201
|
Xu M, Yang X, Zhao J, Zhang J, Zhang S, Huang H, Liu Y, Liu J. High expression of Cullin1 indicates poor prognosis for NSCLC patients. Pathol Res Pract 2014; 210:397-401. [PMID: 24767980 DOI: 10.1016/j.prp.2014.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/05/2014] [Accepted: 01/30/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cullin1 is a scaffold protein of the ubiquitin E3 ligase Skp1/Cullin1/Rbx1/F-box protein complex which ubiquitinates a broad range of proteins participating in biochemical events like cell-cycle progression, signal transduction, and transcription. Cullin1 is involved in the progression of several cancers, such as melanoma, breast cancer, and gastric cancer. METHODS To investigate the role of Cullin1 in the development of non-small-cell lung cancer (NSCLC), we examined the expression of Cullin1 in 8-paired fresh NSCLC tissues. We then constructed immunohistochemistry (IHC) on 114 paraffin-embedded slices and evaluated the correlation between Cullin1 expression and clinicopathologic variables, as well as patients' overall survival. RESULTS We found that Cullin1 was highly expressed in NSCLC tissues and significantly associated with NSCLC's histological differentiation (P=0.002), clinical stage (P=0.010) and Ki-67 (P=0.021). Furthermore, we showed a strong correlation between high Cullin1 expression and worse overall survival rates in NSCLC patients (P<0.001). Cox regression analysis revealed that Cullin1 expression was an independent prognostic factor to predict 5-year patient outcome in NSCLC cancer (P=0.033). CONCLUSION These data suggested that Cullin1 might promote the progression of NSCLC and be a biotarget for NSCLC's therapy.
Collapse
Affiliation(s)
- Mingming Xu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaoming Yang
- Department of Neural Biology, Nantong University, Nantong 226001, Jiangsu, China
| | - Jinli Zhao
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Junhua Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
202
|
Feng Y, Zhang M, Guo Q, Wang G, Gong J, Xu Y, Wang W. Manipulation of monoubiquitin improves chilling tolerance in transgenic tobacco (Nicotiana tabacum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 75:138-44. [PMID: 24445300 DOI: 10.1016/j.plaphy.2013.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/07/2013] [Indexed: 05/06/2023]
Abstract
Ubiquitin (Ub) is a multifunctional protein that mainly functions to tag proteins for selective degradation by the 26S proteasome. We cloned an Ub gene TaUb2 from wheat (Triticum aestivum L.) previously. To study the function of TaUB2 in chilling stress, sense and antisense Ub transgenic tobacco plants (Nicotiana tabacum L.), as well as wild type (WT) and vector control β-glucuronidase (T-GUS) plants, were used. Under stress, leaf wilting in sense plants was significantly less than in controls, but more severe in antisense plants. Meanwhile, the net photosynthetic rate (Pn) and the maximal photochemical efficiency of PSII (Fv/Fm) in sense plants were greater than controls, but lower in antisense plants during chilling stress and recovery. Less wilting in sense plants resulted from improved water status, which may be related to the accumulation of proline and solute sugar. Furthermore, as indicated by electrolyte leakage, membrane damage under stress was less in sense plants and more severe in antisense plants than controls. Consistent with electrolyte leakage, the malondialdehyde (MDA) content was less in sense plants, but more in antisense plants compared to controls. Meanwhile, the less accumulation of reactive oxygen species (ROS) and the greater antioxidant enzyme activity in sense plants implied the improved antioxidant competence by the overexpression of monoubiquitin gene Ta-Ub2 from wheat. We suggest that overexpressing Ub is a useful strategy to promote chilling tolerance. The improvement of ROS scavenging may be an important mechanism underlying the role of Ub in promoting plants tolerant to chilling stress.
Collapse
Affiliation(s)
- Yanan Feng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Meng Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qifang Guo
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Guokun Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jiangfeng Gong
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Ying Xu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
203
|
Mir R, León J. Pathogen and circadian controlled 1 (PCC1) protein is anchored to the plasma membrane and interacts with subunit 5 of COP9 signalosome in Arabidopsis. PLoS One 2014; 9:e87216. [PMID: 24475254 PMCID: PMC3903633 DOI: 10.1371/journal.pone.0087216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/25/2013] [Indexed: 12/03/2022] Open
Abstract
The Pathogen and Circadian Controlled 1 (PCC1) gene, previously identified and further characterized as involved in defense to pathogens and stress-induced flowering, codes for an 81-amino acid protein with a cysteine-rich C-terminal domain. This domain is essential for homodimerization and anchoring to the plasma membrane. Transgenic plants with the ß-glucuronidase (GUS) reporter gene under the control of 1.1 kb promoter sequence of PCC1 gene display a dual pattern of expression. At early post-germination, PCC1 is expressed only in the root vasculature and in the stomata guard cells of cotyledons. During the transition from vegetative to reproductive development, PCC1 is strongly expressed in the vascular tissue of petioles and basal part of the leaf, and it further spreads to the whole limb in fully expanded leaves. This developmental pattern of expression together with the late flowering phenotype of long-day grown RNA interference (iPCC1) plants with reduced PCC1 expression pointed to a regulatory role of PCC1 in the photoperiod-dependent flowering pathway. iPCC1 plants are defective in light perception and signaling but are not impaired in the function of the core CO-FT module of the photoperiod-dependent pathway. The regulatory effect exerted by PCC1 on the transition to flowering as well as on other reported phenotypes might be explained by a mechanism involving the interaction with the subunit 5 of the COP9 signalosome (CSN).
Collapse
Affiliation(s)
- Ricardo Mir
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
204
|
Li N, Li Y. Ubiquitin-mediated control of seed size in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:332. [PMID: 25071811 PMCID: PMC4093792 DOI: 10.3389/fpls.2014.00332] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/24/2014] [Indexed: 05/18/2023]
Abstract
Seed size in higher plants is an important agronomic trait, and is also crucial for evolutionary fitness. In flowering plants, the seed comprises three major anatomical components, the embryo, the endosperm and the seed coat, each with different genetic compositions. Therefore, seed size is coordinately determined by the growth of the embryo, endosperm and maternal tissue. Recent studies have revealed multiple pathways that influence seed size in plants. Several factors involved in ubiquitin-related activities have been recently known to determine seed size in Arabidopsis and rice. In this review, we summarize current knowledge of ubiquitin-mediated control of seed size and discuss the role of the ubiquitin pathway in seed size control.
Collapse
Affiliation(s)
| | - Yunhai Li
- *Correspondence: Yunhai Li, Institute of Genetics and Developmental Biology, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China e-mail:
| |
Collapse
|
205
|
The role of a pollen-expressed Cullin1 protein in gametophytic self-incompatibility in Solanum. Genetics 2013; 196:439-42. [PMID: 24240530 DOI: 10.1534/genetics.113.158279] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously isolated a pollen factor, ui6.1, which encodes a Cullin1 protein (CUL1) that functions in unilateral interspecific incompatibility (UI) in Solanum. Here we show that CUL1 is also required for pollen function in self-incompatibility (SI). We used RNA interference (RNAi) to reduce CUL1 expression in pollen of Solanum arcanum, a wild SI tomato relative. Hemizygous T0 plants showed little or no transmission of the transfer DNA (T-DNA) through pollen when crossed onto nontransgenic SI plants, indicating that CUL1-deficient pollen are selectively eliminated. When crossed onto a related self-compatible (SC) accession lacking active S-RNase, pollen transmission of the T-DNA followed Mendelian ratios. These results provide further evidence for functional overlap between SI and UI on the pollen side and suggest that CUL1 mutations will reinforce SI-to-SC transitions in natural populations only if preceded by loss of pistil S-RNase expression.
Collapse
|
206
|
Zhu W, Zhang E, Li H, Chen X, Zhu F, Hong Y, Liao B, Liu S, Liang X. Comparative proteomics analysis of developing peanut aerial and subterranean pods identifies pod swelling related proteins. J Proteomics 2013; 91:172-87. [DOI: 10.1016/j.jprot.2013.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 11/15/2022]
|
207
|
Li J, Han Y, Zhao Q, Li C, Xie Q, Chong K, Xu Y. The E3 ligase AtRDUF1 positively regulates salt stress responses in Arabidopsis thaliana. PLoS One 2013; 8:e71078. [PMID: 23951086 PMCID: PMC3741333 DOI: 10.1371/journal.pone.0071078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/26/2013] [Indexed: 12/17/2022] Open
Abstract
Ubiquitination is an important post-translational protein modification that is known to play critical roles in diverse biological processes in eukaryotes. The RING E3 ligases function in ubiquitination pathways, and are involved in a large diversity of physiological processes in higher plants. The RING domain-containing E3 ligase AtRDUF1 was previously identified as a positive regulator of ABA-mediated dehydration stress response in Arabidopsis. In this study, we report that AtRDUF1 is involved in plant responses to salt stress. AtRDUF1 expression is upregulated by salt treatment. Overexpression of AtRDUF1 in Arabidopsis results in an insensitivity to salt and osmotic stresses during germination and seedling growth. A double knock-out mutant of AtRDUF1 and its close homolog AtRDUF2 (atrduf1atrduf2) was hypersensitive to salt treatment. The expression levels of the stress-response genes RD29B, RD22, and KIN1 are more sensitive to salt treatment in AtRDUF1 overexpression plants. In summary, our data show that AtRDUF1 positively regulates responses to salt stress in Arabidopsis.
