201
|
Mauger F, Deleuze JF. Technological advances in studying epigenetics biomarkers of prognostic potential for clinical research. PROGNOSTIC EPIGENETICS 2019:45-83. [DOI: 10.1016/b978-0-12-814259-2.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
202
|
Abstract
Programs of gene transcription are controlled by cis-acting DNA elements, including enhancers, silencers, and promoters. Local accessibility of chromatin has proven to be a highly informative structural feature for identifying such regulatory elements, which tend to be relatively open due to their interactions with proteins. Recently, ATAC-seq (assay for transposase-accessible chromatin using sequencing) has emerged as one of the most powerful approaches for genome-wide chromatin accessibility profiling. This method assesses DNA accessibility using hyperactive Tn5 transposase, which simultaneously cuts DNA and inserts sequencing adaptors, preferentially in regions of open chromatin. ATAC-seq is a relatively simple procedure which can be applied to only a few thousand cells. It is well-suited to developing embryos of sea urchins and other echinoderms, which are a prominent experimental model for understanding the genomic control of animal development. In this chapter, we present a protocol for applying ATAC-seq to embryonic cells of sea urchins.
Collapse
Affiliation(s)
- Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.
| |
Collapse
|
203
|
Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, Silva TC, Groeneveld C, Wong CK, Cho SW, Satpathy AT, Mumbach MR, Hoadley KA, Robertson AG, Sheffield NC, Felau I, Castro MAA, Berman BP, Staudt LM, Zenklusen JC, Laird PW, Curtis C, Greenleaf WJ, Chang HY. The chromatin accessibility landscape of primary human cancers. Science 2018; 362:362/6413/eaav1898. [PMID: 30361341 DOI: 10.1126/science.aav1898] [Citation(s) in RCA: 728] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022]
Abstract
We present the genome-wide chromatin accessibility profiles of 410 tumor samples spanning 23 cancer types from The Cancer Genome Atlas (TCGA). We identify 562,709 transposase-accessible DNA elements that substantially extend the compendium of known cis-regulatory elements. Integration of ATAC-seq (the assay for transposase-accessible chromatin using sequencing) with TCGA multi-omic data identifies a large number of putative distal enhancers that distinguish molecular subtypes of cancers, uncovers specific driving transcription factors via protein-DNA footprints, and nominates long-range gene-regulatory interactions in cancer. These data reveal genetic risk loci of cancer predisposition as active DNA regulatory elements in cancer, identify gene-regulatory interactions underlying cancer immune evasion, and pinpoint noncoding mutations that drive enhancer activation and may affect patient survival. These results suggest a systematic approach to understanding the noncoding genome in cancer to advance diagnosis and therapy.
Collapse
|
204
|
Rhie SK, Schreiner S, Witt H, Armoskus C, Lay FD, Camarena A, Spitsyna VN, Guo Y, Berman BP, Evgrafov OV, Knowles JA, Farnham PJ. Using 3D epigenomic maps of primary olfactory neuronal cells from living individuals to understand gene regulation. SCIENCE ADVANCES 2018; 4:eaav8550. [PMID: 30555922 PMCID: PMC6292713 DOI: 10.1126/sciadv.aav8550] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/16/2018] [Indexed: 05/20/2023]
Abstract
As part of PsychENCODE, we developed a three-dimensional (3D) epigenomic map of primary cultured neuronal cells derived from olfactory neuroepithelium (CNON). We mapped topologically associating domains and high-resolution chromatin interactions using Hi-C and identified regulatory elements using chromatin immunoprecipitation and nucleosome positioning assays. Using epigenomic datasets from biopsies of 63 living individuals, we found that epigenetic marks at distal regulatory elements are more variable than marks at proximal regulatory elements. By integrating genotype and metadata, we identified enhancers that have different levels corresponding to differences in genetic variation, gender, smoking, and schizophrenia. Motif searches revealed that many CNON enhancers are bound by neuronal-related transcription factors. Last, we combined 3D epigenomic maps and gene expression profiles to predict enhancer-target gene interactions on a genome-wide scale. This study not only provides a framework for understanding individual epigenetic variation using a primary cell model system but also contributes valuable data resources for epigenomic studies of neuronal epithelium.
Collapse
Affiliation(s)
- Suhn K. Rhie
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon Schreiner
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heather Witt
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Armoskus
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fides D. Lay
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adrian Camarena
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Valeria N. Spitsyna
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu Guo
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin P. Berman
- Department of Biomedical Sciences, Bioinformatics and Computational Biology Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Oleg V. Evgrafov
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - James A. Knowles
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Peggy J. Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
205
|
Yu X, Buck MJ. Defining TP53 pioneering capabilities with competitive nucleosome binding assays. Genome Res 2018; 29:107-115. [PMID: 30409772 PMCID: PMC6314159 DOI: 10.1101/gr.234104.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
Accurate gene expression requires the targeting of transcription factors (TFs) to regulatory sequences often occluded within nucleosomes. The ability to target a TF binding site (TFBS) within a nucleosome has been the defining characteristic for a special class of TFs known as pioneer factors. Recent studies suggest TP53 functions as a pioneer factor that can target its TFBS within nucleosomes, but it remains unclear how TP53 binds to nucleosomal DNA. To comprehensively examine TP53 nucleosome binding, we competitively bound TP53 to multiple in vitro–formed nucleosomes containing a high- or low-affinity TP53 TFBS located at differing translational and rotational positions within the nucleosome. Stable TP53–nucleosome complexes were isolated and quantified using next-generation sequencing. Our results demonstrate TP53 binding is limited to nucleosome edges with significant binding inhibition occurring within 50 bp of the nucleosome dyad. Binding site affinity only affects TP53 binding for TFBSs located at the same nucleosomal positions; otherwise, nucleosome position takes precedence. Furthermore, TP53 has strong nonspecific nucleosome binding facilitating its interaction with chromatin. Our in vitro findings were confirmed by examining TP53-induced binding in a cell line model, showing induced binding at nucleosome edges flanked by a nucleosome-free region. Overall, our results suggest that the pioneering capabilities of TP53 are driven by nonspecific nucleosome binding with specific binding at nucleosome edges.
Collapse
Affiliation(s)
- Xinyang Yu
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14203, USA
| | - Michael J Buck
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14203, USA.,Department of Biomedical Informatics, State University of New York at Buffalo, Buffalo, New York 14203, USA
| |
Collapse
|
206
|
King HW, Fursova NA, Blackledge NP, Klose RJ. Polycomb repressive complex 1 shapes the nucleosome landscape but not accessibility at target genes. Genome Res 2018; 28:1494-1507. [PMID: 30154222 PMCID: PMC6169895 DOI: 10.1101/gr.237180.118] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
Polycomb group (PcG) proteins are transcriptional repressors that play important roles in regulating gene expression during animal development. In vitro experiments have shown that PcG protein complexes can compact chromatin to limit the activity of chromatin remodeling enzymes and access of the transcriptional machinery to DNA. In fitting with these ideas, gene promoters associated with PcG proteins have been reported to be less accessible than other gene promoters. However, it remains largely untested in vivo whether PcG proteins define chromatin accessibility or other chromatin features. To address this important question, we examine the chromatin accessibility and nucleosome landscape at PcG protein-bound promoters in mouse embryonic stem cells using the assay for transposase accessible chromatin (ATAC)-seq. Combined with genetic ablation strategies, we unexpectedly discover that although PcG protein-occupied gene promoters exhibit reduced accessibility, this does not rely on PcG proteins. Instead, the Polycomb repressive complex 1 (PRC1) appears to play a unique role in driving elevated nucleosome occupancy and decreased nucleosomal spacing in Polycomb chromatin domains. Our new genome-scale observations argue, in contrast to the prevailing view, that PcG proteins do not significantly affect chromatin accessibility and highlight an underappreciated complexity in the relationship between chromatin accessibility, the nucleosome landscape, and PcG-mediated transcriptional repression.
