201
|
Makino SI, Sawasaki T, Tozawa Y, Endo Y, Takai K. Covalent circularization of exogenous RNA during incubation with a wheat embryo cell extract. Biochem Biophys Res Commun 2006; 347:1080-7. [PMID: 16870150 DOI: 10.1016/j.bbrc.2006.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 07/01/2006] [Indexed: 10/24/2022]
Abstract
Cell extracts from wheat embryos have been widely used for mRNA-directed protein production. Here, we found that a significant fraction of exogenous linear RNAs are circularized in a wheat embryo extract. The circularization was seen only in uncapped RNAs. The amount of the circular species reached around 1% of the initial RNA and increased along with an increase in the initial concentration more than proportionally. The circular RNAs were stable but unable to be translated in the extract. The circularization was competitively inhibited in the presence of a known substrate of a wheat embryo RNA ligase. Thus, we cloned the RNA ligase cDNAs. Three isoform sequences were homologous to the other plant RNA ligases. An addition of a cell-free synthesized wheat RNA ligase abolished the inhibition, which indicates a participation of its activity in the circularization. A possible role in RNA metabolism, RNA silencing in particular, is discussed.
Collapse
Affiliation(s)
- Shin-ichi Makino
- Venture Business Laboratory, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | |
Collapse
|
202
|
Ronemus M, Vaughn MW, Martienssen RA. MicroRNA-targeted and small interfering RNA-mediated mRNA degradation is regulated by argonaute, dicer, and RNA-dependent RNA polymerase in Arabidopsis. THE PLANT CELL 2006; 18:1559-74. [PMID: 16798886 PMCID: PMC1488920 DOI: 10.1105/tpc.106.042127] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
ARGONAUTE1 (AGO1) of Arabidopsis thaliana mediates the cleavage of microRNA (miRNA)-targeted mRNAs, and it has also been implicated in the posttranscriptional silencing of transgenes and the maintenance of chromatin structure. Mutations in AGO1 severely disrupt plant development, indicating that miRNA function and possibly other aspects of RNA interference are essential for maintaining normal patterns of gene expression. Using microarrays, we found that 1 to 6% of genes display significant expression changes in several alleles of ago1 at multiple developmental stages, with the majority showing higher levels. Several classes of known miRNA targets increased markedly in ago1, whereas others showed little or no change. Cleavage of mRNAs within miRNA-homologous sites was reduced but not abolished in an ago1 -null background, indicating that redundant slicer activity exists in Arabidopsis. Small interfering RNAs and larger 30- to 60-nucleotide RNA fragments corresponding to highly upregulated miRNA target genes accumulated in wild-type plants but not in ago1, the RNA-dependent RNA polymerase mutants rdr2 and rdr6, or the Dicer-like mutants dcl1 and dcl3. Both sense and antisense RNAs corresponding to these miRNA targets accumulated in the ago1 and dcl1 backgrounds. These results indicate that a subset of endogenous mRNA targets of RNA interference may be regulated through a mechanism of second-strand RNA synthesis and degradation initiated by or in addition to miRNA-mediated cleavage.
Collapse
Affiliation(s)
- Michael Ronemus
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
203
|
Klenov MS, Gvozdev VA. Heterochromatin formation: role of short RNAs and DNA methylation. BIOCHEMISTRY (MOSCOW) 2006; 70:1187-98. [PMID: 16336177 DOI: 10.1007/s10541-005-0247-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The role of small double-stranded RNAs is considered in formation of silent chromatin structure. Small RNAs are implicated in the regulation of individual gene transcription, suppression of transposon expression, and in maintaining functional structure of extended heterochromatic regions. Interrelations between short RNA-dependent gene silencing, histone modifications, and DNA methylation are discussed. Specific features of RNA-induced chromatin repression in various eucaryotes are also described.
Collapse
Affiliation(s)
- M S Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
204
|
Jones L, Keining T, Eamens A, Vaistij FE. Virus-induced gene silencing of argonaute genes in Nicotiana benthamiana demonstrates that extensive systemic silencing requires Argonaute1-like and Argonaute4-like genes. PLANT PHYSIOLOGY 2006; 141:598-606. [PMID: 16632593 PMCID: PMC1475458 DOI: 10.1104/pp.105.076109] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 03/31/2006] [Accepted: 04/06/2006] [Indexed: 05/08/2023]
Abstract
Several distinct pathways of RNA silencing operate in plants with roles including the suppression of virus accumulation, control of endogenous gene expression, and direction of DNA and chromatin modifications. Proteins of the Dicer-Like and Argonaute (AGO) families have key roles within these silencing pathways and have distinct biochemical properties. We are interested in the relationships between different silencing pathways and have used Nicotiana benthamiana as a model system. While not being an amenable plant for traditional genetics, N. benthamiana is extensively used for RNA-silencing studies. Using virus-induced gene silencing technology we demonstrate that both NbAGO1- and NbAGO4-like genes are required for full systemic silencing but not for silencing directed by an inverted repeat transgene. Phenotypic differences between the virus-induced gene silencing plants indicate that NbAGO1 and NbAGO4 like act at different stages of the silencing pathways. Suppression of NbAGO1 expression recapitulated the hypomorphic mutant phenotype of certain Arabidopsis (Arabidopsis thaliana) ago1 alleles, however, suppression of NbAgo4 like resulted in phenotypes differing in some respects from those reported for Arabidopsis ago4. We suggest that the small interfering RNA amplification step required for full systemic silencing is dependent upon a nuclear event requiring the activity of NbAGO4 like.
Collapse
Affiliation(s)
- Louise Jones
- Department of Biology , University of York, York YO10 5YW, United Kingdom.
| | | | | | | |
Collapse
|
205
|
Abstract
RNA silencing controls numerous developmental processes in eukaryotic organisms from fungi, plants, to animals. In plants as well as in animals, this system of RNA regulation functions as part of an immune response against invading viruses. From transitive RNA silencing to virus-induced gene silencing (VIGS), the systemic effects are proven to be the core of RNA silencing. This article reviews the latest advances in view of the effect of cellular RDR6, an RNA-dependent RNA polymerase (RdRp), on systemic RNA silencing, systemic virus silencing, and discusses the abilities of viral suppressors in modulating RNA silencing efficiency to establish effective infection.
Collapse
Affiliation(s)
- Qi Xie
- National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | |
Collapse
|
206
|
Yang L, Huang W, Wang H, Cai R, Xu Y, Huang H. Characterizations of a hypomorphic argonaute1 mutant reveal novel AGO1 functions in Arabidopsis lateral organ development. PLANT MOLECULAR BIOLOGY 2006; 61:63-78. [PMID: 16786292 DOI: 10.1007/s11103-005-5992-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 12/17/2005] [Indexed: 05/09/2023]
Abstract
Genes that encode the ARGONAUTE (AGO) proteins make up a highly conserved family, and several members in the family have been defined to function in posttranscriptional gene silencing (PTGS) in plants, quelling in fungi and RNAi in animals. The Arabidopsis AGO1 gene has been demonstrated to be crucial in multiple RNA silencing pathways (PTGS, microRNA and trans-acting siRNA pathways); however, its biological functions do not seem to be fully addressed. Here we report characterizations of a new hypomorphic ago1 allele, ago1-37, and show novel AGO1 functions important in lateral organ development. We found that double mutants combining ago1-37 with asymmetric leaves1 (as1) or asymmetric leaves2 (as2) produced more severe phenotypes than the single mutants, indicating that AGO1 genetically interacts with AS1 and AS2 for plant development. Similar to the previously characterized mutants rdr6, sgs3 and zippy, which are deficient in the trans-acting siRNA activity, ago1-37 also showed an earlier phase transition from juvenile to adult leaves. Moreover, based on the detailed phenotypic analyses of single and double mutant plants, we found that the AGO1 functions are required for repressing several class I KNOTTED1-like homeobox (KNOX) genes in leaves, and for specifying both adaxial and abaxial identities of the leaf and petal. Our results demonstrate several important AGO1 functions in plant lateral organ development.