Collapse
Affiliation(s)
- Junhua Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Yingying Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Biology, College of Life Sciences, Heilongjiang University, Harbin, Heilongjiang, China
| | - Qingzhen Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chunhua Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
208
|
Genome-wide identification and characterisation of F-box family in maize. Mol Genet Genomics 2013; 288:559-77. [PMID: 23928825 DOI: 10.1007/s00438-013-0769-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
F-box-containing proteins, as the key components of the protein degradation machinery, are widely distributed in higher plants and are considered as one of the largest known families of regulatory proteins. The F-box protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, systematic analysis of the F-box family in maize (Zea mays) has not been reported yet. In this paper, we identified and characterised the maize F-box genes in a genome-wide scale, including phylogenetic analysis, chromosome distribution, gene structure, promoter analysis and gene expression profiles. A total of 359 F-box genes were identified and divided into 15 subgroups by phylogenetic analysis. The F-box domain was relatively conserved, whereas additional motifs outside the F-box domain may indicate the functional diversification of maize F-box genes. These genes were unevenly distributed in ten maize chromosomes, suggesting that they expanded in the maize genome because of tandem and segmental duplication events. The expression profiles suggested that the maize F-box genes had temporal and spatial expression patterns. Putative cis-acting regulatory DNA elements involved in abiotic stresses were observed in maize F-box gene promoters. The gene expression profiles under abiotic stresses also suggested that some genes participated in stress responsive pathways. Furthermore, ten genes were chosen for quantitative real-time PCR analysis under drought stress and the results were consistent with the microarray data. This study has produced a comparative genomics analysis of the maize ZmFBX gene family that can be used in further studies to uncover their roles in maize growth and development.
Collapse
|
209
|
Shin LJ, Lo JC, Chen GH, Callis J, Fu H, Yeh KC. IRT1 degradation factor1, a ring E3 ubiquitin ligase, regulates the degradation of iron-regulated transporter1 in Arabidopsis. THE PLANT CELL 2013; 25:3039-51. [PMID: 23995086 PMCID: PMC3784597 DOI: 10.1105/tpc.113.115212] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/02/2013] [Accepted: 08/11/2013] [Indexed: 05/18/2023]
Abstract
Fe is an essential micronutrient for plant growth and development; plants have developed sophisticated strategies to acquire ferric Fe from the soil. Nongraminaceous plants acquire Fe by a reduction-based mechanism, and graminaceous plants use a chelation-based mechanism. In Arabidopsis thaliana, which uses the reduction-based method, iron-regulated transporter1 (IRT1) functions as the most important transporter for ferrous Fe uptake. Rapid and constitutive degradation of IRT1 allows plants to quickly respond to changing conditions to maintain Fe homeostasis. IRT1 degradation involves ubiquitination. To identify the specific E3 ubiquitin ligases involved in IRT1 degradation, we screened a set of insertional mutants in RING-type E3 ligases and identified a mutant that showed delayed degradation of IRT1 and loss of IRT1-ubiquitin complexes. The corresponding gene was designated IRT1 degradation factor1 (IDF1). Evidence of direct interaction between IDF1 and IRT1 in the plasma membrane supported the role of IDF1 in IRT1 degradation. IRT1 accumulation was reduced when coexpressed with IDF1 in yeast or Xenopus laevis oocytes. IDF1 function was RING domain dependent. The idf1 mutants showed increased tolerance to Fe deficiency, resulting from increased IRT1 levels. This evidence indicates that IDF1 directly regulates IRT1 degradation through its RING-type E3 ligase activity.
Collapse
Affiliation(s)
- Lung-Jiun Shin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Guan-Hong Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Judy Callis
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Hongyong Fu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Address correspondence to
| |
Collapse
|
210
|
Chung E, Cho CW, So HA, Kang JS, Chung YS, Lee JH. Overexpression of VrUBC1, a Mung Bean E2 Ubiquitin-Conjugating Enzyme, Enhances Osmotic Stress Tolerance in Arabidopsis. PLoS One 2013; 8:e66056. [PMID: 23824688 PMCID: PMC3688854 DOI: 10.1371/journal.pone.0066056] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/01/2013] [Indexed: 12/02/2022] Open
Abstract
The ubiquitin conjugating enzyme E2 (UBC E2) mediates selective ubiquitination, acting with E1 and E3 enzymes to designate specific proteins for subsequent degradation. In the present study, we characterized the function of the mung bean VrUBC1 gene (Vigna radiata UBC 1). RNA gel-blot analysis showed that VrUBC1 mRNA expression was induced by either dehydration, high salinity or by the exogenous abscisic acid (ABA), but not by low temperature or wounding. Biochemical studies of VrUBC1 recombinant protein and complementation of yeast ubc4/5 by VrUBC1 revealed that VrUBC1 encodes a functional UBC E2. To understand the function of this gene in development and plant responses to osmotic stresses, we overexpressed VrUBC1 in Arabidopsis (Arabidopsis thaliana). The VrUBC1-overexpressing plants displayed highly sensitive responses to ABA and osmotic stress during germination, enhanced ABA- or salt-induced stomatal closing, and increased drought stress tolerance. The expression levels of a number of key ABA signaling genes were increased in VrUBC1-overexpressing plants compared to the wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that VrUBC1 interacts with AtVBP1 (A. thalianaVrUBC1 Binding Partner 1), a C3HC4-type RING E3 ligase. Overall, these results demonstrate that VrUBC1 plays a positive role in osmotic stress tolerance through transcriptional regulation of ABA-related genes and possibly through interaction with a novel RING E3 ligase.
Collapse
Affiliation(s)
- Eunsook Chung
- Department of Genetic Engineering, College of Natural Resources and Life Science, Dong-A University, Busan, Republic of Korea
| | - Chang-Woo Cho
- Department of Genetic Engineering, College of Natural Resources and Life Science, Dong-A University, Busan, Republic of Korea
| | - Hyun-Ah So
- Department of Genetic Engineering, College of Natural Resources and Life Science, Dong-A University, Busan, Republic of Korea
| | - Jee-Sook Kang
- Department of Genetic Engineering, College of Natural Resources and Life Science, Dong-A University, Busan, Republic of Korea
| | - Young Soo Chung
- Department of Genetic Engineering, College of Natural Resources and Life Science, Dong-A University, Busan, Republic of Korea
| | - Jai-Heon Lee
- Department of Genetic Engineering, College of Natural Resources and Life Science, Dong-A University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
211
|
Huang W, Ling Q, Jarvis P. The ubiquitin-proteasome system regulates chloroplast biogenesis. Commun Integr Biol 2013; 6:e23001. [PMID: 23749079 PMCID: PMC3609838 DOI: 10.4161/cib.23001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In a recently published work, we identified the first chloroplast-localized E3 ligase, and showed that it degrades TOC translocon proteins by the ubiquitin-proteasome system (UPS). This regulation was found to be critical for plastid developmental transitions, such as the conversion of etioplasts to chloroplasts. Here we discuss the importance of SP1 for plants under different circumstances, and speculate about SP1 function and its possible application in agriculture. We anticipate that further work in this area may reveal additional roles of the UPS system, through action on other chloroplast OEPs with different roles in plastid biogenesis and function.
Collapse
Affiliation(s)
- Weihua Huang
- Department of Biology; University of Leicester; Leicester, UK
| | | | | |
Collapse
|
212
|
Cui X, Lu F, Li Y, Xue Y, Kang Y, Zhang S, Qiu Q, Cui X, Zheng S, Liu B, Xu X, Cao X. Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:897-906. [PMID: 23645632 PMCID: PMC3668078 DOI: 10.1104/pp.112.213009] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Protein ubiquitination is involved in most cellular processes. In Arabidopsis (Arabidopsis thaliana), ubiquitin-mediated protein degradation regulates the stability of key components of the circadian clock feedback loops and the photoperiodic flowering pathway. Here, we identified two ubiquitin-specific proteases, UBP12 and UBP13, involved in circadian clock and photoperiodic flowering regulation. Double mutants of ubp12 and ubp13 display pleiotropic phenotypes, including early flowering and short periodicity of circadian rhythms. In ubp12 ubp13 double mutants, CONSTANS (CO) transcript rises earlier than that of wild-type plants during the day, which leads to increased expression of FLOWERING LOCUS T. This, and analysis of ubp12 co mutants, indicates that UBP12 and UBP13 regulate photoperiodic flowering through a CO-dependent pathway. In addition, UBP12 and UBP13 regulate the circadian rhythm of clock genes, including LATE ELONGATED HYPOCOTYL, CIRCADIAN CLOCK ASSOCIATED1, and TIMING OF CAB EXPRESSION1. Furthermore, UBP12 and UBP13 are circadian controlled. Therefore, our work reveals a role for two deubiquitinases, UBP12 and UBP13, in the control of the circadian clock and photoperiodic flowering, which extends our understanding of ubiquitin in daylength measurement in higher plants.
Collapse
Affiliation(s)
- Xia Cui
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Sanan-Mishra N, Varanasi SPRM, Mukherjee SK. Micro-regulators of auxin action. PLANT CELL REPORTS 2013; 32:733-40. [PMID: 23543387 DOI: 10.1007/s00299-013-1425-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 05/08/2023]
Abstract
microRNAs (miRs) are 21- to 24-nucleotide-long RNA molecules that are mainly involved in regulating the gene expression at the post-transcriptional levels. They are present in a variety of organisms from algae to plants and play an important role in gene regulation. The identification of several diverging and converging functions of miRs indicates that they play versatile roles in regulating plant development including differentiation, organ development, phase change, signalling, disease resistance and response to environmental stresses. This article provides a concise update on the plant miR functions and their targets in the auxin pathway with focus on the interactions between miRs and auxin signalling to intricately regulate the plant responses.
