201
|
Flores-Sandoval E, Eklund DM, Hong SF, Alvarez JP, Fisher TJ, Lampugnani ER, Golz JF, Vázquez-Lobo A, Dierschke T, Lin SS, Bowman JL. Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. THE NEW PHYTOLOGIST 2018; 218:1612-1630. [PMID: 29574879 DOI: 10.1111/nph.15090] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/05/2018] [Indexed: 05/08/2023]
Abstract
A plethora of developmental and physiological processes in land plants is influenced by auxin, to a large extent via alterations in gene expression by AUXIN RESPONSE FACTORs (ARFs). The canonical auxin transcriptional response system is a land plant innovation, however, charophycean algae possess orthologues of at least some classes of ARF and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, suggesting that elements of the canonical land plant system existed in an ancestral alga. We reconstructed the phylogenetic relationships between streptophyte ARF and AUX/IAA genes and functionally characterized the solitary class C ARF, MpARF3, in Marchantia polymorpha. Phylogenetic analyses indicate that multiple ARF classes, including class C ARFs, existed in an ancestral alga. Loss- and gain-of-function MpARF3 alleles result in pleiotropic effects in the gametophyte, with MpARF3 inhibiting differentiation and developmental transitions in multiple stages of the life cycle. Although loss-of-function Mparf3 and Mpmir160 alleles respond to exogenous auxin treatments, strong miR-resistant MpARF3 alleles are auxin-insensitive, suggesting that class C ARFs act in a context-dependent fashion. We conclude that two modules independently evolved to regulate a pre-existing ARF transcriptional network. Whereas the auxin-TIR1-AUX/IAA pathway evolved to repress class A/B ARF activity, miR160 evolved to repress class C ARFs in a dynamic fashion.
Collapse
Affiliation(s)
- Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | - D Magnus Eklund
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, 81, Chang-Xing ST., Taipei, 106, Taiwan
| | - John P Alvarez
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - John F Golz
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alejandra Vázquez-Lobo
- CIByC, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Colonia Chamilpa, CP 62209, Cuernavaca, Morelos, México
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, 81, Chang-Xing ST., Taipei, 106, Taiwan
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
202
|
Wang Y, Guo S, Wang L, Wang L, He X, Shu S, Sun J, Lu N. Identification of microRNAs associated with the exogenous spermidine-mediated improvement of high-temperature tolerance in cucumber seedlings (Cucumis sativus L.). BMC Genomics 2018; 19:285. [PMID: 29690862 PMCID: PMC5937831 DOI: 10.1186/s12864-018-4678-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 04/16/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND High-temperature stress inhibited the growth of cucumber seedlings. Foliar spraying of 1.0 mmol·L- 1 exogenous spermidine (Spd) to the sensitive cucumber cultivar 'Jinchun No. 2' grown at high-temperature (42 °C/32 °C) in an artificial climate box improved the high-temperature tolerance. Although there have been many reports on the response of microRNAs (miRNAs) to high-temperature stress, the mechanism by which exogenous Spd may mitigate the damage of high-temperature stress through miRNA-mediated regulation has not been studied. RESULTS To elucidate the regulation of miRNAs in response to exogenous Spd-mediated improvement of high-temperature tolerance, four small RNA libraries were constructed from cucumber leaves and sequenced: untreated-control (CW), Spd-treated (CS), high-temperature stress (HW), and Spd-treated and high-temperature stress (HS). As a result, 107 known miRNAs and 79 novel miRNAs were identified. Eight common differentially expressed miRNAs (miR156d-3p, miR170-5p, miR2275-5p, miR394a, miR479b, miR5077, miR5222 and miR6475) were observed in CS/CW, HW/CW, HS/CW and HS/HW comparison pairs, which were the first set of miRNAs that responded to not only high-temperature stress but also exogenous Spd in cucumber seedlings. Five of the eight miRNAs were predicted to target 107 potential genes. Gene function and pathway analyses highlighted the integral role that these miRNAs and target genes probably play in the improvement of the high-temperature tolerance of cucumber seedlings through exogenous Spd application. CONCLUSIONS Our study identified the first set of miRNAs associated with the exogenous Spd-mediated improvement of high-temperature tolerance in cucumber seedlings. The results could help to promote further studies on the complex molecular mechanisms underlying high-temperature tolerance in cucumber and provide a theoretical basis for the high-quality and efficient cultivation of cucumber with high-temperature resistance.
Collapse
Affiliation(s)
- Ying Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, Jiangsu, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, Jiangsu, China
| | - Lei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, Jiangsu, China
| | - Liwei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, Jiangsu, China
| | - Xueying He
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, Jiangsu, China
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, Jiangsu, China
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, Jiangsu, China.
| | - Na Lu
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa-no-ha 6-2-1, Kashiwa, Chiba, Japan
| |
Collapse
|
203
|
Natarajan B, Kalsi HS, Godbole P, Malankar N, Thiagarayaselvam A, Siddappa S, Thulasiram HV, Chakrabarti SK, Banerjee AK. MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2023-2036. [PMID: 29390146 PMCID: PMC6018911 DOI: 10.1093/jxb/ery025] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/23/2018] [Indexed: 05/16/2023]
Abstract
To combat pathogen infection, plants employ local defenses in infected sites and elicit systemic acquired resistance (SAR) in distant tissues. MicroRNAs have been shown to play a significant role in local defense, but their association with SAR is unknown. In addition, no such studies of the interaction between potato and Phytophthora infestans have been reported. We investigated the role of miR160 in local and SAR responses to P. infestans infection in potato. Expression analysis revealed induced levels of miR160 in both local and systemic leaves of infected wild-type plants. miR160 overexpression and knockdown plants exhibited increased susceptibility to infection, suggesting that miR160 levels equivalent to those of wild-type plants may be necessary for mounting local defense responses. Additionally, miR160 knockdown lines failed to elicit SAR, and grafting assays indicated that miR160 is required in both local and systemic leaves to trigger SAR. Consistently, SAR-associated signals and genes were dysregulated in miR160 knockdown lines. Furthermore, analysis of the expression of defense and auxin pathway genes and direct regulation of StGH3.6, a mediator of salicylic acid-auxin cross-talk, by the miR160 target StARF10 revealed the involvement of miR160 in antagonistic cross-talk between salicylic acid-mediated defense and auxin-mediated growth pathways. Overall, our study demonstrates that miR160 plays a crucial role in local defense and SAR responses during the interaction between potato and P. infestans.
Collapse
Affiliation(s)
- Bhavani Natarajan
- Biology Division, Indian Institute of Science Education and Research (IISER Pune), Pune, Maharashtra, India
| | - Harpreet S Kalsi
- Biology Division, Indian Institute of Science Education and Research (IISER Pune), Pune, Maharashtra, India
| | - Prajakta Godbole
- Biology Division, Indian Institute of Science Education and Research (IISER Pune), Pune, Maharashtra, India
| | - Nilam Malankar
- Biology Division, Indian Institute of Science Education and Research (IISER Pune), Pune, Maharashtra, India
| | | | | | | | | | - Anjan K Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER Pune), Pune, Maharashtra, India
| |
Collapse
|
204
|
Chen L, Chen L, Zhang X, Liu T, Niu S, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Identification of miRNAs that regulate silique development in Brassica napus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:106-117. [PMID: 29606207 DOI: 10.1016/j.plantsci.2018.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/05/2018] [Accepted: 01/22/2018] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs (sRNAs) that play crucial regulatory roles in various developmental processes. Silique length indirectly influences seed yield in rapeseed (Brassica napus); however, the molecular roles of miRNAs in silique length are largely unknown. Here, backcross progenies of rapeseed with long siliques (LS) and short siliques (SS) were used to elucidate these roles. Four small RNA libraries from siliques in an early stage of development were sequenced, and a total of 814 non-redundant miRNA precursors were identified, representing 65 known and 394 novel miRNAs. Expression analyses revealed that 17 miRNAs were differentially expressed in LS and SS lines. Furthermore, through degradome sequencing, we identified 522 cleavage events. Correlation analysis of the differentially expressed miRNAs and their targets suggested that miR159 and miR319 represses cell proliferation and miR160 regulates auxin signal transduction to control silique length. Additionally, the upregulation of miR2111, miR399, miR827, and miR408 reflected restricted silique development due to inorganic phosphate/copper deficiency. More significantly, high expression of miR160 in rapeseed may repress auxin response factors and result in increased silique length, illustrating that silique length might be regulated via an auxin-response pathway.
Collapse
Affiliation(s)
- Li Chen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Lei Chen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Xiangxiang Zhang
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Tingting Liu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Sailun Niu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
205
|
Zeng X, Xu Y, Jiang J, Zhang F, Ma L, Wu D, Wang Y, Sun W. Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. BMC PLANT BIOLOGY 2018; 18:52. [PMID: 29587648 PMCID: PMC5870505 DOI: 10.1186/s12870-018-1242-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/17/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Low temperature is a major abiotic stress affecting the production of rapeseed in China by impeding plant growth and development. A comprehensive knowledge of small-RNA expression pattern in Brassica rapa under cold stress could improve our knowledge of microRNA-mediated stress responses. RESULTS A total of 353 cold-responsive miRNAs, 84 putative novel and 269 conserved miRNAs, were identified from the leaves and roots of two winter turnip rape varieties 'Longyou 7' (cold-tolerant) and 'Tianyou 4' (cold-sensitive), which were stressed under - 4 °C for 8 h. Eight conserved (miR166h-3p-1, miR398b-3p, miR398b-3p-1, miR408d, miR156a-5p, miR396h, miR845a-1, miR166u) and two novel miRNAs (Bra-novel-miR3153-5p and Bra-novel-miR3172-5p) were differentially expressed in leaves of 'Longyou 7' under cold stress. Bra-novel-miR3936-5p was up-regulated in roots of 'Longyou 7' under cold stress. Four and five conserved miRNAs were differentially expressed in leaves and roots of 'Tianyou 4' after cold stress. Besides, we found two conserved miRNAs (miR319e and miR166m-2) were down-regulated in non-stressed roots of 'Longyou 7' compared with 'Tianyou 4'. After cold stress, we found two and eight miRNAs were differentially expressed in leaves and roots of 'Longyou 7' compared with 'Tianyou 4'. The differentially expressed miRNAs between two cultivars under cold stress include novel miRNAs and the members of the miR166 and miR319 families. A total of 211 target genes for 15 known miRNAs and two novel miRNAs were predicted by bioinformatic analysis, mainly involved in metabolic processes and stress responses. Five differentially expressed miRNAs and predicted target genes were confirmed by quantitative reverse transcription PCR, and the expressional changes of target genes were negatively correlated to differentially expressed miRNAs. Our data indicated that some candidate miRNAs (e.g., miR166e, miR319, and Bra-novel-miR3936-5p) may play important roles in plant response to cold stress. CONCLUSIONS Our work indicates that miRNA and putative target genes mediated metabolic processes and stress responses are significant to cold tolerance in B. rapa.
