201
|
Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0273-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
202
|
Clark ST, Gilbride KA, Mehrvar M, Laursen AE, Bostan V, Pushchak R, McCarthy LH. Evaluation of low-copy genetic targets for waterborne bacterial pathogen detection via qPCR. WATER RESEARCH 2011; 45:3378-3388. [PMID: 21514618 DOI: 10.1016/j.watres.2011.03.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 03/08/2011] [Accepted: 03/27/2011] [Indexed: 05/30/2023]
Abstract
Recent developments in water quality research have highlighted difficulties in accurately predicting the incidence of pathogens within freshwater based on the viability, culturability and metabolic activity of indicator organisms. QPCR-driven assays are candidates to replace standard culture-based methods, however, protocols suitable for routine use have yet to be sufficiently validated. The objective of this study was to evaluate five oligonucleotide primers sets (ETIR, SINV, exoT, VS1 and ipaH2) for their potential applicability in qPCR assays to detect contamination from five waterborne bacterial pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Campylobacter jejuni, Pseudomonas aeruginosa, and Shigella flexneri). An enrichment-free qPCR protocol was also tested using S. Typhimurium-seeded source water, combining membrane filtration and mechanical, chemical and enzymatic lysis techniques to recover the bacterial cells. All five primer sets were found to have high specificity and sensitivity for the tested organisms. Four of the primers were able to detect pathogen loads as low as 10 cells/mL while 200 cells/mL of C. jejuni were detectable in pure culture. Although sensitivity decreased in an artificially contaminated environmental matrix, it was still possible to detect as few as 10 S. Typhimurium cells without enrichment. The primers and protocols evaluated in this study have demonstrated potential for further validation for possible application alongside traditional indicator techniques.
Collapse
Affiliation(s)
- Shawn T Clark
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | | | | | | | | | | | | |
Collapse
|
203
|
Diaz MR, King JM, Yahr TL. Intrinsic and Extrinsic Regulation of Type III Secretion Gene Expression in Pseudomonas Aeruginosa. Front Microbiol 2011; 2:89. [PMID: 21833328 PMCID: PMC3153048 DOI: 10.3389/fmicb.2011.00089] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/13/2011] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is particularly problematic in the healthcare setting where it is a frequent cause of pneumonia, bloodstream, and urinary tract infections. An important determinant of P. aeruginosa virulence is a type III secretion system (T3SS). T3SS-dependent intoxication is a complex process that minimally requires binding of P. aeruginosa to host cells, injection of the cytotoxic effector proteins through the host cell plasma membrane, and induction of T3SS gene expression. The latter process, referred to as contact-dependent expression, involves a well-characterized regulatory cascade that activates T3SS gene expression in response to host cell contact. Although host cell contact is a primary activating signal for T3SS gene expression, the involvement of multiple membrane-bound regulatory systems indicates that additional environmental signals also play a role in controlling expression of the T3SS. These regulatory systems coordinate T3SS gene expression with many other cellular activities including motility, mucoidy, polysaccharide production, and biofilm formation. The signals to which the organism responds are poorly understood but many seem to be coupled to the metabolic state of the cell and integrated within a master circuit that assimilates informational signals from endogenous and exogenous sources. Herein we review progress toward unraveling this complex circuitry, provide analysis of the current knowledge gaps, and highlight potential areas for future studies. Complete understanding of the regulatory networks that control T3SS gene expression will maximize opportunities for the development of strategies to treat P. aeruginosa infections.
Collapse
Affiliation(s)
- Manisha R Diaz
- Department of Microbiology, University of Iowa Iowa City, IA, USA
| | | | | |
Collapse
|
204
|
Tielen P, Narten M, Rosin N, Biegler I, Haddad I, Hogardt M, Neubauer R, Schobert M, Wiehlmann L, Jahn D. Genotypic and phenotypic characterization of Pseudomonas aeruginosa isolates from urinary tract infections. Int J Med Microbiol 2011; 301:282-92. [DOI: 10.1016/j.ijmm.2010.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/27/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022] Open
|
205
|
Tran QT, Nawaz MS, Deck J, Foley S, Nguyen K, Cerniglia CE. Detection of Type III Secretion System Virulence and Mutations ingyrAandparCGenes Among Quinolone-Resistant Strains ofPseudomonas aeruginosaIsolated from Imported Shrimp. Foodborne Pathog Dis 2011; 8:451-3. [DOI: 10.1089/fpd.2010.0687] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Quynh T. Tran
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Mohamed S. Nawaz
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Joanna Deck
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Steven Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Kiet Nguyen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Carl E. Cerniglia
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
206
|
Abstract
Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable "core genome" and a highly variable "accessory genome." Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging.
Collapse
|
207
|
Sayner SL. Emerging themes of cAMP regulation of the pulmonary endothelial barrier. Am J Physiol Lung Cell Mol Physiol 2011; 300:L667-78. [PMID: 21335524 DOI: 10.1152/ajplung.00433.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The presence of excess fluid in the interstitium and air spaces of the lung presents severe restrictions to gas exchange. The pulmonary endothelial barrier regulates the flux of fluid and plasma proteins from the vascular space into the underlying tissue. The integrity of this endothelial barrier is dynamically regulated by transitions in cAMP (3',5'-cyclic adenosine monophosphate), which are synthesized in discrete subcellular compartments. Cyclic AMP generated in the subplasma membrane compartment acts through PKA and Epac (exchange protein directly activated by cAMP) to tighten cell adhesions, strengthen cortical actin, reduce actomyosin contraction, and decrease permeability. Confining cAMP within the subplasma membrane space is critical to its barrier-protective properties. When cAMP escapes the near membrane compartment and gains access to the cytosolic compartment, or when soluble adenylyl cyclases generate cAMP within the cytosolic compartment, this second messenger activates established cytosolic cAMP signaling cascades to perturb the endothelial barrier through PKA-mediated disruption of microtubules. Thus the concept of cAMP compartmentalization in endothelial barrier regulation is gaining momentum and new possibilities are being unveiled for cytosolic cAMP signaling with the emergence of the bicarbonate-regulated mammalian soluble adenylyl cyclase (sAC or AC10).
Collapse
Affiliation(s)
- Sarah L Sayner
- Dept. of Cell Biology and Neuroscience, Member, Center for Lung Biology, College of Medicine, Univ. of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
208
|
Hauser AR, Jain M, Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev 2011; 24:29-70. [PMID: 21233507 PMCID: PMC3021203 DOI: 10.1128/cmr.00036-10] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A select group of microorganisms inhabit the airways of individuals with cystic fibrosis. Once established within the pulmonary environment in these patients, many of these microbes adapt by altering aspects of their structure and physiology. Some of these microbes and adaptations are associated with more rapid deterioration in lung function and overall clinical status, whereas others appear to have little effect. Here we review current evidence supporting or refuting a role for the different microbes and their adaptations in contributing to poor clinical outcomes in cystic fibrosis.
Collapse
Affiliation(s)
- Alan R Hauser
- Department of Microbiology/Immunology, Northwestern University, 303 E. Chicago Ave., Searle 6-495, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
209
|
Verhulst NO, Andriessen R, Groenhagen U, Bukovinszkiné Kiss G, Schulz S, Takken W, van Loon JJA, Schraa G, Smallegange RC. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PLoS One 2010; 5:e15829. [PMID: 21209854 PMCID: PMC3012726 DOI: 10.1371/journal.pone.0015829] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/26/2010] [Indexed: 02/08/2023] Open
Abstract
The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of single skin bacterial species in the production of volatiles that mediate the host-seeking behaviour of mosquitoes has remained largely unknown and is the subject of the present study. Headspace samples were taken to identify volatiles that mediate this behaviour. These volatiles could be used as mosquito attractants or repellents. Five commonly occurring species of skin bacteria were tested in an olfactometer for the production of volatiles that attract A. gambiae. Odour blends produced by some bacterial species were more attractive than blends produced by other species. In contrast to odours from the other bacterial species tested, odours produced by Pseudomonas aeruginosa were not attractive to A. gambiae. Headspace analysis of bacterial volatiles in combination with behavioural assays led to the identification of six compounds that elicited a behavioural effect in A. gambiae. Our results provide, to our knowledge, the first evidence for a role of selected bacterial species, common on the human skin, in determining the attractiveness of humans to malaria mosquitoes. This information will be used in the further development of a blend of semiochemicals for the manipulation of mosquito behaviour.