Collapse
Affiliation(s)
- Hamish W King
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Nadezda A Fursova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
207
|
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018; 24:556-576. [PMID: 29992283 PMCID: PMC6093373 DOI: 10.1093/humupd/dmy021] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modifications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human, the implications of which are only beginning to be explored. OBJECTIVE AND RATIONALE In this review, we summarise new low-cell molecular methods enabling the interrogation of epigenetic information in gametes and early embryos, the mechanistic insights these have provided, and contrast the findings in mouse and human. SEARCH METHODS Relevant studies were identified by PubMed search. OUTCOMES We discuss the levels of epigenetic regulation, from DNA modifications to chromatin organisation, during mouse gametogenesis, fertilisation and pre- and post-implantation development. The recently characterised features of the oocyte epigenome highlight its exceptionally unique regulatory landscape. The chromatin organisation and epigenetic landscape of both gametic genomes are rapidly reprogrammed after fertilisation. This extensive epigenetic remodelling is necessary for zygotic genome activation, but the mechanistic link remains unclear. While the vast majority of epigenetic information from the gametes is erased in pre-implantation development, new insights suggest that repressive histone modifications from the oocyte may mediate a novel mechanism of imprinting. To date, the characterisation of epigenetics in human development has been almost exclusively limited to DNA methylation profiling; these data reinforce that the global dynamics are conserved between mouse and human. However, as we look closer, it is becoming apparent that the mechanisms regulating these dynamics are distinct. These early findings emphasise the importance of investigations of fundamental epigenetic mechanisms in both mouse and humans. WIDER IMPLICATIONS Failures in epigenetic regulation have been implicated in human disease and infertility. With increasing maternal age and use of reproductive technologies in countries all over the world, it is becoming ever more important to understand the necessary processes required to establish a developmentally competent embryo. Furthermore, it is essential to evaluate the extent to which these epigenetic patterns are sensitive to such technologies and other adverse environmental exposures.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Hannah Demond
- Epigenetics programme, Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
208
|
Yeon A, You S, Kim M, Gupta A, Park MH, Weisenberger DJ, Liang G, Kim J. Rewiring of cisplatin-resistant bladder cancer cells through epigenetic regulation of genes involved in amino acid metabolism. Theranostics 2018; 8:4520-4534. [PMID: 30214636 PMCID: PMC6134931 DOI: 10.7150/thno.25130] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/23/2018] [Indexed: 12/26/2022] Open
Abstract
Alterations in DNA methylation are important epigenetic markers in bladder cancer (BC). These epigenome modifications may drive the mechanisms of aggressive chemo-resistant BC. Clinicopathological biomarkers that indicate chemotherapeutic resistance are critical for better assessing treatment strategies for individual patients. Thus, in this study, we aimed to determine whether DNA methylation of certain metabolic enzymes is significantly altered in cisplatin-resistant BC cells. Methods: To characterize CpG methylation and nucleosome accessibility in cisplatin-resistant BC cells, the Illumina Infinium HM450 DNA methylation assay was performed. Perturbed gene expression was found to be associated with cisplatin resistance, and the biological roles of spermidine/spermine N1-acetyltransferase (SAT1) and argininosuccinate synthase 1 (ASS1) were further studied using qRT-PCR analysis and various cell biology assays, including western blot. Results:ASS1 and SAT1, genes for amino acid and polyamine metabolism catalysts, respectively, were found to be vastly hypermethylated, resulting in greatly downregulated expression. ASS1 expression is of particular interest because prior studies have demonstrated its potential association with BC stage and recurrence. In regard to chemoresistance, we found that aberrant expression or induced stimulation of SAT1 restored cisplatin sensitivity in the cell culture system. We also found that the addition of exogenous arginine deiminase through administration of ADI-PEG 20 (pegylated arginine deiminase) increased ASS1 expression and enhanced cisplatin's apoptotic effects. Conclusions: Our study demonstrates a novel mechanistic link between the epigenetic perturbation of SAT1 and ASS1 and cancer metabolism in cisplatin-resistant bladder cancer cells. These findings suggest potential utility of SAT1 and ASS1 as predictive biomarkers in re-sensitizing bladder cancer to chemotherapy and personalizing therapy.
Collapse
Affiliation(s)
- Austin Yeon
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Minhyung Kim
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amit Gupta
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Myung Hee Park
- National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD, USA
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jayoung Kim
- Departments of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California Los Angeles, CA, USA
- Department of Urology, Ga Cheon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
209
|
Cheng X, Hou Y, Nie Y, Zhang Y, Huang H, Liu H, Sun X. Nucleosome Positioning of Intronless Genes in the Human Genome. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1111-1121. [PMID: 26415210 DOI: 10.1109/tcbb.2015.2476811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nucleosomes, the basic units of chromatin, are involved in transcription regulation and DNA replication. Intronless genes, which constitute 3 percent of the human genome, differ from intron-containing genes in evolution and function. Our analysis reveals that nucleosome positioning shows a distinct pattern in intronless and intron-containing genes. The nucleosome occupancy upstream of transcription start sites of intronless genes is lower than that of intron-containing genes. In contrast, high occupancy and well positioned nucleosomes are observed along the gene body of intronless genes, which is perfectly consistent with the barrier nucleosome model. Intronless genes have a significantly lower expression level than intron-containing genes and most of them are not expressed in CD4+ T cell lines and GM12878 cell lines, which results from their tissue specificity. However, the highly expressed genes are at the same expression level between the two types of genes. The highly expressed intronless genes require a higher density of RNA Pol II in an elongating state to compensate for the lack of introns. Additionally, 5' and 3' nucleosome depleted regions of highly expressed intronless genes are deeper than those of highly expressed intron-containing genes.
Collapse
|
210
|
Li L, Guo F, Gao Y, Ren Y, Yuan P, Yan L, Li R, Lian Y, Li J, Hu B, Gao J, Wen L, Tang F, Qiao J. Single-cell multi-omics sequencing of human early embryos. Nat Cell Biol 2018; 20:847-858. [DOI: 10.1038/s41556-018-0123-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/16/2018] [Indexed: 11/09/2022]
|
211
|
Lecluze E, Jégou B, Rolland AD, Chalmel F. New transcriptomic tools to understand testis development and functions. Mol Cell Endocrinol 2018; 468:47-59. [PMID: 29501799 DOI: 10.1016/j.mce.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
The testis plays a central role in the male reproductive system - secreting several hormones including male steroids and producing male gametes. A complex and coordinated molecular program is required for the proper differentiation of testicular cell types and maintenance of their functions in adulthood. The testicular transcriptome displays the highest levels of complexity and specificity across all tissues in a wide range of species. Many studies have used high-throughput sequencing technologies to define the molecular dynamics and regulatory networks in the testis as well as to identify novel genes or gene isoforms expressed in this organ. This review intends to highlight the complementarity of these transcriptomic studies and to show how the use of different sequencing protocols contribute to improve our global understanding of testicular biology.
Collapse
Affiliation(s)
- Estelle Lecluze
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France.
| |
Collapse
|
212
|
Dong X, Chen J, Li T, Li E, Zhang X, Zhang M, Song W, Zhao H, Lai J. Parent-of-origin-dependent nucleosome organization correlates with genomic imprinting in maize. Genome Res 2018; 28:1020-1028. [PMID: 29903724 PMCID: PMC6028132 DOI: 10.1101/gr.230201.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Genomic imprinting refers to allele-specific expression of genes depending on their parental origin. Nucleosomes, the fundamental units of chromatin, play a critical role in gene transcriptional regulation. However, it remains unknown whether differential nucleosome organization is related to the allele-specific expression of imprinted genes. Here, we generated a genome-wide map of allele-specific nucleosome occupancy in maize endosperm and presented an integrated analysis of its relationship with parent-of-origin-dependent gene expression and DNA methylation. We found that ∼2.3% of nucleosomes showed significant parental bias in maize endosperm. The parent-of-origin-dependent nucleosomes mostly exist as single isolated nucleosomes. Parent-of-origin-dependent nucleosomes were significantly associated with the allele-specific expression of imprinted genes, with nucleosomes positioned preferentially in the promoter of nonexpressed alleles of imprinted genes. Furthermore, we found that most of the paternal specifically positioned nucleosomes (pat-nucleosomes) were associated with parent-of-origin-dependent differential methylated regions, suggesting a functional link between the maternal demethylation and the occurrence of pat-nucleosome. Maternal specifically positioned nucleosomes (mat-nucleosomes) were independent of allele-specific DNA methylation but seem to be associated with allele-specific histone modification. Our study provides the first genome-wide map of allele-specific nucleosome occupancy in plants and suggests a mechanistic connection between chromatin organization and genomic imprinting.
Collapse
Affiliation(s)
- Xiaomei Dong
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tong Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - En Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mei Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.,Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
213
|
Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci 2018; 19:E1578. [PMID: 29799486 PMCID: PMC6032166 DOI: 10.3390/ijms19061578] [Citation(s) in RCA: 642] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana.