Collapse
Affiliation(s)
- Neeti Sanan-Mishra
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| | | | | |
Collapse
|
214
|
Zhao Q, Tian M, Li Q, Cui F, Liu L, Yin B, Xie Q. A plant-specific in vitro ubiquitination analysis system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:524-33. [PMID: 23350615 DOI: 10.1111/tpj.12127] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/15/2013] [Accepted: 01/23/2013] [Indexed: 05/23/2023]
Abstract
Protein ubiquitination requires the concerted action of three enzymes: ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3). These ubiquitination enzymes belong to an abundant protein family that is encoded in all eukaryotic genomes. Describing their biochemical characteristics is an important part of their functional analysis. It has been recognized that various E2/E3 specificities exist, and that detection of E3 ubiquitination activity in vitro may depend on the recruitment of E2s. Here, we describe the development of an in vitro ubiquitination system based on proteins encoded by genes from Arabidopsis. It includes most varieties of Arabidopsis E2 proteins, which are tested with several RING-finger type E3 ligases. This system permits determination of E3 activity in combination with most of the E2 sub-groups that have been identified in the Arabidopsis genome. At the same time, E2/E3 specificities have also been explored. The components used in this system are all from plants, particularly Arabidopsis, making it very suitable for ubiquitination assays of plant proteins. Some E2 proteins that are not easily expressed in Escherichia coli were transiently expressed and purified from plants before use in ubiquitination assays. This system is also adaptable to proteins of species other than plants. In this system, we also analyzed two mutated forms of ubiquitin, K48R and K63R, to detect various types of ubiquitin conjugation.
Collapse
Affiliation(s)
- Qingzhen Zhao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beichen West Road, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
215
|
Wang H, Lu Y, Jiang T, Berg H, Li C, Xia Y. The Arabidopsis U-box/ARM repeat E3 ligase AtPUB4 influences growth and degeneration of tapetal cells, and its mutation leads to conditional male sterility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:511-23. [PMID: 23398263 DOI: 10.1111/tpj.12146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 05/06/2023]
Abstract
Pollen formation is a complex developmental process that has been extensively investigated to unravel underlying fundamental developmental mechanisms and for genetic manipulation of the male-sterility trait for hybrid crop production. Here we describe identification of AtPUB4, a U-box/ARM repeat-containing E3 ubiquitin ligase, as a novel player in male fertility in Arabidopsis. Loss of AtPUB4 function causes hypertrophic growth of the tapetum layer. The Atpub4 mutation also leads to incomplete degeneration of the tapetal cells and strikingly abnormal exine structures of pollen grains. As a result, although the Atpub4 mutant produces viable pollen, the pollen grains adhere to each other and to the remnants of incompletely degenerated tapetal cells, and do not properly disperse from dehisced anthers for successful pollination. We found that the male-sterility phenotype caused by the Atpub4 mutation is temperature-dependent: the mutant plants are sterile when grown at 22°C but are partially fertile at 16°C. Our study also indicates that the AtPUB4-mediated pathway acts in parallel with the brassinosteroid pathway in controlling developmental fates of the tapetal cells to ensure male fertility.
Collapse
Affiliation(s)
- Hai Wang
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Rd, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
216
|
Miao H, Ye Z, Teixeira da Silva JA, Qin Y, Hu G. Identifying differentially expressed genes in pollen from self-incompatible "Wuzishatangju" and self-compatible "Shatangju" mandarins. Int J Mol Sci 2013; 14:8538-55. [PMID: 23595002 PMCID: PMC3645760 DOI: 10.3390/ijms14048538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/02/2013] [Accepted: 04/07/2013] [Indexed: 02/05/2023] Open
Abstract
Self-incompatibility (SI) is one of the important factors that can result in seedless fruit in Citrus. However, the molecular mechanism of SI in Citrus is not yet clear. In this study, two suppression subtractive hybridization (SSH) libraries (forward, F and reverse, R) were constructed to isolate differentially expressed genes in pollen from "Wuzishatangju" (SI) and "Shatangju" (self-compatibility, SC) mandarins. Four hundred and sixty-eight differentially expressed cDNA clones from 2077 positive clones were sequenced and identified. Differentially expressed ESTs are possibly involved in the SI reaction of "Wuzishatangju" by regulating pollen development, kinase activity, ubiquitin pathway, pollen-pistil interaction, and calcium ion binding. Twenty five SI candidate genes were obtained, six of which displayed specific expression patterns in various organs and stages after self- and cross-pollination. The expression level of the F-box gene (H304) and S1 (F78) in the pollen of "Wuzishatangju" was 5-fold higher than that in "Shatangju" pollen. The F-box gene, S1, UBE2, UBE3, RNaseHII, and PCP were obviously up-regulated in pistils at 3 d after self-pollination of "Wuzishatangju", approximately 3-, 2-, 10-, 5-, 5-, and 2-fold higher, respectively than that at the same stage after cross-pollination of "Wuzishatangju" × "Shatangju" pistils. The potential involvement of these genes in the pollen SI reaction of "Wuzishatangju" is discussed.
Collapse
Affiliation(s)
- Hongxia Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| | - Zixing Ye
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| | - Jaime A. Teixeira da Silva
- Faculty of Agriculture and Graduate School of Agriculture, Kagawa University, Ikenobe, Kagawa 761-0795, Japan; E-Mail:
| | - Yonghua Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mail:
| |
Collapse
|
217
|
Lim SD, Hwang JG, Jung CG, Hwang SG, Moon JC, Jang CS. Comprehensive analysis of the rice RING E3 ligase family reveals their functional diversity in response to abiotic stress. DNA Res 2013; 20:299-314. [PMID: 23571674 PMCID: PMC3686435 DOI: 10.1093/dnares/dst011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A large number of really interesting new gene (RING) E3 ligases contribute to the post-translational modification of target proteins during plant responses to environmental stresses. However, the physical interactome of RING E3 ligases in rice remains largely unknown. Here, we evaluated the expression patterns of 47 Oryza sativa RING finger protein (OsRFP) genes in response to abiotic stresses via semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and in silico analysis. Subsequently, molecular dissection of nine OsRFPs was performed by the examination of their E3 ubiquitin ligase activity, subcellular localization, and physical interaction with target proteins. Most of the OsRFPs examined possessed E3 ligase activity and showed diverse subcellular localization. Yeast two-hybrid analysis was then employed to construct a physical interaction map of seven OsRFPs with their 120 interacting proteins. The results indicated that these OsRFPs required dynamic translocation and partitioning for their cellular activation. Heterogeneous overexpression of each of the OsRFP genes in Arabidopsis suggested that they have functionally diverse responses to abiotic stresses, which may have been acquired during evolution. This comprehensive study provides insights into the biological functions of OsRFPs, which may be useful in understanding how rice plants adapt to unfavourable environmental conditions.
Collapse
Affiliation(s)
- Sung Don Lim
- Department of Applied Plant Sciences Technology, Kangwon National University, Chuncheon 200-713, Republic of Korea
| | | | | | | | | | | |
Collapse
|
218
|
Doğramacı M, Foley ME, Chao WS, Christoffers MJ, Anderson JV. Induction of endodormancy in crown buds of leafy spurge (Euphorbia esula L.) implicates a role for ethylene and cross-talk between photoperiod and temperature. PLANT MOLECULAR BIOLOGY 2013; 81:577-93. [PMID: 23436173 DOI: 10.1007/s11103-013-0026-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/01/2013] [Indexed: 05/08/2023]
Abstract
Leafy spurge is a model for studying well-defined phases of dormancy in underground adventitious buds (UABs) of herbaceous perennial weeds, which is a primary factor facilitating their escape from conventional control measures. A 12-week ramp down in both temperature (27 → 10 °C) and photoperiod (16 → 8 h light) is required to induce a transition from para- to endo-dormancy in UABs of leafy spurge. To evaluate the effects of photoperiod and temperature on molecular networks of UABs during this transition, we compared global transcriptome data-sets obtained from leafy spurge exposed to a ramp down in both temperature and photoperiod (RDtp) versus a ramp down in temperature (RDt) alone. Analysis of data-sets indicated that transcript abundance for genes associated with circadian clock, photoperiodism, flowering, and hormone responses (CCA1, COP1, HY5, MAF3, MAX2) preferentially increased in endodormant UABs. Gene-set enrichment analyses also highlighted metabolic pathways involved in endodormancy induction that were associated with ethylene, auxin, flavonoids, and carbohydrate metabolism; whereas, sub-network enrichment analyses identified hubs (CCA1, CO, FRI, miR172A, EINs, DREBs) of molecular networks associated with carbohydrate metabolism, circadian clock, flowering, and stress and hormone responses. These results helped refine existing models for the transition to endodormancy in UABs of leafy spurge, which strengthened the roles of circadian clock associated genes, DREBs, COP1-HY5, carbohydrate metabolism, and involvement of hormones (ABA, ethylene, and strigolactones). We further examined the effects of ethylene by application of 1-aminocyclopropane-1-carboxylate (ACC) to paradormant plants without a ramp down treatment. New vegetative growth from UABs of ACC-treated plants resulted in a dwarfed phenotype that mimicked the growth response in RDtp-induced endodormant UABs. The results of this study provide new insights into dormancy regulation suggesting a short-photoperiod treatment provides an additive cross-talk effect with temperature signals that may impact ethylene's effect on AP2/ERF family members.
