displacement from the promoter and binding of Sp3 to it, leading to p300 recruitment and histone acetylation, activating transcription. This is the first study addressing the mechanisms of physiological TLR5 expression in the intestine. Additionally, a novel insight is gained into Sp1/Sp3-mediated gene regulation that may apply to other genes.
Collapse
Affiliation(s)
- Bhupesh Kumar Thakur
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Nirmalya Dasgupta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Atri Ta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Santasabuj Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| |
Collapse
|
243
|
Asarat M, Apostolopoulos V, Vasiljevic T, Donkor O. Short-Chain Fatty Acids Regulate Cytokines and Th17/Treg Cells in Human Peripheral Blood Mononuclear Cellsin vitro. Immunol Invest 2016; 45:205-22. [DOI: 10.3109/08820139.2015.1122613] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
244
|
Endo-glucanase digestion of oat β-Glucan enhances Dectin-1 activation in human dendritic cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
245
|
Liu HX, Rocha CS, Dandekar S, Wan YJY. Functional analysis of the relationship between intestinal microbiota and the expression of hepatic genes and pathways during the course of liver regeneration. J Hepatol 2016; 64:641-50. [PMID: 26453969 PMCID: PMC4761311 DOI: 10.1016/j.jhep.2015.09.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/08/2015] [Accepted: 09/19/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS The pathways regulating liver regeneration have been extensively studied within the liver. However, the signaling contribution derived from the gut microbiota to liver regeneration is poorly understood. METHODS Microbiota and expression of hepatic genes in regenerating livers obtained from mice at 0h to 9days post 2/3 partial hepatectomy were temporally profiled to establish their interactive relationships. RESULTS Partial hepatectomy led to rapid changes in gut microbiota that was reflected in an increased abundance of Bacteroidetes S24-7 and Rikenellaceae and decreased abundance of Firmicutes Clostridiales, Lachnospiraceae, and Ruminococcaceae. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to infer biological functional changes of the shifted microbiota. RNA-sequencing data revealed 6125 genes with more than a 2-fold difference in their expression levels during regeneration. By analyzing their expression pattern, six uniquely expressed patterns were observed. In addition, there were significant correlations between hepatic gene expression profiles and shifted bacterial populations during regeneration. Moreover, hepatic metabolism and immune function were closely associated with the abundance of Ruminococcacea, Lachnospiraceae, and S24-7. Bile acid profile was analyzed because bacterial enzymes produce bile acids that significantly impact hepatocyte proliferation. The data revealed that specific bacteria were closely associated with the concentration of certain bile acids and expression of hepatic genes. CONCLUSIONS The presented data established, for the first time, an intimate relationship between intestinal microbiota and the expression of hepatic genes in regenerating livers.
Collapse
Affiliation(s)
- Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA
| | - Clarissa Santos Rocha
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
246
|
Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. J Acad Nutr Diet 2016; 115:1861-70. [PMID: 26514720 DOI: 10.1016/j.jand.2015.09.003] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 02/07/2023]
Abstract
It is the position of the Academy of Nutrition and Dietetics that the public should consume adequate amounts of dietary fiber from a variety of plant foods. Dietary fiber is defined by the Institute of Medicine Food Nutrition Board as "nondigestible carbohydrates and lignin that are intrinsic and intact in plants." Populations that consume more dietary fiber have less chronic disease. Higher intakes of dietary fiber reduce the risk of developing several chronic diseases, including cardiovascular disease, type 2 diabetes, and some cancers, and have been associated with lower body weights. The Adequate Intake for fiber is 14 g total fiber per 1,000 kcal, or 25 g for adult women and 38 g for adult men, based on research demonstrating protection against coronary heart disease. Properties of dietary fiber, such as fermentability and viscosity, are thought to be important parameters influencing the risk of disease. Plant components associated with dietary fiber may also contribute to reduced disease risk. The mean intake of dietary fiber in the United States is 17 g/day with only 5% of the population meeting the Adequate Intake. Healthy adults and children can achieve adequate dietary fiber intakes by increasing their intake of plant foods while concurrently decreasing energy from foods high in added sugar and fat, and low in fiber. Dietary messages to increase consumption of whole grains, legumes, vegetables, fruits, and nuts should be broadly supported by food and nutrition practitioners.
Collapse
|
247
|
de Jesus Raposo MF, de Morais AMMB, de Morais RMSC. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Mar Drugs 2016; 14:E27. [PMID: 26828501 PMCID: PMC4771980 DOI: 10.3390/md14020027] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/15/2022] Open
Abstract
In recent years, scientists have become aware that human microbiota, in general, and gut microbiota, in particular, play a major role in human health and diseases, such as obesity and diabetes, among others. A large number of evidence has come to light regarding the beneficial effects, either for the host or the gut microbiota, of some foods and food ingredients or biochemical compounds. Among these, the most promising seem to be polysaccharides (PS) or their derivatives, and they include the dietary fibers. Some of these PS can be found in seaweeds and microalgae, some being soluble fibers, such as alginates, fucoidans, carrageenans and exopolysaccharides, that are not fermented, at least not completely, by colonic microbiota. This review gives an overview of the importance of the dietary fibers, as well as the benefits of prebiotics, to human health. The potential of the PS from marine macro- and microalgae to act as prebiotics is discussed, and the different techniques to obtain oligosaccharides from PS are presented. The mechanisms of the benefits of fiber, in general, and the types and benefits of algal fibers in human health are highlighted. The findings of some recent studies that present the potential effects of prebiotics on animal models of algal biomass and their extracts, as well as oligo- and polysaccharides, are presented. In the future, the possibility of using prebiotics to modulate the microbiome, and, consequently, prevent certain human diseases is foreseen.