Collapse
Affiliation(s)
- Li Yang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, China
| | | | | | | | | | | |
Collapse
|
207
|
Abstract
RNA silencing is an RNA-directed gene regulatory system that is present in a wide range of eukaryotes, and which functions as an antiviral defense in plants. Silencing pathways are complex and partially overlapping, but at least three basic classes can be distinguished: cytoplasmic RNA silencing (or post-transcriptional gene silencing; PTGS) mediated by small interfering RNAs (siRNAs), silencing mediated by microRNAs (miRNAs), and transcriptional gene silencing (TGS) mediated by siRNA-directed methylation of DNA and histone proteins. Recent advances in our understanding of different geminivirus silencing suppressors indicate that they can affect all three pathways, suggesting that multiple aspects of silencing impact geminivirus replication.
Collapse
Affiliation(s)
- David M Bisaro
- Department of Molecular Genetics and Plant Biotechnology Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
208
|
Wassenegger M, Krczal G. Nomenclature and functions of RNA-directed RNA polymerases. TRENDS IN PLANT SCIENCE 2006; 11:142-51. [PMID: 16473542 DOI: 10.1016/j.tplants.2006.01.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/16/2005] [Accepted: 01/27/2006] [Indexed: 05/06/2023]
Abstract
There is little relationship between eukaryotic RNA-directed RNA polymerases (RDRs), viral RNA-dependent RNA polymerases (RdRps) and DNA-dependent RNA polymerases, indicating that RDRs evolved as an independent class of enzymes early in evolution. In fungi, plants and several animal systems, RDRs play a key role in RNA-mediated gene silencing [post-transcriptional gene silencing (PTGS) in plants and RNA interference (RNAi) in non-plants] and are indispensable for heterochromatin formation, at least, in Schizosaccharomyces pombe and plants. Recent findings indicate that PTGS, RNAi and heterochromatin formation not only function as host defence mechanisms against invading nucleic acids but are also involved in natural gene regulation. RDRs are required for these processes, initiating a broad interest in this enzyme class.
Collapse
Affiliation(s)
- Michael Wassenegger
- RLP-AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, 67435 Neustadt, Germany.
| | | |
Collapse
|
209
|
Abstract
DNA in plants is highly methylated, containing 5-methylcytosine (m5C) and N6-methyladenine (m6A); m5C is located mainly in symmetrical CG and CNG sequences but it may occur also in other non-symmetrical contexts. m6A but not m5C was found in plant mitochondrial DNA. DNA methylation in plants is species-, tissue-, organelle- and age-specific. It is controlled by phytohormones and changes on seed germination, flowering and under the influence of various pathogens (viral, bacterial, fungal). DNA methylation controls plant growth and development, with particular involvement in regulation of gene expression and DNA replication. DNA replication is accompanied by the appearance of under-methylated, newly formed DNA strands including Okazaki fragments; asymmetry of strand DNA methylation disappears until the end of the cell cycle. A model for regulation of DNA replication by methylation is suggested. Cytosine DNA methylation in plants is more rich and diverse compared with animals. It is carried out by the families of specific enzymes that belong to at least three classes of DNA methyltransferases. Open reading frames (ORF) for adenine DNA methyltransferases are found in plant and animal genomes, and a first eukaryotic (plant) adenine DNA methyltransferase (wadmtase) is described; the enzyme seems to be involved in regulation of the mitochondria replication. Like in animals, DNA methylation in plants is closely associated with histone modifications and it affects binding of specific proteins to DNA and formation of respective transcription complexes in chromatin. The same gene (DRM2) in Arabidopsis thaliana is methylated both at cytosine and adenine residues; thus, at least two different, and probably interdependent, systems of DNA modification are present in plants. Plants seem to have a restriction-modification (R-M) system. RNA-directed DNA methylation has been observed in plants; it involves de novo methylation of almost all cytosine residues in a region of siRNA-DNA sequence identity; therefore, it is mainly associated with CNG and non-symmetrical methylations (rare in animals) in coding and promoter regions of silenced genes. Cytoplasmic viral RNA can affect methylation of homologous nuclear sequences and it maybe one of the feedback mechanisms between the cytoplasm and the nucleus to control gene expression.
Collapse
Affiliation(s)
- B F Vanyushin
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Russia.
| |
Collapse
|
210
|
Yang Z, Ebright YW, Yu B, Chen X. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide. Nucleic Acids Res 2006; 34:667-75. [PMID: 16449203 PMCID: PMC1356533 DOI: 10.1093/nar/gkj474] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
microRNAs (miRNAs) and small interfering RNAs (siRNAs) in plants bear a methyl group on the ribose of the 3′ terminal nucleotide. We showed previously that the methylation of miRNAs and siRNAs requires the protein HEN1 in vivo and that purified HEN1 protein methylates miRNA/miRNA* duplexes in vitro. In this study, we show that HEN1 methylates both miRNA/miRNA* and siRNA/siRNA* duplexes in vitro with a preference for 21–24 nt RNA duplexes with 2 nt overhangs. We also demonstrate that HEN1 deposits the methyl group on to the 2′ OH of the 3′ terminal nucleotide. Among various modifications that can occur on the ribose of the terminal nucleotide, such as 2′-deoxy, 3′-deoxy, 2′-O-methyl and 3′-O-methyl, only 2′-O-methyl on a small RNA inhibits the activity of yeast poly(A) polymerase (PAP). These findings indicate that HEN1 specifically methylates miRNAs and siRNAs and implicate the importance of the 2′-O-methyl group in the biology of RNA silencing.
Collapse
Affiliation(s)
| | - Yon W. Ebright
- Waksman Institute, Rutgers UniversityPiscataway, NJ 08854, USA
| | | | - Xuemei Chen
- To whom correspondence should be addressed. Tel: +1 951 827 3988; Fax: +1 951 827 4437;
| |
Collapse
|
211
|
Saumet A, Lecellier CH. Anti-viral RNA silencing: do we look like plants? Retrovirology 2006; 3:3. [PMID: 16409629 PMCID: PMC1363733 DOI: 10.1186/1742-4690-3-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Accepted: 01/12/2006] [Indexed: 01/01/2023] Open
Abstract
The anti-viral function of RNA silencing was first discovered in plants as a natural manifestation of the artificial 'co-suppression', which refers to the extinction of endogenous gene induced by homologous transgene. Because silencing components are conserved among most, if not all, eukaryotes, the question rapidly arose as to determine whether this process fulfils anti-viral functions in animals, such as insects and mammals. It appears that, whereas the anti-viral process seems to be similarly conserved from plants to insects, even in worms, RNA silencing does influence the replication of mammalian viruses but in a particular mode: micro(mi)RNAs, endogenous small RNAs naturally implicated in translational control, rather than virus-derived small interfering (si)RNAs like in other organisms, are involved. In fact, these recent studies even suggest that RNA silencing may be beneficial for viral replication. Accordingly, several large DNA mammalian viruses have been shown to encode their own miRNAs. Here, we summarize the seminal studies that have implicated RNA silencing in viral infection and compare the different eukaryotic responses.
Collapse
Affiliation(s)
- Anne Saumet
- CNRS UPR2357, Institut de Biologie Moléculaire des Plantes, 12, rue du Général Zimmer, 67084 STRASBOURG Cedex, France
| | - Charles-Henri Lecellier
- CNRS UPR2357, Institut de Biologie Moléculaire des Plantes, 12, rue du Général Zimmer, 67084 STRASBOURG Cedex, France
| |
Collapse
|
212
|
GRANT-DOWNTON RT, DICKINSON HG. Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. ANNALS OF BOTANY 2005; 96:1143-64. [PMID: 16254022 PMCID: PMC4247072 DOI: 10.1093/aob/mci273] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Epigenetics has rapidly evolved in the past decade to form an exciting new branch of biology. In modern terms, 'epigenetics' studies molecular pathways regulating how the genes are packaged in the chromosome and expressed, with effects that are heritable between cell divisions and even across generations. CONTEXT Epigenetic mechanisms often conflict with Mendelian models of genetics, and many components of the epigenetic systems in plants appeared anomalous. However, it is now clear that these systems govern how the entire genome operates and evolves. SCOPE In the first part of a two-part review, how epigenetic systems in plants were elucidated is addressed. Also there is a discussion on how the different components of the epigenetic system--regulating DNA methylation, histones and their post-translational modification, and pathways recognizing aberrant transcripts--may work together.