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Daniella Munro
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Palesa Seele
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Private Bag, Alice X1314, South Africa.
| | - Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), University of Cape Town Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
214
|
Abstract
Single-cell multiomics technologies typically measure multiple types of molecule from the same individual cell, enabling more profound biological insight than can be inferred by analyzing each molecular layer from separate cells. These single-cell multiomics technologies can reveal cellular heterogeneity at multiple molecular layers within a population of cells and reveal how this variation is coupled or uncoupled between the captured omic layers. The data sets generated by these techniques have the potential to enable a deeper understanding of the key biological processes and mechanisms driving cellular heterogeneity and how they are linked with normal development and aging as well as disease etiology. This review details both established and novel single-cell mono- and multiomics technologies and considers their limitations, applications, and likely future developments.
Collapse
Affiliation(s)
- Lia Chappell
- Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom; , ,
| | | | - Thierry Voet
- Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom; , , .,Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium;
| |
Collapse
|
215
|
Griffiths JA, Scialdone A, Marioni JC. Using single-cell genomics to understand developmental processes and cell fate decisions. Mol Syst Biol 2018; 14:e8046. [PMID: 29661792 PMCID: PMC5900446 DOI: 10.15252/msb.20178046] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/20/2017] [Accepted: 01/19/2018] [Indexed: 12/20/2022] Open
Abstract
High-throughput -omics techniques have revolutionised biology, allowing for thorough and unbiased characterisation of the molecular states of biological systems. However, cellular decision-making is inherently a unicellular process to which "bulk" -omics techniques are poorly suited, as they capture ensemble averages of cell states. Recently developed single-cell methods bridge this gap, allowing high-throughput molecular surveys of individual cells. In this review, we cover core concepts of analysis of single-cell gene expression data and highlight areas of developmental biology where single-cell techniques have made important contributions. These include understanding of cell-to-cell heterogeneity, the tracing of differentiation pathways, quantification of gene expression from specific alleles, and the future directions of cell lineage tracing and spatial gene expression analysis.
Collapse
Affiliation(s)
| | - Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, München, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, München, Germany
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
216
|
Jacob F, Alam S, Konantz M, Liang CY, Kohler RS, Everest-Dass AV, Huang YL, Rimmer N, Fedier A, Schötzau A, Lopez MN, Packer NH, Lengerke C, Heinzelmann-Schwarz V. Transition of Mesenchymal and Epithelial Cancer Cells Depends on α1-4 Galactosyltransferase-Mediated Glycosphingolipids. Cancer Res 2018; 78:2952-2965. [DOI: 10.1158/0008-5472.can-17-2223] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/13/2017] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
|
217
|
|
218
|
Lo PK, Zhou Q. Emerging techniques in single-cell epigenomics and their applications to cancer research. JOURNAL OF CLINICAL GENOMICS 2018; 1. [PMID: 30079405 DOI: 10.4172/jcg.1000103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenomics encompasses studies of the chemical modifications of genomic DNA and associated histones, interactions between genomic DNA sequences and proteins, the dynamics of the chromosomal conformation, the functional relationships between these epigenetic events, and the regulatory impacts of these epigenetic events on gene expression in cells. In comparison to current techniques that are only capable of characterizing average epigenomic features across bulk cell ensembles, single-cell epigenomic methodologies are emerging as powerful new techniques to study cellular plasticity and heterogeneity, as seen in stem cells and cancer. Here we summarize available techniques for studies of single-cell epigenomics, review their current applications to cancer research, and discuss future possibilities. This review also highlights that the full potential of single-cell epigenetic studies will be comprehended through integrating the multi-omics information of genomics, epigenomics and transcriptomics.
Collapse
Affiliation(s)
- Pang-Kuo Lo
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Qun Zhou
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
219
|
Rhie SK, Yao L, Luo Z, Witt H, Schreiner S, Guo Y, Perez AA, Farnham PJ. ZFX acts as a transcriptional activator in multiple types of human tumors by binding downstream from transcription start sites at the majority of CpG island promoters. Genome Res 2018; 28:310-320. [PMID: 29429977 PMCID: PMC5848610 DOI: 10.1101/gr.228809.117] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/26/2018] [Indexed: 12/29/2022]
Abstract
High expression of the transcription factor ZFX is correlated with proliferation, tumorigenesis, and patient survival in multiple types of human cancers. However, the mechanism by which ZFX influences transcriptional regulation has not been determined. We performed ChIP-seq in four cancer cell lines (representing kidney, colon, prostate, and breast cancers) to identify ZFX binding sites throughout the human genome. We identified roughly 9000 ZFX binding sites and found that most of the sites are in CpG island promoters. Moreover, genes with promoters bound by ZFX are expressed at higher levels than genes with promoters not bound by ZFX. To determine if ZFX contributes to regulation of the promoters to which it is bound, we performed RNA-seq analysis after knockdown of ZFX by siRNA in prostate and breast cancer cells. Many genes with promoters bound by ZFX were down-regulated upon ZFX knockdown, supporting the hypothesis that ZFX acts as a transcriptional activator. Surprisingly, ZFX binds at +240 bp downstream from the TSS of the responsive promoters. Using Nucleosome Occupancy and Methylome Sequencing (NOMe-seq), we show that ZFX binds between the open chromatin region at the TSS and the first downstream nucleosome, suggesting that ZFX may play a critical role in promoter architecture. We have also shown that a closely related zinc finger protein ZNF711 has a similar binding pattern at CpG island promoters, but ZNF711 may play a subordinate role to ZFX. This functional characterization of ZFX provides important new insights into transcription, chromatin structure, and the regulation of the cancer transcriptome.
Collapse
Affiliation(s)
- Suhn Kyong Rhie
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Lijun Yao
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Zhifei Luo
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Heather Witt
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Shannon Schreiner
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Yu Guo
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Andrew A Perez
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
220
|
Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, Alda-Catalinas C, Krueger F, Sanguinetti G, Kelsey G, Marioni JC, Stegle O, Reik W. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun 2018; 9:781. [PMID: 29472610 PMCID: PMC5823944 DOI: 10.1038/s41467-018-03149-4] [Citation(s) in RCA: 410] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/23/2018] [Indexed: 12/29/2022] Open
Abstract
Parallel single-cell sequencing protocols represent powerful methods for investigating regulatory relationships, including epigenome-transcriptome interactions. Here, we report a single-cell method for parallel chromatin accessibility, DNA methylation and transcriptome profiling. scNMT-seq (single-cell nucleosome, methylation and transcription sequencing) uses a GpC methyltransferase to label open chromatin followed by bisulfite and RNA sequencing. We validate scNMT-seq by applying it to differentiating mouse embryonic stem cells, finding links between all three molecular layers and revealing dynamic coupling between epigenomic layers during differentiation.
Collapse
Affiliation(s)
- Stephen J Clark
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
| | - Ricard Argelaguet
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | | | - Thomas M Stubbs
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Heather J Lee
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Scotland, EH8 9AB, UK
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK.
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
221
|
Tirado-Magallanes R, Rebbani K, Lim R, Pradhan S, Benoukraf T. Whole genome DNA methylation: beyond genes silencing. Oncotarget 2018; 8:5629-5637. [PMID: 27895318 PMCID: PMC5354935 DOI: 10.18632/oncotarget.13562] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology.
Collapse
Affiliation(s)
- Roberto Tirado-Magallanes
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore, Singapore.,Computational Systems Biology Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), INSERM, Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
| | - Khadija Rebbani
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore, Singapore
| | - Ricky Lim
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore, Singapore
| | | | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore, Singapore
| |
Collapse
|
222
|
DeNizio JE, Schutsky EK, Berrios KN, Liu MY, Kohli RM. Harnessing natural DNA modifying activities for editing of the genome and epigenome. Curr Opin Chem Biol 2018; 45:10-17. [PMID: 29452938 DOI: 10.1016/j.cbpa.2018.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/12/2018] [Accepted: 01/28/2018] [Indexed: 12/27/2022]
Abstract
The introduction of site-specific DNA modifications to the genome or epigenome presents great opportunities for manipulating biological systems. Such changes are now possible through the combination of DNA-modifying enzymes with targeting modules, including dCas9, that can localize the enzymes to specific sites. In this review, we take a DNA modifying enzyme-centric view of recent advances. We highlight the variety of natural DNA-modifying enzymes-including DNA methyltransferases, oxygenases, deaminases, and glycosylases-that can be used for targeted editing and discuss how insights into the structure and function of these enzymes has further expanded editing potential by introducing enzyme variants with altered activities or by improving spatiotemporal control of modifications.