Collapse
Affiliation(s)
- Münevver Doğramacı
- Biosciences Research Laboratory, USDA-Agricultural Research Service, 1605 Albrecht Blvd. N., Fargo, ND, 58102-2765, USA
| | | | | | | | | |
Collapse
|
219
|
Wadekar HB, Sahi VP, Morita EH, Abe S. MKRN expression pattern during embryonic and post-embryonic organogenesis in rice (Oryza sativa L. var. Nipponbare). PLANTA 2013; 237:1083-1095. [PMID: 23262670 DOI: 10.1007/s00425-012-1828-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
Rice MKRN is a member of the makorin RING finger protein gene (MKRN) family, which encodes a protein with a characteristic array of zinc-finger motifs conserved in various eukaryotes. Using non-radioactive in situ hybridization, we investigated the spatio-temporal gene expression pattern of rice MKRN during embryogenesis, imbibition, seminal and lateral root development of Oryza sativa L. var. Nipponbare. MKRN expression was ubiquitous during early organogenesis in the embryo along the apical-basal and radial axes. The expression of MKRN decreased during embryonic organ elongation and maturation compared to early embryogenesis, but increased again during imbibition. Tissue-specific and position-dependent MKRN expression was found during embryonic and post-embryonic root and shoot development. Meristematic cells ubiquitously expressed MKRN transcripts, while differentiating cells showed a gradual reduction and termination of MKRN expression. Interestingly, during post-germination MKRN expression was prominent and continued in the metabolically active, differentiated companion cells of the phloem. The differential expression pattern was observed both in the differentiating and differentiated cells. Also, MKRN was expressed in the various developmental stages of the lateral root primordia and the cells surrounding them. Expression of MKRN was also observed after periclinal division of the presumptive pericycle founder cells. The MKRN expression pattern during development of various growth stages suggests an important role of makorin RING finger protein gene (MKRN) in embryonic and post-embryonic organogenesis in both apical-basal and radial developmental axes of rice.
Collapse
Affiliation(s)
- Hanumant Baburao Wadekar
- Laboratory of Molecular Cell Physiology, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan.
| | | | | | | |
Collapse
|
220
|
The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate Brassinosteroid-mediated growth in rice. PLoS Genet 2013; 9:e1003391. [PMID: 23526892 PMCID: PMC3597501 DOI: 10.1371/journal.pgen.1003391] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 01/31/2013] [Indexed: 11/19/2022] Open
Abstract
Heterotrimeric G proteins are an important group of signaling molecules found in eukaryotes. They function with G-protein-coupled-receptors (GPCRs) to transduce various signals such as steroid hormones in animals. Nevertheless, their functions in plants are not well-defined. Previous studies suggested that the heterotrimeric G protein α subunit known as D1/RGA1 in rice is involved in a phytohormone gibberellin-mediated signaling pathway. Evidence also implicates D1 in the action of a second phytohormone Brassinosteroid (BR) and its pathway. However, it is unclear how D1 functions in this pathway, because so far no partner has been identified to act with D1. In this study, we report a D1 genetic interactor Taihu Dwarf1 (TUD1) that encodes a functional U-box E3 ubiquitin ligase. Genetic, phenotypic, and physiological analyses have shown that tud1 is epistatic to d1 and is less sensitive to BR treatment. Histological observations showed that the dwarf phenotype of tud1 is mainly due to decreased cell proliferation and disorganized cell files in aerial organs. Furthermore, we found that D1 directly interacts with TUD1. Taken together, these results demonstrate that D1 and TUD1 act together to mediate a BR-signaling pathway. This supports the idea that a D1-mediated BR signaling pathway occurs in rice to affect plant growth and development.
Collapse
|
221
|
Xia Z, Su X, Liu J, Wang M. The RING-H2 finger gene 1 (RHF1) encodes an E3 ubiquitin ligase and participates in drought stress response in Nicotiana tabacum. Genetica 2013; 141:11-21. [PMID: 23381133 DOI: 10.1007/s10709-013-9702-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 01/28/2013] [Indexed: 11/26/2022]
Abstract
Drought is one of the most important limiting factors for plant growth and development. To identify genes required for drought stress response in tobacco, one highly induced mRNA encoding a RING-H2 Finger gene (RHF1) was isolated by mRNA differential display. The full-length NtRHF1 encodes a protein of 273 amino acids and contains a single C3H2C3-type RING motif in its C-terminal region. NtRHF1 is an ortholog of Arabidopsis SDIR1 (salt- and drought-induced RING finger 1) (73 % identity to AtSDIR1). The recombinant NtRHF1 protein purified from E. coli exhibited an in vitro E3 ubiquitin ligase activity. Real-time quantitative PCR analysis indicated that the transcript levels of NtRHF1 were higher in aerial tissues and were markedly up-regulated by drought stress. Overexpression of NtRHF1 enhanced drought tolerance in transgenic tobacco plants while RNA silencing of NtRHF1 reduced drought tolerance. Further expression analysis by real-time PCR indicated that NtRHF1 participates in drought stress response possibly through transcriptional regulation of downstream stress-responsive genes NtLEA5, NtERD10C, NtAREB, and NtCDPK2 in tobacco. Together, these results demonstrated that NtRHF1 plays a positive role in drought stress tolerance possibly through transcriptional regulation of several stress-responsive marker genes in tobacco. This study will facilitate to improve our understanding of molecular and functional properties of plant RING-H2 finger proteins and to provide genetic evidence on the involvement of the RING-H2 E3 ligase in drought stress response in Nicotiana tabacum plants.
Collapse
Affiliation(s)
- Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, People's Republic of China.
| | | | | | | |
Collapse
|
222
|
Parry G. Assessing the function of the plant nuclear pore complex and the search for specificity. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:833-45. [PMID: 23077202 DOI: 10.1093/jxb/ers289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant cells encounter a wide variety of molecules that influence their gene expression and development. A key component of most signal transduction pathways involves the regulated movement of molecules into and out of the nucleus. The plant nuclear pore complex (NPC) is a critical controlling element in this nucleocytoplasmic movement of protein and RNA. The NPC is comprised of approximately 30 nucleoporin proteins arranged in radial symmetry around the central pore. Over recent years our understanding of how the NPC impacts different signalling pathways has increased following the identification of a range of nucleoporin mutant plants. These mutants allow us to gain insight into how the response to hormonal, abiotic, and biotic stresses are effected by changes in nuclear transport. Importantly we have little information regarding the specific molecules whose nuclear transport is altered in these processes and the identification of these proteins is a significant challenge. Here is presented an overview as to how the members of the plant NPC affect signalling pathways, highlighting the progress and difficulties within this research area.
Collapse
Affiliation(s)
- Geraint Parry
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| |
Collapse
|
223
|
Yan J, Li H, Li S, Yao R, Deng H, Xie Q, Xie D. The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway. THE PLANT CELL 2013; 25:486-98. [PMID: 23386265 PMCID: PMC3608773 DOI: 10.1105/tpc.112.105486] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Jasmonate regulates critical aspects of plant development and defense. The F-box protein CORONATINE INSENSITIVE1 (COI1) functions as a jasmonate receptor and forms Skp1/Cullin1/F-box protein COI1 (SCF(COI1)) complexes with Arabidopsis thaliana Cullin1 and Arabidopsis Skp1-like1 (ASK1) to recruit its substrate jasmonate ZIM-domain proteins for ubiquitination and degradation. Here, we reveal a mechanism regulating COI1 protein levels in Arabidopsis. Genetic and biochemical analysis and in vitro degradation assays demonstrated that the COI1 protein was initially stabilized by interacting with ASK1 and further secured by assembly into SCF(COI1) complexes, suggesting a function for SCF(COI1) in the stabilization of COI1 in Arabidopsis. Furthermore, we show that dissociated COI1 is degraded through the 26S proteasome pathway, and we identified the 297th Lys residue as an active ubiquitination site in COI1. Our data suggest that the COI1 protein is strictly regulated by a dynamic balance of SCF(COI1)-mediated stabilization and 26S proteasome-mediated degradation and thus maintained at a protein level essential for proper biological functions in Arabidopsis development and defense responses.
