201
|
Clark G, Torres J, Finlayson S, Guan X, Handley C, Lee J, Kays JE, Chen ZJ, Roux SJ. Apyrase (nucleoside triphosphate-diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. PLANT PHYSIOLOGY 2010; 152:1073-83. [PMID: 20018604 PMCID: PMC2815863 DOI: 10.1104/pp.109.147637] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/08/2009] [Indexed: 05/20/2023]
Abstract
Ectoapyrase enzymes remove the terminal phosphate from extracellular nucleoside tri- and diphosphates. In Arabidopsis (Arabidopsis thaliana), two ectoapyrases, AtAPY1 and AtAPY2, have been implicated as key modulators of growth. In fibers of cotton (Gossypium hirsutum), transcript levels for GhAPY1 and GhAPY2, two closely related ectoapyrases that have high sequence similarity to AtAPY1 and AtAPY2, are up-regulated when fibers enter their rapid growth phase. In an ovule culture system, fibers release ATP as they grow, and when their ectoapyrase activity is blocked by the addition of polyclonal anti-apyrase antibodies or by two different small molecule inhibitors, the medium ATP level rises and fiber growth is suppressed. High concentrations of the poorly hydrolyzable nucleotides ATPgammaS and ADPbetaS applied to the medium inhibit fiber growth, and low concentrations of them stimulate growth, but treatment with adenosine 5'-O-thiomonophosphate causes no change in the growth rate. Both the inhibition and stimulation of growth by applied nucleotides can be blocked by an antagonist that blocks purinoceptors in animal cells, and by adenosine. Treatment of cotton ovule cultures with ATPgammaS induces increased levels of ethylene, and two ethylene antagonists, aminovinylglycine and silver nitrate, block both the growth stimulatory and growth inhibitory effects of applied nucleotides. In addition, the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, lowers the concentration of nucleotide needed to promote fiber growth. These data indicate that ectoapyrases and extracellular nucleotides play a significant role in regulating cotton fiber growth and that ethylene is a likely downstream component of the signaling pathway.
Collapse
|
202
|
Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. THE PLANT CELL 2010; 22:91-107. [PMID: 20118226 PMCID: PMC2828693 DOI: 10.1105/tpc.109.071803] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/01/2009] [Accepted: 12/25/2009] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana ABORTED MICROSPORES (AMS) gene encodes a basic helix-loop-helix (bHLH) transcription factor that is required for tapetal cell development and postmeiotic microspore formation. However, the regulatory role of AMS in anther and pollen development has not been fully defined. Here, we show by microarray analysis that the expression of 549 anther-expressed genes was altered in ams buds and that these genes are associated with tapetal function and pollen wall formation. We demonstrate that AMS has the ability to bind in vitro to DNA containing a 6-bp consensus motif, CANNTG. Moreover, 13 genes involved in transportation of lipids, oligopeptides, and ions, fatty acid synthesis and metabolism, flavonol accumulation, substrate oxidation, methyl-modification, and pectin dynamics were identified as direct targets of AMS by chromatin immunoprecipitation. The functional importance of the AMS regulatory pathway was further demonstrated by analysis of an insertional mutant of one of these downstream AMS targets, an ABC transporter, White-Brown Complex homolog, which fails to undergo pollen development and is male sterile. Yeast two-hybrid screens and pull-down assays revealed that AMS has the ability to interact with two bHLH proteins (AtbHLH089 and AtbHLH091) and the ATA20 protein. These results provide insight into the regulatory role of the AMS network during anther development.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Caiyun Yang
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Zheng Yuan
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Dasheng Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martha Y. Gondwe
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Zhiwen Ding
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Research Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Address correspondence to
| | - Zoe A. Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
203
|
Lee SB, Jung SJ, Go YS, Kim HU, Kim JK, Cho HJ, Park OK, Suh MC. Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:462-75. [PMID: 19619160 DOI: 10.1111/j.1365-313x.2009.03973.