Collapse
|
213
|
Ji Y, Clark DV. The purine synthesis gene Prat2 is required for Drosophila metamorphosis, as revealed by inverted-repeat-mediated RNA interference. Genetics 2005; 172:1621-31. [PMID: 16322507 PMCID: PMC1456287 DOI: 10.1534/genetics.105.045641] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PRAT (phosphoribosylamidotransferase; E.C. 2.4.2.14) catalyzes the first reaction in de novo purine nucleotide biosynthesis. In Drosophila melanogaster, the Prat and Prat2 genes are both highly conserved with PRAT sequences from prokaryotes and eukaryotes. However, Prat2 organization and expression during development is different from Prat. We used RNA interference (RNAi) to knock down expression of both Prat and Prat2 to investigate their functions. Using the GAL4-UAS system, Prat RNAi driven by Act5c-GAL4 or tubP-GAL4 causes variable pupal lethality (48-100%) and approximately 50% female sterility, depending on the transgenic strains and drivers used. This observation agrees with the phenotype previously observed for Prat EMS-induced mutations. Prat2 RNAi driven by Act5C-GAL4 or tubP-GAL4 also results in variable pupal lethality (61-93%) with the different transgenic strains, showing that Prat2 is essential for fly development. However, Prat2 RNAi-induced arrested pupae have a head eversion defect reminiscent of the "cryptocephal" phenotype, whereas Prat RNAi-induced arrested pupae die later as pharate adults. We conclude that Prat2 is required during the prepupal stage while Prat is more important for the pupal stage. In addition, Prat and Prat2 double RNAi results in more severe pupal lethal phenotypes, suggesting that Prat and Prat2 have partially additive functions during Drosophila metamorphosis.
Collapse
Affiliation(s)
- Yingbiao Ji
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | | |
Collapse
|
214
|
Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M. Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. PLANT CELL REPORTS 2005; 24:655-62. [PMID: 16240119 DOI: 10.1007/s00299-005-0006-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/09/2005] [Accepted: 03/12/2005] [Indexed: 05/04/2023]
Abstract
The Grapevine FanLeaf Virus-Coat Protein (GFLV CP) gene was inserted through Agrobacterium-mediated transformation in Vitis vinifera "Nebbiolo", "Lumassina" and "Blaufränkisch". Two plasmids were used: pGA-CP+ (full-length GFLV CP gene with an introduced start codon) and pGA-AS (same gene in antisense orientation). Forty-three transgenic lines were regenerated. As several lines in Southern blots share same hybridization patterns, eight independent line groups resulted for "Nebbiolo", one for "Lumassina", and two for "Blaufränkisch". Inserted T-DNA copies ranged from one to three; one line probably contains an incomplete copy of T-DNA. Except for one "Nebbiolo" line, no evidence for methylation of the transgene at cytosine residues was found by Southern analyses. Specific mRNA was present at variable expression levels; some lines accumulated the coat protein while in others the protein was not detectable by ELISA.
Collapse
Affiliation(s)
- Giorgio Gambino
- Istituto Virologia Vegetale C.N.R.-Unità staccata Viticoltura-Grugliasco, Via Leonardo da Vinci 44, I-10095 Grugliasco (Turin), Italy
| | | | | | | | | |
Collapse
|
215
|
Qu F, Ye X, Hou G, Sato S, Clemente TE, Morris TJ. RDR6 has a broad-spectrum but temperature-dependent antiviral defense role in Nicotiana benthamiana. J Virol 2005; 79:15209-17. [PMID: 16306592 PMCID: PMC1316014 DOI: 10.1128/jvi.79.24.15209-15217.2005] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 09/27/2005] [Indexed: 11/20/2022] Open
Abstract
SDE1/SGS2/RDR6, a putative RNA-dependent RNA polymerase (RdRP) from Arabidopsis thaliana, has previously been found to be indispensable for maintaining the posttranscriptional silencing of transgenes, but it is seemingly redundant for antiviral defense. To elucidate the antiviral role of this RdRP in a different host plant and to evaluate whether plant growth conditions affect its role, we down-regulated expression of the Nicotiana benthamiana homolog, NbRDR6, and examined the plants for altered susceptibility to various viruses at different growth temperatures. The results we describe here clearly show that plants with reduced expression of NbRDR6 were more susceptible to all viruses tested and that this effect was more pronounced at higher growth temperatures. Diminished expression of NbRDR6 also permitted efficient multiplication of tobacco mosaic virus in the shoot apices, leading to serious disruption with microRNA-mediated developmental regulation. Based on these results, we propose that NbRDR6 participates in the antiviral RNA silencing pathway that is stimulated by rising temperatures but suppressed by virus-encoded silencing suppressors. The relative strengths of these two factors, along with other plant defense components, critically influence the outcome of virus infections.
Collapse
Affiliation(s)
- Feng Qu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | | | | | | | | | | |
Collapse
|
216
|
Abstract
RNA silencing refers to a broad range of phenomena sharing the common feature that large, double-stranded RNAs or stem-loop precursors are processed to ca. 21-26 nucleotide small RNAs, which then guide the cleavage of cognate RNAs, block productive translation of these RNAs, or induce methylation of specific target DNAs. Although the core mechanisms are evolutionarily conserved, epigenetic maintenance of silencing by amplification of small RNAs and the elaboration of mobile, RNA-based silencing signals occur predominantly in plants. Plant RNA silencing systems are organized into a network with shared components and overlapping functions. MicroRNAs, and probably trans-acting small RNAs, help regulate development at the posttranscriptional level. Small interfering RNAs associated with transgene- and virus-induced silencing function primarily in defending against foreign nucleic acids. Another system, which is concerned with RNA-directed methylation of DNA repeats, seems to have roles in epigenetic silencing of certain transposable elements and genes under their control.
Collapse
Affiliation(s)
- Frederick Meins
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | | | | |
Collapse
|
217
|
Kościańska E, Kalantidis K, Wypijewski K, Sadowski J, Tabler M. Analysis of RNA silencing in agroinfiltrated leaves of Nicotiana benthamiana and Nicotiana tabacum. PLANT MOLECULAR BIOLOGY 2005; 59:647-61. [PMID: 16244913 DOI: 10.1007/s11103-005-0668-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 07/08/2005] [Indexed: 05/05/2023]
Abstract
In this study we analyse several aspects of cytoplasmic RNA silencing by agroinfiltration of DNA constructs encoding single- and double-stranded RNAs derived from a GFP transgene and from the endogenous Virp1 gene. Both types of inductors resulted after 2-4 days in much higher concentration of siRNAs in the agroinfiltrated zone than normally seen during systemic silencing. More specifically, infiltration of two transgene hairpin constructs resulted in elevated levels of siRNAs. However, differences between the two constructs were observed: the antisense-sense arrangement was more effective than the sense-antisense order. For both double-stranded forms, we observed a relative increase of the 24-mer size class of siRNAs. When a comparable hairpin construct of the endogenous Virp1 gene was assayed, the portion of the 24-mer siRNA class remained low as observed for all kinds of single-stranded inducers. The lack of increase of Virp1-derived 24-mers was independent of the expression level, as demonstrated by agroinfiltration into a transgenic plant that overexpressed Virp1 and showed the same pattern. Using transducer constructs, we could detect within a week transitive silencing from GFP to GUS sequences in the infiltrated zone and in either direction 5'-3' and 3'-5'. Conversely, for the endogenous Virp1 gene neither transitive silencing nor the induction of systemic silencing could be observed. These results are discussed in view of the current models of RNA silencing.