Collapse
Affiliation(s)
- Jianbin Yan
- The Tsinghua University-Peking University Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiou Li
- The Tsinghua University-Peking University Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuhua Li
- The Tsinghua University-Peking University Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruifeng Yao
- The Tsinghua University-Peking University Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- The Tsinghua University-Peking University Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daoxin Xie
- The Tsinghua University-Peking University Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Address correspondence to
| |
Collapse
|
224
|
Shamloo-Dashtpagerdi R, Razi H, Lindlöf A, Niazi A, Dadkhodaie A, Ebrahimie E. Comparative analysis of expressed sequence tags (ESTs) from Triticum monococcum shoot apical meristem at vegetative and reproductive stages. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0091-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
225
|
Analysis of dormant bud (Banjhi) specific transcriptome of tea (Camellia sinensis (L.) O. Kuntze) from cDNA library revealed dormancy-related genes. Appl Biochem Biotechnol 2013; 169:1405-17. [PMID: 23315209 DOI: 10.1007/s12010-012-0070-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/26/2012] [Indexed: 01/27/2023]
Abstract
Bud dormancy is of ecological and economical interest due to its impact on tea (Camellia sinensis (L.) O. Kuntze) plant growth and yield. Growth regulation associated with dormancy is an essential element in plant's life cycle that leads to changes in expression of large number of genes. In order to identify and provide a picture of the transcriptome profile, cDNA library was constructed from dormant bud (banjhi) of tea. Sequence and gene ontology analysis of 3,500 clones, in many cases, enabled their functional categorization concerning the bud growth. Based on the cDNA library data, the putative role of identified genes from tea is discussed in relation to growth and dormancy, which includes morphogenesis, cellular differentiation, tropism, cell cycle, signaling, and various metabolic pathways. There was a higher representation of unknown processes such as unknown molecular functions (65.80 %), unknown biological processes (62.46 %), and unknown cellular components (67.42 %). However, these unknown transcripts represented a novel component of transcripts in tea plant bud growth and/or dormancy development. The identified transcripts and expressed sequence tags provides a valuable public resource and preliminary insights into the molecular mechanisms of bud dormancy regulation. Further, the findings will be the target of future expression experiments, particularly for further identification of dormancy-related genes in this species.
Collapse
|
226
|
Dattolo E, Gu J, Bayer PE, Mazzuca S, Serra IA, Spadafora A, Bernardo L, Natali L, Cavallini A, Procaccini G. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles. FRONTIERS IN PLANT SCIENCE 2013; 4:195. [PMID: 23785376 PMCID: PMC3683636 DOI: 10.3389/fpls.2013.00195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/27/2013] [Indexed: 05/11/2023]
Abstract
For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (-5 m) and deep (-25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.
Collapse
Affiliation(s)
- Emanuela Dattolo
- Functional and Evolutionary Ecology Lab, Stazione Zoologica Anton DohrnNapoli, Italy
| | - Jenny Gu
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of MünsterMünster, Germany
| | - Philipp E. Bayer
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of MünsterMünster, Germany
| | - Silvia Mazzuca
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaArcavacata di Rende (CS), Italy
- *Correspondence: Silvia Mazzuca, Associate Professor in Plant Biology, Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Bucci, 12 A, 87036 Arcavacata di Rende (CS), Italy e-mail:
| | - Ilia A. Serra
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaArcavacata di Rende (CS), Italy
| | - Antonia Spadafora
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaArcavacata di Rende (CS), Italy
| | - Letizia Bernardo
- Laboratorio di Proteomica, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaArcavacata di Rende (CS), Italy
| | - Lucia Natali
- Dipartimento di Scienze Agrarie, Alimentari ed Agro-ambientali, Università di PisaPisa, Italy
| | - Andrea Cavallini
- Dipartimento di Scienze Agrarie, Alimentari ed Agro-ambientali, Università di PisaPisa, Italy
| | - Gabriele Procaccini
- Functional and Evolutionary Ecology Lab, Stazione Zoologica Anton DohrnNapoli, Italy
| |
Collapse
|
227
|
El sistema ubicuitina/proteasoma en la interacción planta-patógeno. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2013. [DOI: 10.1016/s1405-888x(13)72083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
228
|
Duan Y, Li S, Chen Z, Zheng L, Diao Z, Zhou Y, Lan T, Guan H, Pan R, Xue Y, Wu W. Dwarf and deformed flower 1, encoding an F-box protein, is critical for vegetative and floral development in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:829-42. [PMID: 22897567 DOI: 10.1111/j.1365-313x.2012.05126.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent studies have shown that F-box proteins constitute a large family in eukaryotes, and play pivotal roles in regulating various developmental processes in plants. However, their functions in monocots are still obscure. In this study, we characterized a recessive mutant dwarf and deformed flower 1-1 (ddf1-1) in Oryza sativa (rice). The mutant is abnormal in both vegetative and reproductive development, with significant size reduction in all organs except the spikelet. DDF1 controls organ size by regulating both cell division and cell expansion. In the ddf1-1 spikelet, the specification of floral organs in whorls 2 and 3 is altered, with most lodicules and stamens being transformed into glume-like organs and pistil-like organs, respectively, but the specification of lemma/palea and pistil in whorls 1 and 4 is not affected. DDF1 encodes an F-box protein anchored in the nucleolus, and is expressed in almost all vegetative and reproductive tissues. Consistent with the mutant floral phenotype, DDF1 positively regulates B-class genes OsMADS4 and OsMADS16, and negatively regulates pistil specification gene DL. In addition, DDF1 also negatively regulates the Arabidopsis LFY ortholog APO2, implying a functional connection between DDF1 and APO2. Collectively, these results revealed that DDF1, as a newly identified F-box gene, is a crucial genetic factor with pleiotropic functions for both vegetative growth and floral organ specification in rice. These findings provide additional insights into the molecular mechanism controlling monocot vegetative and reproductive development.
Collapse
Affiliation(s)
- Yuanlin Duan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Molecular characterization and expression analysis of ubiquitin-activating enzyme E1 gene in Citrus reticulata. Gene 2012; 513:249-59. [PMID: 23154060 DOI: 10.1016/j.gene.2012.10.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/12/2012] [Accepted: 10/09/2012] [Indexed: 11/21/2022]
Abstract
Ubiquitin-activating enzyme E1 (UBE1) catalyzes the first step in the ubiquitination reaction, which targets a protein for degradation via a proteasome pathway. UBE1 plays an important role in metabolic processes. In this study, full-length cDNA and DNA sequences of UBE1 gene, designated CrUBE1, were obtained from 'Wuzishatangju' (self-incompatible, SI) and 'Shatangju' (self-compatible, SC) mandarins. 5 amino acids and 8 bases were different in cDNA and DNA sequences of CrUBE1 between 'Wuzishatangju' and 'Shatangju', respectively. Southern blot analysis showed that there existed only one copy of the CrUBE1 gene in genome of 'Wuzishatangju' and 'Shatangju'. The temporal and spatial expression characteristics of the CrUBE1 gene were investigated using semi-quantitative RT-PCR (SqPCR) and quantitative real-time PCR (qPCR). The expression level of the CrUBE1 gene in anthers of 'Shatangju' was approximately 10-fold higher than in anthers of 'Wuzishatangju'. The highest expression level of CrUBE1 was detected in pistils at 7days after self-pollination of 'Wuzishatangju', which was approximately 5-fold higher than at 0 h. To obtain CrUBE1 protein, the full-length cDNA of CrUBE1 genes from 'Wuzishatangju' and 'Shatangju' were successfully expressed in Pichia pastoris. Pollen germination frequency of 'Wuzishatangju' was significantly inhibited with increasing of CrUBE1 protein concentrations from 'Wuzishatangju'.
Collapse
|
230
|
Abstract
Ubiquitin-dependent proteolysis is a major mechanism that downregulates misfolded proteins or those that have finished a programmed task. In the last two decades, neddylation has emerged as a major regulatory pathway for ubiquitination. Central to the neddylation pathway is the amyloid precursor protein (APP)-binding protein APP-BP1, which together with Uba3, plays an analogous role to the ubiquitin-activating enzyme E1 in nedd8 activation. Activated nedd8 covalently modifies and activates a major class of ubiquitin ligases called Cullin-RING ligases (CRLs). New evidence suggests that neddylation also modifies Type-1 transmembrane receptors such as APP. Here we review the functions of neddylation and summarize evidence suggesting that dysfunction of neddylation is involved in Alzheimer's disease.
Collapse
Affiliation(s)
- Yuzhi Chen
- Department of Geriatrics and Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
231
|
Hong MJ, Kim DY, Seo YW. SKP1-like-related genes interact with various F-box proteins and may form SCF complexes with Cullin-F-box proteins in wheat. Mol Biol Rep 2012; 40:969-81. [PMID: 23065282 DOI: 10.1007/s11033-012-2139-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/03/2012] [Indexed: 11/25/2022]
Abstract
S-phase kinase-associated protein 1 (SKP1), a core component of the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex, functions as an adaptor protein, connecting cullin and F-box proteins. SKP1 plays crucial roles in cell-cycle progression, transcriptional regulation, flower formation, signal transduction, and many other cellular processes. SKP1-like genes have been largely unstudied in wheat. Here, we isolated six wheat SKP1-like (TaSKP) genes from common wheat (Triticum aestivum) and analyzed the expression patterns of these six genes using reverse transcription-polymerase chain reaction (RT-PCR). Based on gene expression patterns, we divided the genes into two groups. Our data demonstrated that green fluorescent protein-tagged TaSKP proteins were targeted to the plasma membrane or cytoplasm in plant cells. In a yeast two-hybrid system, all TaSKP proteins interacted with TaCFBD, TaSKP1, and TaSKP5, while TaSKP6 interacted with RA and RLK. A BiFC assay suggested that specific combinations of TaSKP and F-box proteins may influence localization patterns in plant cells. TaSKP1, TaSKP5, and TaSKP6 interacted with TaCullin, while TaSKP2, TaSKP3, and TaSKP4 were not found to interact with TaCullin in the yeast two-hybrid system. This evidence indicated that some TaSKP proteins may have the ability to form SCF complexes. Taken together, these data suggested that TaSKP1, TaSKP5, and TaSKP6 proteins may act as a bridge between various F-box proteins and cullin proteins and that TaSKP genes may be involved in various growth and flower development processes.