Collapse
Affiliation(s)
- Xiucun Zeng
- College of Agronomy and Biotechnology, Hexi University, Zhangye, 734000 China
| | - Yaozhao Xu
- College of Agronomy and Biotechnology, Hexi University, Zhangye, 734000 China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Fenqin Zhang
- College of Agronomy and Biotechnology, Hexi University, Zhangye, 734000 China
| | - Li Ma
- College of Agronomy and Biotechnology, Hexi University, Zhangye, 734000 China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
206
|
Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GKS, Weijers D. Origin and evolution of the nuclear auxin response system. eLife 2018; 7:33399. [PMID: 29580381 PMCID: PMC5873896 DOI: 10.7554/elife.33399] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/06/2018] [Indexed: 01/22/2023] Open
Abstract
The small signaling molecule auxin controls numerous developmental processes in land plants, acting mostly by regulating gene expression. Auxin response proteins are represented by large families of diverse functions, but neither their origin nor their evolution is understood. Here, we use a deep phylogenomics approach to reconstruct both the origin and the evolutionary trajectory of all nuclear auxin response protein families. We found that, while all subdomains are ancient, a complete auxin response mechanism is limited to land plants. Functional phylogenomics predicts defined steps in the evolution of response system properties, and comparative transcriptomics across six ancient lineages revealed how these innovations shaped a sophisticated response mechanism. Genetic analysis in a basal land plant revealed unexpected contributions of ancient non-canonical proteins in auxin response as well as auxin-unrelated function of core transcription factors. Our study provides a functional evolutionary framework for understanding diverse functions of the auxin signal. Across all kingdoms of life, signaling molecules like hormones, for example, control many aspects of the lives of organisms, including how they grow and develop. Cells have dedicated proteins that can recognize the signaling molecules, relay the information, and respond to the signal, for example by switching genes on or off. Such response systems usually consist of multiple components, and, throughout evolution, these response components have regularly been copied such that many species have multiple different versions of each one. Auxin is a plant hormone that controls virtually all growth and developmental processes in plants, including many yield traits in crops. However, no one knows why it is involved in so many processes. This is partly because it is not clear how the response system for this central signaling molecule was first born, or how it has increased in its complexity. To address this, Mutte, Kato et al. explored the genetic information of more than a thousand plant species, including algae, which span more than 700 million years of evolution. Their analysis showed that all auxin response components were assembled from pieces of much older genes, but that they first came together when plants conquered land. Indeed, the auxin response appears to have developed on top of a pre-existing genetic regulator that is still present in modern-day algae. Mutte, Kato et al. then used experiments to show how stepwise increases in the number and types of auxin response components have shaped sophisticated, complex responses in land plants, and to demonstrate how ancient components control auxin response. Together these findings provide a framework for understanding the many functions of auxin in plants, and how this came to be. They also show how complexity can be accomplished in a signal response pathway, and how diversity evolves in gene families. Similar studies on other response systems in plants and beyond are likely to help reveal common principles of hormone response evolution and diversification of gene regulation systems.
Collapse
Affiliation(s)
- Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Hirotaka Kato
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Carl Rothfels
- Department of Integrative Biology, University of California, Berkeley, United States
| | - Michael Melkonian
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Medicine, University of Alberta, Edmonton, Canada.,BGI-Shenzhen, Shenzhen, China
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
207
|
Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GKS, Weijers D. Origin and evolution of the nuclear auxin response system. eLife 2018; 7:33399. [PMID: 29580381 DOI: 10.7554/elife.33399.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/06/2018] [Indexed: 05/26/2023] Open
Abstract
The small signaling molecule auxin controls numerous developmental processes in land plants, acting mostly by regulating gene expression. Auxin response proteins are represented by large families of diverse functions, but neither their origin nor their evolution is understood. Here, we use a deep phylogenomics approach to reconstruct both the origin and the evolutionary trajectory of all nuclear auxin response protein families. We found that, while all subdomains are ancient, a complete auxin response mechanism is limited to land plants. Functional phylogenomics predicts defined steps in the evolution of response system properties, and comparative transcriptomics across six ancient lineages revealed how these innovations shaped a sophisticated response mechanism. Genetic analysis in a basal land plant revealed unexpected contributions of ancient non-canonical proteins in auxin response as well as auxin-unrelated function of core transcription factors. Our study provides a functional evolutionary framework for understanding diverse functions of the auxin signal.
Collapse
Affiliation(s)
- Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Hirotaka Kato
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Carl Rothfels
- Department of Integrative Biology, University of California, Berkeley, United States
| | - Michael Melkonian
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
- BGI-Shenzhen, Shenzhen, China
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
208
|
Identification and characterization of microRNAs in tree peony during chilling induced dormancy release by high-throughput sequencing. Sci Rep 2018. [PMID: 29540706 PMCID: PMC5852092 DOI: 10.1038/s41598-018-22415-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tree peony, one of the most valuable horticultural and medicinal plants in the world, has to go through winter to break dormancy. Growing studies from molecular aspects on dormancy release process have been reported, but inadequate study has been done on miRNA-guided regulation in tree peony. In this study, high-throughput sequencing was employed to identify and characterize miRNAs in three libraries (6 d, 18 d and 24 d chilling treatments). There were 7,122, 10,076 and 9,097 unique miRNA sequences belonging to 52, 87 and 68 miRNA families, respectively. A total of 32 conserved miRNAs and 17 putative novel miRNAs were identified during dormancy release. There were 771 unigenes as potential targets of 62 miRNA families. Total 112 known miRNAs were differentially expressed, of which 55 miRNAs were shared among three libraries and 28 miRNAs were only found in 18 d chilling duration library. The expression patterns of 15 conserved miRNAs were validated and classified into four types by RT-qPCR. Combining with our microarray data under same treatments, five miRNAs (miR156k, miR159a, miR167a, miR169a and miR172a) were inversely correlated to those of their target genes. Our results would provide new molecular basis about dormancy release in tree peony.
Collapse
|
209
|
Ding J, Ruan C, Guan Y, Krishna P. Identification of microRNAs involved in lipid biosynthesis and seed size in developing sea buckthorn seeds using high-throughput sequencing. Sci Rep 2018; 8:4022. [PMID: 29507325 PMCID: PMC5838164 DOI: 10.1038/s41598-018-22464-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/23/2018] [Indexed: 12/20/2022] Open
Abstract
Sea buckthorn is a plant of medicinal and nutritional importance owing in part to the high levels of essential fatty acids, linoleic (up to 42%) and α-linolenic (up to 39%) acids in the seed oil. Sea buckthorn can produce seeds either via the sexual pathway or by apomixis. The seed development and maturation programs are critically dependent on miRNAs. To understand miRNA-mediated regulation of sea buckthorn seed development, eight small RNA libraries were constructed for deep sequencing from developing seeds of a low oil content line ‘SJ1’ and a high oil content line ‘XE3’. High-throughput sequencing identified 137 known miRNA from 27 families and 264 novel miRNAs. The potential targets of the identified miRNAs were predicted based on sequence homology. Nineteen (four known and 15 novel) and 22 (six known and 16 novel) miRNAs were found to be involved in lipid biosynthesis and seed size, respectively. An integrated analysis of mRNA and miRNA transcriptome and qRT-PCR identified some key miRNAs and their targets (miR164d-ARF2, miR168b-Δ9D, novelmiRNA-108-ACC, novelmiRNA-23-GPD1, novelmiRNA-58-DGAT1, and novelmiRNA-191-DGAT2) potentially involved in seed size and lipid biosynthesis of sea buckthorn seed. These results indicate the potential importance of miRNAs in regulating lipid biosynthesis and seed size in sea buckthorn.
Collapse
Affiliation(s)
- Jian Ding
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Ying Guan
- Institute of Berries, Heilongjiang Academy of Agricultural Sciences, Suiling, 152200, China
| | - Priti Krishna
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
210
|
Wang S, Zheng Y, Gu C, He C, Yang M, Zhang X, Guo J, Zhao H, Niu D. Bacillus cereus AR156 Activates Defense Responses to Pseudomonas syringae pv. tomato in Arabidopsis thaliana Similarly to flg22. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:311-322. [PMID: 29090631 DOI: 10.1094/mpmi-10-17-0240-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacillus cereus AR156 (AR156) is a plant growth-promoting rhizobacterium capable of inducing systemic resistance to Pseudomonas syringae pv. tomato in Arabidopsis thaliana. Here, we show that, when applied to Arabidopsis leaves, AR156 acted similarly to flg22, a typical pathogen-associated molecular pattern (PAMP), in initiating PAMP-triggered immunity (PTI). AR156-elicited PTI responses included phosphorylation of MPK3 and MPK6, induction of the expression of defense-related genes PR1, FRK1, WRKY22, and WRKY29, production of reactive oxygen species, and callose deposition. Pretreatment with AR156 still significantly reduced P. syringae pv. tomato multiplication and disease severity in NahG transgenic plants and mutants sid2-2, jar1, etr1, ein2, npr1, and fls2. This suggests that AR156-induced PTI responses require neither salicylic acid, jasmonic acid, and ethylene signaling nor flagella receptor kinase FLS2, the receptor of flg22. On the other hand, AR156 and flg22 acted in concert to differentially regulate a number of AGO1-bound microRNAs that function to mediate PTI. A full-genome transcriptional profiling analysis indicated that AR156 and flg22 activated similar transcriptional programs, coregulating the expression of 117 genes; their concerted regulation of 16 genes was confirmed by real-time quantitative polymerase chain reaction analysis. These results suggest that AR156 activates basal defense responses to P. syringae pv. tomato in Arabidopsis, similarly to flg22.
Collapse
Affiliation(s)
- Shune Wang
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Ying Zheng
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Chun Gu
- 3 Jiangsu Provincial Anfeng Biogenic Pesticide Engineering Center Co., Ltd., Taicang 215400, China
| | - Chan He
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Mengying Yang
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Xin Zhang
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Jianhua Guo
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Hongwei Zhao
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| | - Dongdong Niu
- 1 College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- 2 Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; and
| |
Collapse
|
211
|
Koter MD, Święcicka M, Matuszkiewicz M, Pacak A, Derebecka N, Filipecki M. The miRNAome dynamics during developmental and metabolic reprogramming of tomato root infected with potato cyst nematode. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 268:18-29. [PMID: 29362080 DOI: 10.1016/j.plantsci.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 05/20/2023]
Abstract
Cyst-forming plant-parasitic nematodes are pests threatening many crops. By means of their secretions cyst nematodes induce the developmental and metabolic reprogramming of host cells that lead to the formation of a syncytium, which is the sole food source for growing nematodes. The in depth micro RNA (miRNA) dynamics in the syncytia induced by Globodera rostochiensis in tomato roots was studied. The miRNAomes were obtained from syncytia covering the early and intermediate developmental stages, and were the subject of differential expression analysis. The expression of 1235 miRNAs was monitored. The fold change (log2FC) ranged from -7.36 to 8.38, indicating that this transcriptome fraction was very variable. Moreover, we showed that the DE (differentially expressed) miRNAs do not fully overlap between the selected time points, suggesting infection stage specific regulation by miRNA. The correctness of RNA-seq expression profiling was confirmed by qRT-PCR (quantitative Real Time Polymerase Chain Reaction) for seven miRNA species. Down- and up-regulated miRNA species, including their isomiRs, were further used to identify their potential targets. Among them there are a large number of transcription factors linked to different aspects of plant development belonging to gene families, such as APETALA2 (AP2), SQUAMOSA (MADS-box), MYB, GRAS, and AUXIN RESPONSE FACTOR (ARF). The substantial portion of potential target genes belong to the NB-LRR and RLK (RECEPTOR-LIKE KINASE) families, indicating the involvement of miRNA mediated regulation in defense responses. We also collected the evidence for target cleavage in the case of 29 miRNAs using one of three alternative methods: 5' RACE (5' Rapid Amplification of cDNA Ends), a search of tasiRNA within our datasets, and the meta-analysis of tomato degradomes in the GEO (Gene Expression Omnibus) database. Eight target transcripts showed a negative correlation with their respective miRNAs at two or three time points. These results indicate a large regulatory potential for miRNAs in tuning the development and defense responses.