Collapse
Affiliation(s)
- Edyta Kościańska
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, P.O. Box 1527, GR-71110 Crete, Heraklion, Greece
| | | | | | | | | |
Collapse
|
218
|
Abstract
In plants and in some animals, the effects of post-transcriptional RNA silencing can extend beyond its sites of initiation, owing to the movement of signal molecules. Although the mechanisms and channels involved are different, plant and animal silencing signals must have RNA components that account for the nucleotide sequence-specificity of their effects. Studies carried out in plants and Caenorhabditis elegans have revealed that non-cell autonomous silencing is operated through specialized, remarkably sophisticated pathways and serves important biological functions, including antiviral immunity and, perhaps, developmental patterning. Recent intriguing observations suggest that systemic RNA silencing pathways may also exist in higher vertebrates.
Collapse
Affiliation(s)
- Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes du CNRS UPR-2357, 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| |
Collapse
|
219
|
Abstract
RNA interference (RNAi) is an ancient and evolutionarily conserved process. In some eukaryotes, RNAi silences parasitic genetic elements. In plants, RNAi serves as an immune system against RNA viruses and transgenes and in worms, RNAi silences transposons. In mammals, RNAi has yet unknown functions. However, emerging roles for short RNAs and the factors that interact with them in other eukaryotes include chromatin modification, DNA deletion and DNA methylation, which may provide clues to the roles for short RNA function in mammals. For example, antigen receptor expression in lymphocytes is a highly regulated process and although much is known about chromatin modification and DNA deletion in the immune system, several molecular details of chromatin regulation remain elusive. This review compares emerging roles for short RNA function to processes required for antigen receptor expression in mammalian lymphocytes and predicts that short RNAs direct events required for successful lymphocyte-restricted gene expression.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Center for Blood Research, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
220
|
Herr AJ. Pathways through the small RNA world of plants. FEBS Lett 2005; 579:5879-88. [PMID: 16162339 DOI: 10.1016/j.febslet.2005.08.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/17/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
RNA silencing pathways in plants have diversified along with key gene families involved in small RNA biogenesis and effector steps. Evidence suggests that these pathways have distinct roles in plant biology.
Collapse
Affiliation(s)
- Alan J Herr
- Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
221
|
Qu F, Morris TJ. Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Lett 2005; 579:5958-64. [PMID: 16162340 DOI: 10.1016/j.febslet.2005.08.041] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/20/2005] [Accepted: 08/21/2005] [Indexed: 10/25/2022]
Abstract
RNA silencing as a robust host defense mechanism against plant viruses is generally countered by virus-encoded silencing suppressors. This strategy is now increasingly recognized to be used by animal viruses as well. We present here an overview of the common features shared by some of the better studied plant viral silencing suppressors. We then briefly describe the characteristics of the few reported animal viral suppressors, notably their extraordinary ability of cross-kingdom suppression. We next discuss the basis for biased protection of viral RNA and subviral parasites by silencing suppressors, the link between movement and silencing suppression, the influence of temperature on the outcome of viral infection and the effect of viral silencing suppressors on the microRNA pathway.
Collapse
Affiliation(s)
- Feng Qu
- School of Biological Sciences, University of Nebraska-Lincoln, E229 Beadle Center, Lincoln, NE 68588-0666, USA
| | | |
Collapse
|
222
|
Wang T, Iyer LM, Pancholy R, Shi X, Hall TC. Assessment of penetrance and expressivity of RNAi-mediated silencing of the Arabidopsis phytoene desaturase gene. THE NEW PHYTOLOGIST 2005; 167:751-60. [PMID: 16101912 DOI: 10.1111/j.1469-8137.2005.01454.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA interference (RNAi) is of great value in plant functional genomics. However, the absence of RNAi phenotypes and the lack of uniform level of RNAi silencing has complicated gene identification. Here, the penetrance and expressivity of RNAi-mediated silencing of the phytoene desaturase (PDS) gene in Arabidopsis thaliana were examined quantitatively to provide a reference for the likely severity and distribution of silencing effects. Arabidopsis plants were transformed with an RNAi construct targeting PDS. Transgenic plants were examined for frequency of RNAi-mediated silencing and various silencing phenotypes. mRNA depletion level and RNAi expressivity were assayed by relative reverse transcription polymerase chain reaction (RT-PCR). High penetrance and variable expressivity of RNAi were demonstrated. An inverse correlation between PDS mRNA level and RNAi phenotype was seen. No direct relationship between copy number for the RNAi-generating transgene and phenotype was evident. Decreased RNAi penetrance in T2 plants was observed. It is suggested that variability in RNAi expressivity and postmeiotic decrease in RNAi penetrance constitute barriers for high throughput plant gene characterization.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Developmental and Molecular Biology and Department of Biology, Texas A and M University, College Station, TX 77843-3155, USA
| | | | | | | | | |
Collapse
|
223
|
Abranches R, Shultz RW, Thompson WF, Allen GC. Matrix attachment regions and regulated transcription increase and stabilize transgene expression. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:535-43. [PMID: 17173639 DOI: 10.1111/j.1467-7652.2005.00144.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transgene silencing has been shown to be associated with strong promoters, but it is not known whether the propensity for silencing is caused by the level of transcription, or some other property of the promoter. If transcriptional activity fosters silencing, then transgenes with inducible promoters may be less susceptible to silencing. To test this idea, a doxycycline-inducible luciferase transgene was transformed into an NT1 tobacco suspension culture cell line that constitutively expressed the tetracycline repressor. The inducible luciferase gene was flanked by tobacco Rb7 matrix attachment regions (MAR) or spacer control sequences in order to test the effects of MARs in conjunction with regulated transcription. Transformed lines were grown under continuous doxycycline (CI), or delayed doxycycline induction (DI) conditions. Delayed induction resulted in higher luciferase expression initially, but continued growth in the presence of doxycycline resulted in a reduction of expression to levels similar to those found in continuously induced lines. In both DI and CI treatments, the Rb7 MAR significantly reduced the percentage of silenced lines and increased transgene expression levels. These data demonstrate that active transcription increases silencing, especially in the absence of the Rb7 MAR. Importantly, the Rb7 MAR lines showed higher expression levels under both CI and DI conditions and avoided silencing that may occur in the absence of active transcription such as what would be expected as a result of condensed chromatin spreading.
Collapse
Affiliation(s)
- Rita Abranches
- North Carolina State University, Department of Crop Science, Box 7620, Raleigh, North Carolina 27695-7620, USA
| | | | | | | |
Collapse
|
224
|
Yoshikawa M, Peragine A, Park MY, Poethig RS. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 2005; 19:2164-75. [PMID: 16131612 PMCID: PMC1221887 DOI: 10.1101/gad.1352605] [Citation(s) in RCA: 531] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Arabidopsis genes, TAS2 and TAS1a, produce structurally similar noncoding transcripts that are transformed into short (21-nucleotide [nt]) and long (24-nt) siRNAs by RNA silencing pathways. Some of these short siRNAs direct the cleavage of protein-coding transcripts, and thus function as trans-acting siRNAs (ta-siRNAs). Using genetic analysis, we defined the pathway by which ta-siRNAs and other short siRNAs are generated from these loci. This process is initiated by the miR173-directed cleavage of a primary poly(A) transcript. The 3' fragment is then transformed into short siRNAs by the sequential activity of SGS3, RDR6, and DCL4: SGS3 stabilizes the fragment, RDR6 produces a complementary strand, and DCL4 cleaves the resulting double-stranded molecule into short siRNAs, starting at the end with the miR173 cleavage site and proceeding in 21-nt increments from this point. The 5' cleavage fragment is also processed by this pathway, but less efficiently. The DCL3-dependent pathway that generates long siRNAs does not require miRNA-directed cleavage and plays a minor role in the silencing of these loci. Our results define the core components of a post-transcriptional gene silencing pathway in Arabidopsis and reveal some of the features that direct transcripts to this pathway.