Collapse
Affiliation(s)
- Jamie E DeNizio
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily K Schutsky
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiara N Berrios
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Yun Liu
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
223
|
Kohler RS, Anugraham M, López MN, Xiao C, Schoetzau A, Hettich T, Schlotterbeck G, Fedier A, Jacob F, Heinzelmann-Schwarz V. Epigenetic activation of MGAT3 and corresponding bisecting GlcNAc shortens the survival of cancer patients. Oncotarget 2018; 7:51674-51686. [PMID: 27429195 PMCID: PMC5239506 DOI: 10.18632/oncotarget.10543] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/26/2016] [Indexed: 12/21/2022] Open
Abstract
Bisecting GlcNAc on N-glycoproteins is described in E-cadherin-, EGF-, Wnt- and integrin- cancer-associated signaling pathways. However, the mechanisms regulating bisecting GlcNAc expression are not clear. Bisecting GlcNAc is attached to N-glycans through beta 1-4 N-acetylglucosaminyl transferase III (MGAT3), which is encoded by two exons flanked by high-density CpG islands. Despite a recently described correlation of MGAT3 and bisecting GlcNAc in ovarian cancer cells, it remains unknown whether DNA methylation is causative for the presence of bisecting GlcNAc. Here, we narrow down the regulatory genomic region and show that reconstitution of MGAT3 expression with 5-Aza coincides with reduced DNA methylation at the MGAT3 transcription start site. The presence of bisecting GlcNAc on released N-glycans was detected by mass spectrometry (LC-ESI-qTOF-MS/MS) in serous ovarian cancer cells upon DNA methyltransferase inhibition. The regulatory impact of DNA methylation on MGAT3 was further evaluated in 18 TCGA cancer types (n = 6118 samples) and the results indicate an improved overall survival in patients with reduced MGAT3 expression, thereby identifying long-term survivors of high-grade serous ovarian cancers (HGSOC). Epigenetic activation of MGAT3 was also confirmed in basal-like breast cancers sharing similar molecular and genetic features with HGSOC. These results provide novel insights into the epigenetic regulation of MGAT3/bisecting GlcNAc and demonstrate the importance of N-glycosylation in cancer progression.
Collapse
Affiliation(s)
- Reto S Kohler
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Merrina Anugraham
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mónica Núñez López
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Christina Xiao
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andreas Schoetzau
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Timm Hettich
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Goetz Schlotterbeck
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - André Fedier
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Glyco-Oncology, Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Hospital for Women, Department of Gynecology and Gynecological Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
224
|
Ren J, Hathaway NA, Crabtree GR, Muegge K. Tethering of Lsh at the Oct4 locus promotes gene repression associated with epigenetic changes. Epigenetics 2018; 13:173-181. [PMID: 28621576 PMCID: PMC5873361 DOI: 10.1080/15592294.2017.1338234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/25/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022] Open
Abstract
Lsh is a chromatin remodeling factor that regulates DNA methylation and chromatin function in mammals. The dynamics of these chromatin changes and whether they are directly controlled by Lsh remain unclear. To understand the molecular mechanisms of Lsh chromatin controlled regulation of gene expression, we established a tethering system that recruits a Gal4-Lsh fusion protein to an engineered Oct4 locus through Gal4 binding sites in murine embryonic stem (ES) cells. We examined the molecular epigenetic events induced by Lsh binding including: histone modification, DNA methylation and chromatin accessibility to determine nucleosome occupancy before and after embryonic stem cell differentiation. Our results indicate that Lsh assists gene repression upon binding to the Oct4 promoter region. Furthermore, we detected less chromatin accessibility and reduced active histone modifications at the tethered site in undifferentiated ES, while GFP reporter gene expression and DNA methylation patterns remained unchanged at this stage. Upon differentiation, association of Lsh promotes transcriptional repression of the reporter gene accompanied by the increase of repressive histone marks and a gain of DNA methylation at distal and proximal Oct4 enhancer sites. Taken together, this approach allowed us to examine Lsh mediated epigenetic regulation as a dynamic process and revealed chromatin accessibility changes as the primary consequence of Lsh function.
Collapse
Affiliation(s)
- Jianke Ren
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Nathaniel A. Hathaway
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Gerald R. Crabtree
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Howard Hughes Medical Institute, CA, USA
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
225
|
Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schübeler D, Vinson C, Taipale J. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 2018; 356:356/6337/eaaj2239. [PMID: 28473536 DOI: 10.1126/science.aaj2239] [Citation(s) in RCA: 784] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/09/2017] [Indexed: 12/17/2022]
Abstract
The majority of CpG dinucleotides in the human genome are methylated at cytosine bases. However, active gene regulatory elements are generally hypomethylated relative to their flanking regions, and the binding of some transcription factors (TFs) is diminished by methylation of their target sequences. By analysis of 542 human TFs with methylation-sensitive SELEX (systematic evolution of ligands by exponential enrichment), we found that there are also many TFs that prefer CpG-methylated sequences. Most of these are in the extended homeodomain family. Structural analysis showed that homeodomain specificity for methylcytosine depends on direct hydrophobic interactions with the methylcytosine 5-methyl group. This study provides a systematic examination of the effect of an epigenetic DNA modification on human TF binding specificity and reveals that many developmentally important proteins display preference for mCpG-containing sequences.
Collapse
Affiliation(s)
- Yimeng Yin
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Ekaterina Morgunova
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Arttu Jolma
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Eevi Kaasinen
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Biswajyoti Sahu
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Syed Khund-Sayeed
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Room 3128, Building 37, Bethesda, MD 20892, USA
| | - Pratyush K Das
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Teemu Kivioja
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Kashyap Dave
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Fan Zhong
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Kazuhiro R Nitta
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Minna Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Alexander Popov
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Paul A Ginno
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Silvia Domcke
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland.,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Jian Yan
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Dirk Schübeler
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland.,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Room 3128, Building 37, Bethesda, MD 20892, USA
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden. .,Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
226
|
Lövkvist C, Sneppen K, Haerter JO. Exploring the Link between Nucleosome Occupancy and DNA Methylation. Front Genet 2018; 8:232. [PMID: 29379519 PMCID: PMC5771128 DOI: 10.3389/fgene.2017.00232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022] Open
Abstract
Near promoters, both nucleosomes and CpG sites form characteristic spatial patterns. Previously, nucleosome depleted regions were observed upstream of transcription start sites and nucleosome occupancy was reported to correlate both with CpG density and the level of CpG methylation. Several studies imply a causal link where CpG methylation might induce nucleosome formation, whereas others argue the opposite, i.e., that nucleosome occupancy might influence CpG methylation. Correlations are indeed evident between nucleosomes, CpG density and CpG methylation—at least near promoter sites. It is however less established whether there is an immediate causal relation between nucleosome occupancy and the presence of CpG sites—or if nucleosome occupancy could be influenced by other factors. In this work, we test for such causality in human genomes by analyzing the three quantities both near and away from promoter sites. For data from the human genome we compare promoter regions with given CpG densities with genomic regions without promoters but of similar CpG densities. We find the observed correlation between nucleosome occupancy and CpG density, respectively CpG methylation, to be specific to promoter regions. In other regions along the genome nucleosome occupancy is statistically independent of the positioning of CpGs or their methylation levels. Anti-correlation between CpG density and methylation level is however similarly strong in both regions. On promoters, nucleosome occupancy is more strongly affected by the level of gene expression than CpG density or CpG methylation—calling into question any direct causal relation between nucleosome occupancy and CpG organization. Rather, our results suggest that for organisms with cytosine methylation nucleosome occupancy might be primarily linked to gene expression, with no strong impact on methylation.
Collapse
Affiliation(s)
- Cecilia Lövkvist
- Center for Models of Life, Niels Bohr Institue, University of Copenhagen, Copenhagen, Denmark
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institue, University of Copenhagen, Copenhagen, Denmark
| | - Jan O Haerter
- Center for Models of Life, Niels Bohr Institue, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
227
|
Neben CL, Tuzon CT, Mao X, Lay FD, Merrill AE. FGFR2 mutations in bent bone dysplasia syndrome activate nucleolar stress and perturb cell fate determination. Hum Mol Genet 2018; 26:3253-3270. [PMID: 28595297 DOI: 10.1093/hmg/ddx209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
Fibroblast Growth Factor (FGF) signaling promotes self-renewal in progenitor cells by encouraging proliferation and inhibiting cellular senescence. Yet, these beneficial effects can be hijacked by disease-causing mutations in FGF receptor (FGFR) during embryogenesis. By studying dominant FGFR2 mutations that are germline in bent bone dysplasia syndrome (BBDS), we reveal a mechanistic connection between FGFR2, ribosome biogenesis, and cellular stress that links cell fate determination to disease pathology. We previously showed that FGFR2 mutations in BBDS, which amplify nucleolar targeting of FGFR2, activate ribosomal DNA (rDNA) transcription and delay differentiation in osteoprogenitor cells and patient-derived bone. Here we find that the BBDS mutations augment the ability of FGFR2 to recruit histone-remodeling factors that epigenetically activate transcriptionally silent rDNA. Nucleolar morphology is controlled by chromatin structure, and the high levels of euchromatic rDNA induced by the BBDS mutations direct nucleolar disorganization, alter ribosome biogenesis, and activate the Rpl11-Mdm2-p53 nucleolar stress response pathway. Inhibition of p53 in cells expressing the FGFR2 mutations in BBDS rescues delayed osteoblast differentiation, suggesting that p53 activation is an essential pathogenic factor in, and potential therapeutic target for, BBDS. This work establishes rDNA as developmentally regulated loci that receive direct input from FGF signaling to balance self-renewal and cell fate determination.