Collapse
Affiliation(s)
- Marek D Koter
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
212
|
Jiang N, Meng J, Cui J, Sun G, Luan Y. Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans. HORTICULTURE RESEARCH 2018; 5:9. [PMID: 29507733 PMCID: PMC5830410 DOI: 10.1038/s41438-018-0017-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/29/2017] [Accepted: 01/11/2018] [Indexed: 05/20/2023]
Abstract
Tomato is an important horticultural and economic crop cultivated worldwide. As Phytophthora infestans becomes a huge threat to tomato production, it is necessary to study the resistance mechanisms of tomato against P. infestans. Our previous research has found that miR482 might be involved in tomato-P. infestans interaction. In this study, miR482b precursor was cloned from Solanum pimpinellifolium "L3708" and miR482b was shown to decrease in abundance in tomato following P. infestans infection. Compared to wild-type tomato plants, tomato plants that overexpressed miR482b displayed more serious disease symptoms after P. infestans infection, with more necrotic cells, longer lesion diameters, and increased P. infestans abundance. Meanwhile, silencing of miR482b was performed by short tandem target mimic (STTM), resulting in enhancement of tomato resistance to P. infestans. Using miRNA and degradome data sets, NBS-LRR disease-resistance genes targeted by miR482b were validated. Negative correlation between the expression of miR482b and its target genes was found in all miR482b-overexpressing and -silencing tomato plants. Our results provide insight into tomato miR482b involved in the response to P. infestans infection, and demonstrate that miR482b-NBS-LRR is an important component in the network of tomato-P. infestans interaction.
Collapse
Affiliation(s)
- Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024 China
| | - Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Guangxin Sun
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
213
|
Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N, Smouni A, Bouzayen M, Zouine M. Auxin Response Factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS One 2018; 13:e0193517. [PMID: 29489914 PMCID: PMC5831009 DOI: 10.1371/journal.pone.0193517] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Survival biomass production and crop yield are heavily constrained by a wide range of environmental stresses. Several phytohormones among which abscisic acid (ABA), ethylene and salicylic acid (SA) are known to mediate plant responses to these stresses. By contrast, the role of the plant hormone auxin in stress responses remains so far poorly studied. Auxin controls many aspects of plant growth and development, and Auxin Response Factors play a key role in the transcriptional activation or repression of auxin-responsive genes through direct binding to their promoters. As a mean to gain more insight on auxin involvement in a set of biotic and abiotic stress responses in tomato, the present study uncovers the expression pattern of SlARF genes in tomato plants subjected to biotic and abiotic stresses. In silico mining of the RNAseq data available through the public TomExpress web platform, identified several SlARFs as responsive to various pathogen infections induced by bacteria and viruses. Accordingly, sequence analysis revealed that 5' regulatory regions of these SlARFs are enriched in biotic and abiotic stress-responsive cis-elements. Moreover, quantitative qPCR expression analysis revealed that many SlARFs were differentially expressed in tomato leaves and roots under salt, drought and flooding stress conditions. Further pointing to the putative role of SlARFs in stress responses, quantitative qPCR expression studies identified some miRNA precursors as potentially involved in the regulation of their SlARF target genes in roots exposed to salt and drought stresses. These data suggest an active regulation of SlARFs at the post-transcriptional level under stress conditions. Based on the substantial change in the transcript accumulation of several SlARF genes, the data presented in this work strongly support the involvement of auxin in stress responses thus enabling to identify a set of candidate SlARFs as potential mediators of biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Sarah Bouzroud
- GBF, Université de Toulouse, INRA, Castanet-Tolosan, France
- Laboratoire de physiologie et biotechnologie Végétales, Centre de biotechnologie végétale et microbienne biodiversité et environnement, Faculté des Sciences, Université Mohammed V de Rabat, Rabat, Maroc
| | - Sandra Gouiaa
- GBF, Université de Toulouse, INRA, Castanet-Tolosan, France
| | - Nan Hu
- GBF, Université de Toulouse, INRA, Castanet-Tolosan, France
| | - Anne Bernadac
- GBF, Université de Toulouse, INRA, Castanet-Tolosan, France
| | - Isabelle Mila
- GBF, Université de Toulouse, INRA, Castanet-Tolosan, France
| | - Najib Bendaou
- Laboratoire de physiologie et biotechnologie Végétales, Centre de biotechnologie végétale et microbienne biodiversité et environnement, Faculté des Sciences, Université Mohammed V de Rabat, Rabat, Maroc
| | - AbdelAziz Smouni
- Laboratoire de physiologie et biotechnologie Végétales, Centre de biotechnologie végétale et microbienne biodiversité et environnement, Faculté des Sciences, Université Mohammed V de Rabat, Rabat, Maroc
| | | | - Mohamed Zouine
- GBF, Université de Toulouse, INRA, Castanet-Tolosan, France
| |
Collapse
|
214
|
Sarkar Das S, Yadav S, Singh A, Gautam V, Sarkar AK, Nandi AK, Karmakar P, Majee M, Sanan-Mishra N. Expression dynamics of miRNAs and their targets in seed germination conditions reveals miRNA-ta-siRNA crosstalk as regulator of seed germination. Sci Rep 2018; 8:1233. [PMID: 29352229 PMCID: PMC5775422 DOI: 10.1038/s41598-017-18823-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 01/07/2023] Open
Abstract
Seed germination paves the way for the dormant embryo to establish itself as a new plant marking the first critical step in postembryonic plant growth and development. Germination starts with the uptake of water (imbibition), followed by induction of transcription, translation, energy metabolism, and cell division processes. Although small RNAs have been implicated in many developmental processes, their role during seed germination stages and conditions remained elusive. Here we show that seed germination conditions, like imbibition and temperature, dynamically regulate the expression of many developmentally important miRNAs and their targets. We have identified 58 miRNAs belonging to 30 different families at different seed germination conditions. Amongst these, 15 miRNAs and their targets were significantly differentially expressed in Arabidopsis seeds in dry and 12 h, 24 h and 48 h of imbibition. Interestingly, differential expression of miR390, which targets trans-acting siRNA locus (TAS3) derived transcripts, resulted in alteration of tasiR-ARF mediated regulation of expression of target AUXIN RESPONSE FACTORs (ARF2/3/4). Our results suggest that the dynamic expression of several miRNAs, their targets, and a crosstalk between miRNA and ta-siRNA pathways contribute to the regulation of seed germination in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Shabari Sarkar Das
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Arina Asaf Ali Marg, New Delhi, 110067, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali marg, New Delhi, 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali marg, New Delhi, 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali marg, New Delhi, 110067, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali marg, New Delhi, 110067, India
| | - Asis K Nandi
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, India
| | - Prakash Karmakar
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali marg, New Delhi, 110067, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Arina Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
215
|
Han S, Hwang I. Integration of multiple signaling pathways shapes the auxin response. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:189-200. [PMID: 28992118 DOI: 10.1093/jxb/erx232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormone auxin is a pivotal signaling molecule that functions throughout the plant lifecycle. Proper regulation of the auxin response is critical for optimizing plant growth under ever-changing environmental conditions. Recent studies have demonstrated that the signaling components that modulate auxin sensitivity and responses are functionally and mechanically diverse. In addition to auxin itself, various environmental and hormonal signals are integrated to modulate the auxin response through directly controlling auxin signaling components. This review explores the non-canonical mechanisms that modulate auxin signaling components, including transcriptional, translational, and post-translational regulation. All of these contribute to the wide range in sensitivity and complexity in auxin responses to various signaling cues.
Collapse
Affiliation(s)
- Soeun Han
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Republic of Korea
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Republic of Korea
| |
Collapse
|
216
|
Kato H, Nishihama R, Weijers D, Kohchi T. Evolution of nuclear auxin signaling: lessons from genetic studies with basal land plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:291-301. [PMID: 28992186 DOI: 10.1093/jxb/erx267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Auxin plays critical roles in growth and development through the regulation of cell differentiation, cell expansion, and pattern formation. The auxin signal is mainly conveyed through a so-called nuclear auxin pathway involving the receptor TIR1/AFB, the transcriptional co-repressor AUX/IAA, and the transcription factor ARF with direct DNA-binding ability. Recent progress in sequence information and molecular genetics in basal plants has provided many insights into the evolutionary origin of the nuclear auxin pathway and its pleiotropic roles in land plant development. In this review, we summarize the latest knowledge of the nuclear auxin pathway gained from studies using basal plants, including charophycean green algae and two major model bryophytes, Marchantia polymorpha and Physcomitrella patens. In addition, we discuss the functional implication of the increase in genetic complexity of the nuclear auxin pathway during land plant evolution.
Collapse
Affiliation(s)
- Hirotaka Kato
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | |
Collapse
|
217
|
Lin JS, Kuo CC, Yang IC, Tsai WA, Shen YH, Lin CC, Liang YC, Li YC, Kuo YW, King YC, Lai HM, Jeng ST. MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:68. [PMID: 29449855 PMCID: PMC5799662 DOI: 10.3389/fpls.2018.00068] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/12/2018] [Indexed: 05/21/2023]
Abstract
Global warming is causing a negative impact on plant growth and adversely impacts on crop yield. MicroRNAs (miRNAs) are critical in regulating the expression of genes involved in plant development as well as defense responses. The effects of miRNAs on heat-stressed Arabidopsis warrants further investigation. Heat stress increased the expression of miR160 and its precursors but considerably reduced that of its targets, ARF10, ARF16, and ARF17. To study the roles of miR160 during heat stress, transgenic Arabidopsis plants overexpressing miR160 precursor a (160OE) and artificial miR160 (MIM160), which mimics an inhibitor of miR160, were created. T-DNA insertion mutants of miR160 targets were also used to examine their tolerances to heat stress. Results presented that overexpressing miR160 improved seed germination and seedling survival under heat stress. The lengths of hypocotyl elongation and rachis were also longer in 160OE than the wild-type (WT) plants under heat stress. Interestingly, MIM160 plants showed worse adaption to heat. In addition, arf10, arf16, and arf17 mutants presented similar phenotypes to 160OE under heat stress to advance abilities of thermotolerance. Moreover, transcriptome and qRT-PCR analyses revealed that HSP17.6A, HSP17.6II, HSP21, and HSP70B expression levels were regulated by heat in 160OE, MIM160, arf10, arf16, and arf17 plants. Hence, miR160 altered the expression of the heat shock proteins and plant development to allow plants to survive heat stress.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Chia Kuo
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - I-Chu Yang
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Wei-An Tsai
- Department of Crop Environment, Hualien District Agricultural Research and Extension Station, Council of Agriculture, Hualien, Taiwan
| | - Yu-Hsing Shen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Ching Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chen Liang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chi Li
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yun-Wei Kuo
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chi King
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hsi-Mei Lai
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Shih-Tong Jeng
- Department of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Shih-Tong Jeng
| |
Collapse
|
218
|
Alarcón-Poblete E, Inostroza-Blancheteau C, Alberdi M, Rengel Z, Reyes-Díaz M. Molecular regulation of aluminum resistance and sulfur nutrition during root growth. PLANTA 2018; 247:27-39. [PMID: 29119269 DOI: 10.1007/s00425-017-2805-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Aluminum toxicity and sulfate deprivation both regulate microRNA395 expression, repressing its low-affinity sulfate transporter ( SULTR2;1 ) target. Sulfate deprivation also induces the high-affinity sulfate transporter gene ( SULTR12 ), allowing enhanced sulfate uptake. Few studies about the relationships between sulfate, a plant nutrient, and aluminum, a toxic ion, are available; hence, the molecular and physiological processes underpinning this interaction are poorly understood. The Al-sulfate interaction occurs in acidic soils, whereby relatively high concentrations of trivalent toxic aluminum (Al3+) may hamper root growth, limiting uptake of nutrients, including sulfur (S). On the other side, Al3+ may be detoxified by complexation with sulfate in the acid soil solution as well as in the root-cell vacuoles. In this review, we focus on recent insights into the mechanisms governing plant responses to Al toxicity and its relationship with sulfur nutrition, emphasizing the role of phytohormones, microRNAs, and ion transporters in higher plants. It is known that Al3+ disturbs gene expression and enzymes involved in biosynthesis of S-containing cysteine in root cells. On the other hand, Al3+ may induce ethylene biosynthesis, enhance reactive oxygen species production, alter phytohormone transport, trigger root growth inhibition and promote sulfate uptake under S deficiency. MicroRNA395, regulated by both Al toxicity and sulfate deprivation, represses its low-affinity Sulfate Transporter 2;1 (SULTR2;1) target. In addition, sulfate deprivation induces High Affinity Sulfate Transporters (HAST; SULTR1;2), improving sulfate uptake from low-sulfate soil solutions. Identification of new microRNAs and cloning of their target genes are necessary for a better understanding of the role of molecular regulation of plant resistance to Al stress and sulfate deprivation.