Collapse
Affiliation(s)
- Manabu Yoshikawa
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | | | |
Collapse
|
225
|
Chen X. MicroRNA biogenesis and function in plants. FEBS Lett 2005; 579:5923-31. [PMID: 16144699 PMCID: PMC5127707 DOI: 10.1016/j.febslet.2005.07.071] [Citation(s) in RCA: 348] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 07/18/2005] [Accepted: 07/19/2005] [Indexed: 11/15/2022]
Abstract
A microRNA (miRNA) is a 21-24 nucleotide RNA product of a non-protein-coding gene. Plants, like animals, have a large number of miRNA-encoding genes in their genomes. The biogenesis of miRNAs in Arabidopsis is similar to that in animals in that miRNAs are processed from primary precursors by at least two steps mediated by RNAse III-like enzymes and that the miRNAs are incorporated into a protein complex named RISC. However, the biogenesis of plant miRNAs consists of an additional step, i.e., the miRNAs are methylated on the ribose of the last nucleotide by the miRNA methyltransferase HEN1. The high degree of sequence complementarity between plant miRNAs and their target mRNAs has facilitated the bioinformatic prediction of miRNA targets, many of which have been subsequently validated. Plant miRNAs have been predicted or confirmed to regulate a variety of processes, such as development, metabolism, and stress responses. A large category of miRNA targets consists of genes encoding transcription factors that play important roles in patterning the plant form.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
226
|
Bakhetia M, Charlton WL, Urwin PE, McPherson MJ, Atkinson HJ. RNA interference and plant parasitic nematodes. TRENDS IN PLANT SCIENCE 2005; 10:362-7. [PMID: 16027029 DOI: 10.1016/j.tplants.2005.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/23/2005] [Accepted: 06/30/2005] [Indexed: 05/03/2023]
Abstract
RNA interference (RNAi) has recently been demonstrated in plant parasitic nematodes. It is a potentially powerful investigative tool for the genome-wide identification of gene function that should help improve our understanding of plant parasitic nematodes. RNAi should help identify gene and, hence, protein targets for nematode control strategies. Prospects for novel resistance depend on the plant generating an effective form of double-stranded RNA in the absence of an endogenous target gene without detriment to itself. These RNA molecules must then become available to the nematode and be capable of ingestion via its feeding tube. If these requirements can be met, crop resistance could be achieved by a plant delivering a dsRNA that targets a nematode gene and induces a lethal or highly damaging RNAi effect on the parasite.
Collapse
Affiliation(s)
- Manjula Bakhetia
- Plant Nematode Laboratory, Centre for Plant Sciences, University of Leeds, UK
| | | | | | | | | |
Collapse
|
227
|
Miki D, Itoh R, Shimamoto K. RNA silencing of single and multiple members in a gene family of rice. PLANT PHYSIOLOGY 2005; 138:1903-13. [PMID: 16172097 PMCID: PMC1183382 DOI: 10.1104/pp.105.063933] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA silencing with inverted repeat (IR) constructs has been used to suppress gene expression in various organisms. However, the transitive RNA-silencing effect described in plants may preclude the use of RNA silencing for a gene family. Here, we show that, in rice (Oryza sativa), transitive RNA silencing (spreading of double-stranded RNA along the target mRNA) occurred with the green fluorescent protein transgene but not with the endogenous phytoene desaturase gene. We fused IR copies of unique 3' untranslated regions derived from the rice OsRac gene family to a strong promoter and stably introduced them into rice. Each of the seven members of the OsRac gene family was specifically suppressed by its respective IR construct. We also examined IR constructs in which multiple 3' untranslated regions were fused and showed that three members of the OsRac gene family were effectively suppressed by a single construct. Using highly conserved regions of the two members of the OsRac gene family, we also suppressed the expression of all members of the gene family with variable efficiencies. These results suggest that RNA silencing is a useful method for the functional analysis of gene families in rice and other plants.
Collapse
Affiliation(s)
- Daisuke Miki
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan
| | | | | |
Collapse
|
228
|
Li H, Xu L, Wang H, Yuan Z, Cao X, Yang Z, Zhang D, Xu Y, Huang H. The Putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and MicroRNA165/166 in Arabidopsis leaf development. THE PLANT CELL 2005; 17:2157-71. [PMID: 16006579 PMCID: PMC1182480 DOI: 10.1105/tpc.105.033449] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana ASYMMETRIC LEAVES1 (AS1) and AS2 genes are important for repressing class I KNOTTED1-like homeobox (KNOX) genes and specifying leaf adaxial identity in leaf development. RNA-dependent RNA polymerases (RdRPs) are critical for posttranscriptional and transcriptional gene silencing in eukaryotes; however, very little is known about their functions in plant development. Here, we show that the Arabidopsis RDR6 gene (also called SDE1 and SGS2) that encodes a putative RdRP, together with AS1 and AS2, regulates leaf development. rdr6 single mutant plants displayed only minor phenotypes, whereas rdr6 as1 and rdr6 as2 double mutants showed dramatically enhanced as1 and as2 phenotypes, with severe defects in the leaf adaxial-abaxial polarity and vascular development. In addition, the double mutant plants produced more lobed leaves than the as1 and as2 single mutants and showed leaf-like structures associated on a proportion of leaf blades. The abnormal leaf morphology of the double mutants was accompanied by an extended ectopic expression of a class I KNOX gene BREVIPEDICELLUS (BP) and high levels of microRNA165/166 that may lead to mRNA degradation of genes in the class III HD-ZIP family. Taken together, our data suggest that the Arabidopsis RDR6-associated epigenetic pathway and the AS1-AS2 pathway synergistically repress BP and MIR165/166 for proper plant development.
Collapse
Affiliation(s)
- Hong Li
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
- College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hua Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zheng Yuan
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongnan Yang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Dabing Zhang
- College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuquan Xu
- College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
- To whom correspondence should be addressed. E-mail ; fax 86-21-54924015
| |
Collapse
|
229
|
Tang W, Kinken K, Newton RJ. Inducible antisense-mediated post-transcriptional gene silencing in transgenic pine cells using green fluorescent protein as a visual marker. PLANT & CELL PHYSIOLOGY 2005; 46:1255-63. [PMID: 15919671 DOI: 10.1093/pcp/pci134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
An inducible post-transcriptional gene silencing (PTGS) system was established in Virginia pine (Pinus virginiana Mill.) cells. This system is based on the activation of an antisense gfp gene construct by a chimeric transcriptional activator GVG (Gal4-binding domain-VP16 activation domain-glucocorticoid receptor fusion) upon application of the inducer to gfp transgenic cell lines. A detailed characterization of the inducible PTGS system in transgenic cell lines demonstrated that this system is stringently controlled. The degree of silencing with this construct could be regulated by the concentration of inducer and the time of treatment. Such transgenic cell lines may provide a useful system to study signaling mechanisms of gene silencing in transgenic pine cells. The inducible system could be a useful tool for functional discovery of novel plant genes.