Collapse
Affiliation(s)
- Niels O Verhulst
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Kimbrel JA, Givan SA, Halgren AB, Creason AL, Mills DI, Banowetz GM, Armstrong DJ, Chang JH. An improved, high-quality draft genome sequence of the Germination-Arrest Factor-producing Pseudomonas fluorescens WH6. BMC Genomics 2010; 11:522. [PMID: 20920191 PMCID: PMC2997014 DOI: 10.1186/1471-2164-11-522] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/28/2010] [Indexed: 12/20/2022] Open
Abstract
Background Pseudomonas fluorescens is a genetically and physiologically diverse species of bacteria present in many habitats and in association with plants. This species of bacteria produces a large array of secondary metabolites with potential as natural products. P. fluorescens isolate WH6 produces Germination-Arrest Factor (GAF), a predicted small peptide or amino acid analog with herbicidal activity that specifically inhibits germination of seeds of graminaceous species. Results We used a hybrid next-generation sequencing approach to develop a high-quality draft genome sequence for P. fluorescens WH6. We employed automated, manual, and experimental methods to further improve the draft genome sequence. From this assembly of 6.27 megabases, we predicted 5876 genes, of which 3115 were core to P. fluorescens and 1567 were unique to WH6. Comparative genomic studies of WH6 revealed high similarity in synteny and orthology of genes with P. fluorescens SBW25. A phylogenomic study also placed WH6 in the same lineage as SBW25. In a previous non-saturating mutagenesis screen we identified two genes necessary for GAF activity in WH6. Mapping of their flanking sequences revealed genes that encode a candidate anti-sigma factor and an aminotransferase. Finally, we discovered several candidate virulence and host-association mechanisms, one of which appears to be a complete type III secretion system. Conclusions The improved high-quality draft genome sequence of WH6 contributes towards resolving the P. fluorescens species, providing additional impetus for establishing two separate lineages in P. fluorescens. Despite the high levels of orthology and synteny to SBW25, WH6 still had a substantial number of unique genes and represents another source for the discovery of genes with implications in affecting plant growth and health. Two genes are demonstrably necessary for GAF and further characterization of their proteins is important for developing natural products as control measure against grassy weeds. Finally, WH6 is the first isolate of P. fluorescens reported to encode a complete T3SS. This gives us the opportunity to explore the role of what has traditionally been thought of as a virulence mechanism for non-pathogenic interactions with plants.
Collapse
Affiliation(s)
- Jeffrey A Kimbrel
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | |
Collapse
|
211
|
In vivo discrimination of type 3 secretion system-positive and -negative Pseudomonas aeruginosa via a caspase-1-dependent pathway. Infect Immun 2010; 78:4744-53. [PMID: 20823203 DOI: 10.1128/iai.00744-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Microbe-associated molecular patterns are recognized by Toll-like receptors of the innate immune system. This recognition enables a rapid response to potential pathogens but does not clearly provide a way for the innate immune system to discriminate between virulent and avirulent microbes. We find that pulmonary infection of mice with type 3 translocation-competent Pseudomonas aeruginosa triggers a rapid inflammatory response, while infection with isogenic translocation-deficient mutants does not. Discrimination between translocon-positive and -negative bacteria requires caspase-1 activity in bone marrow-derived cells and interleukin-1 receptor signaling. Thus, the activation of caspase-1 by bacteria expressing type 3 secretion systems allows for rapid recognition of bacteria expressing conserved functions associated with virulence.
Collapse
|
212
|
Mitov I, Strateva T, Markova B. Prevalence of virulence genes among bulgarian nosocomial and cystic fibrosis isolates of pseudomonas aeruginosa. Braz J Microbiol 2010; 41:588-95. [PMID: 24031533 PMCID: PMC3768660 DOI: 10.1590/s1517-83822010000300008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 02/18/2010] [Indexed: 12/03/2022] Open
Abstract
The aim of this study was to evaluate the prevalence of some virulence genes among 202 Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients (n=42) and non-CF in-patients (n=160) and to analyze the values according to the patient groups, infection localization and antimicrobial resistance. The following frequencies in all studied strains were established: algD (encoding GDP-mannose 6-dehydrogenase AlgD) – 91.1%, pilB (type IV fimbrial biogenesis protein PilB) – 23.8%, nan1 (neuraminidase) – 21.3%, lasB (elastase LasB) – 100%, plcH (haemolytic phospholipase C precursor) – 91.6%, exoS (exoenzyme S) – 62.4%, and exoU (exoenzyme U) – 30.2%. The prevalence of nan1 was significantly higher (P<0.01) in CF isolates (38.1%) than that in non-CF isolates (16.9%). The nan1–positive CF strains were cultured from 16 patients with recurrent lung exacerbations. This study revealed a statistically significant difference (P<0.01) between the portion of multidrug-resistant (MDR) nosocomial P.aeruginosa strains containing a large number (≥5) of virulence genes (38.1%) and the respective part of non-MDR isolates (17.6%). Moreover, pilB, exoU and nan1 manifested a higher spread (P<0.001) among MDR than in non-MDR strains (respectively, 39.1% vs. 13.2%; 40.2% vs. 17.7% and 26.1% vs. 4.4%). In conclusion, the dissemination of nan1 in CF isolates was moderate and correlated with the lower proportion of patients with lung exacerbations. The molecular-genetic detection of this gene may be used as an indirect measure of CF pulmonary disease evolution. Simultaneous determination of virulence factors and antimicrobial resistance is the contemporary approach for examination of the microbiological aspects of infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Ivan Mitov
- Department of Medical Microbiology , Medical University of Sofia , Bulgaria
| | | | | |
Collapse
|
213
|
The ADP-ribosylation domain of Pseudomonas aeruginosa ExoS is required for membrane bleb niche formation and bacterial survival within epithelial cells. Infect Immun 2010; 78:4500-10. [PMID: 20732998 DOI: 10.1128/iai.00417-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa can establish a niche within the plasma membrane of epithelial cells (bleb niches) within which bacteria can survive, replicate, and swim at speeds detectable by real-time phase-contrast imaging. This novel virulence strategy is dependent on the bacterial type three secretion system (T3SS), since mutants lacking the T3SS needle or known T3SS effectors localize to perinuclear vacuoles and fail to replicate. Here, we determined which of the three effectors (ExoS, ExoT, or ExoY) were required for bleb niche formation and intracellular replication. PAO1 strains with mutations in exoS, exoT, exoY, or combinations thereof were compared to wild-type and complemented strains. P. aeruginosa exoS mutants, but not exoT or exoY mutants, lost the capacity for bleb niche formation and intracellular replication. Complementation with exoS rescued both phenotypes, either in the background of an exoS mutant or in a mutant lacking all three known effectors. Complementation with activity domain mutants of exoS revealed that the ADP-ribosyltransferase (ADP-r) activity of ExoS, but not the Rho-GAP activity nor the membrane localization domain (MLD) of ExoS, was required to elicit this phenotype. Membrane bleb niches that contained P. aeruginosa also bound annexin V-enhanced green fluorescent protein (EGFP), a marker of early apoptosis. These data show that P. aeruginosa bleb niches and intracellular survival involve ExoS ADP-r activity and implicate a connection between bleb niche formation and the known role(s) of ExoS-mediated apoptosis and/or Rab GTPase inactivation.