Collapse
Affiliation(s)
- Edith Alarcón-Poblete
- Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Claudio Inostroza-Blancheteau
- Escuela de Agronomía, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaría, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Miren Alberdi
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, 6009, Australia
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile.
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
219
|
Ma X, Zhang X, Zhao K, Li F, Li K, Ning L, He J, Xin Z, Yin D. Small RNA and Degradome Deep Sequencing Reveals the Roles of microRNAs in Seed Expansion in Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2018; 9:349. [PMID: 29662498 PMCID: PMC5890158 DOI: 10.3389/fpls.2018.00349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/02/2018] [Indexed: 05/22/2023]
Abstract
Seed expansion in peanut is a complex biological process involving many gene regulatory pathways. MicroRNAs (miRNAs) play important regulatory roles in plant growth and development, but little is known about their functions during seed expansion, or how they contribute to seed expansion in different peanut lines. We examined seed miRNA expression patterns at 15 and 35 days after flowering (DAF) in two peanut eighth-generation recombinant inbred lines (RIL8); 8106, a medium-pod variety, and 8107, a super-pod variety. Using high-throughput sequencing, we identified 1,082 miRNAs in developing peanut seeds including 434 novel miRNAs. We identified 316 differentially expressed miRNAs by comparing expression levels between the two peanut lines. Interestingly, 24 miRNAs showed contrasting patterns of expression in the two RILs, and 149 miRNAs were expressed predominantly in only one RIL at 35 DAF. Also, potential target genes for some conserved and novel miRNAs were identified by degradome sequencing; target genes were predicted to be involved in auxin mediated signaling pathways and cell division. We validated the expression patterns of some representative miRNAs and 12 target genes by qPCR, and found negative correlations between the expression level of miRNAs and their targets. miR156e, miR159b, miR160a, miR164a, miR166b, miR168a, miR171n, miR172c-5p, and miR319d and their corresponding target genes may play key roles in seed expansion in peanut. The results of our study also provide novel insights into the dynamic changes in miRNAs that occur during peanut seed development, and increase our understanding of miRNA function in seed expansion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zeyu Xin
- *Correspondence: Dongmei Yin, Zeyu Xin,
| | | |
Collapse
|
220
|
Baxter HL, Mazarei M, Dumitrache A, Natzke JM, Rodriguez M, Gou J, Fu C, Sykes RW, Turner GB, Davis MF, Brown SD, Davison BH, Wang Z, Stewart CN. Transgenic miR156 switchgrass in the field: growth, recalcitrance and rust susceptibility. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:39-49. [PMID: 28436149 PMCID: PMC5785337 DOI: 10.1111/pbi.12747] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/16/2017] [Accepted: 04/10/2017] [Indexed: 05/02/2023]
Abstract
Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156 overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%-56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.
Collapse
Affiliation(s)
- Holly L. Baxter
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| | - Mitra Mazarei
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| | - Alexandru Dumitrache
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jace M. Natzke
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Miguel Rodriguez
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jiqing Gou
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Samuel Roberts Noble FoundationArdmoreOKUSA
| | - Chunxiang Fu
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Samuel Roberts Noble FoundationArdmoreOKUSA
| | - Robert W. Sykes
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- National Renewable Energy LaboratoryGoldenCOUSA
| | - Geoffrey B. Turner
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- National Renewable Energy LaboratoryGoldenCOUSA
| | - Mark F. Davis
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- National Renewable Energy LaboratoryGoldenCOUSA
| | - Steven D. Brown
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Brian H. Davison
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Zeng‐Yu Wang
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Samuel Roberts Noble FoundationArdmoreOKUSA
| | - C. Neal Stewart
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
221
|
Proust H, Hartmann C, Crespi M, Lelandais-Brière C. Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics. Methods Mol Biol 2018; 1822:205-239. [PMID: 30043307 DOI: 10.1007/978-1-4939-8633-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This decade introduced "omics" approaches, such as genomics, transcriptomics, proteomics, and metabolomics in association with reverse and forward genetic approaches, developed earlier, to try to identify molecular pathways involved in the development or in the response to environmental conditions as well as in animals and plants. This review summarizes studies that utilized "omics" strategies to unravel the root development in the model legume Medicago truncatula and how external factors such as soil mineral status or the presence of bacteria and fungi affect root system architecture in this species. We also compare these "omics" data to the knowledges concerning the Arabidopsis thaliana root development, nowadays considered as the model of allorhiz root systems. However, unlike legumes, this species is unable to interact with soil nitrogen-fixing rhizobia and arbuscular-mycorrhizal (AM) fungi to develop novel root-derived symbiotic structures. Differences in root organization, development, and regulatory pathways between these two model species have been highlighted.
Collapse
Affiliation(s)
- Hélène Proust
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Christine Lelandais-Brière
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France.
| |
Collapse
|
222
|
Chen C, Zeng Z, Liu Z, Xia R. Small RNAs, emerging regulators critical for the development of horticultural traits. HORTICULTURE RESEARCH 2018; 5:63. [PMID: 30245834 PMCID: PMC6139297 DOI: 10.1038/s41438-018-0072-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/23/2018] [Accepted: 07/01/2018] [Indexed: 05/14/2023]
Abstract
Small RNAs (sRNAs) have been recently recognized as key genetic and epigenetic regulators in various organisms, ranging from the modification of DNA and histone methylations to the modulation of the abundance of coding or non-coding RNAs. In plants, major regulatory sRNAs are classified as respective microRNA (miRNA) and small interfering RNA (siRNA) species, with the former primarily engaging in posttranscriptional regulation while the latter in transcriptional one. Many of these characterized sRNAs are involved in regulation of diverse biological programs, processes, and pathways in response to developmental cues, environmental signals/stresses, pathogen infection, and pest attacks. Recently, sRNAs-mediated regulations have also been extensively investigated in horticultural plants, with many novel mechanisms unveiled, which display far more mechanistic complexity and unique regulatory features compared to those studied in model species. Here, we review the recent progress of sRNA research in horticultural plants, with emphasis on mechanistic aspects as well as their relevance to trait regulation. Given that major and pioneered sRNA research has been carried out in the model and other plants, we also discuss ongoing sRNA research on these plants. Because miRNAs and phased siRNAs (phasiRNAs) are the most studied sRNA regulators, this review focuses on their biogenesis, conservation, function, and targeted genes and traits as well as the mechanistic relation between them, aiming at providing readers comprehensive information instrumental for future sRNA research in horticulture crops.
Collapse
Affiliation(s)
- Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Zongrang Liu
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV 25430 USA
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
223
|
Aggarwal P, Challa KR, Rath M, Sunkara P, Nath U. Generation of Inducible Transgenic Lines of Arabidopsis Transcription Factors Regulated by MicroRNAs. Methods Mol Biol 2018; 1830:61-79. [PMID: 30043364 DOI: 10.1007/978-1-4939-8657-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Transcription factors play key regulatory roles in all the life processes across kingdoms. In plants, the genome of a typical model species such as Arabidopsis thaliana encodes over 1500 transcription factors that regulate the expression dynamics of all the genes in time and space. Therefore, studying their function by analyzing the loss and gain-of-function lines is of prime importance in basic plant biology and its agricultural application. However, the current approach of knocking out genes often causes embryonic lethal phenotype, while inactivating one or two members of a redundant gene family yields little phenotypic changes, thereby making the functional analysis a technically challenging task. In such cases, inducible knock-down or overexpression of transcription factors appears to be a more effective approach. Restricting the transcription factors in the cytoplasm by fusing them with animal glucocorticoid/estrogen receptors (GR/ER) and then re-localizing them to the nucleus by external application of animal hormone analogues has been a useful method of gene function analysis in the model plants. In this chapter, we describe the recent advancements in the GR and ER expression systems and their use in analyzing the function of transcription factors in Arabidopsis.
Collapse
Affiliation(s)
- Pooja Aggarwal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Monalisha Rath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Preethi Sunkara
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
224
|
Yang T, Wang Y, Teotia S, Zhang Z, Tang G. The Making of Leaves: How Small RNA Networks Modulate Leaf Development. FRONTIERS IN PLANT SCIENCE 2018; 9:824. [PMID: 29967634 PMCID: PMC6015915 DOI: 10.3389/fpls.2018.00824] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/28/2018] [Indexed: 05/20/2023]
Abstract
Leaf development is a sequential process that involves initiation, determination, transition, expansion and maturation. Many coding genes and a few non-coding small RNAs (sRNAs) have been identified as being involved in leaf development. sRNAs and their interactions not only determine gene expression and regulation, but also play critical roles in leaf development through their coordination with other genetic networks and physiological pathways. In this review, we first introduce the biogenesis pathways of sRNAs, mainly microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs), and then describe the function of miRNA-transcription factors in leaf development, focusing on guidance by interactive sRNA regulatory networks.