Collapse
Affiliation(s)
- Wei Tang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA.
| | | | | |
Collapse
|
230
|
Petersen BO, Albrechtsen M. Evidence implying only unprimed RdRP activity during transitive gene silencing in plants. PLANT MOLECULAR BIOLOGY 2005; 58:575-83. [PMID: 16021340 DOI: 10.1007/s11103-005-7307-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 05/12/2005] [Indexed: 05/03/2023]
Abstract
RNA silencing is a sequence-specific RNA degradation mechanism found in most eukaryotes, where small cleavage products (siRNAs) of double stranded RNA (dsRNA) mediate silencing of genes with sequence identity to the dsRNA inducer. In several systems, silencing has been found to spread from the dsRNA inducer sequence into upstream or downstream regions of the target RNA, a phenomenon termed transitive silencing. In nematodes, silencing spreads only in the 3'-5' direction along the target mRNA by siRNAs serving as primers for cRNA synthesis by RNA-dependent RNA polymerase. In plants, transitive silencing is seen in both directions suggesting that at least some cRNA synthesis occurs by un-primed initiation at the 3' end of mRNAs. Replicating plant viruses trigger an RNA silencing defence response that degrades the viral RNA, thus tempering the virus infection. Likewise, fragments of plant genes inserted into a virus will become targets for degradation, leading to virus-induced gene silencing (VIGS) of the homologous plant mRNAs. We have analyzed the spreading of gene silencing in VIGS experiments using a transgene and two endogenous genes as targets. In Nicotiana benthamiana plants expressing a beta-glucuronidase (GUS) transgene, a Potato virus X vector carrying a 5' fragment of the GUS gene induced silencing which spread to downstream regions of the transgene mRNA including the 3'-untranslated region. Conversely, silencing induced by a 3' fragment spread only for a limited distance in the 3'-5' direction. Silencing induced by a central GUS gene fragment spread only into downstream regions. Similar analyses using the endogenous plant genes, magnesium chelatase subunit I (ChlI) and an RNase L inhibitor homologue (RLIh), revealed no spreading along target sequences. This implies that transitive silencing in plants occurs by un-primed cRNA synthesis from the 3' end of targeted (transgene) transcripts, and not by siRNA-primed cRNA synthesis.
Collapse
Affiliation(s)
- Birgit Otzen Petersen
- Biotechnology Group, Danish Institute of Agricultural Sciences, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | | |
Collapse
|
231
|
Tang W, Samuels V, Whitley N, Bloom N, DeLaGarza T, Newton RJ. Post-transcriptional gene silencing induced by short interfering RNAs in cultured transgenic plant cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2005; 2:97-108. [PMID: 15629049 PMCID: PMC5172445 DOI: 10.1016/s1672-0229(04)02015-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Short interfering RNA (siRNA) is widely used for studying post-transcriptional gene silencing and holds great promise as a tool for both identifying function of novel genes and validating drug targets. Two siRNA fragments (siRNA-a and -b), which were designed against different specific areas of coding region of the same target green fluorescent protein (GFP) gene, were used to silence GFP expression in cultured gfp transgenic cells of rice (Oryza sativa L.; OS), cotton (Gossypium hirsutum L.; GH), Fraser fir [Abies fraseri (Pursh) Poir; AF], and Virginia pine (Pinus virginiana Mill.; PV). Differential gene silencing was observed in the bombarded transgenic cells between two siRNAs, and these results were consistent with the inactivation of GFP confirmed by laser scanning microscopy, Northern blot, and siRNA analysis in tested transgenic cell cultures. These data suggest that siRNA-mediated gene inactivation can be the siRNA specific in different plant species. These results indicate that siRNA is a highly specific tool for targeted gene knockdown and for establishing siRNA-mediated gene silencing, which could be a reliable approach for large-scale screening of gene function and drug target validation.
Collapse
Affiliation(s)
- Wei Tang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858-4353, USA.
| | | | | | | | | | | |
Collapse
|
232
|
Wang H, Buckley KJ, Yang X, Buchmann RC, Bisaro DM. Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol 2005; 79:7410-8. [PMID: 15919897 PMCID: PMC1143688 DOI: 10.1128/jvi.79.12.7410-7418.2005] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 02/13/2005] [Indexed: 12/24/2022] Open
Abstract
Most plant viruses are initiators and targets of RNA silencing and encode proteins that suppress this adaptive host defense. The DNA-containing geminiviruses are no exception, and the AL2 protein (also known as AC2, C2, and transcriptional activator protein) encoded by members of the genus Begomovirus has been shown to act as a silencing suppressor. Here, a three-component, Agrobacterium-mediated transient assay is used to further examine the silencing suppression activity of AL2 from Tomato golden mosaic virus (TGMV, a begomovirus) and to determine if the related L2 protein of Beet curly top virus (BCTV, genus Curtovirus) also has suppression activity. We show that TGMV AL2, AL2(1-100) (lacking the transcriptional activation domain), and BCTV L2 can all suppress RNA silencing directed against a green fluorescent protein (GFP) reporter gene when silencing is induced by a construct expressing an inverted repeat GFP RNA (dsGFP). We previously found that these viral proteins interact with and inactivate adenosine kinase (ADK), a cellular enzyme important for adenosine salvage and methyl cycle maintenance. Using the GFP-dsGFP system, we demonstrate here that codelivery of a construct expressing an inverted repeat ADK RNA (dsADK), or addition of an ADK inhibitor (the adenosine analogue A-134974), suppresses GFP-directed silencing in a manner similar to the geminivirus proteins. In addition, AL2/L2 suppression phenotypes and nucleic acid binding properties are shown to be different from those of the RNA virus suppressors HC-Pro and p19. These findings provide strong evidence that ADK activity is required to support RNA silencing, and indicate that the geminivirus proteins suppress silencing by a novel mechanism that involves ADK inhibition. Further, since AL2(1-100) is as effective a suppressor as the full-length AL2 protein, activation and silencing suppression appear to be independent activities.
Collapse
Affiliation(s)
- Hui Wang
- Biotechnology Center, Ohio State University, 201 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
233
|
Abstract
Closely related RNA silencing phenomena such as posttranscriptional and transcriptional gene silencing (PTGS and TGS), quelling and RNA interference (RNAi) represent different forms of a conserved ancestral process. The biological relevance of these RNA-directed mechanisms of silencing in gene regulation, genome defence and chromosomal structure is rapidly being unravelled. Here, we review the recent developments in the field of RNA silencing in relation to other epigenetic phenomena and discuss the significance of this process and its targets in the regulation of modern eukaryotic genomes.
Collapse
Affiliation(s)
- Ricardo Almeida
- Wellcome Trust Centre for Cell Biology, 6.34 Swann Building, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
234
|
Abstract
Double-stranded RNAs (dsRNAs) and their 'diced' small RNA products can guide key developmental and defense mechanisms in eukaryotes. Some RNA-directed mechanisms act at a post-transcriptional level to degrade target messenger RNAs. However, dsRNA-derived species can also direct changes in the chromatin structure of DNA regions with which they share sequence identity. For example, plants use such RNA species to lay down cytosine methylation imprints on identical DNA sequences, providing a fundamental mark for the formation of transcriptionally silent heterochromatin. Thus, RNA can feed backwards to modulate the accessibility of information stored in the DNA of cognate genes. RNA triggers for DNA methylation can come from different sources, including invasive viral, transgene or transposon sequences, and in some cases are derived from single-stranded RNA precursors by RNA-dependent RNA polymerases. The mechanism by which RNA signals are translated into DNA methylation imprints is currently unknown, but two plant-specific types of cytosine methyltransferase have been implicated in this process. RNA can also direct heterochromatin formation in fission yeast and Drosophila, but in these organisms the process occurs in the absence of DNA methylation.
Collapse
Affiliation(s)
- Olivier Mathieu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
235
|
Abstract
RNA interference (RNAi) was first discovered in the nematode Caenorhabditis elegans (Fire et al., 1998; Guo and Kemphues, 1995). The completion of the C. elegans genome in 1998 coupled with the advent of RNAi techniques to knock down gene function ushered in a new age in the field of functional genomics. There are four methods for double-stranded RNA (dsRNA) delivery in C. elegans: (1) injection of dsRNA into any region of the animal (Fire et al., 1998), (2) feeding with bacteria producing dsRNA (Timmons et al., 2001), (3) soaking in dsRNA (Tabara et al., 1998), and (4) in vivo production of dsRNA from transgenic promoters (Tavernarakis et al., 2000). In this chapter, we discuss the molecular genetic mechanisms, techniques, and applications of RNAi in C. elegans.
Collapse
Affiliation(s)
- Juan Wang
- University of School of Pharmacy, Pharmaceutical Sciences Division, Madison, WI 53705-2222, USA
| | | |
Collapse
|
236
|
Abstract
RNA silencing pathways convert the sequence information in long RNA, typically double-stranded RNA, into approximately 21-nt RNA signaling molecules such as small interfering RNAs (siRNAs) and microRNAs (miRNAs). siRNAs and miRNAs provide specificity to protein effector complexes that repress mRNA transcription or translation, or catalyze mRNA destruction. Here, we review our current understanding of how small RNAs are produced, how they are loaded into protein complexes, and how they repress gene expression.