Collapse
|
214
|
Bradbury RS, Roddam LF, Merritt A, Reid DW, Champion AC. Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa. J Med Microbiol 2010; 59:881-890. [PMID: 20430902 DOI: 10.1099/jmm.0.018283-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The virulence factor genotypes of a large cohort of clinical, nosocomial environment and community environment isolates (184 in total) of Pseudomonas aeruginosa from Tasmania, Australia, were determined by PCR. The virulence factor genotype of the majority of isolates was highly conserved, with the exception of the virulence gene exoU, which demonstrated low prevalence (33 isolates; 18 %) in the population tested. Isolates collected from the environment of intensive therapy wards (intensive care unit and neurosurgical units) of the major tertiary referral hospital in Tasmania were found to be more likely (P<0.001 and P<0.05, respectively) to possess the virulence factor gene exoU than all other isolates. Adult cystic fibrosis isolates showed a decreased prevalence of the exoU gene (P<0.01) when compared to other clinical isolates (P<0.01), which may indicate decreased virulence. No specific virulence factor genotype was associated with the cystic fibrosis epidemic strains tested.
Collapse
Affiliation(s)
- R. S. Bradbury
- CF Research Group, Menzies Research Institute, School of Medicine, University of Tasmania, Collins Street, Hobart, TAS, Australia
- Microbiology Department, Royal Hobart Hospital, Liverpool Street, Hobart, TAS, Australia
| | - L. F. Roddam
- CF Research Group, Menzies Research Institute, School of Medicine, University of Tasmania, Collins Street, Hobart, TAS, Australia
| | - A. Merritt
- Burkholderia Research Group, PathWest Laboratory Medicine, Hospital Avenue, Nedlands, WA, Australia
| | - D. W. Reid
- Department of Respiratory Medicine, Royal Hobart Hospital, Liverpool Street, Hobart, TAS, Australia
- CF Research Group, Menzies Research Institute, School of Medicine, University of Tasmania, Collins Street, Hobart, TAS, Australia
| | - A. C. Champion
- CF Research Group, Menzies Research Institute, School of Medicine, University of Tasmania, Collins Street, Hobart, TAS, Australia
| |
Collapse
|
215
|
Jing X, Jaw J, Robinson HH, Schubot FD. Crystal structure and oligomeric state of the RetS signaling kinase sensory domain. Proteins 2010; 78:1631-40. [PMID: 20112417 DOI: 10.1002/prot.22679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa may cause both acute and chronic-persistent infections in predisposed individuals. Acute infections require the presence of a functional type III secretion system (T3SS), whereas chronic P. aeruginosa infections are characterized by the formation of drug-resistant biofilms. The T3SS and biofilm formation are reciprocally regulated by the signaling kinases LadS, RetS, and GacS. RetS downregulates biofilm formation and upregulates expression of the T3SS through a unique mechanism. RetS forms a heterodimeric complex with GacS and thus prevents GacS autophosphorylation and downstream signaling. The signals that regulate RetS are not known but RetS possesses a distinctive periplasmic sensor domain that is believed to serve as receptor for the regulatory ligand. We have determined the crystal structure of the RetS sensory domain at 2.0 A resolution. The structure closely resembles those of carbohydrate binding modules of other proteins, suggesting that the elusive ligands are likely carbohydrate moieties. In addition to the conserved beta-sandwich structure, the sensory domain features two alpha helices which create a unique surface topology. Protein-protein crosslinking and fluorescence energy transfer experiments also revealed that the sensory domain dimerizes with a dissociation constant of K(d) = 580 +/- 50 nM, a result with interesting implications for our understanding of the underlying signaling mechanism.
Collapse
Affiliation(s)
- Xing Jing
- Department of Biological Sciences, Life Science I, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA
| | | | | | | |
Collapse
|
216
|
Distribution of the type III effector proteins-encoding genes among nosocomial Pseudomonas aeruginosa isolates from Bulgaria. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0079-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
217
|
Role of the membrane localization domain of the Pseudomonas aeruginosa effector protein ExoU in cytotoxicity. Infect Immun 2010; 78:3346-57. [PMID: 20479080 DOI: 10.1128/iai.00223-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ExoU is a potent effector protein that causes rapid host cell death upon injection by the type III secretion system of Pseudomonas aeruginosa. The N-terminal half of ExoU contains a patatin-like phospholipase A(2) (PLA(2)) domain that requires the host cell cofactor superoxide dismutase 1 (SOD1) for activation, while the C-terminal 137 amino acids constitute a membrane localization domain (MLD). Previous studies had utilized insertion and deletion mutations to show that portions of the MLD are required for membrane localization and catalytic activity. Here we further characterize this domain by identifying six residues that are essential for ExoU activity. Substitutions at each of these positions resulted in abrogation of membrane targeting, decreased ExoU-mediated cytotoxicity, and reductions in PLA(2) activity. Likewise, each of the six MLD residues was necessary for full virulence in cell culture and murine models of acute pneumonia. Purified recombinant ExoU proteins with substitutions at five of the six residues were not activated by SOD1, suggesting that these five residues are critical for activation by this cofactor. Interestingly, these same five ExoU proteins were partially activated by HeLa cell extracts, suggesting that a host cell cofactor other than SOD1 is capable of modulating the activity of ExoU. These findings add to our understanding of the role of the MLD in ExoU-mediated virulence.
Collapse
|
218
|
Shouldice SR, Heras B, Jarrott R, Sharma P, Scanlon MJ, Martin JL. Characterization of the DsbA oxidative folding catalyst from Pseudomonas aeruginosa reveals a highly oxidizing protein that binds small molecules. Antioxid Redox Signal 2010; 12:921-31. [PMID: 19788398 DOI: 10.1089/ars.2009.2736] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial antibiotic resistance is an emerging global crisis, and treatment of multidrug-resistant gram-negative infections, particularly those caused by the opportunistic human pathogen Pseudomonas aeruginosa, remains a major challenge. This problem is compounded by a lack of new antibiotics in the development pipeline: only two new classes have been developed since the 1960s, and both are indicated for multidrug-resistant gram-positive infections. A promising new approach to combat antibiotic resistance is by targeting bacterial virulence, rather than bacterial viability. The bacterial periplasmic protein DsbA represents a central point for antivirulence intervention because its oxidoreductase activity is essential for the folding and function of almost all exported virulence factors. Here we describe the three-dimensional structure of this DsbA target from P. aeruginosa, and we establish for the first time that a member of this enzyme family is capable of binding small molecules. We also describe biochemical assays that validate the redox activity of PaDsbA. Together, the structural and functional characterization of PaDsbA provides the basis for future studies aimed at designing a new class of antivirulence compounds to combat antibiotic-resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Stephen R Shouldice
- The University of Queensland, Institute for Molecular Bioscience , Division of Chemistry and Structural Biology, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
219
|
Electrostatic interactions play a minor role in the binding of ExoS to 14-3-3 proteins. Biochem J 2010; 427:217-24. [PMID: 20144150 DOI: 10.1042/bj20100043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
14-3-3 proteins belong to a family of conserved molecules expressed in all eukaryotic cells that play an important role in a multitude of signalling pathways. 14-3-3 proteins bind either to phosphoserine/phosphothreonine residues or to sequence-specific non-phosphorylated motifs in more than 200 interaction partners [Pozuelo Rubio, Geraghty, Wong, Wood, Campbell, Morrice and Mackintosh (2004) Biochem. J. 379, 395-408]. These interactions result in cell-cycle regulation, apoptosis, stress responses, cell metabolism and malignant transformation. One example of a phosphorylation-independent interaction is the binding of 14-3-3 to ExoS (exoenzyme S), a bacterial ADP-ribosyltransferase toxin of Pseudomonas aeruginosa. In the present study, we have utilized additional biochemical and infection analyses to define further the structural basis of the interaction between ExoS and 14-3-3. An ExoS leucine-substitution mutant dramatically reduced the interaction potential with 14-3-3 suggesting that Leu422, Leu423, Leu426 and Leu428 of ExoS are important for its interaction with 14-3-3, its enzymatic activity and cytotoxicity. However, ExoS substitution mutants of residues that interact with 14-3-3 through an electrostatic interaction, such as Ser416, His418, Asp424 and Asp427, showed no reduction in their interaction potential with 14-3-3. These ExoS substitution mutants were also as aggressive as wild-type ExoS at inducing cell death and to modify endogenous ExoS target within the cell. In conclusion, electrostatic interaction between ExoS and 14-3-3 via polar residues (Ser416, His418, Asp424 and Asp427) appears to be of secondary importance. Thus the interaction between the 'roof' of the groove of 14-3-3 and ExoS relies more on hydrophobic interaction forces, which probably contributes to induce cell death after ExoS infection and activation.