Collapse
Affiliation(s)
- Cynthia L Neben
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Creighton T Tuzon
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaojing Mao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fides D Lay
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry.,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
228
|
Abstract
Various methodologies are available to interrogate specific components of epigenetic mechanisms such as DNA methylation or nucleosome occupancy at both the locus-specific and the genome-wide level. It has become increasingly clear, however, that comprehension of the functional interactions between epigenetic mechanisms is critical for understanding how cellular transcription programs are regulated or deregulated during normal and disease development. The Nucleosome Occupancy and Methylome sequencing (NOMe-seq) assay allows us to directly measure the relationship between DNA methylation and nucleosome occupancy by taking advantage of the methyltransferase M.CviPI, which methylates unprotected GpC dinucleotides to create a footprint of chromatin accessibility. This assay generates dual nucleosome occupancy and DNA methylation information at a single-DNA molecule resolution using as little as 200,000 cells and in as short as 15 min reaction time. DNA methylation levels and nucleosome occupancy status of genomic regions of interest can be subsequently interrogated by cloning PCR-amplified bisulfite DNA and sequencing individual clones. Alternatively, NOMe-seq can be combined with next-generation sequencing in order to generate an integrated global map of DNA methylation and nucleosome occupancy, which allows for comprehensive examination as to how these epigenetic components correlate with each other.
Collapse
Affiliation(s)
- Fides D Lay
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Program in Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Peter A Jones
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, USA.
| |
Collapse
|
229
|
Rhie SK, Schreiner S, Farnham PJ. Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq). Methods Mol Biol 2018; 1766:209-229. [PMID: 29605855 DOI: 10.1007/978-1-4939-7768-0_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
NOMe-seq (nucleosome occupancy and methylome sequencing) identifies nucleosome-depleted regions that correspond to promoters, enhancers, and insulators. The NOMe-seq method is based on the treatment of chromatin with the M.CviPI methyltransferase, which methylates GpC dinucleotides that are not protected by nucleosomes or other proteins that are tightly bound to the chromatin (GpCm does not occur in the human genome and therefore there is no endogenous background of GpCm). Following bisulfite treatment of the M.CviPI-methylated chromatin (which converts unmethylated Cs to Ts and thus allows the distinction of GpC from GpCm) and subsequent genomic sequencing, nucleosome-depleted regions can be ascertained on a genome-wide scale. The bisulfite treatment also allows the distinction of CpG from CmpG (most endogenous methylation occurs at CpG dinucleotides) and thus the endogenous methylation status of the genome can also be obtained in the same sequencing reaction. Importantly, open chromatin is expected to have high levels of GpCm but low levels of CmpG; thus, each of the two separate methylation analyses serve as independent (but opposite) measures which provide matching chromatin designations for each regulatory element.NOMe-seq has advantages over ChIP-seq for identification of regulatory elements because it is not reliant upon knowing the exact modifications on the surrounding nucleosomes. Also, NOMe-seq has advantages over DHS (DNase hypersensitive site)-seq, FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements)-seq, and ATAC (Assay for Transposase-Accessible Chromatin)-seq because it also gives positioning information for several nucleosomes on either side of each open regulatory element. Here, we provide a detailed protocol for NOMe-seq that begins with the isolation of chromatin, followed by methylation of GpCs with M.CviPI and treatment with bisulfite, and ending with the creation of next generation sequencing libraries. We also include sequencing QC analysis metrics and bioinformatics steps that can be used to identify nucleosome-depleted regions throughout the genome.
Collapse
Affiliation(s)
- Suhn Kyong Rhie
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon Schreiner
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
230
|
Xu Q, Xie W. Epigenome in Early Mammalian Development: Inheritance, Reprogramming and Establishment. Trends Cell Biol 2017; 28:237-253. [PMID: 29217127 DOI: 10.1016/j.tcb.2017.10.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/17/2023]
Abstract
Drastic epigenetic reprogramming takes place during preimplantation development, leading to the conversion of terminally differentiated gametes to a totipotent embryo. Deficiencies in remodeling of the epigenomes can cause severe developmental defects, including embryonic lethality. However, how chromatin modifications and chromatin organization are reprogrammed upon fertilization in mammals has long remained elusive. Here, we review recent progress in understanding how the epigenome is dynamically regulated during early mammalian development. The latest studies, including many from genome-wide perspectives, have revealed unusual principles of reprogramming for histone modifications, chromatin accessibility, and 3D chromatin architecture. These advances have shed light on the regulatory network controlling the earliest development and maternal-zygotic transition.
Collapse
Affiliation(s)
- Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
231
|
Nakato R, Shirahige K. Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation. Brief Bioinform 2017; 18:279-290. [PMID: 26979602 PMCID: PMC5444249 DOI: 10.1093/bib/bbw023] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis can detect protein/DNA-binding and histone-modification sites across an entire genome. Recent advances in sequencing technologies and analyses enable us to compare hundreds of samples simultaneously; such large-scale analysis has potential to reveal the high-dimensional interrelationship level for regulatory elements and annotate novel functional genomic regions de novo. Because many experimental considerations are relevant to the choice of a method in a ChIP-seq analysis, the overall design and quality management of the experiment are of critical importance. This review offers guiding principles of computation and sample preparation for ChIP-seq analyses, highlighting the validity and limitations of the state-of-the-art procedures at each step. We also discuss the latest challenges of single-cell analysis that will encourage a new era in this field.
Collapse
Affiliation(s)
- Ryuichiro Nakato
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
232
|
Lyons DB, Zilberman D. DDM1 and Lsh remodelers allow methylation of DNA wrapped in nucleosomes. eLife 2017; 6:e30674. [PMID: 29140247 PMCID: PMC5728721 DOI: 10.7554/elife.30674] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cytosine methylation regulates essential genome functions across eukaryotes, but the fundamental question of whether nucleosomal or naked DNA is the preferred substrate of plant and animal methyltransferases remains unresolved. Here, we show that genetic inactivation of a single DDM1/Lsh family nucleosome remodeler biases methylation toward inter-nucleosomal linker DNA in Arabidopsis thaliana and mouse. We find that DDM1 enables methylation of DNA bound to the nucleosome, suggesting that nucleosome-free DNA is the preferred substrate of eukaryotic methyltransferases in vivo. Furthermore, we show that simultaneous mutation of DDM1 and linker histone H1 in Arabidopsis reproduces the strong linker-specific methylation patterns of species that diverged from flowering plants and animals over a billion years ago. Our results indicate that in the absence of remodeling, nucleosomes are strong barriers to DNA methyltransferases. Linker-specific methylation can evolve simply by breaking the connection between nucleosome remodeling and DNA methylation.
Collapse
Affiliation(s)
- David B Lyons
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Daniel Zilberman
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUnited Kingdom
| |
Collapse
|
233
|
Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer. Nat Commun 2017; 8:1346. [PMID: 29116202 PMCID: PMC5676741 DOI: 10.1038/s41467-017-01393-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 09/14/2017] [Indexed: 11/10/2022] Open
Abstract
Acetylation of the histone variant H2A.Z (H2A.Zac) occurs at active promoters and is associated with oncogene activation in prostate cancer, but its role in enhancer function is still poorly understood. Here we show that H2A.Zac containing nucleosomes are commonly redistributed to neo-enhancers in cancer resulting in a concomitant gain of chromatin accessibility and ectopic gene expression. Notably incorporation of acetylated H2A.Z nucleosomes is a pre-requisite for activation of Androgen receptor (AR) associated enhancers. H2A.Zac nucleosome occupancy is rapidly remodeled to flank the AR sites to initiate the formation of nucleosome-free regions and the production of AR-enhancer RNAs upon androgen treatment. Remarkably higher levels of global H2A.Zac correlate with poorer prognosis. Altogether these data demonstrate the novel contribution of H2A.Zac in activation of newly formed enhancers in prostate cancer. Acetylation of the histone variant H2A.Z at gene promoters is associated with oncogene activation; however, it is unclear if such modification has a role in regulating the function of enhancers. Here the authors show that acetylated H2A.Z is redistributed at cancer neo-enhancers and regulates the activity of specific enhancers of cancer-related genes.