Collapse
Affiliation(s)
- Min Jeong Hong
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-701, Republic of Korea
| | | | | |
Collapse
|
232
|
Hong MJ, Kim DY, Kang SY, Kim DS, Kim JB, Seo YW. Wheat F-box protein recruits proteins and regulates their abundance during wheat spike development. Mol Biol Rep 2012; 39:9681-96. [PMID: 22729884 DOI: 10.1007/s11033-012-1833-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
Abstract
F-box proteins, components of the Skp1-Cullin1-F-box (SCF) protein E3 ubiquitin ligase complex, serve as the variable component responsible for substrate recognition and recruitment in SCF-mediated proteolysis. F-box proteins interact with Skp1 through the F-box motif and with ubiquitination substrates through C-terminal protein interaction domains. F-box proteins regulate plant development, various hormonal signal transduction processes, circadian rhythm, and cell cycle control. We isolated an F-box protein gene from wheat spikes at the onset of flowering. The Triticum aestivum cyclin F-box domain (TaCFBD) gene showed elevated expression levels during early inflorescence development and under cold stress treatment. TaCFBD green fluorescent protein signals were localized in the cytoplasm and plasma membrane. We used yeast two-hybrid screening to identify proteins that potentially interact with TaCFBD. Fructose bisphosphate aldolase, aspartic protease, VHS, glycine-rich RNA-binding protein, and the 26S proteasome non-ATPase regulatory subunit were positive candidate proteins. The bimolecular fluorescence complementation assay revealed the interaction of TaCFBD with partner proteins in the plasma membranes of tobacco cells. Our results suggest that the TaCFBD protein acts as an adaptor between target substrates and the SCF complex and provides substrate specificity to the SCF of ubiquitin ligase complexes.
Collapse
Affiliation(s)
- Min Jeong Hong
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
233
|
Different degree in proteasome malfunction has various effects on root growth possibly through preventing cell division and promoting autophagic vacuolization. PLoS One 2012; 7:e45673. [PMID: 23029176 PMCID: PMC3448697 DOI: 10.1371/journal.pone.0045673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/20/2012] [Indexed: 01/07/2023] Open
Abstract
The ubiquitin/proteasome pathway plays a vital role in plant development. But the effects of proteasome malfunction on root growth, and the mechanism underlying this involvement remains unclear. In the present study, the effects of proteasome inhibitors on Arabidopsis root growth were studied through the analysis of the root length, and meristem size and cell length in maturation zone using FM4-64, and cell-division potential using GFP fusion cyclin B, and accumulation of ubiquitinated proteins using immunofluorescence labeling, and autophagy activity using LysoTracker and MDC. The results indicated that lower concentration of proteasome inhibitors promoted root growth, whereas higher concentration of inhibitors had the opposite effects. The accumulation of cyclin B was linked to MG132-induced decline in meristem size, indicating that proteasome malfunction prevented cell division. Besides, MG132-induced accumulation of the ubiquitinated proteins was associated with the increasing fluorescence signal of LysoTracker and MDC in the elongation zone, revealing a link between the activation of autophagy and proteasome malfunction. These results suggest that weak proteasome malfunction activates moderate autophagy and promotes cell elongation, which compensates the inhibitor-induced reduction of cell division, resulting in long roots. Whereas strong proteasome malfunction induces severe autophagy and disturbs cell elongation, resulting in short roots.
Collapse
|
234
|
Gao M, Wang Q, Wan R, Fei Z, Wang X. Identification of genes differentially expressed in grapevine associated with resistance to Elsinoe ampelina through suppressive subtraction hybridization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:253-68. [PMID: 22864229 DOI: 10.1016/j.plaphy.2012.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 07/10/2012] [Indexed: 05/01/2023]
Abstract
Anthracnose, caused by the biotrophic fungus Elsinoe ampelina, is an economically devastating disease of grapevine (Vitis vinifera L.) prevalent in warm and humid regions of the world. In order to investigate the molecular resistance mechanisms and identify genes related to anthracnose resistance in grapevine, a Suppression Subtractive Hybridization (SSH) library was constructed using mixed cDNAs prepared from leaves of Chinese wild Vitis quinquangularis clone 'Shang-24', cDNA prepared from leaves infected with the pathogen E. ampelina served as tester and cDNA from mock-inoculated leaves as driver. A total of 670 high-quality ESTs were clustered and assembled into a collection of 461 unique genes comprising 85 contigs and 376 singletons. By Gene ontology (GO) analysis 310 unigenes were assigned to 22 GO slims within the molecular function category, while 317 unigenes could be sorted into 43 GO slims within the biological process category. The expression profiles of 20 selected genes, monitored by quantitative RT-PCR, indicated that expression of these genes in the E. ampelina-resistant 'Shang-24' was quicker and more intense, than in the susceptible 'Red Globe' where the reaction was delayed and limited. The results imply that these up-regulated genes could be involved in grapevine responses against E. ampelina infection.
Collapse
Affiliation(s)
- Min Gao
- College of Horticulture, Northwest A&F University, Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | | | | | | | | |
Collapse
|
235
|
Song S, Dai X, Zhang WH. A rice F-box gene, OsFbx352, is involved in glucose-delayed seed germination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5559-68. [PMID: 22859682 PMCID: PMC3444269 DOI: 10.1093/jxb/ers206] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
F-box proteins play diverse roles in regulating numerous physiological processes in plants. This study isolated a gene (OsFbx352) from rice encoding an F-box domain protein and characterized its role in seed germination. Expression of OsFbx352 was upregulated by abscisic acid (ABA). The transcripts of OsFbx352 were increased upon imbibition of rice seeds and the increase was markedly suppressed by glucose. Germination of seeds with overexpression of OsFbx352 was less suppressed by glucose than that of wild-type seeds, while glucose had greater inhibition for germination of seeds with knockdown of OsFbx352 by RNA interference (RNAi) than that of wild-type seeds. The differential response of germination of the transgenic and wild-type seeds to glucose may be accounted for by differences in ABA content among overexpressing, RNAi, and wild-type seeds such that overexpression of OsFbx352 and knockdown of OsFbx352 led to lower and higher ABA contents, respectively, than that of wild-type seeds in the presence of glucose. Overexpression of OsFbx352 led to a reduction in expression of genes responsible for ABA synthesis (OsNced2, OsNced3) and an increase in expression of genes encoding ABA catabolism (OsAba-ox2, OsAba-ox3) in the presence of glucose. These findings indicate that OsFbx352 plays a regulatory role in the regulation of glucose-induced suppression of seed germination by targeting ABA metabolism.
Collapse
Affiliation(s)
- Shiyong Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences,Beijing 100093PR China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049PR China
| | - Xiaoyan Dai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences,Beijing 100093PR China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences,Beijing 100093PR China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
236
|
Seo DH, Ryu MY, Jammes F, Hwang JH, Turek M, Kang BG, Kwak JM, Kim WT. Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. PLANT PHYSIOLOGY 2012; 160:556-68. [PMID: 22829319 PMCID: PMC3440228 DOI: 10.1104/pp.112.202143] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/21/2012] [Indexed: 05/19/2023]
Abstract
AtPUB18 and AtPUB19 are homologous U-box E3 ubiquitin ligases in Arabidopsis (Arabidopsis thaliana). AtPUB19 is a negative regulator of abscisic acid (ABA)-mediated drought responses, whereas the role of AtPUB18 in drought responses is unknown. Here, loss-of-function and overexpression tests identified AtPUB18 as a negative regulator in ABA-mediated stomatal closure and water stress responses. The atpub18-2atpub19-3 double mutant line displayed more sensitivity to ABA and enhanced drought tolerance than each single mutant plant; therefore, AtPUB18 and AtPUB19 are agonistic. Stomatal closure of the atpub18-2atpub19-3 mutant was hypersensitive to hydrogen peroxide (H(2)O(2)) but not to calcium, suggesting that AtPUB18 and AtPUB19 exert negative effects on the ABA signaling pathway downstream of H(2)O(2) and upstream of calcium. AtPUB22 and AtPUB23 are other U-box E3 negative regulators of drought responses. Although atpub22atpub23 was more tolerant to drought stress relative to wild-type plants, its ABA-mediated stomatal movements were highly similar to those of wild-type plants. The atpub18-2atpub19-3atpub22atpub23 quadruple mutant exhibited enhanced tolerance to drought stress as compared with each atpub18-2atpub19-3 and atpub22atpub23 double mutant progeny; however, its stomatal behavior was almost identical to the atpub18-2atpub19-3 double mutant in the presence of ABA, H(2)O(2), and calcium. Overexpression of AtPUB18 and AtPUB19 in atpub22atpub23 effectively hindered ABA-dependent stomatal closure, but overexpression of AtPUB22 and AtPUB23 in atpub18-2atpub19-3 did not inhibit ABA-enhanced stomatal closure, highlighting their ABA-independent roles. Overall, these results suggest that AtPUB18 has a linked function with AtPUB19, but is independent from AtPUB22 and AtPUB23, in negative regulation of ABA-mediated drought stress responses.