Collapse
Affiliation(s)
- Tianxiao Yang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Yongyan Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Sachin Teotia
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
- Department of Biotechnology, Sharda University,Greater Noida, India
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Zhanhui Zhang, Guiliang Tang,
| | - Guiliang Tang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
- *Correspondence: Zhanhui Zhang, Guiliang Tang,
| |
Collapse
|
225
|
|
226
|
|
227
|
Wang B, Xue JS, Yu YH, Liu SQ, Zhang JX, Yao XZ, Liu ZX, Xu XF, Yang ZN. Fine regulation of ARF17 for anther development and pollen formation. BMC PLANT BIOLOGY 2017; 17:243. [PMID: 29258431 PMCID: PMC5735505 DOI: 10.1186/s12870-017-1185-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/27/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND In Arabidopsis, the tapetum and microsporocytes are critical for pollen formation. Previous studies have shown that ARF17 is expressed in microsporocytes and tetrads and directly regulates tetrad wall synthesis for pollen formation. ARF17 is the direct target of miR160, and promoterARF17::5mARF17 (5mARF17/WT) transgenic plants, which have five silent mutations within the miR160-complementary domain, are sterile. RESULTS Here, we found that ARF17 is also expressed in the tapetum, which was defective in arf17 mutants. Compared with arf17 mutants, 5mARF17/WT plants had abnormal tapetal cells and tetrads but were less vacuolated in the tapetum. Immunocytochemical assays showed that the ARF17 protein over-accumulated in tapetum, microsporocytes and tetrads of 5mARF17/WT plants at early anther stages, but its expression pattern was not affected during anther development. 5mARF17 driven by its native promoter did not rescue the arf17 male-sterile phenotype. The expression of 5mARF17 driven by the tapetum-specific promoter A9 led to a defective tapetum and male sterility in transgenic plants. These results suggest that the overexpression of ARF17 in the tapetum and microsporocytes of 5mARF17/WT plants leads to male sterility. Microarray data revealed that an abundance of genes involved in transcription and translation are ectopically expressed in 5mARF17/WT plants. CONCLUSIONS Our work shows that ARF17 plays an essential role in anther development and pollen formation, and ARF17 expression under miR160 regulation is critical for its function during anther development.
Collapse
Affiliation(s)
- Bo Wang
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, 200092 China
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Jing-Shi Xue
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Ya-Hui Yu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Si-Qi Liu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Jia-Xin Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Xiao-Zhen Yao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Zhi-Xue Liu
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, 200092 China
| | - Xiao-Feng Xu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234 China
| |
Collapse
|
228
|
Shi M, Hu X, Wei Y, Hou X, Yuan X, Liu J, Liu Y. Genome-Wide Profiling of Small RNAs and Degradome Revealed Conserved Regulations of miRNAs on Auxin-Responsive Genes during Fruit Enlargement in Peaches. Int J Mol Sci 2017; 18:E2599. [PMID: 29236054 PMCID: PMC5751202 DOI: 10.3390/ijms18122599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Auxin has long been known as a critical phytohormone that regulates fruit development in plants. However, due to the lack of an enlarged ovary wall in the model plants Arabidopsis and rice, the molecular regulatory mechanisms of fruit division and enlargement remain unclear. In this study, we performed small RNA sequencing and degradome sequencing analyses to systematically explore post-transcriptional regulation in the mesocarp at the hard core stage following treatment of the peach (Prunus persica L.) fruit with the synthetic auxin α-naphthylacetic acid (NAA). Our analyses identified 24 evolutionarily conserved miRNA genes as well as 16 predicted genes. Experimental verification showed that the expression levels of miR398 and miR408b were significantly upregulated after NAA treatment, whereas those of miR156, miR160, miR166, miR167, miR390, miR393, miR482, miR535 and miR2118 were significantly downregulated. Degradome sequencing coupled with miRNA target prediction analyses detected 119 significant cleavage sites on several mRNA targets, including SQUAMOSA promoter binding protein-like (SPL), ARF, (NAM, ATAF1/2 and CUC2) NAC, Arabidopsis thaliana homeobox protein (ATHB), the homeodomain-leucine zipper transcription factor revoluta(REV), (teosinte-like1, cycloidea and proliferating cell factor1) TCP and auxin signaling F-box protein (AFB) family genes. Our systematic profiling of miRNAs and the degradome in peach fruit suggests the existence of a post-transcriptional regulation network of miRNAs that target auxin pathway genes in fruit development.
Collapse
Affiliation(s)
- Mengya Shi
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
- National Agro-Tech Extension and Service Center, Beijing 100125, China.
| | - Xiao Hu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| | - Yu Wei
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xu Hou
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China.
| | - Xue Yuan
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China.
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yueping Liu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China.
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
229
|
MicroRNA and Putative Target Discoveries in Chrysanthemum Polyploidy Breeding. Int J Genomics 2017; 2017:6790478. [PMID: 29387713 PMCID: PMC5745731 DOI: 10.1155/2017/6790478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs), around 22 nucleotides (nt) in length, are a class of endogenous and noncoding RNA molecule that play an essential role in plant development, either by suppressing the transcription of target genes at a transcriptional level or inhibiting translation at a posttranscriptional level. To understand the roles of miRNAs and their target genes in chrysanthemum polyploidy breeding, three sRNA libraries of normal and abnormal embryos after hybridization were performed by RNA-Seq. As a result, a total of 170 miRNAs were identified and there are 41 special miRNAs in cross of paternal chromosome doubling, such as miR169b, miR440, and miR528-5p. miR164c and miR159a were highly expressed in a normal embryo at 18 days after pollination, suggesting the regulatory role at the late stage of embryonic development. miR172c was only detected in the normal embryo at 18 days after pollination, which means that miR172c mainly mediates gene expression in postembryonic development and these genes may promote embryo maturation. Other miRNAs, including miR414, miR2661, and miR5021, may regulate the genes participated in pathways of auxin response and energy metabolism; then they regulate the complex embryonic development together.
Collapse
|
230
|
Wójcik AM, Nodine MD, Gaj MD. miR160 and miR166/165 Contribute to the LEC2-Mediated Auxin Response Involved in the Somatic Embryogenesis Induction in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2024. [PMID: 29321785 PMCID: PMC5732185 DOI: 10.3389/fpls.2017.02024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/14/2017] [Indexed: 05/04/2023]
Abstract
MicroRNAs are non-coding small RNA molecules that are involved in the post-transcriptional regulation of the genes that control various developmental processes in plants, including zygotic embryogenesis (ZE). miRNAs are also believed to regulate somatic embryogenesis (SE), a counterpart of the ZE that is induced in vitro in plant somatic cells. However, the roles of specific miRNAs in the regulation of the genes involved in SE, in particular those encoding transcription factors (TFs) with an essential function during SE including LEAFY COTYLEDON2 (LEC2), remain mostly unknown. The aim of the study was to reveal the function of miR165/166 and miR160 in the LEC2-controlled pathway of SE that is induced in in vitro cultured Arabidopsis explants.In ZE, miR165/166 controls the PHABULOSA/PHAVOLUTA (PHB/PHV) genes, which are the positive regulators of LEC2, while miR160 targets the AUXIN RESPONSE FACTORS (ARF10, ARF16, ARF17) that control the auxin signaling pathway, which plays key role in LEC2-mediated SE. We found that a deregulated expression/function of miR165/166 and miR160 resulted in a significant accumulation of auxin in the cultured explants and the spontaneous formation of somatic embryos. Our results show that miR165/166 might contribute to SE induction via targeting PHB, a positive regulator of LEC2 that controls embryogenic induction via activation of auxin biosynthesis pathway (Wójcikowska et al., 2013). Similar to miR165/166, miR160 was indicated to control SE induction through auxin-related pathways and the negative impact of miR160 on ARF10/ARF16/ARF17 was shown in an embryogenic culture. Altogether, the results suggest that the miR165/166- and miR160-node contribute to the LEC2-mediated auxin-related pathway of embryogenic transition that is induced in the somatic cells of Arabidopsis. A model summarizing the suggested regulatory interactions between the miR165/166-PHB and miR160-ARF10/ARF16/ARF17 nodes that control SE induction in Arabidopsis was proposed.
Collapse
Affiliation(s)
- Anna M. Wójcik
- Department of Genetics, University of Silesia, Faculty of Biology and Environmental Protection, Katowice, Poland
| | - Michael D. Nodine
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Małgorzata D. Gaj
- Department of Genetics, University of Silesia, Faculty of Biology and Environmental Protection, Katowice, Poland
| |
Collapse
|
231
|
Comparative Analysis of Cotton Small RNAs and Their Target Genes in Response to Salt Stress. Genes (Basel) 2017; 8:genes8120369. [PMID: 29206160 PMCID: PMC5748687 DOI: 10.3390/genes8120369] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 11/21/2022] Open
Abstract
Small RNAs play an important role in regulating plant responses to abiotic stress. Depending on the method of salt application, whether sudden or gradual, plants may experience either salt shock or salt stress, respectively. In this study, small RNA expression in response to salt shock and long-term salt stress in parallel experiments was described. Cotton small RNA libraries were constructed and sequenced under normal conditions, as well as sudden and gradual salt application. A total of 225 cotton microRNAs (miRNAs) were identified and of these 24 were novel miRNAs. There were 88 and 75 miRNAs with differential expression under the salt shock and long-term salt stress, respectively. Thirty one transcripts were found to be targets of 20 miRNA families. Eight targets showed a negative correlation in expression with their corresponding miRNAs. We also identified two TAS3s with two near-identical 21-nt trans-acting small interfering RNA (tasiRNA)-Auxin Response Factors (ARFs) that coaligned with the phases D7(+) and D8(+) in three Gossypium species. The miR390/tasiRNA-ARFs/ARF4 pathway was identified and showed altered expression under salt stress. The identification of these small RNAs as well as elucidating their functional significance broadens our understanding of post-transcriptional gene regulation in response to salt stress.
Collapse
|
232
|
Xu L, Hu Y, Cao Y, Li J, Ma L, Li Y, Qi Y. An expression atlas of miRNAs in Arabidopsis thaliana. SCIENCE CHINA-LIFE SCIENCES 2017; 61:178-189. [PMID: 29197026 DOI: 10.1007/s11427-017-9199-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. MiRNA expression often exhibits spatial and temporal specificity. However, genome-wide miRNA expression patterns in different organs during development of Arabidopsis thaliana have not yet been systemically investigated. In this study, we sequenced small RNA libraries generated from 27 different organ/tissue types, which cover the entire life cycle of Arabidopsis. Analysis of the sequencing data revealed that most miRNAs are ubiquitously expressed, whereas a small set of miRNAs display highly specific expression patterns. In addition, different miRNA members within the same family have distinct spatial and temporal expression patterns. Moreover, we found that some miRNAs are produced from different arms of their hairpin precursors at different developmental stages. This work provides new insights into the regulation of miRNA biogenesis and a rich resource for future investigation of miRNA functions in Arabidopsis.