Collapse
|
234
|
Libault M, Pingault L, Zogli P, Schiefelbein J. Plant Systems Biology at the Single-Cell Level. TRENDS IN PLANT SCIENCE 2017; 22:949-960. [PMID: 28970001 DOI: 10.1016/j.tplants.2017.08.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 05/19/2023]
Abstract
Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system.
Collapse
Affiliation(s)
- Marc Libault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
| | - Lise Pingault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Prince Zogli
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
235
|
Choi SK, Pandiyan K, Eun JW, Yang X, Hong SH, Nam SW, Jones PA, Liang G, You JS. Epigenetic landscape change analysis during human EMT sheds light on a key EMT mediator TRIM29. Oncotarget 2017; 8:98322-98335. [PMID: 29228692 PMCID: PMC5716732 DOI: 10.18632/oncotarget.21681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a key trans-differentiation process, which plays a critical role in physiology and pathology. Although gene expression changes in EMT have been scrutinized, study of epigenome is in its infancy. To understand epigenetic changes during TWIST-driven EMT, we used the AcceSssIble assay to study DNA methylation and chromatin accessibility in human mammary epithelial cells (HMECs). The DNA methylation changes were found to have functional significance in EMT - i.e. methylated genes were enriched for E-box motifs that can be recognized by TWIST, at the promoters suggesting a potential targeting phenomenon, whereas the demethylated regions were enriched for pro-metastatic genes, supporting the role of EMT in metastasis. TWIST-induced EMT triggers alterations in chromatin accessibility both independent of and dependent on DNA methylation changes, primarily resulting in closed chromatin conformation. By overlapping the genes, whose chromatin structure is changed during early EMT and a known "core EMT signature", we identified 18 driver candidate genes during EMT, 14 upregulated and 4 downregulated genes with corresponding chromatin structure changes. Among 18 genes, we focused on TRIM29 as a novel marker of EMT. Although loss of TRIM29 is insufficient to suppress CDH, it is enough to induce CDH2 and VIM. Gene functional annotation analysis shows the involvement of TRIM29 in epidermal development, cell differentiation and cell migration. Taken together, our results provide a robust snapshot of chromatin state during human EMT and identify TRIM29 as a core mediator of EMT.
Collapse
Affiliation(s)
- Sung Kyung Choi
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Korea
| | - Kurinji Pandiyan
- Departments of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jung Woo Eun
- Department of Pathology, College of Medicine, The Catholic University, Seoul, Korea
| | - Xiaojing Yang
- Departments of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Seong Hwi Hong
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University, Seoul, Korea
| | | | - Gangning Liang
- Departments of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Korea.,Research Institute of Medical Science, KonKuk University School of Medicine, Seoul, Korea
| |
Collapse
|
236
|
Cook A, Mieczkowski J, Tolstorukov MY. Single-Assay Profiling of Nucleosome Occupancy and Chromatin Accessibility. ACTA ACUST UNITED AC 2017; 120:21.34.1-21.34.18. [PMID: 28967996 DOI: 10.1002/cpmb.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This unit describes a method for determining the accessibility of chromatinized DNA and nucleosome occupancy in the same assay. Enzymatic digestion of chromatin using micrococcal nuclease (MNase) is optimized for liberation, retrieval, and characterization of DNA fragments from chromatin. MNase digestion is performed in a titration series, and the DNA fragments are isolated and sequenced for each individual digest independently. These sequenced fragments are then collectively analyzed in a novel bioinformatics pipeline to produce a metric describing MNase accessibility of chromatin (MACC) and nucleosome occupancy. This approach allows profiling of the entire genome including regions of open and closed chromatin. Moreover, the MACC protocol can be supplemented with a histone immunoprecipitation step to estimate and compare both histone and non-histone DNA protection components. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- April Cook
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Current address: Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jakub Mieczkowski
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Current address: Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
237
|
Wen L, Tang F. Single cell epigenome sequencing technologies. Mol Aspects Med 2017; 59:62-69. [PMID: 28923782 DOI: 10.1016/j.mam.2017.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
Epigenetic regulation plays crucial roles in the development and disease processes. Since different cell types with distinct epigenetic characteristics are always intermingled together in the tissues or organs, the single cell analysis provides a universal resolution for dissecting their intrinsic complexities. In this review, we discuss recent advances of developing single cell epigenome sequencing techniques for profiling DNA modifications (5mC, 5hmC, 5fC and 5caC), chromatin accessibility, histone modifications, protein-DNA interactions and three-dimensional genome architecture (Hi-C) in an individual mammalian cell. Recent progresses of single cell multi-omics sequencing techniques are also reviewed. These techniques are emerging as powerful tools for unravelling the unique epigenomic features of rare cell types and epigenetic heterogeneity within a seemingly homogenous cell population. We also discussed the current limitations and future development trend of single cell epigenome sequencing techniques.
Collapse
|
238
|
Luo H, Xi Y, Li W, Li J, Li Y, Dong S, Peng L, Liu Y, Yu W. Cell identity bookmarking through heterogeneous chromatin landscape maintenance during the cell cycle. Hum Mol Genet 2017; 26:4231-4243. [DOI: 10.1093/hmg/ddx312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022] Open
|
239
|
Charlet J, Duymich CE, Lay FD, Mundbjerg K, Dalsgaard Sørensen K, Liang G, Jones PA. Bivalent Regions of Cytosine Methylation and H3K27 Acetylation Suggest an Active Role for DNA Methylation at Enhancers. Mol Cell 2017; 62:422-431. [PMID: 27153539 DOI: 10.1016/j.molcel.2016.03.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/22/2015] [Accepted: 03/30/2016] [Indexed: 01/17/2023]
Abstract
The role of cytosine methylation in the structure and function of enhancers is not well understood. In this study, we investigate the role of DNA methylation at enhancers by comparing the epigenomes of the HCT116 cell line and its highly demethylated derivative, DKO1. Unlike promoters, a portion of regular and super- or stretch enhancers show active H3K27ac marks co-existing with extensive DNA methylation, demonstrating the unexpected presence of bivalent chromatin in both cultured and uncultured cells. Furthermore, our findings also show that bivalent regions have fewer nucleosome-depleted regions and transcription factor-binding sites than monovalent regions. Reduction of DNA methylation genetically or pharmacologically leads to a decrease of the H3K27ac mark. Thus, DNA methylation plays an unexpected dual role at enhancer regions, being anti-correlated focally at transcription factor-binding sites but positively correlated globally with the active H3K27ac mark to ensure structural enhancer integrity.
Collapse
Affiliation(s)
- Jessica Charlet
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Christopher E Duymich
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Fides D Lay
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kamilla Mundbjerg
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Gangning Liang
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Peter A Jones
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
240
|
Krebs AR, Imanci D, Hoerner L, Gaidatzis D, Burger L, Schübeler D. Genome-wide Single-Molecule Footprinting Reveals High RNA Polymerase II Turnover at Paused Promoters. Mol Cell 2017; 67:411-422.e4. [PMID: 28735898 PMCID: PMC5548954 DOI: 10.1016/j.molcel.2017.06.027] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/22/2017] [Accepted: 06/22/2017] [Indexed: 11/19/2022]
Abstract
Transcription initiation entails chromatin opening followed by pre-initiation complex formation and RNA polymerase II recruitment. Subsequent polymerase elongation requires additional signals, resulting in increased residence time downstream of the start site, a phenomenon referred to as pausing. Here, we harnessed single-molecule footprinting to quantify distinct steps of initiation in vivo throughout the Drosophila genome. This identifies the impact of promoter structure on initiation dynamics in relation to nucleosomal occupancy. Additionally, perturbation of transcriptional initiation reveals an unexpectedly high turnover of polymerases at paused promoters-an observation confirmed at the level of nascent RNAs. These observations argue that absence of elongation is largely caused by premature termination rather than by stable polymerase stalling. In support of this non-processive model, we observe that induction of the paused heat shock promoter depends on continuous initiation. Our study provides a framework to quantify protein binding at single-molecule resolution and refines concepts of transcriptional pausing.