Collapse
|
237
|
Liu J, Li W, Ning Y, Shirsekar G, Cai Y, Wang X, Dai L, Wang Z, Liu W, Wang GL. The U-Box E3 ligase SPL11/PUB13 is a convergence point of defense and flowering signaling in plants. PLANT PHYSIOLOGY 2012; 160:28-37. [PMID: 22659522 PMCID: PMC3440206 DOI: 10.1104/pp.112.199430] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/30/2012] [Indexed: 05/19/2023]
|
238
|
Gholizadeh A. Comparative fusion expression of maize SINAT5 in two different strains of Escherichia coli. GENETICS AND MOLECULAR RESEARCH 2012; 11:2760-8. [PMID: 23007971 DOI: 10.4238/2012.august.24.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
SINAT5 is a plant E3 ligase that regulates auxin signaling and root morphogenesis by ubiquitination of the NAC1 protein. Consequently, it may be a putative regulator of aspects of plant development cycles that are controlled by auxin. Efficient production, purification and correctly folded form of this protein are important requirements for functional studies. We produced and quantitatively compared fusion expression of the "maltose binding protein (mbp)-maize sinat5" construct in two different strains of Escherichia coli. One-step purification of fused products gave about 33 mg protein/L bacterial cell culture for E. coli TB1 cells and approximately 18 mg protein/L bacterial cell culture for E. coli DH5α cells. Continuous expression of the fused product and similarity of growth patterns were observed in both cultures.
Collapse
Affiliation(s)
- A Gholizadeh
- Department of Molecular Biotechnology, Research Institute for Fundamental Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
239
|
Anand A, Rojas CM, Tang Y, Mysore KS. Several components of SKP1/Cullin/F-box E3 ubiquitin ligase complex and associated factors play a role in Agrobacterium-mediated plant transformation. THE NEW PHYTOLOGIST 2012; 195:203-16. [PMID: 22486382 DOI: 10.1111/j.1469-8137.2012.04133.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
• Successful genetic transformation of plants by Agrobacterium tumefaciens requires the import of bacterial T-DNA and virulence proteins into the plant cell that eventually form a complex (T-complex). The essential components of the T-complex include the single stranded T-DNA, bacterial virulence proteins (VirD2, VirE2, VirE3 and VirF) and associated host proteins that facilitate the transfer and integration of T-DNA. The removal of the proteins from the T-complex is likely achieved by targeted proteolysis mediated by VirF and the plant ubiquitin proteasome complex. • We evaluated the involvement of the host SKP1/culin/F-box (SCF)-E3 ligase complex and its role in plant transformation. Gene silencing, mutant screening and gene expression studies suggested that the Arabidopsis homologs of yeast SKP1 (suppressor of kinetochore protein 1) protein, ASK1 and ASK2, are required for Agrobacterium-mediated plant transformation. • We identified the role for SGT1b (suppressor of the G2 allele of SKP1), an accessory protein that associates with SCF-complex, in plant transformation. We also report the differential expression of many genes that encode F-box motif containing SKP1-interacting proteins (SKIP) upon Agrobacterium infection. • We speculate that these SKIP genes could encode the plant specific F-box proteins that target the T-complex associated proteins for polyubiquitination and subsequent degradation by the 26S proteasome.
Collapse
Affiliation(s)
- Ajith Anand
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73402, USA
| | | | | | | |
Collapse
|
240
|
Song JB, Huang SQ, Dalmay T, Yang ZM. Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS. PLANT & CELL PHYSIOLOGY 2012; 53:1283-94. [PMID: 22619471 DOI: 10.1093/pcp/pcs080] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The present study identified Arabidopsis miR394 and its target, an F-box (SKP1-Cullin/CDC53-F-box) gene At1g27340 (here referred to as LEAF CURLING RESPONSIVENESS, LCR), for regulation of leaf curling-related morphology. The loss-of-function lcr mutants exhibit pleiotropic defects with semi-dwarfism, altered leaf shape and a shorter stem. Overexpression of an miR394-resistant version of LCR under the 35S promoter (35S:m5LCR) and target mimicry MIM394 resulted in a curled-down leaf defect. Conversely, transgenic plants overexpressing 35S:MIR394a/b display a curled-up leaf phenotype. Detailed analyses show that there is a certain level of LCR that is optimal for leaf morphology, but lower or higher levels lead to abnormal leaf development, indicating that expression of miR394 in the leaf lamina is necessary for proper leaf morphology. Because the phytohormone auxin plays a crucial role in leaf morphogenesis and patterning, the DR5-GUS reporter gene was used to monitor the auxin response. We show that DR5 expression patterns in lcr and 35S::m5LCR plants were significantly different from those in the wild type. Also, overexpression of LCR in 35S::m5LCR plants drastically decreased the expression of the auxin-responsive genes IAA3, AXR3 and IAMT1, whereas increased expression of the genes was found in 35S::MIR394a plants. These results indicate that miR394 and its target LCR are involved in the regulation of leaf development.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Agrobacterium tumefaciens/metabolism
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cloning, Molecular
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Indoleacetic Acids/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Plant Leaves/genetics
- Plant Leaves/physiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Promoter Regions, Genetic
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Transcription Factors
- Transformation, Genetic
Collapse
Affiliation(s)
- Jian Bo Song
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | |
Collapse
|
241
|
Stępiński D. Immunofluorescent localization of ubiquitin and proteasomes in nucleolar vacuoles of soybean root meristematic cells. Eur J Histochem 2012; 56:e13. [PMID: 22688294 PMCID: PMC3428962 DOI: 10.4081/ejh.2012.e13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this study, using the immunofluorescent method, the immunopositive signals to ubiquitin and proteasomes in nucleoli of root meristematic cells of soybean seedlings have been observed. In fact, those signals were present exclusively in nucleolar vacuoles. No signals were observed in the nucleolar territory out of the nucleolar vacuoles or in the nucleoli without vacuoles. The ubiquitin-proteasome system (UPS) may act within the nucleoli of plants with high metabolic activities and may provide an additional level of regulation of intracellular proteolysis via compartment-specific activities of their components. It is suggested that the presence of the UPS solely in vacuolated nucleoli serves as a mechanism that enhances the speed of ribosome subunit production in very actively transcribing nucleoli. On the other hand, nucleolar vacuoles in a cell/nucleus could play additional roles associated with temporary sequestration or storage of some cellular factors, including components of the ubiquitin-proteasome system.
Collapse
|
242
|
Stępiński D. Immunofluorescent localization of ubiquitin and proteasomes in nucleolar vacuoles of soybean root meristematic cells. Eur J Histochem 2012; 56:e13. [PMID: 22688294 PMCID: PMC3428962 DOI: 10.4081/ejh.2012.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 01/01/2023] Open
Abstract
In this study, using the immunofluorescent method, the immunopositive signals to ubiquitin and proteasomes in nucleoli of root meristematic cells of soybean seedlings have been observed. In fact, those signals were present exclusively in nucleolar vacuoles. No signals were observed in the nucleolar territory out of the nucleolar vacuoles or in the nucleoli without vacuoles. The ubiquitin-proteasome system (UPS) may act within the nucleoli of plants with high metabolic activities and may provide an additional level of regulation of intracellular proteolysis via compartment-specific activities of their components. It is suggested that the presence of the UPS solely in vacuolated nucleoli serves as a mechanism that enhances the speed of ribosome subunit production in very actively transcribing nucleoli. On the other hand, nucleolar vacuoles in a cell/nucleus could play additional roles associated with temporary sequestration or storage of some cellular factors, including components of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- D Stępiński
- Department of Cytophysiology, University of Łódź, Poland.
| |
Collapse
|
243
|
Bhattacharyya D, Sinha R, Ghanta S, Chakraborty A, Hazra S, Chattopadhyay S. Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Sci 2012; 10:34. [PMID: 22621772 PMCID: PMC3499389 DOI: 10.1186/1477-5956-10-34] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 04/30/2012] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED BACKGROUND Podophyllotoxin (PTOX), the precursor for semi-synthesis of cancer therapeutics like etoposide, teniposide and etophos, is primarily obtained from an endangered medicinal herb, Podophyllum hexandrum Royle. PTOX, a lignan is biosynthetically derived from the phenylpropanoid pathway. The aim of this study is to investigate changes in the P. hexandrum cell proteome potentially related to PTOX accumulation in response to methyl jasmonate (MeJA) elicitation. High-resolution two-dimensional gel electrophoresis (2-DE) followed by colloidal Coomassie staining and mass spectrometric analysis was used to detect statistically significant changes in cell's proteome. RESULT The HPLC analysis showed approximately 7-8 fold change in accumulation of PTOX, in the 12day old cell suspension culture (i.e. after 9days of elicitation) elicited with 100 μM MeJA as compared to the control. Using 2-DE a total of 233 spots was detected, out of which 105 spots were identified by MALDI TOF-TOF MS/MS. Data were subjected to functional annotation from a biological point of view through KEGG. The phenylpropanoid and monolignol pathway enzymes were identified, amongst these, chalcone synthase, polyphenol oxidase, caffeoyl CoA 3-O-methyltransferase, S-adenosyl-L-methionine-dependent methyltransferases, caffeic acid-O-methyl transferase etc. are noted as important. The relation of other differentially accumulated proteins with varied effects caused by elicitors on P. hexandrum cells namely stress and defense related protein, transcription and DNA replication and signaling are also discussed. CONCLUSIONS Elicitor-induced PTOX accumulation in P. hexandrum cell cultures provides a responsive model system to profile modulations in proteins related to phenylpropanoid/monolignol biosynthesis and other defense responses. Present findings form a baseline for future investigation on a non-sequenced medicinal herb P. hexandrum at molecular level.