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Very-long-chain fatty acids (VLCFAs) are essential precursors of cuticular waxes and aliphatic suberins in roots. The first committed step in VLCFA biosynthesis is condensation of C(2) units to an acyl CoA by 3-ketoacyl CoA synthase (KCS). In this study, two KCS genes, KCS20 and KCS2/DAISY, that showed higher expression in stem epidermal peels than in stems were isolated. The relative expression of KCS20 and KCS2/DAISY transcripts was compared among various Arabidopsis organs or tissues and under various stress conditions, including osmotic stress. Although the cuticular waxes were not significantly altered in the kcs20 and kcs2/daisy-1 single mutants, the kcs20 kcs2/daisy-1 double mutant had a glossy green appearance due to a significant reduction of the amount of epicuticular wax crystals on the stems and siliques. Complete loss of KCS20 and KCS2/DAISY decreased the total wax content in stems and leaves by 20% and 15%, respectively, and an increase of 10-34% was observed in transgenic leaves that over-expressed KCS20 or KCS2/DAISY. The stem wax phenotype of the double mutant was rescued by expression of KSC20. In addition, the kcs20 kcs2/daisy-1 roots exhibited growth retardation and abnormal lamellation of the suberin layer in the endodermis. When compared with the single mutants, the roots of kcs20 kcs2/daisy-1 double mutantss exhibited significant reduction of C(22) and C(24) VLCFA derivatives but accumulation of C(20) VLCFA derivatives in aliphatic suberin. Taken together, these findings indicate that KCS20 and KCS2/DAISY are functionally redundant in the two-carbon elongation to C(22) VLCFA that is required for cuticular wax and root suberin biosynthesis. However, their expression is differentially controlled under osmotic stress conditions.
Collapse
Affiliation(s)
- Saet-Buyl Lee
- Department of Plant Biotechnology and Agricultural Plant Stress Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Plett JM, Mathur J, Regan S. Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3923-33. [PMID: 19648171 PMCID: PMC2736899 DOI: 10.1093/jxb/erp228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The single-celled trichome of Arabidopsis thaliana is a widely used model system for studying cell development. While the pathways that control the later stages of trichome development are well characterized, the early signalling events that co-ordinate these pathways are less well understood. Hormones such as gibberellic acid, salicylic acid, cytokinins, and ethylene are known to affect trichome initiation and development. To understand the role of the plant hormone ethylene in trichome development, an Arabidopsis loss-of-function ethylene receptor mutant, etr2-3, which has completely unbranched trichomes, is analysed in this study. It was hypothesized that ETR2 might affect the assembly of the microtubule cytoskeleton based on analysis of the cytoskeleton in developing trichomes, and exposures to paclitaxol and oryzalin, which respectively act either to stabilize or depolymerize the cytoskeleton. Through epistatic and gene expression analyses it is shown that ETR2 is positioned upstream of CHROMATIN ASSEMBLY FACTOR1 and TRYPTICHON and is independent of the GLABRA2 and GLABRA3 pathways. These results help extend understanding of the early events that control trichome development and identify a signalling pathway through which ethylene affects trichome branching.
Collapse
Affiliation(s)
- Jonathan M. Plett
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Jaideep Mathur
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Sharon Regan
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
205
|
Quist TM, Sokolchik I, Shi H, Joly RJ, Bressan RA, Maggio A, Narsimhan M, Li X. HOS3, an ELO-like gene, inhibits effects of ABA and implicates a S-1-P/ceramide control system for abiotic stress responses in Arabidopsis thaliana. MOLECULAR PLANT 2009; 2:138-51. [PMID: 19529829 PMCID: PMC2639740 DOI: 10.1093/mp/ssn085] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 11/03/2008] [Indexed: 05/19/2023]
Abstract
A hyper-osmotically sensitive mutant of Arabidopsis thaliana, designated hos3-1 (high expression of osmotically responsive genes), was identified based on its hyper-luminescence of RD29A:LUC promoter fusion plants upon treatment with NaCl and ABA. These responses implicate the disrupted gene as a direct or indirect negative regulator of the RD29A stress-responsive pathway. By sequencing the flanking regions of the T-DNA borders, it was determined that the disrupted gene is at locus At4g36830, annotated as encoding a putative protein with high homology to CIG30 (ELO2/FEN1). CIG30 has been implicated in synthesis of very long chain fatty acids (VLCFA), which are essential precursors for sphingolipids and ceramides. Altered stress responses characteristic of ABA-hypersensitivity, including reduced root growth inhibition and reduced germination with ABA treatment and reduced water loss from leaves, were exhibited by allelic hos3-1 and hos3-2 mutants. The hos3-2 mutant is partially suppressed in its transcript abundance and is inherited as a recessive trait. Further, the HOS3 ORF under the control of the 35SCaMV promoter restored wild-type NaCl- and ABA-root growth sensitivity as well as RD29A:LUC luminescence in mutant plants. We also show here that the HOS3 wild-type gene functionally complements the sensitivity of elo2 and elo3 yeast mutants to monensin. Furthermore, both hos3-1 and hos3-2 alleles shared increased sensitivity to the herbicide Metolachlor, which inhibits acyl chain elongation in synthesis of VLCFA, and HOS3 functionally complemented both elo2 and elo3 and restored levels of VLCFA. Together, these data establish that HOS3 inhibits ABA-mediated stress responses and implicate the VLCFA pathway and products as control points for several aspects of abiotic stress signaling and responses. The results also provide support for a role of ceramide in the control of stomatal behavior.