Collapse
Affiliation(s)
- Arnaud R Krebs
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | - Dilek Imanci
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Sciences, Petersplatz 1, 4001 Basel, Switzerland.
| |
Collapse
|
241
|
Voong LN, Xi L, Wang JP, Wang X. Genome-wide Mapping of the Nucleosome Landscape by Micrococcal Nuclease and Chemical Mapping. Trends Genet 2017; 33:495-507. [PMID: 28693826 DOI: 10.1016/j.tig.2017.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 12/30/2022]
Abstract
Nucleosomes regulate the transcription output of the genome by occluding the underlying DNA sequences from DNA-binding proteins that must act on it. Knowledge of the precise locations of nucleosomes in the genome is thus essential towards understanding how transcription is regulated. Current nucleosome-mapping strategies involve digesting chromatin with nucleases or chemical cleavage followed by high-throughput sequencing. In this review, we compare the traditional micrococcal nuclease (MNase)-based approach with a chemical cleavage strategy, with discussion on the important insights each has uncovered about the role of nucleosomes in shaping transcriptional processes.
Collapse
Affiliation(s)
- Lilien N Voong
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Liqun Xi
- Department of Statistics, Northwestern University, Evanston, IL 60208, USA
| | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, IL 60208, USA.
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
242
|
Pott S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife 2017; 6:e23203. [PMID: 28653622 PMCID: PMC5487215 DOI: 10.7554/elife.23203] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/26/2017] [Indexed: 12/23/2022] Open
Abstract
Gaining insights into the regulatory mechanisms that underlie the transcriptional variation observed between individual cells necessitates the development of methods that measure chromatin organization in single cells. Here I adapted Nucleosome Occupancy and Methylome-sequencing (NOMe-seq) to measure chromatin accessibility and endogenous DNA methylation in single cells (scNOMe-seq). scNOMe-seq recovered characteristic accessibility and DNA methylation patterns at DNase hypersensitive sites (DHSs). An advantage of scNOMe-seq is that sequencing reads are sampled independently of the accessibility measurement. scNOMe-seq therefore controlled for fragment loss, which enabled direct estimation of the fraction of accessible DHSs within individual cells. In addition, scNOMe-seq provided high resolution of chromatin accessibility within individual loci which was exploited to detect footprints of CTCF binding events and to estimate the average nucleosome phasing distances in single cells. scNOMe-seq is therefore well-suited to characterize the chromatin organization of single cells in heterogeneous cellular mixtures.
Collapse
Affiliation(s)
- Sebastian Pott
- Department of Human Genetics, University of Chicago, Chicago, United States
| |
Collapse
|
243
|
Aschenbrenner AC, Bassler K, Brondolin M, Bonaguro L, Carrera P, Klee K, Ulas T, Schultze JL, Hoch M. A cross-species approach to identify transcriptional regulators exemplified for Dnajc22 and Hnf4a. Sci Rep 2017; 7:4056. [PMID: 28642491 PMCID: PMC5481429 DOI: 10.1038/s41598-017-04370-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/05/2017] [Indexed: 12/03/2022] Open
Abstract
There is an enormous need to make better use of the ever increasing wealth of publicly available genomic information and to utilize the tremendous progress in computational approaches in the life sciences. Transcriptional regulation of protein-coding genes is a major mechanism of controlling cellular functions. However, the myriad of transcription factors potentially controlling transcription of any given gene makes it often difficult to quickly identify the biological relevant transcription factors. Here, we report on the identification of Hnf4a as a major transcription factor of the so far unstudied DnaJ heat shock protein family (Hsp40) member C22 (Dnajc22). We propose an approach utilizing recent advances in computational biology and the wealth of publicly available genomic information guiding the identification of potential transcription factor candidates together with wet-lab experiments validating computational models. More specifically, the combined use of co-expression analyses based on self-organizing maps with sequence-based transcription factor binding prediction led to the identification of Hnf4a as the potential transcriptional regulator for Dnajc22 which was further corroborated using publicly available datasets on Hnf4a. Following this procedure, we determined its functional binding site in the murine Dnajc22 locus using ChIP-qPCR and luciferase assays and verified this regulatory loop in fruitfly, zebrafish, and humans.
Collapse
Affiliation(s)
- A C Aschenbrenner
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| | - K Bassler
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - M Brondolin
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, SE1 9RT, London, United Kingdom
| | - L Bonaguro
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - P Carrera
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - K Klee
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - T Ulas
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - J L Schultze
- Genomics and Immunoregulation, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- Single Cell Genomics and Epigenomics Unit at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175, Bonn, Germany
| | - M Hoch
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
244
|
Lau TS, Chan LKY, Wong ECH, Hui CWC, Sneddon K, Cheung TH, Yim SF, Lee JHS, Yeung CSY, Chung TKH, Kwong J. A loop of cancer-stroma-cancer interaction promotes peritoneal metastasis of ovarian cancer via TNFα-TGFα-EGFR. Oncogene 2017; 36:3576-3587. [PMID: 28166193 PMCID: PMC5485181 DOI: 10.1038/onc.2016.509] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023]
Abstract
Peritoneum is the most common site for ovarian cancer metastasis. Here we investigate how cancer epigenetics regulates reciprocal tumor-stromal interactions in peritoneal metastasis of ovarian cancer. Firstly, we find that omental stromal fibroblasts enhance colony formation of metastatic ovarian cancer cells, and de novo expression of transforming growth factor-alpha (TGF-α) is induced in stromal fibroblasts co-cultured with ovarian cancer cells. We also observed an over-expression of tumor necrosis factor-alpha (TNF-α) in ovarian cancer cells, which is regulated by promoter DNA hypomethylation as well as chromatin remodeling. Interestingly, this ovarian cancer-derived TNF-α induces TGF-α transcription in stromal fibroblasts through nuclear factor-κB (NF-κB). We further show that TGF-α secreted by stromal fibroblasts in turn promotes peritoneal metastasis of ovarian cancer through epidermal growth factor receptor (EGFR) signaling. Finally, we identify a TNFα-TGFα-EGFR interacting loop between tumor and stromal compartments of human omental metastases. Our results therefore demonstrate cancer epigenetics induces a loop of cancer-stroma-cancer interaction in omental microenvironment that promotes peritoneal metastasis of ovarian cancer cells via TNFα-TGFα-EGFR.
Collapse
Affiliation(s)
- T-S Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - L K-Y Chan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - E C-H Wong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - C W-C Hui
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - K Sneddon
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - T-H Cheung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - S-F Yim
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - J H-S Lee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - C S-Y Yeung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - T K-H Chung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - J Kwong
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
245
|
Guo F, Li L, Li J, Wu X, Hu B, Zhu P, Wen L, Tang F. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 2017. [PMID: 28621329 PMCID: PMC5539349 DOI: 10.1038/cr.2017.82] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Single-cell epigenome sequencing techniques have recently been developed. However, the combination of different layers of epigenome sequencing in an individual cell has not yet been achieved. Here, we developed a single-cell multi-omics sequencing technology (single-cell COOL-seq) that can analyze the chromatin state/nucleosome positioning, DNA methylation, copy number variation and ploidy simultaneously from the same individual mammalian cell. We used this method to analyze the reprogramming of the chromatin state and DNA methylation in mouse preimplantation embryos. We found that within < 12 h of fertilization, each individual cell undergoes global genome demethylation together with the rapid and global reprogramming of both maternal and paternal genomes to a highly opened chromatin state. This was followed by decreased openness after the late zygote stage. Furthermore, from the late zygote to the 4-cell stage, the residual DNA methylation is preferentially preserved on intergenic regions of the paternal alleles and intragenic regions of maternal alleles in each individual blastomere. However, chromatin accessibility is similar between paternal and maternal alleles in each individual cell from the late zygote to the blastocyst stage. The binding motifs of several pluripotency regulators are enriched at distal nucleosome depleted regions from as early as the 2-cell stage. This indicates that the cis-regulatory elements of such target genes have been primed to an open state from the 2-cell stage onward, long before pluripotency is eventually established in the ICM of the blastocyst. Genes may be classified into homogeneously open, homogeneously closed and divergent states based on the chromatin accessibility of their promoter regions among individual cells. This can be traced to step-wise transitions during preimplantation development. Our study offers the first single-cell and parental allele-specific analysis of the genome-scale chromatin state and DNA methylation dynamics at single-base resolution in early mouse embryos and provides new insights into the heterogeneous yet highly ordered features of epigenomic reprogramming during this process.