Collapse
Affiliation(s)
- Le Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yugang Hu
- College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Ying Cao
- College of Life Sciences-Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Capital Normal University, Beijing, 100048, China
| | - Jingrui Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Ligeng Ma
- College of Life Sciences-Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Capital Normal University, Beijing, 100048, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
233
|
Singh N, Sharma A. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways. C R Biol 2017; 340:481-491. [PMID: 29126713 DOI: 10.1016/j.crvi.2017.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/20/2017] [Accepted: 09/30/2017] [Indexed: 01/22/2023]
Abstract
Turmeric has been used as a therapeutic herb over centuries in traditional medicinal systems due to the presence of several secondary metabolite compounds. microRNAs are known to regulate gene expression at the post-transcriptional level by transcriptional cleavage or translation repression. miRNAs have been demonstrated to play an active role in secondary metabolism regulation. The present work was focused on the identification of the miRNAs involved in the regulation of secondary metabolite and development process of turmeric. Eighteen miRNA families were identified for turmeric. Sixteen miRNA families were observed to regulate 238 target transcripts. LncRNAs targets of the putative miRNA candidates were also predicted. Our results indicated their role in binding, reproduction, stress, and other developmental processes. Gene annotation and pathway analysis illustrated the biological function of the targets regulated by the putative miRNAs. The miRNA-mediated gene regulatory network also revealed co-regulated targets that were regulated by two or more miRNA families. miR156 and miR5015 were observed to be involved in rhizome development. miR5021 showed regulation for terpenoid backbone biosynthesis and isoquinoline alkaloid biosynthesis pathways. The flavonoid biosynthesis pathway was observed to be regulated by miR2919. The analysis revealed the probable involvement of three miRNAs (miR1168.2, miR156b and miR1858) in curcumin biosynthesis. Other miRNAs were found to be involved in the growth and developmental process of turmeric. Phylogenetic analysis of selective miRNAs was also performed.
Collapse
Affiliation(s)
- Noopur Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, 226015 Lucknow, UP, India.
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, 226015 Lucknow, UP, India.
| |
Collapse
|
234
|
Genome-Wide Analysis of DNA Methylation During Ovule Development of Female-Sterile Rice fsv1. G3-GENES GENOMES GENETICS 2017; 7:3621-3635. [PMID: 28877971 PMCID: PMC5677159 DOI: 10.1534/g3.117.300243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The regulation of female fertility is an important field of rice sexual reproduction research. DNA methylation is an essential epigenetic modification that dynamically regulates gene expression during development processes. However, few reports have described the methylation profiles of female-sterile rice during ovule development. In this study, ovules were continuously acquired from the beginning of megaspore mother cell meiosis until the mature female gametophyte formation period, and global DNA methylation patterns were compared in the ovules of a high-frequency female-sterile line (fsv1) and a wild-type rice line (Gui99) using whole-genome bisulfite sequencing (WGBS). Profiling of the global DNA methylation revealed hypo-methylation, and 3471 significantly differentially methylated regions (DMRs) were observed in fsv1 ovules compared with Gui99. Based on functional annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis of differentially methylated genes (DMGs), we observed more DMGs enriched in cellular component, reproduction regulation, metabolic pathway, and other pathways. In particular, many ovule development genes and plant hormone-related genes showed significantly different methylation patterns in the two rice lines, and these differences may provide important clues for revealing the mechanism of female gametophyte abortion.
Collapse
|
235
|
Pan C, Ye L, Zheng Y, Wang Y, Yang D, Liu X, Chen L, Zhang Y, Fei Z, Lu G. Identification and expression profiling of microRNAs involved in the stigma exsertion under high-temperature stress in tomato. BMC Genomics 2017; 18:843. [PMID: 29096602 PMCID: PMC5668977 DOI: 10.1186/s12864-017-4238-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
Background Autogamy in cultivated tomato varieties is a derived trait from wild type tomato plants, which are mostly allogamous. However, environmental stresses can cause morphological defects in tomato flowers and hinder autogamy. Under elevated temperatures, tomato plants usually exhibit the phenotype of stigma exsertion, with severely hindered self-pollination and fruit setting, whereas the inherent mechanism of stigma exsertion have been hitherto unknown. Numerous small RNAs (sRNAs) have been shown to play significant roles in plant development and stress responses, however, none of them have been studied with respect to stamen and pistil development under high-temperature conditions. We investigated the associations between stigma exsertion and small RNAs using high-throughput sequencing technology and molecular biology approaches. Results Sixteen sRNA libraries of Micro-Tom were constructed from plants stamen and pistil samples and sequenced after 2 d and 12 d of exposure to heat stress, respectively, from which a total of 110 known and 84 novel miRNAs were identified. Under heat stress conditions, 34 known and 35 novel miRNAs were differentially expressed in stamens, and 20 known and 10 novel miRNAs were differentially expressed in pistils. GO and KEGG pathway analysis showed that the predicted target genes of differentially expressed miRNAs were significantly enriched in metabolic pathways in both stamen and pistil libraries. Potential miRNA-target cleavage cascades that correlated with the regulation of stigma exsertion under heat stress conditions were found and validated through qRT-PCR and RLM-5′ RACE. Conclusion Overall, a global spectrum of known and novel miRNAs involved in tomato stigma exsertion and induced by high temperatures were identified using high-throughput sequencing and molecular biology approaches, laying a foundation for revealing the miRNA-mediated regulatory network involved in the development of tomato stamens and pistils under high-temperature conditions. Electronic supplementary material The online version of this article (10.1186/s12864-017-4238-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changtian Pan
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Lei Ye
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Yan Wang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Dandan Yang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Xue Liu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Lifei Chen
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Youwei Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.,USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Gang Lu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310085, China. .,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310085, China.
| |
Collapse
|
236
|
Yan Z, Liu X, Ljung K, Li S, Zhao W, Yang F, Wang M, Tao Y. Type B Response Regulators Act As Central Integrators in Transcriptional Control of the Auxin Biosynthesis Enzyme TAA1. PLANT PHYSIOLOGY 2017; 175:1438-1454. [PMID: 28931628 PMCID: PMC5664468 DOI: 10.1104/pp.17.00878] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/19/2017] [Indexed: 05/22/2023]
Abstract
During embryogenesis and organ formation, establishing proper gradient is critical for auxin function, which is achieved through coordinated regulation of both auxin metabolism and transport. Expression of auxin biosynthetic genes is often tissue specific and is regulated by environmental signals. However, the underlying regulatory mechanisms remain elusive. Here, we investigated the transcriptional regulation of a key auxin biosynthetic gene, l-Tryptophan aminotransferase of Arabidopsis1 (TAA1). A canonical and a novel Arabidopsis (Arabidopsis thaliana) response regulator (ARR) binding site were identified in the promoter and the second intron of TAA1, which were required for its tissue-specific expression. C-termini of a subset of the type B ARRs selectively bind to one or both cis elements and activate the expression of TAA1 We further demonstrated that the ARRs not only mediate the transcriptional regulation of TAA1 by cytokinins, but also mediate its regulation by ethylene, light, and developmental signals. Through direct protein-protein interactions, the transcriptional activity of ARR1 is enhanced by ARR12, DELLAs, and ethylene-insenstive3 (EIN3). Our study thus revealed the ARR proteins act as key node that mediate the regulation of auxin biosynthesis by various hormonal, environmental, and developmental signals through transcriptional regulation of the key auxin biosynthesis gene TAA1.
Collapse
Affiliation(s)
- Zhenwei Yan
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
- State Key Laboratory of Cellular Stress Biology, Xiamen University
| | - Xin Liu
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Shuning Li
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
| | - Wanying Zhao
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
| | - Fan Yang
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
| | - Meiling Wang
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
| | - Yi Tao
- School of Life Sciences, Xiamen University, Xiamen Plant Genetics Key Laboratory, Xiamen, P.R. China 361102
- State Key Laboratory of Cellular Stress Biology, Xiamen University
| |
Collapse
|
237
|
Mei Y, Chen H, Shen W, Shen W, Huang L. Hydrogen peroxide is involved in hydrogen sulfide-induced lateral root formation in tomato seedlings. BMC PLANT BIOLOGY 2017; 17:162. [PMID: 29029623 PMCID: PMC5640930 DOI: 10.1186/s12870-017-1110-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/09/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Both hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) are separately regarded as a highly reactive molecule involved in root morphogenesis. In this report, corresponding causal link governing lateral root formation was investigated. METHODS By using pharmacological, anatomic, and molecular approaches, evidence presented here revealed the molecular mechanism underlying tomato lateral root development triggered by H2S. RESULTS A H2S donor sodium hydrosulfide (NaHS) triggered the accumulation of H2O2, the up-regulation of RBOH1 transcript, and thereafter tomato lateral root formation. Above responses were sensitive to the H2O2 scavenger (dimethylthiourea; DMTU) and the inhibitor of NADPH oxidase (diphenylene idonium; DPI), showing that the accumulations of H2O2 and increased RBOH1 transcript were respectively prevented. Lateral root primordial and lateral root formation were also impaired. Further molecular evidence revealed that H2S-modulated gene expression of cell cycle regulatory genes, including up-regulation of SlCYCA2;1, SlCYCA3;1, and SlCDKA1, and the down-regulation of SlKRP2, were prevented by the co-treatment with DMTU or DPI. Above mentioned inducing phenotypes were consistent with the changes of lateral root formation-related microRNA transcripts: up-regulation of miR390a and miR160, and with the opposite tendencies of their target genes (encoding auxin response factors). Contrasting tendencies were observed when DMTU or DPI was added together. The occurrence of H2S-mediated S-sulfhydration during above responses was preliminarily discovered. CONCLUSIONS Overall, these results suggested an important role of RBOH1-mediated H2O2 in H2S-elicited tomato lateral root development, and corresponding H2S-target proteins regulated at transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Yudong Mei
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haotian Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wei Shen
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Liqin Huang
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
238
|
Chien PS, Chiang CB, Wang Z, Chiou TJ. MicroRNA-mediated signaling and regulation of nutrient transport and utilization. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:73-79. [PMID: 28668626 DOI: 10.1016/j.pbi.2017.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/10/2017] [Accepted: 06/12/2017] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs), a group of small-RNA regulators, control diverse developmental processes and stress responses. Recent studies of nutrient-responsive miRNAs have offered novel insights into how plants regulate gene expression to coordinate endogenous demand and external availability of nutrients. Here, we review the mechanisms mediated by miRNAs to facilitate nutrient transport and utilization and show that miRNAs: first, control nutrient uptake and translocation by targeting nutrient transporters or their regulators; second, adjust nutrient metabolism by redistributing nutrients for biosynthesis of more essential compounds; and third, modulate root development and microbial symbiosis to exploit soil nutrients. We also highlight the long-distance movement of miRNAs in maintaining whole-plant nutrient homeostasis and propose several directions for future research.