Collapse
Affiliation(s)
- Tanya M. Quist
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Irina Sokolchik
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Robert J. Joly
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Ray A. Bressan
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Albino Maggio
- Department of Agricultural Engineering and Agronomy, University of Naples Federico II, Via Università 100, Portici (NA), Italy 80055
| | - Meena Narsimhan
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Xia Li
- The Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021 China
- To whom correspondence should be addressed. E-mail , tel. 86-0311-85871744
| |
Collapse
|
206
|
Song WQ, Qin YM, Saito M, Shirai T, Pujol FM, Kastaniotis AJ, Hiltunen JK, Zhu YX. Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1839-48. [PMID: 19286916 PMCID: PMC2671629 DOI: 10.1093/jxb/erp057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/05/2009] [Accepted: 02/13/2009] [Indexed: 05/19/2023]
Abstract
Very long chain fatty acids are important components of plant lipids, suberins, and cuticular waxes. Trans-2-enoyl-CoA reductase (ECR) catalyses the fourth reaction of fatty acid elongation, which is NADPH dependent. In the present study, the expression of two cotton ECR (GhECR) genes revealed by quantitative RT-PCR analysis was up-regulated during cotton fibre elongation. GhECR1 and 2 each contain open reading frames of 933 bp in length, both encoding proteins consisting of 310 amino acid residues. GhECRs show 32% identity to Saccharomyces cerevisiae Tsc13p at the deduced amino acid level, and the GhECR genes were able to restore the viability of the S. cerevisiae haploid tsc13-deletion strain. A putative non-classical NADPH-binding site in GhECR was predicted by an empirical approach. Site-directed mutagenesis in combination with gas chromatography-mass spectrometry analysis suggests that G(5X)IPXG presents a putative novel NADPH-binding motif of the plant ECR family. The data suggest that both GhECR genes encode functional enzymes harbouring non-classical NADPH-binding sites at their C-termini, and are involved in fatty acid elongation during cotton fibre development.