Collapse
Affiliation(s)
- Yukihide Tomari
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
237
|
Abstract
In eukaryotes, small RNA molecules engage in sequence-specific interactions to inhibit gene expression by RNA silencing. This process fulfils fundamental regulatory roles, as well as antiviral functions, through the activities of microRNAs and small interfering RNAs. As a counter-defence mechanism, viruses have evolved various anti-silencing strategies that are being progressively unravelled. These studies have not only highlighted our basic understanding of host-parasite interactions, but also provide key insights into the diversity, regulation and evolution of RNA-silencing pathways.
Collapse
Affiliation(s)
- Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| |
Collapse
|
238
|
Abstract
RNA silencing is a rapidly expanding research field, not only because it is a fundamental biological issue but also because its application in the control of gene expression is highly promising. Post-transcriptional gene silencing in plants is a form of RNA silencing by which target RNA is degraded in a sequence-specific manner. Findings regarding the central role that double-stranded RNA plays in triggering RNA silencing have prompted the development of many modified methods for RNA silencing. These methods, in combination with the development of genomic resources, have provided rapid and efficient means by which to investigate gene function in a wide range of plant species. This review addresses the technical aspects of RNA silencing in plants by introducing the principles of several methods of RNA silencing, as well as the advantages and disadvantages of each method.
Collapse
Affiliation(s)
- Gorou Horiguchi
- National Institute for Basic Biology/Center for Integrative Bioscience, Myodaiji-cho, Okazaki 444-8585, Japan.
| |
Collapse
|
239
|
Sugiyama T, Cam H, Verdel A, Moazed D, Grewal SIS. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc Natl Acad Sci U S A 2005; 102:152-7. [PMID: 15615848 PMCID: PMC544066 DOI: 10.1073/pnas.0407641102] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 11/09/2004] [Indexed: 11/18/2022] Open
Abstract
In fission yeast, factors involved in the RNA interference (RNAi) pathway including Argonaute, Dicer, and RNA-dependent RNA polymerase are required for heterochromatin assembly at centromeric repeats and the silent mating-type region. Previously, we have shown that RNA-induced initiation of transcriptional gene silencing (RITS) complex containing the Argonaute protein and small interfering RNAs (siRNAs) localizes to heterochromatic loci and collaborates with heterochromatin assembly factors via a self-enforcing RNAi loop mechanism to couple siRNA generation with heterochromatin formation. Here, we investigate the role of RNA-dependent RNA polymerase (Rdp1) and its polymerase activity in the assembly of heterochromatin. We find that Rdp1, similar to RITS, localizes to all known heterochromatic loci, and its localization at centromeric repeats depends on components of RITS and Dicer as well as heterochromatin assembly factors including Clr4/Suv39h and Swi6/HP1 proteins. We show that a point mutation within the catalytic domain of Rdp1 abolished its RNA-dependent RNA polymerase activity and resulted in the loss of transcriptional silencing and heterochromatin at centromeres, together with defects in mitotic chromosome segregation and telomere clustering. Moreover, the RITS complex in the rdp1 mutant does not contain siRNAs, and is delocalized from centromeres. These results not only implicate Rdp1 as an essential component of a self-enforcing RNAi loop but also ascribe a critical role for its RNA-dependent RNA polymerase activity in siRNA production necessary for heterochromatin formation.
Collapse
Affiliation(s)
- Tomoyasu Sugiyama
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
240
|
Abstract
In Drosophila, the genetic approach is still the method of choice for answering fundamental questions on cell biology, signal transduction, development, physiology and behavior. In this approach, a gene's function is ascertained by altering either the amount or quality of the gene product, and then observing the consequences. The genetic approach is itself polymorphous, encompassing new and more complex techniques that typically employ the growing collections of transgenes. The keystone of these modern Drosophila transgenic techniques has been the Gal4 binary system. Recently, several new techniques have modified this binary system to offer greater control over the timing, tissue specificity and magnitude of gene expression. Additionally, the advances in post-transcriptional gene silencing, or RNAi, have greatly expanded the ability to knockdown almost any gene's function. Regardless of the growing experimental intricacy, the application of these advances to modify gene activity still obeys the fundamental principles of genetic analysis. Several of these transgenic techniques, which offer more precise control over a gene's activity, will be reviewed here with a discussion on how they may be used for determining a gene's function.
Collapse
Affiliation(s)
- Gregg Roman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
241
|
Lu S, Shi R, Tsao CC, Yi X, Li L, Chiang VL. RNA silencing in plants by the expression of siRNA duplexes. Nucleic Acids Res 2004; 32:e171. [PMID: 15576678 PMCID: PMC535699 DOI: 10.1093/nar/gnh170] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 11/15/2004] [Indexed: 11/15/2022] Open
Abstract
In animal cells, stable RNA silencing can be achieved by vector-based small interfering RNA (siRNA) expression system, in which Pol III RNA gene promoters are used to drive the expression of short hairpin RNA, however, this has not been demonstrated in plants. Whether Pol III RNA gene promoter is capable of driving siRNA expression in plants is unknown. Here, we report that RNA silencing was achieved in plants through stable expression of short hairpin RNA, which was driven by Pol III RNA gene promoters. Using glucuronidase (GUS) transformed tobacco as a model system, the results demonstrated that 21 nt RNA duplexes, targeting at different sites of GUS gene, were stably expressed under the control of either human H1 or Arabidopsis 7SL RNA gene promoter, and GUS gene was silenced in 80% of siRNA transgenics. The severity of silencing was correlated with the abundance of siRNA expression but independent of the target sites and uridine residue structures in siRNA hairpin transcripts. Thus, the specific expression of siRNA provides a new system for the study of siRNA silencing pathways and functional genomics in plants. Moreover, the effectiveness of the human H1 promoter in a plant background suggested a conserved mechanism underlying Pol III complex functionality.
Collapse
Affiliation(s)
- Shanfa Lu
- Forest Biotechnology Group, Department of Forestry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | |
Collapse
|
242
|
Hammond TM, Keller NP. RNA silencing in Aspergillus nidulans is independent of RNA-dependent RNA polymerases. Genetics 2004; 169:607-17. [PMID: 15545645 PMCID: PMC1449118 DOI: 10.1534/genetics.104.035964] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The versatility of RNA-dependent RNA polymerases (RDRPs) in eukaryotic gene silencing is perhaps best illustrated in the kingdom Fungi. Biochemical and genetic studies of Schizosaccharomyces pombe and Neurospora crassa show that these types of enzymes are involved in a number of fundamental gene-silencing processes, including heterochromatin regulation and RNA silencing in S. pombe and meiotic silencing and RNA silencing in N. crassa. Here we show that Aspergillus nidulans, another model fungus, does not require an RDRP for inverted repeat transgene (IRT)-induced RNA silencing. However, RDRP requirements may vary within the Aspergillus genus as genomic analysis indicates that A. nidulans, but not A. fumigatus or A. oryzae, has lost a QDE-1 ortholog, an RDRP associated with RNA silencing in N. crassa. We also provide evidence suggesting that 5' --> 3' transitive RNA silencing is not a significant aspect of A. nidulans IRT-RNA silencing. These results indicate a lack of conserved kingdom-wide requirements for RDRPs in fungal RNA silencing.