Collapse
Affiliation(s)
- Fan Guo
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China.,Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,Group of Translational Medicine, Department of Obstetrics and Gynecology, Ministry of Education Key Laboratory of Obstetric, Gynecologic &Pediatric Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Li
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China.,Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China
| | - Jingyun Li
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China.,Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xinglong Wu
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China.,Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Boqiang Hu
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China.,Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China
| | - Ping Zhu
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China.,Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China.,Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China.,Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
246
|
A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro. Int J Mol Sci 2017; 18:ijms18061179. [PMID: 28587163 PMCID: PMC5486002 DOI: 10.3390/ijms18061179] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers) that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2A, UHRF1, CTCF, HOTAIR and ANRIL) were found to have experimental evidence showing that functional perturbations played “driver” roles in human cellular transformation. Measurement of epigenotoxicants presents challenges for short-term carcinogenicity testing, especially in the high-throughput modes emphasized in the Tox21 chemicals testing approach. There is need to develop and validate in vitro tests to detect both, locus-specific, and genome-wide, epigenetic alterations with causal links to oncogenic cellular phenotypes. Some recent examples of cell-based high throughput chemical screening assays are presented that have been applied or have shown potential for application to epigenetic endpoints.
Collapse
|
247
|
Piao Y, Lee SK, Lee EJ, Robertson KD, Shi H, Ryu KH, Choi JH. CAME: identification of chromatin accessibility from nucleosome occupancy and methylome sequencing. Bioinformatics 2017; 33:1139-1146. [PMID: 28035030 DOI: 10.1093/bioinformatics/btw785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 12/09/2016] [Indexed: 11/15/2022] Open
Abstract
Motivation Chromatin accessibility plays a key role in epigenetic regulation of gene activation and silencing. Open chromatin regions allow regulatory elements such as transcription factors and polymerases to bind for gene expression while closed chromatin regions prevent the activity of transcriptional machinery. Recently, Methyltransferase Accessibility Protocol for individual templates-Bisulfite Genome Sequencing (MAPit-BGS) and nucleosome occupancy and methylome sequencing (NOMe-seq) have been developed for simultaneously profiling chromatin accessibility and DNA methylation on single molecules. Therefore, there is a great demand in developing computational methods to identify chromatin accessibility from MAPit-BGS and NOMe-seq. Results In this article, we present CAME (Chromatin Accessibility and Methylation), a seed-extension based approach that identifies chromatin accessibility from NOMe-seq. The efficiency and effectiveness of CAME were demonstrated through comparisons with other existing techniques on both simulated and real data, and the results show that our method not only can precisely identify chromatin accessibility but also outperforms other methods. Availability and Implementation CAME is implemented in java and the program is freely available online at http://sourceforge.net/projects/came/. Contacts jechoi@gru.edu or khryu@dblab.chungbuk.ac.kr. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yongjun Piao
- Cancer Center, Georgia Regents University, Augusta, GA, USA.,College of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Seong Keon Lee
- Department of Statistics, Sungshin Women's University, Seoul, Republic of Korea
| | - Eun-Joon Lee
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Huidong Shi
- Cancer Center, Georgia Regents University, Augusta, GA, USA.,Department of Biochemistry and Molecular Biology
| | - Keun Ho Ryu
- College of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Jeong-Hyeon Choi
- Cancer Center, Georgia Regents University, Augusta, GA, USA.,Department of Biostatistics and Epidemiology, Georgia Regents University, Augusta, GA, USA.,Department of Applied Research, Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| |
Collapse
|
248
|
Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 2017; 18:548-562. [PMID: 28537572 DOI: 10.1038/nrm.2017.47] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in genomics technology have provided the means to probe myriad chromatin interactions at unprecedented spatial and temporal resolution. This has led to a profound understanding of nucleosome organization within the genome, revealing that nucleosomes are highly dynamic. Nucleosome dynamics are governed by a complex interplay of histone composition, histone post-translational modifications, nucleosome occupancy and positioning within chromatin, which are influenced by numerous regulatory factors, including general regulatory factors, chromatin remodellers, chaperones and polymerases. It is now known that these dynamics regulate diverse cellular processes ranging from gene transcription to DNA replication and repair.
Collapse
|
249
|
Halby L, Menon Y, Rilova E, Pechalrieu D, Masson V, Faux C, Bouhlel MA, David-Cordonnier MH, Novosad N, Aussagues Y, Samson A, Lacroix L, Ausseil F, Fleury L, Guianvarc'h D, Ferroud C, Arimondo PB. Rational Design of Bisubstrate-Type Analogues as Inhibitors of DNA Methyltransferases in Cancer Cells. J Med Chem 2017; 60:4665-4679. [PMID: 28463515 DOI: 10.1021/acs.jmedchem.7b00176] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aberrant DNA hypermethylation of promoter of tumor suppressor genes is commonly observed in cancer, and its inhibition by small molecules is promising for their reactivation. Here we designed bisubstrate analogues-based inhibitors, by mimicking each substrate, the S-adenosyl-l-methionine and the deoxycytidine, and linking them together. This approach resulted in quinazoline-quinoline derivatives as potent inhibitors of DNMT3A and DNMT1, some showing certain isoform selectivity. We highlighted the importance of (i) the nature and rigidity of the linker between the two moieties for inhibition, as (ii) the presence of the nitrogen on the quinoline group, and (iii) of a hydrophobic group on the quinazoline. The most potent inhibitors induced demethylation of CDKN2A promoter in colon carcinoma HCT116 cells and its reactivation after 7 days of treatment. Furthermore, in a leukemia cell model system, we found a correlation between demethylation of the promoter induced by the treatment, chromatin opening at the promoter, and the reactivation of a reporter gene.
Collapse
Affiliation(s)
- Ludovic Halby
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Yoann Menon
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Elodie Rilova
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Dany Pechalrieu
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Véronique Masson
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Celine Faux
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Mohamed Amine Bouhlel
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, IRCL , 59045 Lille, France
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, IRCL , 59045 Lille, France
| | - Natacha Novosad
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Yannick Aussagues
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Arnaud Samson
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | | | - Fréderic Ausseil
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Laurence Fleury
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France
| | - Dominique Guianvarc'h
- Laboratoire des BioMolécules, UMR 7203, Université Pierre et Marie Curie-Paris 6-ENS-CNRS , 4, place Jussieu, 75252 Paris Cedex 05, France
| | - Clotilde Ferroud
- Laboratoire de Chimie Moléculaire, CMGPCE, EA7341, Conservatoire National des Arts et Métiers , 2 rue Conté, 75003 Paris, France
| | - Paola B Arimondo
- ETaC, Epigenetic Targeting of Cancer, CRDPF, CNRS-Pierre Fabre USR3388 , 3 Avenue H. Curien, 31035 Toulouse cedex 01, France.,Churchill College , CB3 0DS Cambridge, U.K
| |
Collapse
|
250
|
Lakshminarasimhan R, Andreu-Vieyra C, Lawrenson K, Duymich CE, Gayther SA, Liang G, Jones PA. Down-regulation of ARID1A is sufficient to initiate neoplastic transformation along with epigenetic reprogramming in non-tumorigenic endometriotic cells. Cancer Lett 2017; 401:11-19. [PMID: 28483516 DOI: 10.1016/j.canlet.2017.04.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
Abstract
The chromatin remodeler AT-Rich Interactive Domain 1A (ARID1A) is frequently mutated in ovarian clear cell carcinoma (OCCC) and endometriosis precursor lesions. Here, we show that knocking down ARID1A in an immortalized endometriosis cell line is sufficient to induce phenotypic changes indicative of neoplastic transformation as evidenced by higher efficiency of anchorage-independent growth, increased propensity to adhere to collagen, and greater capacity to invade basement membrane extract in vitro. ARID1A knockdown is associated with expression dysregulation of 99 target genes, and many of these expression changes are also observed in primary OCCC tissues. Further, pathway analysis indicates these genes fall within networks highly relevant to tumorigenesis including integrin and paxillin pathways. We demonstrate that the down-regulation of ARID1A does not markedly alter global chromatin accessibility or DNA methylation but unexpectedly, we find strong increases in the active H3K27ac mark in promoter regions and decreases of H3K27ac at potential enhancers. Taken together, these data provide evidence that ARID1A mutation can be an early stage event in the oncogenic transformation of endometriosis cells giving rise to OCCC.
Collapse
Affiliation(s)
- Ranjani Lakshminarasimhan
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Claudia Andreu-Vieyra
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kate Lawrenson
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite 290W, Los Angeles, CA, USA
| | - Christopher E Duymich
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Simon A Gayther
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite 290W, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gangning Liang
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Peter A Jones
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|