Collapse
|
220
|
EXOU-INDUCED VASCULAR HYPERPERMEABILITY AND PLATELET ACTIVATION IN THE COURSE OF EXPERIMENTAL PSEUDOMONAS AERUGINOSA PNEUMOSEPSIS. Shock 2010; 33:315-21. [DOI: 10.1097/shk.0b013e3181b2b0f4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
221
|
Lavenir R, Sanroma M, Gibert S, Crouzet O, Laurent F, Kravtsoff J, Mazoyer MA, Cournoyer B. Spatio-temporal analysis of infra-specific genetic variations among a Pseudomonas aeruginosa water network hospital population: invasion and selection of clonal complexes. J Appl Microbiol 2010; 105:1491-501. [PMID: 19146487 DOI: 10.1111/j.1365-2672.2008.03907.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To investigate infra-specific spatio-temporal dynamics of a hospital water network Pseudomonas aeruginosa population. To infer the origin of water network isolates and assess their potential health hazard. METHODS AND RESULTS 168 P. aeruginosa strains were isolated from tap waters and swabs of tap nozzle aerators of a hospital unit, over 2 years, and from rectal swabs and nosocomial infections. Genetic diversity among this collection was assessed by pulsed field gel electrophoresis of SpeI restricted genomic DNA. Virulence gene sets, biofilm properties, and hypochlorite resistance were analysed. Exactly 68% of the water samples and 74% of the tap nozzle aerators harboured P. aeruginosa. The strains were divided into 22 clonal lineages, with one dominant clone shown to have been involved in a nosocomial infection. CONCLUSIONS An important turnover among the P. aeruginosa hospital population was observed. Some clonal lineages were found to persist, spread in the unit, and diversify into clonal complexes. Rectal carriage appeared an important source of contamination of the water network. SIGNIFICANCE AND IMPACT OF THE STUDY High P. aeruginosa infra-specific population diversity suggested a broad ability in colonizing water networks but persistence analysis indicated a strong selection leading to the emergence of dominant clones.
Collapse
|
222
|
Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect Immun 2010; 78:1447-56. [PMID: 20100855 DOI: 10.1128/iai.01134-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ExoU, a cytotoxin translocated into host cells via the type III secretion system of Pseudomonas aeruginosa, is associated with increased mortality and disease severity. We previously showed that impairment of recruited phagocytic cells allowed survival of ExoU-secreting P. aeruginosa in the lung. Here we analyzed types of cells injected with ExoU in vivo using translational fusions of ExoU with a beta-lactamase reporter (ExoU-Bla). Cells injected with ExoU-Bla were detectable in vitro but not in vivo, presumably due to the rapid cytotoxicity induced by the toxin. Therefore, we used a noncytotoxic ExoU variant, designated ExoU(S142A)-Bla, to analyze injection in vivo. We determined that phagocytic cells in the lung were frequently injected with ExoU(S142A). Early during infection, resident macrophages constituted the majority of cells into which ExoU was injected, but neutrophils and monocytes became the predominant types of cells into which ExoU was injected upon recruitment into the lung. We observed a modest preference for injection into neutrophils over injection into other cell types, but in general the repertoire of injected immune cells reflected the relative abundance of these cells in the lung. Our results indicate that phagocytic cells in the lung are injected with ExoU and support the hypothesis that ExoU-mediated impairment of phagocytes has a role in the pathogenesis of pneumonia caused by P. aeruginosa.
Collapse
|
223
|
Murray TS, Ledizet M, Kazmierczak BI. Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J Med Microbiol 2010; 59:511-520. [PMID: 20093376 DOI: 10.1099/jmm.0.017715-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen capable of acutely infecting or persistently colonizing susceptible hosts. P. aeruginosa colonizes surfaces in vitro by either biofilm formation or swarming motility. The choice of behaviour is influenced by the physical properties of the surface and specific nutrient availability, and subject to regulatory networks that also govern type 2 and type 3 protein secretion. Biofilm formation by clinical isolates has been well-studied. However, the swarming behaviour of human isolates has not been extensively analysed. We collected isolates from 237 hospitalized patients without cystic fibrosis and analysed motility and secretion phenotypes of each isolate. We found biofilm formation and swarming to be negatively associated, while swarming was positively associated with the secretion of both proteases and type 3 exoenzymes. Most isolates were capable of type 3 secretion and biofilm formation, even though these traits are considered to favour distinct modes of pathogenesis. Our data demonstrate that while clinical isolates display diverse motility, biofilm and secretion phenotypes, many of the predicted relationships between swarming motility and other phenotypes observed in laboratory strains also hold true for bacteria isolated from human patients.
Collapse
Affiliation(s)
- Thomas S Murray
- Department of Pediatrics and Laboratory Medicine (Infectious Diseases and Clinical Microbiology), Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Barbara I Kazmierczak
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Medicine (Infectious Diseases), Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
224
|
Pirnay JP, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, Deschaght P, Vaneechoutte M, Jennes S, Pitt T, De Vos D. Pseudomonas aeruginosa population structure revisited. PLoS One 2009; 4:e7740. [PMID: 19936230 PMCID: PMC2777410 DOI: 10.1371/journal.pone.0007740] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/26/2009] [Indexed: 12/25/2022] Open
Abstract
At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P. aeruginosa "core lineage" and typically exhibited the exoS(+)/exoU(-) genotype and group B oprL and oprD alleles. This is to our knowledge the first report of an MST analysis conducted on a polyphasic data set.
Collapse
Affiliation(s)
- Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Burn Centre, Queen Astrid Military Hospital, Brussel, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa uses a complex type III secretion apparatus to inject effector proteins into host cells. The configuration of this secretion machinery, the activities of the proteins that are injected by it and the consequences of this process for infection are now being elucidated. This Review summarizes our current knowledge of P. aeruginosa type III secretion, including the secretion and translocation machinery, the regulation of this machinery, and the associated chaperones and effector proteins. The features of this interesting secretion system have important implications for the pathogenesis of P. aeruginosa infections and for other type III secretion systems.
Collapse
Affiliation(s)
- Alan R Hauser
- Departments of MicrobiologyImmunology and Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| |
Collapse
|
226
|
Proteomic identification of OprL as a seromarker for initial diagnosis of Pseudomonas aeruginosa infection of patients with cystic fibrosis. J Clin Microbiol 2009; 47:2483-8. [PMID: 19553571 DOI: 10.1128/jcm.02182-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of new immunogenic antigens that diagnose initial Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF) alone or as an adjunct to microbiology is needed. In the present study, a proteomic analysis was performed to obtain a global assessment of the host immune response during the initial P. aeruginosa infection of patients with CF. Matrix-assisted laser desorption ionization-time of flight mass spectrometry was used to identify outer membrane protein L (OprL), a non-type III secretion system (TTSS) protein, as an early immunogenic protein during the initial P. aeruginosa infection of patients with CF. Longitudinal Western blot analysis of sera from 12 of 14 patients with CF detected antibodies to OprL during the initial P. aeruginosa infection. In addition, also detected were antibodies to ExoS, ExoU, or ExoS and ExoU, the latter indicating sequential P. aeruginosa infections during initial infections. Detection of serum reactivity to OprL, along with proteins of the TTSS, and in conjunction with microbiology may diagnose initial P. aeruginosa infections in patients with CF.