Collapse
Affiliation(s)
- Dipto Bhattacharyya
- Plant Biology Laboratory, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Ragini Sinha
- Plant Biology Laboratory, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Srijani Ghanta
- Plant Biology Laboratory, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Amrita Chakraborty
- Plant Biology Laboratory, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Saptarshi Hazra
- Plant Biology Laboratory, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| |
Collapse
|
244
|
Ré MD, Gonzalez C, Sdrigotti MA, Sorrequieta A, Valle EM, Boggio SB. Ripening tomato fruit after chilling storage alters protein turnover. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:1490-6. [PMID: 22162046 DOI: 10.1002/jsfa.4732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 05/14/2023]
Abstract
BACKGROUND Tomato fruit is of prime importance owing to its qualities for human nutrition and its economic value. In order to extend its commercial life, it is harvested at mature but unripe stages and stored at low temperatures. The goal of this work was to study the influence of harvest and chilling storage of mature green tomato fruit (cv. Micro-Tom) on the protein pattern, amino acid content and protease activity during fruit ripening. RESULTS Fruits were sampled during ripening in three different conditions: 1, on the vine; 2, off the vine; 3, off the vine after 4 weeks at 4 °C. During all fruit ripening conditions, protein level decreased while amino acid content increased. Chilling storage of mature green fruit led to a reduction in protein content. Ripening off the vine (conditions 2 and 3) resulted in a threefold increase in red fruit amino acid levels when compared with red fruit on the vine. Protease activities (autoproteolytic, azocaseinolytic and gelatinolytic) were detected in all fruits evaluated and were differently affected by ripening stage, ripening conditions and the presence of specific inhibitors. CONCLUSION Harvest and chilling storage increased endogenous substrate proteolysis, azocaseinolytic activity and free amino acid levels, which could be related to fruit quality.
Collapse
Affiliation(s)
- Martín D Ré
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
245
|
Den Herder G, Yoshida S, Antolín-Llovera M, Ried MK, Parniske M. Lotus japonicus E3 ligase SEVEN IN ABSENTIA4 destabilizes the symbiosis receptor-like kinase SYMRK and negatively regulates rhizobial infection. THE PLANT CELL 2012; 24:1691-707. [PMID: 22534128 PMCID: PMC3398572 DOI: 10.1105/tpc.110.082248] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/28/2012] [Accepted: 03/21/2012] [Indexed: 05/18/2023]
Abstract
The Lotus japonicus SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) is required for symbiotic signal transduction upon stimulation of root cells by microbial signaling molecules. Here, we identified members of the SEVEN IN ABSENTIA (SINA) E3 ubiquitin-ligase family as SYMRK interactors and confirmed their predicted ubiquitin-ligase activity. In Nicotiana benthamiana leaves, SYMRK-yellow fluorescent protein was localized at the plasma membrane, and interaction with SINAs, as determined by bimolecular fluorescence complementation, was observed in small punctae at the cytosolic interface of the plasma membrane. Moreover, fluorescence-tagged SINA4 partially colocalized with SYMRK and caused SYMRK relocalization as well as disappearance of SYMRK from the plasma membrane. Neither the localization nor the abundance of Nod-factor receptor1 was altered by the presence of SINA4. SINA4 was transcriptionally upregulated during root symbiosis, and rhizobia inoculated roots ectopically expressing SINA4 showed reduced SYMRK protein levels. In accordance with a negative regulatory role in symbiosis, infection thread development was impaired upon ectopic expression of SINA4. Our results implicate SINA4 E3 ubiquitin ligase in the turnover of SYMRK and provide a conceptual mechanism for its symbiosis-appropriate spatio-temporal containment.
Collapse
Affiliation(s)
- Griet Den Herder
- Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany
| | - Satoko Yoshida
- Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | | | - Martina K. Ried
- Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany
| | - Martin Parniske
- Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
246
|
Kim SJ, Ryu MY, Kim WT. Suppression of Arabidopsis RING-DUF1117 E3 ubiquitin ligases, AtRDUF1 and AtRDUF2, reduces tolerance to ABA-mediated drought stress. Biochem Biophys Res Commun 2012; 420:141-7. [PMID: 22405823 DOI: 10.1016/j.bbrc.2012.02.131] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Among approximately 480 RING domain-containing E3 Ub ligases in Arabidopsis, three, At3g46620, At5g59550, and At2g39720, have a domain-of-unknown-function (DUF) 1117 motif in their C-terminal regions. At3g46620 and At5g59550 were identified as homologous ABA- and drought-induced RING-DUF1117 genes and were designated AtRDUF1 and AtRDUF2, respectively. Single and double knock-out mutations of AtRDUFs resulted in hyposensitive phenotypes toward ABA in terms of germination rate and stomatal closure and markedly reduced tolerance to drought stress relative to wild-type plants. These results are discussed in the context that AtRDUF1 and AtRDUF2 play combinatorial, but still distinguishable, roles in ABA-mediated dehydration stress responses.
Collapse
Affiliation(s)
- Soo Jin Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | |
Collapse
|
247
|
Xia Z, Liu Q, Wu J, Ding J. ZmRFP1, the putative ortholog of SDIR1, encodes a RING-H2 E3 ubiquitin ligase and responds to drought stress in an ABA-dependent manner in maize. Gene 2012; 495:146-53. [DOI: 10.1016/j.gene.2011.12.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 01/06/2023]
|
248
|
CHEN K, CHENG HH, ZHOU RJ. Molecular mechanisms and functions of autophagy and the ubiq-uitin-proteasome pathway. YI CHUAN = HEREDITAS 2012; 34:5-18. [DOI: 10.3724/sp.j.1005.2012.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
249
|
Ma X, Feng B, Ma H. AMS-dependent and independent regulation of anther transcriptome and comparison with those affected by other Arabidopsis anther genes. BMC PLANT BIOLOGY 2012; 12:23. [PMID: 22336428 DOI: 10.1186/1471-22c29-12-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/15/2012] [Indexed: 05/29/2023]
Abstract
BACKGROUND In flowering plants, the development of male reproductive organs is controlled precisely to achieve successful fertilization and reproduction. Despite the increasing knowledge of genes that contribute to anther development, the regulatory mechanisms controlling this process are still unclear. RESULTS In this study, we analyzed the transcriptome profiles of early anthers of sterile mutants aborted microspores (ams) and found that 1,368 genes were differentially expressed in ams compared to wild type anthers, affecting metabolism, transportation, ubiquitination and stress response. Moreover, the lack of significant enrichment of potential AMS binding sites (E-box) in the promoters of differentially expressed genes suggests both direct and indirect regulation for AMS-dependent regulation of anther transcriptome involving other transcription factors. Combining ams transcriptome profiles with those of two other sterile mutants, spl/nzz and ems1/exs, expression of 3,058 genes were altered in at least one mutant. Our investigation of expression patterns of major transcription factor families, such as bHLH, MYB and MADS, suggested that some closely related homologs of known anther developmental genes might also have similar functions. Additionally, comparison of expression levels of genes in different organs suggested that anther-preferential genes could play important roles in anther development. CONCLUSION Analysis of ams anther transcriptome and its comparison with those of spl/nzz and ems1/exs anthers uncovered overlapping and distinct sets of regulated genes, including those encoding transcription factors and other proteins. These results support an expanded regulatory network for early anther development, providing a series of hypotheses for future experimentation.
Collapse
Affiliation(s)
- Xuan Ma
- Department of Biology and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
250
|
Ma X, Feng B, Ma H. AMS-dependent and independent regulation of anther transcriptome and comparison with those affected by other Arabidopsis anther genes. BMC PLANT BIOLOGY 2012; 12:23. [PMID: 22336428 PMCID: PMC3305669 DOI: 10.1186/1471-2229-12-23] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/15/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND In flowering plants, the development of male reproductive organs is controlled precisely to achieve successful fertilization and reproduction. Despite the increasing knowledge of genes that contribute to anther development, the regulatory mechanisms controlling this process are still unclear. RESULTS In this study, we analyzed the transcriptome profiles of early anthers of sterile mutants aborted microspores (ams) and found that 1,368 genes were differentially expressed in ams compared to wild type anthers, affecting metabolism, transportation, ubiquitination and stress response. Moreover, the lack of significant enrichment of potential AMS binding sites (E-box) in the promoters of differentially expressed genes suggests both direct and indirect regulation for AMS-dependent regulation of anther transcriptome involving other transcription factors. Combining ams transcriptome profiles with those of two other sterile mutants, spl/nzz and ems1/exs, expression of 3,058 genes were altered in at least one mutant. Our investigation of expression patterns of major transcription factor families, such as bHLH, MYB and MADS, suggested that some closely related homologs of known anther developmental genes might also have similar functions. Additionally, comparison of expression levels of genes in different organs suggested that anther-preferential genes could play important roles in anther development. CONCLUSION Analysis of ams anther transcriptome and its comparison with those of spl/nzz and ems1/exs anthers uncovered overlapping and distinct sets of regulated genes, including those encoding transcription factors and other proteins. These results support an expanded regulatory network for early anther development, providing a series of hypotheses for future experimentation.
Collapse
Affiliation(s)
- Xuan Ma
- Department of Biology and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA 16802, USA
- Intercollege Graduate Program of Cell and Developmental Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA 16802, USA
| | - Baomin Feng
- Department of Biology and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA 16802, USA
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720, USA
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|