Collapse
Affiliation(s)
- Maria Filomena de Jesus Raposo
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Alcina Maria Miranda Bernardo de Morais
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Rui Manuel Santos Costa de Morais
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| |
Collapse
|
248
|
Lee MY, Kim HY, Singh D, Yeo SH, Baek SY, Park YK, Lee CH. Metabolite Profiling Reveals the Effect of Dietary Rubus coreanus Vinegar on Ovariectomy-Induced Osteoporosis in a Rat Model. Molecules 2016; 21:149. [PMID: 26821009 PMCID: PMC6273122 DOI: 10.3390/molecules21020149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 11/16/2022] Open
Abstract
The study was aimed at exploring the curative effects of Rubus coreanus (RC) vinegar against postmenopausal osteoporosis by using ovariectomized rats as a model. The investigations were performed in five groups: sham, ovariectomized (OVX) rats without treatment, low-dose RC vinegar (LRV)-treated OVX rats, high-dose RC vinegar (HRV)-treated OVX rats and alendronate (ALEN)-treated OVX rats. The efficacy of RC vinegar was evaluated using physical, biochemical, histological and metabolomic parameters. Compared to the OVX rats, the LRV and HRV groups showed positive effects on the aforementioned parameters, indicating estrogen regulation. Plasma metabolome analysis of the groups using gas chromatography-time of flight mass spectrometry (GC-TOF-MS) and ultra-performance liquid chromatography quadrupole-TOF-MS (UPLC-Q-TOF-MS) with multivariate analysis revealed 19 and 16 metabolites, respectively. Notably, the levels of butyric acid, phenylalanine, glucose, tryptophan and some lysophosphatidylcholines were marginally increased in RC vinegar-treated groups compared to OVX. However, the pattern of metabolite levels in RC vinegar-treated groups was found similar to ALEN, but differed significantly from that in sham group. The results highlight the prophylactic and curative potential of dietary vinegar against postmenopausal osteoporosis. RC vinegar could be an effective natural alternative for the prevention of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Mee Youn Lee
- Department of Bioscience and Biotechnology, Kon-Kuk University, Seoul 143-701, Korea.
| | - Hyang Yeon Kim
- Department of Bioscience and Biotechnology, Kon-Kuk University, Seoul 143-701, Korea.
| | - Digar Singh
- Department of Bioscience and Biotechnology, Kon-Kuk University, Seoul 143-701, Korea.
| | - Soo Hwan Yeo
- Fermented Food Science Division, Department of Agro-food Resource, National Academy of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 565-851, Korea.
| | - Seong Yeol Baek
- Fermented Food Science Division, Department of Agro-food Resource, National Academy of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 565-851, Korea.
| | - Yoo Kyoung Park
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Gyeonggi-do 446-791, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Kon-Kuk University, Seoul 143-701, Korea.
| |
Collapse
|
249
|
Butts CA, Paturi G, Tavendale MH, Hedderley D, Stoklosinski HM, Herath TD, Rosendale D, Roy NC, Monro JA, Ansell J. The fate of (13)C-labelled and non-labelled inulin predisposed to large bowel fermentation in rats. Food Funct 2016; 7:1825-32. [PMID: 26778667 DOI: 10.1039/c5fo01056j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The fate of stable-isotope (13)C labelled and non-labelled inulin catabolism by the gut microbiota was assessed in a healthy rat model. Sprague-Dawley male rats were randomly assigned to diets containing either cellulose or inulin, and were fed these diets for 3 days. On day (d) 4, rats allocated to the inulin diet received (13)C-labelled inulin. The rats were then fed the respective non-labelled diets (cellulose or inulin) until sampling (d4, d5, d6, d7, d10 and d11). Post feeding of (13)C-labelled substrate, breath analysis showed that (13)C-inulin cleared from the host within a period of 36 hours. Faecal (13)C demonstrated the clearance of inulin from gut with a (13)C excess reaching maximum at 24 hours (d5) and then declining gradually. There were greater variations in caecal organic acid concentrations from d4 to d6, with higher concentrations of acetic, butyric and propionic acids observed in the rats fed inulin compared to those fed cellulose. Inulin influenced caecal microbial glycosidase activity, increased colon crypt depth, and decreased the faecal output and polysaccharide content compared to the cellulose diet. In summary, the presence of inulin in the diet positively influenced large bowel microbial fermentation.
Collapse
Affiliation(s)
- Christine A Butts
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Gunaranjan Paturi
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | | | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Halina M Stoklosinski
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Thanuja D Herath
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Douglas Rosendale
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Nicole C Roy
- AgResearch Grasslands, Palmerston North 4442, New Zealand and Riddet Institute, Massey University, Palmerston North 4442, New Zealand and Gravida: National Centre for Growth and Development, The University of Auckland, Auckland 1142, New Zealand
| | - John A Monro
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand. and Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Juliet Ansell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand. and Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
250
|
Liu J, Wang F, Luo H, Liu A, Li K, Li C, Jiang Y. Protective effect of butyrate against ethanol-induced gastric ulcers in mice by promoting the anti-inflammatory, anti-oxidant and mucosal defense mechanisms. Int Immunopharmacol 2016; 30:179-187. [DOI: 10.1016/j.intimp.2015.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022]
|