Collapse
|
227
|
Abstract
OBJECTIVE Although most reviews of Pseudomonas aeruginosa therapeutics focus on antibiotics currently in use or in the pipeline, we review evolving translational strategies aimed at using virulence factor antagonists as adjunctive therapies. DATA SOURCE Current literature regarding P. aeruginosa virulence determinants and approaches that target them, with an emphasis on type III secretion, quorum-sensing, biofilms, and flagella. DATA EXTRACTION AND SYNTHESIS P. aeruginosa remains one of the most important pathogens in nosocomial infections, with high associated morbidity and mortality. Its predilection to develop resistance to antibiotics and expression of multiple virulence factors contributes to the frequent ineffectiveness of current therapies. Among the many P. aeruginosa virulence determinants that impact infections, type III secretion, quorum sensing, biofilm formation, and flagella have been the focus on much recent investigation. Here we review how increased understanding of these important bacterial structures and processes has enabled the development of novel approaches to inhibit each. These promising translational strategies may lead to the development of adjunctive therapies capable of improving outcomes. CONCLUSIONS Adjuvant therapies directed against virulence factors have the potential to improve outcomes in P. aeruginosa infections.
Collapse
|
228
|
Goldstein AL, Goldstein AL. From lab to bedside: emerging clinical applications of thymosin α1. Expert Opin Biol Ther 2009; 9:593-608. [DOI: 10.1517/14712590902911412] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Allan L Goldstein
- The George Washington University School of Medicine and Health Sciences, Department of Biochemistry & Molecular Biology, 2300 I St., N.W., Room 438, Washington, DC, USA ;
| | - Adam L Goldstein
- Medical School for International Health at Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
229
|
Garey KW, Vo QP, Larocco MT, Gentry LO, Tam VH. Prevalence of type III secretion protein exoenzymes and antimicrobial susceptibility patterns from bloodstream isolates of patients with Pseudomonas aeruginosa bacteremia. J Chemother 2009; 20:714-20. [PMID: 19129069 DOI: 10.1179/joc.2008.20.6.714] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The purpose of this study was to determine the prevalence of two type III secretion effector proteins, exoU and exoS from bloodstream isolates of hospitalized patients with Pseudomonas aeruginosa (PSA) bacteremia, to characterize antimicrobial susceptibility patterns, and to compare mortality rates. PSA bloodstream isolates and antibiotic susceptibility profiles were collected from a university-affiliated hospital. ExoS and exoU genes were detected by polymerase chain reaction. Hospital mortality was assessed by medical chart review. 119 of 122 (97.5%) PSA bloodstream isolates contained either the exoS or exoU genes. ExoS was the most prevalent (n=86; 70.5%) followed by exoU (n=31; 25.4%), both genes (n=2; 1.6%) or neither gene (n=3; 2.5%). Isolates containing the exoU gene were significantly more likely to be resistant to cefepime, ceftazidime, piperacillintazobactam, carbapenems, fluoroquinolones, and gentamicin (p<0.05 for all). Mortality was high in patients with PSA bacteremia and did not differ among patients infected with the exoS isolates (n=37; 43%) or exoU isolates (n=11; 35%). One of two type III secretion effector proteins were almost universally present in PSA bloodstream isolates. Isolates containing the exoU gene were more likely to be resistant to multiple antibiotics.
Collapse
Affiliation(s)
- K W Garey
- Department of Clinical Sciences and Administration, University of Houston College of Pharmacy Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
230
|
Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 2009; 12:61-6. [PMID: 19168385 DOI: 10.1016/j.mib.2008.12.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/13/2008] [Accepted: 12/17/2008] [Indexed: 12/19/2022]
Abstract
Pseudomonas aeruginosa uses a type III secretion system (T3SS) to directly inject four known effectors into host cells. ExoU is a potent cytotoxin with phospholipase A2 activity that causes rapid necrotic death in many cell types. The biological function of ExoY, an adenylate cyclase, remains incompletely defined. ExoS and ExoT are closely related bifunctional proteins with N-terminal GTPase activating protein (GAP) activity toward Rho family proteins and C-terminal ADP ribosylase (ADPRT) activity toward distinct and non-overlapping set of targets. While almost no strain encodes or secretes all four effectors, the commonly found combinations of ExoU/ExoT or ExoS/ExoT provides redundant and failsafe mechanisms to cause mucosal barrier injury, inhibit many arms of the innate immune response, and prevent wound repair.
Collapse
|
231
|
Jain M, Bar-Meir M, McColley S, Cullina J, Potter E, Powers C, Prickett M, Seshadri R, Jovanovic B, Petrocheilou A, King JD, Hauser AR. Evolution of Pseudomonas aeruginosa type III secretion in cystic fibrosis: a paradigm of chronic infection. Transl Res 2008; 152:257-64. [PMID: 19059160 PMCID: PMC2628760 DOI: 10.1016/j.trsl.2008.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/24/2008] [Accepted: 10/06/2008] [Indexed: 11/26/2022]
Abstract
Pseudomonas aeruginosa (PA) from acute and chronic (eg, cystic fibrosis (CF)) infections differ in several respects, but they can worsen prognosis in each context. Factors that facilitate conversion from an acute to chronic phenotype are poorly understood. T3 secretion proteins are virulence factors associated with poorer outcomes in acute infections, but little is known about their role in CF. We wished to characterize T3 secretion in CF PA isolates and to examine its role in clinical outcomes. A total of 114 CF subjects were divided into 3 cohorts: 1st infected individuals, CI children, and adults. Serial respiratory cultures were analyzed for T3 secretion. Serial spirometry and exacerbation data were collected prospectively. In 1st infection, 45.2% +/- 9.1% of PA isolates secreted T3 proteins compared with 29.1% +/- 4.2% and 11.5% +/- 3.0% in CI children and CI adults, respectively (P < 0.001). An inverse correlation was observed between duration of PA infection and percent T3 positive isolates (r = -0.32, P < 0.001). Overall, no association was observed between T3 secretion and pulmonary outcomes, but in the subgroup of subjects who had at least 1 T3 positive organism, T3 secretion was inversely correlated with the forced expiratory volume in 1 s (FEV(1)) decline (r = -0.35, P = 0.02). In 1st infection, 82% of cultures grew either all or no T3-positive organisms. In these patients, T3 secretion was associated with a greater risk of subsequent PA isolation (P < 0.001). In CF, PA T3 secretion decreases with residence time in lung, may predict FEV(1) decline in patients who have detectable T3 organisms, and may facilitate persistence after 1st infection.
Collapse
Affiliation(s)
- Manu Jain
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Bebbington C, Yarranton G. Antibodies for the treatment of bacterial infections: current experience and future prospects. Curr Opin Biotechnol 2008; 19:613-9. [DOI: 10.1016/j.copbio.2008.10.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 01/10/2023]
|
233
|
Comparison of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens- and non-contact lens-related keratitis. J Med Microbiol 2008; 57:1539-1546. [DOI: 10.1099/jmm.0.2008/003723-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is one of the common pathogens associated with corneal infection, particularly in contact lens-related keratitis events. The pathogenesis of P. aeruginosa in keratitis is attributed to the production of virulence factors under certain environmental conditions. The aim of this study was to determine differences in the virulence factors of P. aeruginosa isolated from contact lens- and non-contact lens-related keratitis. Associations were assessed between type III secretion toxin-encoding genes, protease profiles, biofilm formation, serotypes and antibiotic-resistance patterns among 27 non-contact lens- and 28 contact lens-related P. aeruginosa keratitis isolates from Australia. Strains with a exoS
+/exoU
− genotype and a type I protease profile predominated in the non-contact lens-related keratitis isolates, whereas the exoS
−/exoU
+ and a type II protease profile was associated with contact lens-related isolates (P<0.05). A strong biofilm formation phenotype was found to be associated with the possession of the exoU gene, and serotypes E, I and C. The exoS gene was strongly associated with serotypes G, A and B, while exoU was associated with serotypes E and C. Six out of fifty-five (11 %) clinical isolates were non-susceptible (intermediate-resistant or resistant) to ofloxacin and moxifloxacin. All resistant isolates were from non-contact lens-related keratitis. The results suggest that P. aeruginosa isolates from different infection origins may have different characteristics. A better understanding of these differences may lead to further development of evidence-based clinical guidelines for the management of keratitis.