Collapse
Affiliation(s)
- T M Hammond
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
243
|
Geley S, Müller C. RNAi: ancient mechanism with a promising future. Exp Gerontol 2004; 39:985-98. [PMID: 15236758 DOI: 10.1016/j.exger.2004.03.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 03/19/2004] [Accepted: 03/26/2004] [Indexed: 10/26/2022]
Abstract
RNA interference (RNAi) is a gene silencing mechanism that has been conserved in evolution from yeast to man. Double stranded RNA, which is either expressed by cellular genes for small non-coding RNAs, by parasitic nucleic acids, such as viruses or transposons, or is expressed as an experimental tool, becomes processed into small RNAs, which induce gene silencing by a variety of different means. RNAi-induced gene silencing controls gene expression at all levels, including transcription, mRNA stability and translation. We are only beginning to understand the physiological roles of the RNAi pathway and the function of the many small non-coding RNA species, which are found in eukaryotic genomes. Here we review the known functions of genes in RNAi in various species, the experimental use and design of small RNAs as a genetic tool to dissect the function of mammalian genes and their potential as therapeutic agents to modulate gene expression in patients.
Collapse
Affiliation(s)
- Stephan Geley
- Institute of Pathophysiology, University of Innsbruck, Fritz-Pregl-Str.3, A-6020, Austria.
| | | |
Collapse
|
244
|
Abstract
RNA silencing is a novel RNA-guided gene regulatory mechanism operational in a wide range of eukaryotic organisms from fission yeast, plants, to mammals. This article reviews the recent progress on aspects of RNA silencing that are related to its biological function as a conserved antiviral immunity of plants and animals, and highlights features of this novel antiviral response in invertebrate animals as compared to the known innate and adaptive immunities. Finally, we discuss evidence that suggests a natural antiviral role for RNA silencing in vertebrates as well as experimental approaches that may facilitate the identification of first mammalian viral suppressors of RNA silencing.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Center for Plant Cell Biology, Department of Plant Pathology, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
245
|
Medema RH. Optimizing RNA interference for application in mammalian cells. Biochem J 2004; 380:593-603. [PMID: 15056071 PMCID: PMC1224236 DOI: 10.1042/bj20040260] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 03/31/2004] [Accepted: 04/01/2004] [Indexed: 11/17/2022]
Abstract
Over the last 2 years, the scientific community has rapidly embraced novel technologies that allow gene silencing in vertebrates. Ease of application, cost effectiveness and the possibilities for genome-wide reverse genetics have quickly turned this approach into a widely accepted, almost mandatory asset for a self-respecting laboratory in life sciences. This review discusses some of the recent technological developments that allow the application of RNAi (RNA interference) in mammalian cells. In addition, the advantages of applying RNAi to study cell cycle events and the emerging approaches to perform mutational analysis by complementation in mammalian cells are evaluated. In addition, common pitfalls and drawbacks of RNAi will be reviewed, as well as the possible ways to get around these shortcomings of gene silencing by small interfering RNA.
Collapse
Affiliation(s)
- René H Medema
- Division of Molecular Biology, H8, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
246
|
Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM. Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. PLANT MOLECULAR BIOLOGY 2004; 56:601-11. [PMID: 15630623 DOI: 10.1007/s11103-004-0147-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 04/13/2004] [Indexed: 05/21/2023]
Abstract
Geminiviruses are ssDNA viruses that infect a range of economically important crop species. We have developed a pathogen-derived transgenic approach to generate high levels of resistance against these pathogens in a susceptible cultivar of cassava (Manihot esculenta). Integration of the AC1 gene (which encodes the replication-associated protein) from African cassava mosaic virus imparted resistance against the homologous virus and provided strong cross-protection against two heterologous species of cassava-infecting geminiviruses. Short-interfering RNAs specific to the AC1 transgene were identified in the two most resistant transgenic plant lines prior to virus challenge. Levels of AC1 mRNA were suppressed in these plants. When challenged with geminiviruses, accumulation of viral DNA was reduced by up to 98% compared to controls, providing evidence that integration of AC1 initiates protection against viral infection via a post-transcriptional gene silencing mechanism. The robust cross-resistance reported has important implications for field deployment of transgenic strategies to control geminiviruses.
Collapse
|
247
|
Cañizares MC, Taylor KM, Lomonossoff GP. Surface-exposed C-terminal amino acids of the small coat protein of Cowpea mosaic virus are required for suppression of silencing. J Gen Virol 2004; 85:3431-3435. [PMID: 15483261 DOI: 10.1099/vir.0.80454-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The small (S) coat protein of Cowpea mosaic virus (CPMV) has been identified previously as a virus-encoded suppressor of post-transcriptional gene silencing (PTGS). Deletions within the C-terminal 24 aa of this protein affect the yield and systemic spread of the virus, suggesting that the C-terminal amino acids of the S protein, which are exposed on the surface of assembled virus particles, may be responsible for the suppressor activity. To investigate this, versions of CPMV RNA-2 with deletions at the C terminus of the S protein were tested for their ability to counteract PTGS in leaf-patch tests. The results showed that the C-terminal 16 aa of the S protein are particularly important for suppressing PTGS and that these amino acids are virus-specific and cannot be substituted by the equivalent sequence from the related virus Bean pod mottle virus.
Collapse
Affiliation(s)
- M Carmen Cañizares
- Department of Metabolic Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Kathryn M Taylor
- Department of Metabolic Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - George P Lomonossoff
- Department of Metabolic Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
248
|
Schramke V, Allshire R. Those interfering little RNAs! Silencing and eliminating chromatin. Curr Opin Genet Dev 2004; 14:174-80. [PMID: 15196464 DOI: 10.1016/j.gde.2004.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RNA interference (RNAi) is widely used for knocking down expression of genes of interest and in systematic screens for desired phenotypes. In post-transcriptional gene silencing, double-stranded RNA triggers are processed to small interfering RNAs, which act to seek out and destroy homologous transcripts. A variety of organisms utilise the RNAi pathway to silence expression of potentially harmful endogenous mobile elements and to eliminate unnecessary sequences. In plants and fission yeast, RNAi can also mediate chromatin-based silencing resulting in transcriptional shutdown of homologous transcription units (transcriptional gene silencing) and the formation of centromeric heterochromatin. In metazoans, the expression of non-coding RNAs is often associated with the formation of silent chromatin domains but it remains to be determined if RNAi is involved.
Collapse
Affiliation(s)
- Vera Schramke
- Wellcome Trust Centre for Cell Biology, 6.34 Swann Building, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | |
Collapse
|
249
|
Melquist S, Bender J. An internal rearrangement in an Arabidopsis inverted repeat locus impairs DNA methylation triggered by the locus. Genetics 2004; 166:437-48. [PMID: 15020434 PMCID: PMC1470711 DOI: 10.1534/genetics.166.1.437] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plants, transcribed inverted repeats trigger RNA interference (RNAi) and DNA methylation of identical sequences. RNAi is caused by processing of the double-stranded RNA (dsRNA) transcript into small RNAs that promote degradation of complementary RNA sequences. However, the signals for DNA methylation remain to be fully elucidated. The Arabidopsis tryptophan biosynthetic PAI genes provide an endogenous inverted repeat that triggers DNA methylation of PAI-identical sequences. In the Wassilewskija strain, two PAI genes are arranged as a tail-to-tail inverted repeat and transcribed from an unmethylated upstream promoter. This locus directs its own methylation, as well as methylation of two unlinked singlet PAI genes. Previously, we showed that the locus is likely to make an RNA signal for methylation because suppressed transcription of the inverted repeat leads to reduced PAI methylation. Here we characterize a central rearrangement in the inverted repeat that also confers reduced PAI methylation. The rearrangement creates a premature polyadenylation signal and suppresses readthrough transcription into palindromic PAI sequences. Thus, a likely explanation for the methylation defect of the mutant locus is a failure to produce readthrough dsRNA methylation triggers.
Collapse
Affiliation(s)
- Stacey Melquist
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
250
|
Abstract
Small RNAs serve as the specificity determinant for a collection of regulatory mechanisms known as RNA silencing. Plants use these mechanisms to control the expression of endogenous genes and to suppress unwanted foreign nucleic acids. Several gene families implicated in silencing have undergone expansion and evidence exists for multiple RNA silencing pathways. Recent progress in defining the components of a number of these pathways is examined here.
Collapse
Affiliation(s)
- A J Herr
- Sainsbury Laboratory, John Innes Centre, Norwich, UK.
| |
Collapse
|