Collapse
Affiliation(s)
- Pei-Shan Chien
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chih-Bin Chiang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Zhengrui Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
239
|
Hajieghrari B, Farrokhi N, Goliaei B, Kavousi K. Computational Identification of MicroRNAs and Their Transcript Target(s) in Field Mustard ( Brassica rapa L.). IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:22-32. [PMID: 28959349 PMCID: PMC5582250 DOI: 10.15171/ijb.1390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Micro RNAs (miRNAs) are a pivotal part of non-protein-coding endogenous small RNA molecules that regulate the genes involved in plant growth and development, and respond to biotic and abiotic environmental stresses posttranscriptionally. OBJECTIVE In the present study, we report the results of a systemic search for identification of new miRNAs in B. rapa using homology-based ESTs (Expressed Sequence Tags) analysis and considering a series of fi ltration criteria. MATERIALS AND METHODS Plant mature miRNA sequences were searched in non-protein coding ESTs registered in NCBI EST database. Zuker RNA folding algorithm was used to generate the secondary structures of the ESTs. Potential sequences were candidate as miRNA genes and characterized evolutionarily only and if only they fi t some described criteria. Also, the web tool psRNATarget was applied to predict candidate B. rapa miRNA targets. RESULTS In this study, 10 novel miRNAs from B. rapa belonging to 6 miRNA families were identified using EST-based homology analysis by considering a series of fi ltration criteria. All potent miRNAs appropriate fold back structure. Several potential targets with known/unknown functions for these novel miRNAs were identified. The target genes mainly encode transcription factors, enzymes, DNA binding proteins, disease resistance proteins, carrier proteins and other biological processes. CONCLUSIONS MicroRNA having diverse functions in plant species growth, development and evolution by posttranscriptionally regulating the levels of specific transcriptome so by effecting on their translation products. Research in miRNA led to the identification of many miRNAs and their regulating genes from diverse plant species.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, 13145-1365, Iran.,Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, PO BOX 74135-111, Jahrom, 74135-11, Iran
| | - Naser Farrokhi
- Department of Biotechnology Engineering, Faculty of Energy Engineering and New Technologies, Shahid Beheshti University G.C., Evin, Tehran,19839-4716, Iran
| | - Bahram Goliaei
- Departments of Biophysics and Bioinformatics laboratories, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran,13145-1365, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, 13145-1365, Iran
| |
Collapse
|
240
|
Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea. Sci Rep 2017; 7:10895. [PMID: 28883480 PMCID: PMC5589731 DOI: 10.1038/s41598-017-11327-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Auxin response factors (ARFs) are the transcription factors that regulate auxin responses in various aspects of plant growth and development. Although genome-wide analysis of ARF gene family has been done in some species, no information is available regarding ARF genes in chickpea. In this study, we identified 28 ARF genes (CaARF) in the chickpea genome. Phylogenetic analysis revealed that CaARFs can be divided into four different groups. Duplication analysis revealed that 50% of CaARF genes arose from duplication events. We analyzed expression pattern of CaARFs in various developmental stages. CaARF16.3, CaARF17.1 and CaARF17.2 showed highest expression at initial stages of flower bud development, while CaARF6.2 had higher expression at later stages of flower development. Further, CaARF4.2, CaARF9.2, CaARF16.2 and CaARF7.1 exhibited differential expression under different abiotic stress conditions, suggesting their role in abiotic stress responses. Co-expression network analysis among CaARF, CaIAA and CaGH3 genes enabled us to recognize components involved in the regulatory network associated with CaARFs. Further, we identified microRNAs that target CaARFs and TAS3 locus that trigger production of trans-acting siRNAs targeting CaARFs. The analyses presented here provide comprehensive information on ARF family members and will help in elucidating their exact function in chickpea.
Collapse
|
241
|
Bai B, Shi B, Hou N, Cao Y, Meng Y, Bian H, Zhu M, Han N. microRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination. BMC PLANT BIOLOGY 2017; 17:150. [PMID: 28877679 PMCID: PMC5586051 DOI: 10.1186/s12870-017-1095-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/22/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Small RNA and degradome sequencing have identified a large number of miRNA-target pairs in plant seeds. However, detailed spatial and temporal studies of miRNA-mediated regulation, which can reflect links between seed development and germination are still lacking. RESULTS In this study, we extended our investigation on miRNAs-involved gene regulation by a combined analysis of seed maturation and germination in barley. Through bioinformatics analysis of small RNA sequencing data, a total of 1324 known miRNA families and 448 novel miRNA candidates were identified. Of those, 16 known miRNAs with 40 target genes, and three novel miRNAs with four target genes were confirmed based on degradome sequencing data. Conserved miRNA families such as miR156, miR168, miR166, miR167, and miR894 were highly expressed in embryos of developing and germinating seeds. A barley-specific miRNA, miR5071, which was predicted to target an OsMLA10-like gene, accumulated at a high level, suggesting its involvement in defence response during these two developmental stages. Based on target prediction and Kyoto Encyclopedia of Genes and Genomes analysis of putative targets, nine highly expressed miRNAs were found to be related to phytohormone signalling and hormone cross-talk. Northern blot and qRT-PCR analysis showed that these miRNAs displayed differential expression patterns during seed development and germination, indicating their different roles in hormone signalling pathways. In addition, we showed that miR393 affected seed development through targeting two genes encoding the auxin receptors TIR1/AFBs in barley, as over-expression of miR393 led to an increased length-width ratio of seeds, whereas target mimic (MIM393)-mediated inhibition of its activity decreased the 1000-grain weight of seeds. Furthermore, the expression of auxin-responsive genes, abscisic acid- and gibberellic acid-related genes was altered in miR393 misexpression lines during germination and early seedling growth. CONCLUSIONS Our work indicates that miRNA-target pairs participate in gene expression regulation and hormone interaction in barley embryo and provides evidence that miR393-mediated auxin response regulation affects grain development and influences gibberellic acid and abscisic acid homeostasis during germination.
Collapse
Affiliation(s)
- Bin Bai
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou 310058 China
| | - Bo Shi
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou 310058 China
| | - Ning Hou
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou 310058 China
| | - Yanli Cao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou 310058 China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, Hangzhou 310036 China
| | - Hongwu Bian
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou 310058 China
| | - Muyuan Zhu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou 310058 China
| | - Ning Han
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou 310058 China
| |
Collapse
|
242
|
Nazari F, Safaie N, Soltani BM, Shams-Bakhsh M, Sharifi M. Bacillus subtilis affects miRNAs and flavanoids production in Agrobacterium-Tobacco interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:98-106. [PMID: 28624685 DOI: 10.1016/j.plaphy.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 05/23/2023]
Abstract
Agrobacterium tumefaciens is a very destructive plant pathogen. Selection of effective biological agents against this pathogen depends on more insight into molecular plant defence responses during the biocontrol agent-pathogen interaction. Auxin as a phytohormone is a key contributor in pathogenesis and plant defence and accumulation of auxin transport carriers are accompanied by increasing in flavonoid and miRNAs concentrations during plant interactions with bacteria. The aim of this research was molecular analysis of Bacillus subtilis (ATCC21332) biocontrol effect against A. tumefaciens (IBRC-M10701) pathogen interacting with Nicotiana tabacum plants. Tobacco plants were either treated with both or one of the challenging bacteria and the expression of miRNAs inside the plants were analysed through qRT-PCR. The results indicated that the bacterial treatments affect expression level of nta-miRNAs. In tobacco plants treated only with A. tumefaciens the expression of nta-miR393 was more than that was recorded for nta-miR167 (3.8 folds, P < 0.05 in 3dpi). While the expression level of nta-miR167 was more than the expression of nta-miR393 in other treatments including tobacco plants treated only with B. subtilis (2.1 folds, P < 0.05) and the plants treated with both of the bacteria (3.9 folds, P < 0.05) in 3 dpi. Also, the composition and concentration of rutin, myrecetin, daidzein and vitexin flavanoid derivatives were detected using HPLC and analysed according the standard curves. All of the tested flavanoid compounds were highly detected in Tobacco plants which were only challenged with A. tumefaciens. The amount of these compounds in the plants which were challenged with the B. subtilis alone, was similar to the amount recorded for the plants challenged with the both bacteria. This study suggests a relationship between the upregulation of nta-miR167, nta-miR393 and accumulation of flavanoid compounds. Overall, the expression of these miRNAs as well as flavonoid derivatives has the potential of being used as biomarkers for the interaction of B. subtilis and A. tumefaciens model system in N. tabacum.
Collapse
Affiliation(s)
- Fahimeh Nazari
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
243
|
Shen Y, Sun S, Hua S, Shen E, Ye CY, Cai D, Timko MP, Zhu QH, Fan L. Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:874-893. [PMID: 28544196 DOI: 10.1111/tpj.13605] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 05/23/2023]
Abstract
Heterosis is a fundamental biological phenomenon characterized by the superior performance of a hybrid compared with its parents. The underlying molecular basis for heterosis, particularly for allopolyploids, remains elusive. In this study we analyzed the transcriptomes of Brassica napus parental lines and their F1 hybrids at three stages of early flower development. Phenotypically, the F1 hybrids show remarkable heterosis in silique number and grain yield. Transcriptome analysis revealed that various phytohormone (auxin and salicylic acid) response genes are significantly altered in the F1 hybrids relative to the parental lines. We also found evidence for decreased expression divergence of the homoeologous gene pairs in the allopolyploid F1 hybrids and suggest that high-parental expression-level dominance plays an important role in heterosis. Small RNA and methylation studies aimed at examining the epigenetic effect of the changes in gene expression level in the F1 hybrids showed that the majority of the small interfering RNA (siRNA) clusters had a higher expression level in the F1 hybrids than in the parents, and that there was an increase in genome-wide DNA methylation in the F1 hybrid. Transposable elements associated with siRNA clusters had a higher level of methylation and a lower expression level in the F1 hybrid, implying that the non-additively expressed siRNA clusters resulted in lower activity of the transposable elements through DNA methylation in the hybrid. Our data provide insights into the role that changes in gene expression pattern and epigenetic mechanisms contribute to heterosis during early flower development in allopolyploid B. napus.
Collapse
Affiliation(s)
- Yifei Shen
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Shuo Sun
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Shuijin Hua
- Institute of Crop and Utilization of Nuclear Technology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Enhui Shen
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Chu-Yu Ye
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| | - Daguang Cai
- Institute of Phytopathology, Christian Albrechts University of Kiel, Hermann Rodewald Str. 9, D-24118, Kiel, Germany
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, ACT, 2601, Australia
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
244
|
Zheng Y, Chen K, Xu Z, Liao P, Zhang X, Liu L, Wei K, Liu D, Li YF, Sunkar R, Cui X. Small RNA profiles from Panax notoginseng roots differing in sizes reveal correlation between miR156 abundances and root biomass levels. Sci Rep 2017; 7:9418. [PMID: 28842680 PMCID: PMC5573331 DOI: 10.1038/s41598-017-09670-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 07/27/2017] [Indexed: 11/30/2022] Open
Abstract
Plant genomes encode several classes of small regulatory RNAs (sRNAs) that play critical roles in both development and stress responses. Panax notoginseng (Burk.) F.H. Chen (P. notoginseng) is an important traditional Chinese herbal medicinal plant species for its haemostatic effects. Therefore, the root yield of P. notoginseng is a major economically important trait since the roots of P. notoginseng are the parts used to produce medicine. To identify sRNAs that are critical for the root biomass of P. notoginseng, we performed a comprehensive study of miRNA transcriptomes from P. notoginseng roots of different biomasses. We identified 675 conserved miRNAs, of which 180 pre-miRNAs are also identified, and three TAS3 loci in P. notoginseng. By using degradome sequencing, we identified 79 conserved miRNA:target or tasiRNA:target interactions, of which eight were further confirmed with the RLM 5'-RACE experiments. More importantly, our results revealed that a member of miR156 family and one of its SPL target genes have inverse expression levels, which is tightly correlated with greater root biomass contents. These results not only contributes to overall understanding of post-transcriptional gene regulation in roots of P. notoginseng but also could serve as markers for breeding P. notoginseng with greater root yield.