Collapse
|
234
|
Shen DK, Filopon D, Chaker H, Boullanger S, Derouazi M, Polack B, Toussaint B. High-cell-density regulation of the Pseudomonas aeruginosa type III secretion system: implications for tryptophan catabolites. MICROBIOLOGY-SGM 2008; 154:2195-2208. [PMID: 18667553 DOI: 10.1099/mic.0.2007/013680-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Pseudomonas aeruginosa type III secretion system (T3SS) is known to be a very important virulence factor in acute human infections, but it is less important in maintaining chronic infections in which T3SS genes are downregulated. In vitro, the activation of T3SS expression involves a positive activating loop that acts on the transcriptional regulator ExsA. We have observed that in vivo T3SS expression is cell density-dependent in a manner that does not need known quorum-sensing (QS) signals. In addition, stationary-phase culture supernatants added to exponential-phase growing strains can inhibit T3SS expression. The analysis of transposon insertion mutants showed that the production of such T3SS-inhibiting signals might depend on tryptophan synthase and hence tryptophan, which is the precursor of signalling molecules such as indole-3-acetic acid (IAA), kynurenine and Pseudomonas quinolone signal (PQS). Commercially available tryptophan-derived molecules were tested for their role in the regulation of T3SS expression. At millimolar concentrations, IAA, 1-naphthalacetic acid (NAA) and 3-hydroxykynurenine inhibited T3SS expression. Inactivation of the tryptophan dioxygenase-encoding kynA gene resulted in a decrease in the T3SS-inhibiting activity of supernatants. These observations suggest that tryptophan catabolites are involved in the downregulation of T3SS expression in the transition from a low- to a high-cell-density state.
Collapse
Affiliation(s)
- Da-Kang Shen
- Department of Microbiology and Parasitology, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, PR China.,GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Didier Filopon
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Hichem Chaker
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Stephanie Boullanger
- Service Spectrométrie de Masse, CERMAV-CNRS, BP53, 38041 Grenoble cedex 9, France
| | - Madiha Derouazi
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Benoit Polack
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| | - Bertrand Toussaint
- GREPI, TIMC-IMAG, UMR5525 CNRS/Université Joseph Fourier Faculté de Médecine, Bat. J Roget, Domaine de la Merci, 38700 La Tronche, France
| |
Collapse
|
235
|
Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol 2008; 190:7130-40. [PMID: 18757543 DOI: 10.1128/jb.00785-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Most known virulence determinants of Pseudomonas aeruginosa are remarkably conserved in this bacterium's core genome, yet individual strains differ significantly in virulence. One explanation for this discrepancy is that pathogenicity islands, regions of DNA found in some strains but not in others, contribute to the overall virulence of P. aeruginosa. Here we employed a strategy in which the virulence of a panel of P. aeruginosa isolates was tested in mouse and plant models of disease, and a highly virulent isolate, PSE9, was chosen for comparison by subtractive hybridization to a less virulent strain, PAO1. The resulting subtractive hybridization sequences were used as tags to identify genomic islands found in PSE9 but absent in PAO1. One 99-kb island, designated P. aeruginosa genomic island 5 (PAGI-5), was a hybrid of the known P. aeruginosa island PAPI-1 and novel sequences. Whereas the PAPI-1-like sequences were found in most tested isolates, the novel sequences were found only in the most virulent isolates. Deletional analysis confirmed that some of these novel sequences contributed to the highly virulent phenotype of PSE9. These results indicate that targeting highly virulent strains of P. aeruginosa may be a useful strategy for identifying pathogenicity islands and novel virulence determinants.
Collapse
|
236
|
Deng Q, Barbieri JT. Modulation of host cell endocytosis by the type III cytotoxin, Pseudomonas ExoS. Traffic 2008; 9:1948-57. [PMID: 18778330 DOI: 10.1111/j.1600-0854.2008.00808.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa ExoS is a bifunctional type III cytotoxin that possesses Rho GTPase-activating protein (RhoGAP) and ADP-ribosyltransferase (ADPr) activities. In the current study, the RhoGAP and ADPr activities of ExoS were tested for the ability to disrupt mammalian epithelial cell physiology. RhoGAP, but not ADPr, inhibited internalization/phagocytosis of bacteria, while ADPr, but not RhoGAP, inhibited vesicle trafficking, both general fluid-phase uptake and EGF-activated EGF receptor (EGFR) degradation. In ADPr-intoxicated cells, upon EGF activation, EGFR co-localized with clathrin-coated vesicles (CCV), which did not mature into Rab5-positive early endosomes. Constitutively, active Rab5 recruited EGFR from CCV to early endosomes. Consistent with the inhibition of Rab5 function by ADPr, several Rab proteins including Rab5 and 9, but not Rab4, were ADP ribosylated by ExoS. Thus, the two enzymatic activities of ExoS have different effects on epithelial cells with RhoGAP inhibiting bacterial internalization and ADPr interfering with CCV maturation. The ability ADPr to inhibit mammalian vesicle trafficking provides a new mechanism for bacterial toxin-mediated virulence.
Collapse
Affiliation(s)
- Qing Deng
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
237
|
Willcox MDP, Zhu H, Conibear TCR, Hume EBH, Givskov M, Kjelleberg S, Rice SA. Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. Microbiology (Reading) 2008; 154:2184-2194. [DOI: 10.1099/mic.0.2008/019281-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- M. D. P. Willcox
- Vision CRC, Sydney, Australia
- Institute for Eye Research, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - H. Zhu
- Vision CRC, Sydney, Australia
- Institute for Eye Research, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - T. C. R. Conibear
- Vision CRC, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - E. B. H. Hume
- Vision CRC, Sydney, Australia
- Institute for Eye Research, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - M. Givskov
- BioScience and Technology, The Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - S. Kjelleberg
- School of Biotechnology and Biomolecular Sciences and The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - S. A. Rice
- School of Biotechnology and Biomolecular Sciences and The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
238
|
Abstract
Hospital-acquired bacterial pneumonia is a common and serious complication of modern medical care. Many aspects of such infections remain unclear, including the mechanisms by which invading pathogens resist clearance by the innate immune response and the tendency of the infections to be polymicrobial. Here, we used a mouse model of infection to show that Pseudomonas aeruginosa, a leading cause of hospital-acquired pneumonia, interferes with the ability of recruited phagocytic cells to eradicate bacteria from the lung. Early in infection, phagocytic cells, predominantly neutrophils, are recruited to the lungs but are incapacitated when they enter the airways by the P. aeruginosa toxin ExoU. The resulting paucity of functioning phagocytes allows P. aeruginosa to persist within the lungs and results in local immunosuppression that facilitates superinfection with less-pathogenic bacteria. Together, our results provide explanations for previous reports linking ExoU-secreting P. aeruginosa with more severe pulmonary infections and for the tendency of hospital-acquired pneumonia to be polymicrobial.
Collapse
|
239
|
Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME JOURNAL 2008; 2:843-52. [PMID: 18480848 DOI: 10.1038/ismej.2008.47] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacteria and protozoa coexist in a wide range of biofilm communities of natural, technical and medical importance. Generally, this interaction is characterized by the extensive grazing activity of protozoa on bacterial prey populations. We hypothesized that the close spatial coexistence in biofilms should allow opportunistic pathogenic bacteria to utilize their eukaryote-targeting arsenal to attack and exploit protozoan host cells. Studying cocultures of the environmental pathogen Pseudomonas aeruginosa and the amoeba Acanthamoeba castellanii, we found that P. aeruginosa rapidly colonized and killed biofilm-associated amoebae by a quorum-sensing independent mechanism. Analysis of the amoeba-induced transcriptome indicated the involvement of the P. aeruginosa type III secretion system (T3SS) in this interaction. A comparison of mutants with specific defects in the T3SS demonstrated the use of the secretion apparatus and the effectors ExoU, ExoS and ExoT in the killing process, of which ExoU had the greatest impact. T3SS-mediated virulence towards A. castellanii was found to be controlled by the global regulators RpoN and RpoS and through modulation of cAMP and alginate biosynthesis. Our findings suggest that conserved virulence pathways and specifically the T3SS play a central role in bacteria-protozoa interactions in biofilms and may be instrumental for the environmental persistence and evolution of opportunistic bacterial pathogens.