Collapse
Affiliation(s)
- Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Kun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zhenning Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Peiran Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xiaotuo Zhang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Kangning Wei
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
- Key laboratory of Panax notoginseng resources sustainable development and utilization of state administration of traditional Chinese medicine, Kunming, Yunnan, 650500, China
| | - Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
- Key laboratory of Panax notoginseng resources sustainable development and utilization of state administration of traditional Chinese medicine, Kunming, Yunnan, 650500, China.
| |
Collapse
|
245
|
Liang WW, Huang JH, Li CP, Yang LT, Ye X, Lin D, Chen LS. MicroRNA-mediated responses to long-term magnesium-deficiency in Citrus sinensis roots revealed by Illumina sequencing. BMC Genomics 2017; 18:657. [PMID: 28836935 PMCID: PMC5571589 DOI: 10.1186/s12864-017-3999-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/01/2017] [Indexed: 01/17/2023] Open
Abstract
Background Magnesium (Mg)-deficiency occurs most frequently in strongly acidic, sandy soils. Citrus are grown mainly on acidic and strong acidic soils. Mg-deficiency causes poor fruit quality and low fruit yield in some Citrus orchards. For the first time, we investigated Mg-deficiency-responsive miRNAs in ‘Xuegan’ (Citrus sinensis) roots using Illumina sequencing in order to obtain some miRNAs presumably responsible for Citrus Mg-deficiency tolerance. Results We obtained 101 (69) miRNAs with increased (decreased) expression from Mg-starved roots. Our results suggested that the adaptation of Citrus roots to Mg-deficiency was related to the several aspects: (a) inhibiting root respiration and related gene expression via inducing miR158 and miR2919; (b) enhancing antioxidant system by down-regulating related miRNAs (miR780, miR6190, miR1044, miR5261 and miR1151) and the adaptation to low-phosphorus (miR6190); (c) activating transport-related genes by altering the expression of miR6190, miR6485, miR1044, miR5029 and miR3437; (d) elevating protein ubiquitination due to decreased expression levels of miR1044, miR5261, miR1151 and miR5029; (e) maintaining root growth by regulating miR5261, miR6485 and miR158 expression; and (f) triggering DNA repair (transcription regulation) by regulating miR5176 and miR6485 (miR6028, miR6190, miR6485, miR5621, miR160 and miR7708) expression. Mg-deficiency-responsive miRNAs involved in root signal transduction also had functions in Citrus Mg-deficiency tolerance. Conclusions We obtained several novel Mg-deficiency-responsive miRNAs (i.e., miR5261, miR158, miR6190, miR6485, miR1151 and miR1044) possibly contributing to Mg-deficiency tolerance. These results revealed some novel clues on the miRNA-mediated adaptation to nutrient deficiencies in higher plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3999-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Wei Liang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing-Hao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Chun-Ping Li
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Lin
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
246
|
Wu Y, Lv W, Hu L, Rao W, Zeng Y, Zhu L, He Y, He G. Identification and analysis of brown planthopper-responsive microRNAs in resistant and susceptible rice plants. Sci Rep 2017; 7:8712. [PMID: 28821824 PMCID: PMC5562839 DOI: 10.1038/s41598-017-09143-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022] Open
Abstract
The brown planthopper (BPH) is the most devastating insect pest of rice. The rice gene BPH15 confers resistance to BPH. MicroRNAs (miRNAs) regulate a spectrum of development and defense response processes in plants. In this study, we analyzed six miRNA profiles of a BPH15 introgression line (P15) and a susceptible recipient line (PC) at three time points (0 h, 6 h and 48 h) after BPH attack, and identified 464 known miRNAs and 183 potential novel miRNAs. Before the BPH feeding, we identified 23 miRNAs differentially expressed in P15 and PC. We speculated that the resistant plant is in a priming state by the regulation of miRNAs. After the BPH feeding, 104 miRNAs were found to be expressed differentially in P15 (68 in P15-6/P15-0, 36 in P15-48/P15-0), and 80 miRNAs were found expressed differentially in PC (32 in PC-6/PC-0, 48 in PC-48/PC-0), which illustrated that miRNA expression is activated upon attack. These miRNAs regulate different pathways that contribute to the basal defense and specific resistance of rice to the BPH. Our study provides additional data for scientists to further explore the mechanism of plant defense against insect attack and to find a way for efficient insect control.
Collapse
Affiliation(s)
- Yan Wu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wentang Lv
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Liang Hu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weiwei Rao
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ya Zeng
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lili Zhu
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangcun He
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
247
|
Zuluaga DL, De Paola D, Janni M, Curci PL, Sonnante G. Durum wheat miRNAs in response to nitrogen starvation at the grain filling stage. PLoS One 2017; 12:e0183253. [PMID: 28813501 PMCID: PMC5558935 DOI: 10.1371/journal.pone.0183253] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/01/2017] [Indexed: 11/24/2022] Open
Abstract
Durum wheat highly depends on nitrogen for seed development and yield, and the obtainment of varieties with a better nitrogen use efficiency is crucial to reduce production costs and environmental pollution. In this study, sequencing of two small RNA libraries obtained from tissues of Ciccio and Svevo cultivars grown under nitrogen starvation conditions produced 84 novel, and 161 conserved miRNAs. Of these, 7 novel and 13 known miRNAs were newly identified in this work. Quantitative PCR analysis of selected miRNAs highlighted that the expression levels of some of them depends on the tissue and on the cultivar, Svevo being the most responsive to nitrogen starvation. A number of target genes were predicted to be involved in nitrogen metabolism. An inverse correlation for the qPCR expression data of miRNA/target pairs miR399b/PHO2, miR393c/AFB2, ttu-novel-61/CCAAT-TF was observed in specific tissues or cultivar. Especially, ttu-novel-61 was down-regulated and its target CCAAT-TF up-regulated in almost all tissues both in Svevo and in Ciccio. Moreover, CCAAT-TF was confirmed to be cleaved by ttu-novel-61 at the expected site. The discovery of miRNAs involved in the response to nitrogen stress represents an important step towards functional analyses, with the final aim to design strategies for improving nitrogen use efficiency in durum wheat.
Collapse
Affiliation(s)
- Diana L. Zuluaga
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Domenico De Paola
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Michela Janni
- Institute for Electronics and Magnetism, National Research Council (CNR), Parma, Italy
| | - Pasquale Luca Curci
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| |
Collapse
|
248
|
Sarkar D, Maji RK, Dey S, Sarkar A, Ghosh Z, Kundu P. Integrated miRNA and mRNA expression profiling reveals the response regulators of a susceptible tomato cultivar to early blight disease. DNA Res 2017; 24:235-250. [PMID: 28338918 PMCID: PMC5499734 DOI: 10.1093/dnares/dsx003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/24/2017] [Indexed: 12/16/2022] Open
Abstract
Early blight, caused by the fungus Alternaria solani, is a devastating foliar disease of tomatoes, causes massive yield loss each year worldwide. Molecular basis of the compatible host–pathogen interaction was elusive. We adopted next generation sequencing approach to decipher miRNAs and mRNAs that are differentially expressed during Alternaria-stress in tomato. Some of the interesting findings were also validated by alternative techniques. Our analysis revealed 181 known-miRNAs, belonging to 121 miRNA families, of which 67 miRNAs showed at least 2-fold change in expression level with the majority being downregulated. Concomitantly, 5,450 mRNAs were significantly regulated in the same diseased tissues. Differentially expressed genes were most significantly associated with response to stimulus process, photosynthesis, biosynthesis of secondary metabolites, plant–pathogen interaction and plant hormone signal transduction pathways. GO term enrichment-based categorization of gene-functions further supported this observation, as terms related to pathogen perception, disease signal transduction, cellular metabolic processes including oxidoreductase and kinase activity were over represented. In addition, we have discovered 102 miRNA–mRNA pairs which were regulated antagonistically, and careful study of the targeted mRNAs depicted that multiple transcription factors, nucleotide-binding site leucine-rich repeats, receptor-like proteins and enzymes related to cellular ROS management were profoundly affected. These studies have identified key regulators of Alternaria-stress response in tomato and the subset of genes that are likely to be post-transcriptionally silenced during the infection.
Collapse
Affiliation(s)
- Deepti Sarkar
- Division of Plant Biology, Bose Institute, Kolkata 700054, India
| | - Ranjan Kumar Maji
- Centre of Excellence in Bioinformatics, Bose Institute, Kolkata, India
| | - Sayani Dey
- Division of Plant Biology, Bose Institute, Kolkata 700054, India
| | - Arijita Sarkar
- Centre of Excellence in Bioinformatics, Bose Institute, Kolkata, India
| | - Zhumur Ghosh
- Centre of Excellence in Bioinformatics, Bose Institute, Kolkata, India
| | - Pallob Kundu
- Division of Plant Biology, Bose Institute, Kolkata 700054, India
| |
Collapse
|
249
|
Khandal H, Parween S, Roy R, Meena MK, Chattopadhyay D. MicroRNA profiling provides insights into post-transcriptional regulation of gene expression in chickpea root apex under salinity and water deficiency. Sci Rep 2017; 7:4632. [PMID: 28680071 PMCID: PMC5498500 DOI: 10.1038/s41598-017-04906-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/05/2017] [Indexed: 11/08/2022] Open
Abstract
Activity of root apical meristem (RAM) at the root apex is critical for stress-mediated modulation of root-architecture. Chickpea, like other legumes, possesses a basic open root meristem. Deep sequencing was used to perform microRNA expression profiling in root apex of chickpea (Cicer arietinum L.) in order to investigate post-transcriptional regulation of gene expression in this tissue in response to salinity and water deficit. Five small RNA libraries prepared from chickpea root apices at different stages of stress treatments were sequenced to obtain 284 unique miRNA sequences including 60 novel miRNAs belonging to total 255 families. Two hundred and fiftynine miRNAs were differentially expressed in stress. Six hundred and nine mRNA targets involved in diverse cellular processes were predicted for 244 miRNAs. Stress-responsive expression patterns of selected miRNAs, inverse expression patterns of their target genes and the target-cleavage sites were validated. Three candidate miRNA-target gene relationships were validated in transient expression system in chickpea. The miRNA expression profiling under salinity and water deficiency in a legume root apex and the reported function of their target genes suggested important roles of miRNA-mediated post-transcriptional regulation of gene expression involved in re-patterning of root hair cells, lateral root formation and high-affinity K+-uptake under these stresses.
Collapse
Affiliation(s)
- Hitaishi Khandal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sabiha Parween
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Riti Roy
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
250
|
Genetic Subtraction Profiling Identifies Candidate miRNAs Involved in Rice Female Gametophyte Abortion. G3-GENES GENOMES GENETICS 2017; 7:2281-2293. [PMID: 28526728 PMCID: PMC5499135 DOI: 10.1534/g3.117.040808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The female gametophyte is an important participant in the sexual reproduction of plants. The molecular mechanism of its development has received much attention in recent years. As important regulators of gene expression, miRNAs have been certified to play a significant role in many biological processes of plants, including sexual reproduction. In this study, to investigate the potential regulatory effects of miRNAs on rice female gametophyte abortion, we used the high-throughput sequencing method to compare the miRNA transcriptome in ovules of a high frequency female-sterile line (fsv1) and a rice wild-type line (Gui 99) during ovule development. As a result, 522 known miRNAs and 295 novel miRNAs were expressed in the developing ovule of rice, while 100 known miRNAs were significantly differentially expressed between these two rice lines during ovule development. Combining with gene expression information, a total of 627 coherent target genes of these differential expressed known miRNAs between fsv1 and Gui 99 were identified. The functional analyses of these coherent target genes revealed that the coherent target genes of differential expressed known miRNAs between the two rice lines are involved in many biological pathways, such as protein degradation, auxin signal transduction, and transcription factor regulation. These results provide us with important clues to investigate the regulatory roles of miRNAs in rice female gametophyte abortion.
Collapse
|