Collapse
|
240
|
Angus AA, Lee AA, Augustin DK, Lee EJ, Evans DJ, Fleiszig SMJ. Pseudomonas aeruginosa induces membrane blebs in epithelial cells, which are utilized as a niche for intracellular replication and motility. Infect Immun 2008; 76:1992-2001. [PMID: 18316391 PMCID: PMC2346716 DOI: 10.1128/iai.01221-07] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 10/10/2007] [Accepted: 02/14/2008] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is known to invade epithelial cells during infection and in vitro. However, little is known of bacterial or epithelial factors modulating P. aeruginosa intracellular survival or replication after invasion, except that it requires a complete lipopolysaccharide core. In this study, real-time video microscopy revealed that invasive P. aeruginosa isolates induced the formation of membrane blebs in multiple epithelial cell types and that these were then exploited for intracellular replication and rapid real-time motility. Further studies revealed that the type three secretion system (T3SS) of P. aeruginosa was required for blebbing. Mutants lacking either the entire T3SS or specific T3SS components were instead localized to intracellular perinuclear vacuoles. Most T3SS mutants that trafficked to perinuclear vacuoles gradually lost intracellular viability, and vacuoles containing those bacteria were labeled by the late endosomal marker lysosome-associated marker protein 3 (LAMP-3). Interestingly, mutants deficient only in the T3SS translocon structure survived and replicated within the vacuoles that did not label with LAMP-3. Taken together, these data suggest two novel roles of the P. aeruginosa T3SS in enabling bacterial intracellular survival: translocon-dependent formation of membrane blebs, which form a host cell niche for bacterial growth and motility, and effector-dependent bacterial survival and replication within intracellular perinuclear vacuoles.
Collapse
Affiliation(s)
- Annette A Angus
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
241
|
Development and experimental validation of a predictive threshold cycle equation for quantification of virulence and marker genes by high-throughput nanoliter-volume PCR on the OpenArray platform. Appl Environ Microbiol 2008; 74:3831-8. [PMID: 18424532 DOI: 10.1128/aem.02743-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Development of quantitative PCR (QPCR) assays typically requires extensive screening within and across a given species to ensure specific detection and lucid identification among various pathogenic and nonpathogenic strains and to generate standard curves. To minimize screening requirements, multiple virulence and marker genes (VMGs) were targeted simultaneously to enhance reliability, and a predictive threshold cycle (C(T)) equation was developed to calculate the number of starting copies based on an experimental C(T). The empirical equation was developed with Sybr green detection in nanoliter-volume QPCR chambers (OpenArray) and tested with 220 previously unvalidated primer pairs targeting 200 VMGs from 30 pathogens. A high correlation (R(2) = 0.816) was observed between the predicted and experimental C(T)s based on the organism's genome size, guanine and cytosine (GC) content, amplicon length, and stability of the primer's 3' end. The performance of the predictive C(T) equation was tested using 36 validation samples consisting of pathogenic organisms spiked into genomic DNA extracted from three environmental waters. In addition, the primer success rate was dependent on the GC content of the target organisms and primer sequences. Targeting multiple assays per organism and using the predictive C(T) equation are expected to reduce the extent of the validation necessary when developing QPCR arrays for a large number of pathogens or other targets.
Collapse
|
242
|
Sriramulu DD. Adaptive expression of foreign genes in the clonal variants of bacteria: from proteomics to clinical application. Proteomics 2008; 8:882-92. [PMID: 18297656 DOI: 10.1002/pmic.200700811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clonal variants of bacteria are able to colonize environmental niches and patients. The factors, that determine the interplay between the colonization of diverse habitats and adaptation, are acquired through horizontal gene transfer. Elucidation of mechanisms, which lead to the prevalence of dominant bacterial clones in patients and the environment, requires the knowledge of complex phenotypes. It was found in the genomes of most bacteria, that upon a conserved chromosomal backbone there were regions of plasticity achieved by insertions, deletions and rearrangements of genomic islands and islets as well as large chromosomal inversions. However, it had been shown that environmental and clinical isolates are indistinguishable in certain pathogenic and biodegradative properties. For example, clonal variants of Pseudomonas aeruginosa exhibit convergent phenotypes despite the presence of numerous DNA insertions in the genome. Apart from this feature, expression of a few genes from the acquired genetic material is important for niche-based adaptation of this organism. Protein expression patterns at the cellular and sub-cellular levels showed common virulence factors and novel drug targets among clonal variants of bacteria. This review will give a short overview on proteomics of different clonal variants of bacteria with respect to clinical applications.
Collapse
Affiliation(s)
- Dinesh D Sriramulu
- Division of Cell and Immune Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
243
|
Shafikhani SH, Morales C, Engel J. The Pseudomonas aeruginosa type III secreted toxin ExoT is necessary and sufficient to induce apoptosis in epithelial cells. Cell Microbiol 2008; 10:994-1007. [PMID: 18053004 PMCID: PMC10952005 DOI: 10.1111/j.1462-5822.2007.01102.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Type III secreted (T3SS) effectors are important virulence factors in acute infections caused by Pseudomonas aeruginosa. PA103, a well-studied human lung isolate, encodes and secretes two effectors, ExoU and ExoT. ExoU is a potent cytotoxin that causes necrotic cell death. In addition, PA103 can induce cell death in macrophages in an ExoU-independent but T3SS-dependent manner. We now demonstrate that ExoT is both necessary and sufficient to cause apoptosis in HeLa cells and that it activates the mitochondrial/cytochrome c-dependent apoptotic pathway. We further show that ExoT induction of cell death is primarily dependent on its ADP ribosyltransferase domain activity. Our data also indicate that the T3SS apparatus can cause necrotic cell death, which is effectively blocked by ExoT, suggesting that P. aeruginosa may have evolved strategies to prevent T3SS-induced necrosis.
Collapse
Affiliation(s)
- Sasha H. Shafikhani
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | - Christina Morales
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
244
|
Wong-Beringer A, Wiener-Kronish J, Lynch S, Flanagan J. Comparison of type III secretion system virulence among fluoroquinolone-susceptible and -resistant clinical isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 2008; 14:330-6. [DOI: 10.1111/j.1469-0691.2007.01939.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
245
|
Pielage JF, Powell KR, Kalman D, Engel JN. RNAi screen reveals an Abl kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization. PLoS Pathog 2008; 4:e1000031. [PMID: 18369477 PMCID: PMC2265438 DOI: 10.1371/journal.ppat.1000031] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 02/21/2008] [Indexed: 01/13/2023] Open
Abstract
Internalization of the pathogenic bacterium Pseudomonas aeruginosa by non-phagocytic cells is promoted by rearrangements of the actin cytoskeleton, but the host pathways usurped by this bacterium are not clearly understood. We used RNAi-mediated gene inactivation of ∼80 genes known to regulate the actin cytoskeleton in Drosophila S2 cells to identify host molecules essential for entry of P. aeruginosa. This work revealed Abl tyrosine kinase, the adaptor protein Crk, the small GTPases Rac1 and Cdc42, and p21-activated kinase as components of a host signaling pathway that leads to internalization of P. aeruginosa. Using a variety of complementary approaches, we validated the role of this pathway in mammalian cells. Remarkably, ExoS and ExoT, type III secreted toxins of P. aeruginosa, target this pathway by interfering with GTPase function and, in the case of ExoT, by abrogating P. aeruginosa–induced Abl-dependent Crk phosphorylation. Altogether, this work reveals that P. aeruginosa utilizes the Abl pathway for entering host cells and reveals unexpected complexity by which the P. aeruginosa type III secretion system modulates this internalization pathway. Our results furthermore demonstrate the applicability of using RNAi screens to identify host signaling cascades usurped by microbial pathogens that may be potential targets for novel therapies directed against treatment of antibiotic-resistant infections. Mortality from Pseudomonas aeruginosa infections, one of the leading causes of hospital acquired infections, approaches 40%, and multiple drug resistant infections are common and increasing. Internalization of P. aeruginosa by the host cell appears to play a fundamental role in the pathogenesis of this opportunistic bacterium, but the host cell factors involved in this process are incompletely understood. We used a targeted RNAi screen in Drosophila S2 cells to identify a subset of regulators of the host actin cytoskeleton that contribute to bacterial entry and confirmed their involvement in infection of mammalian cells. We found that P. aeruginosa can modulate this internalization pathway in a complex manner by injecting the bacterial toxins ExoS and ExoT into the host cell via its type III secretion system. The identified host cell molecules may serve as targets for novel drugs to treat infections resistant to conventional antibiotics and may be applicable to a wide range of pathogens.
Collapse
Affiliation(s)
- Julia F. Pielage
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Kimberly R. Powell
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Joanne N. Engel
- Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
246
|
The type III toxins of Pseudomonas aeruginosa disrupt epithelial barrier function. J Bacteriol 2007; 190:2814-21. [PMID: 18165298 DOI: 10.1128/jb.01567-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The type III secreted toxins of Pseudomonas aeruginosa are important virulence factors associated with clinically important infection. However, their effects on bacterial invasion across mucosal surfaces have not been well characterized. One of the most commonly expressed toxins, ExoS, has two domains that are predicted to affect cytoskeletal integrity, including a GTPase-activating protein (GAP) domain, which targets Rho, a major regulator of actin polymerization; and an ADP-ribosylating domain that affects the ERM proteins, which link the plasma membrane to the actin cytoskeleton. The activities of these toxins, and ExoS specifically, on the permeability properties of polarized airway epithelial cells with intact tight junctions were examined. Strains expressing type III toxins altered the distribution of the tight junction proteins ZO-1 and occludin and were able to transmigrate across polarized airway epithelial monolayers, in contrast to DeltaSTY mutants. These effects on epithelial permeability were associated with the ADP-ribosylating domain of ExoS, as bacteria expressing plasmids lacking expression of the ExoS GAP activity nonetheless increased the permeation of fluorescent dextrans, as well as bacteria, across polarized airway epithelial cells. Treatment of epithelial cells with cytochalasin D depolymerized actin filaments and increased permeation across the monolayers but did not eliminate the differential effects of wild-type and toxin-negative mutants on the epithelial cells, suggesting that additional epithelial targets are involved. Confocal imaging studies demonstrated that ZO-1, occludin, and ezrin undergo substantial redistribution in human airway cells intoxicated by ExoS, -T, and -Y. These studies support the hypothesis that type III toxins enhance P. aeruginosa's invasive capabilities by interacting with multiple eukaryotic cytoskeletal components.
Collapse
|
247
|
Diverse type III secretion phenotypes among Pseudomonas aeruginosa strains upon infection of murine macrophage-like and endothelial cell lines. Microb Pathog 2007; 44:448-58. [PMID: 18221854 DOI: 10.1016/j.micpath.2007.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/19/2007] [Accepted: 11/29/2007] [Indexed: 11/23/2022]
Abstract
The interaction of over 100 isolates of Pseudomonas aeruginosa representing different genotypes of type III secretion system (TTSS) with RAW 264.7 murine macrophage-like cells and pulmonary microvascular endothelial (PME) cells were studied. The strains were isolated from clinical materials and from stool specimens of healthy carriers and were analyzed by pulsed field gel electrophoresis (PFGE) to characterize their heterogeneity. In order to differentiate TTSS genotypes of P. aeruginosa isolates, the distribution of the following genes: exoU, exoS, pcrV, exoT, and exoY was assessed by multiplex and duplex PCR assays. The cytotoxicity and invasiveness of the P. aeruginosa isolates were determined. P. aeruginosa isolates showed a discrepancy in their ability to induce cytotoxicity and to invade mammalian cells. Up to four phenotypes among the isolates were observed and the most diverse interactions of the isolates were noticed with PME cells. The reduction of the viability of the cells, infected by P. aeruginosa isolates of the same clone, was associated with the ability of these strains to secrete the TTSS effectors: ExoU or ExoS. The results of this study also suggest that healthy people can be the carriers of cytotoxic strains of this dangerous pathogen.
Collapse
|
248
|
Zhou L, Wang J, Zhang LH. Modulation of bacterial Type III secretion system by a spermidine transporter dependent signaling pathway. PLoS One 2007; 2:e1291. [PMID: 18074016 PMCID: PMC2110884 DOI: 10.1371/journal.pone.0001291] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 11/06/2007] [Indexed: 11/18/2022] Open
Abstract
Background Many gram-negative bacterial pathogens employ Type III secretion systems (T3SS) to inject effector proteins into host cells in infectious processes. Methodology/Principal Findings By screening a transposon mutant library of P. aeruginosa, we found that mutation of spuDEFGH, which encode a major spermidine uptake system, abolished the expression of the exsCEBA operon that codes for key T3SS regulators under inducing conditions (low calcium). Whole genome microarray analysis revealed that inactivation of the spermidine uptake system significantly decreased the transcriptional expression of most, if not all, T3SS genes. Consistently, the spermidine uptake mutants showed decreased expression of the T3SS genes in responding to host cell extract and attenuated cytotoxicity. Furthermore, exogenous addition of spermidine to the wild type strain PAO1 enhanced the expression of exsCEBA and also the effector protein genes. Conclusion/Significance Cumulatively, these data have depicted a novel spermidine transporter-dependent signaling pathway, which appears to play an essential role in modulation of T3SS expression in P. aeruginosa.
Collapse
Affiliation(s)
- Lian Zhou
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Jing Wang
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Lian-Hui Zhang
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
249
|
ExoS controls the cell contact-mediated switch to effector secretion in Pseudomonas aeruginosa. J Bacteriol 2007; 190:2726-38. [PMID: 18039770 DOI: 10.1128/jb.01553-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Type III secretion is used by many gram-negative bacterial pathogens to directly deliver protein toxins (effectors) into targeted host cells. In all cases, secretion of effectors is triggered by host cell contact, although the mechanism is unclear. In Pseudomonas aeruginosa, expression of all type III secretion-related genes is up-regulated when secretion is triggered. We were able to visualize this process using a green fluorescent protein reporter system and to use it to monitor the ability of bacteria to trigger effector secretion on cell contact. Surprisingly, the action of one of the major type III secreted effectors, ExoS, prevented triggering of type III secretion by bacteria that subsequently attached to cells, suggesting that triggering of secretion is feedback regulated. Evidence is presented that translocation (secretion of effectors across the host cell plasma membrane) of ExoS is indeed self-regulated and that this inhibition of translocation can be achieved by either of its two enzymatic activities. The translocator proteins PopB, PopD, and PcrV are secreted via the type III secretion system and are required for pore formation and translocation of effectors across the host cell plasma membrane. Here we present data that secretion of translocators is in fact not controlled by calcium, implying that triggering of effector secretion on cell contact represents a switch in secretion specificity, rather than a triggering of secretion per se. The requirement for a host cell cofactor to control effector secretion may help explain the recently observed phenomenon of target cell specificity in both the Yersinia and P. aeruginosa type III secretion systems.
Collapse
|
250
|
Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R, Núñez G. Critical role for Ipaf inPseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 2007; 37:3030-9. [DOI: 10.1002/eji.200737532] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|