Collapse
Affiliation(s)
- Wen-Qiang Song
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yong-Mei Qin
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871, China
- To whom correspondence should be addressed. E-mail:
| | - Mihoko Saito
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama 526-0829, Japan
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama 526-0829, Japan
| | - François M. Pujol
- Biocenter Oulu and Department of Biochemistry, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Alexander J. Kastaniotis
- Biocenter Oulu and Department of Biochemistry, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - J. Kalervo Hiltunen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Yu-Xian Zhu
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
207
|
Abdurakhmonov IY, Devor EJ, Buriev ZT, Huang L, Makamov A, Shermatov SE, Bozorov T, Kushanov FN, Mavlonov GT, Abdukarimov A. Small RNA regulation of ovule development in the cotton plant, G. hirsutum L. BMC PLANT BIOLOGY 2008; 8:93. [PMID: 18793449 PMCID: PMC2564936 DOI: 10.1186/1471-2229-8-93] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 09/16/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND The involvement of small RNAs in cotton fiber development is under explored. The objective of this work was to directly clone, annotate, and analyze small RNAs of developing ovules to reveal the candidate small interfering RNA/microRNAs involved in cotton ovule and fiber development. RESULTS We cloned small RNA sequences from 0-10 days post anthesis (DPA) developing cotton ovules. A total of 6691 individual colonies were sequenced from 11 ovule small RNA libraries that yielded 2482 candidate small RNAs with a total of 583 unique sequence signatures. The majority (362, 62.1%) of these 583 sequences were 24 nt long with an additional 145 sequences (24.9%) in the 21 nt to 23 nt size range. Among all small RNA sequence signatures only three mirBase-confirmed plant microRNAs (miR172, miR390 and ath-miR853-like) were identified and only two miRNA-containing clones were recovered beyond 4 DPA. Further, among all of the small RNA sequences obtained from the small RNA pools in developing ovules, only 15 groups of sequences were observed in more than one DPA period. Of these, only five were present in more than two DPA periods. Two of these were miR-172 and miR-390 and a third was identified as 5.8S rRNA sequence. Thus, the vast majority of sequence signatures were expressed in only one DPA period and this included nearly all of the 24 nt sequences. Finally, we observed a distinct DPA-specific expression pattern among our clones based upon sequence abundance. Sequences occurring only once were far more likely to be seen in the 0 to 2 DPA periods while those occurring five or more times were the majority in later periods. CONCLUSION This initial survey of small RNA sequences present in developing ovules in cotton indicates that fiber development is under complex small RNA regulation. Taken together, the results of this initial small RNA screen of developing cotton ovules is most consistent with a model, proposed by Baulcombe, that there are networks of small RNAs that are induced in a cascade fashion by the action of miRNAs and that the nature of these cascades can change from tissue to tissue and developmental stage to developmental stage.
Collapse
Affiliation(s)
- Ibrokhim Y Abdurakhmonov
- Center of Genomic Technologies, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan. Yuqori Yuz, Qibray region Tashkent district, 111226 Uzbekistan
| | - Eric J Devor
- Molecular Genetics, Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Zabardast T Buriev
- Center of Genomic Technologies, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan. Yuqori Yuz, Qibray region Tashkent district, 111226 Uzbekistan
| | - Lingyan Huang
- Molecular Genetics, Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Abdusalom Makamov
- Center of Genomic Technologies, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan. Yuqori Yuz, Qibray region Tashkent district, 111226 Uzbekistan
| | - Shukhrat E Shermatov
- Center of Genomic Technologies, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan. Yuqori Yuz, Qibray region Tashkent district, 111226 Uzbekistan
| | - Tohir Bozorov
- Center of Genomic Technologies, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan. Yuqori Yuz, Qibray region Tashkent district, 111226 Uzbekistan
| | - Fakhriddin N Kushanov
- Center of Genomic Technologies, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan. Yuqori Yuz, Qibray region Tashkent district, 111226 Uzbekistan
| | - Gafurjon T Mavlonov
- Center of Genomic Technologies, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan. Yuqori Yuz, Qibray region Tashkent district, 111226 Uzbekistan
| | - Abdusattor Abdukarimov
- Center of Genomic Technologies, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan. Yuqori Yuz, Qibray region Tashkent district, 111226 Uzbekistan
| |
Collapse
|
208
|
Zhang DS, Liang WQ, Yuan Z, Li N, Shi J, Wang J, Liu YM, Yu WJ, Zhang DB. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. MOLECULAR PLANT 2008; 1:599-610. [PMID: 19825565 DOI: 10.1093/mp/ssn028] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As a complex wall system in flowering plants, the pollen outer wall mainly contains aliphatic sporopollenin; however, the mechanism for synthesizing these lipidic precursors during pollen development remains less well understood. Here, we report on the function of the rice tapetum-expressing TDR (Tapetum Degeneration Retardation) gene in aliphatic metabolism and its regulatory role during rice pollen development. The observations of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses suggested that pollen wall formation was significantly altered in the tdr mutant. The contents of aliphatic compositions of anther were greatly changed in the tdr mutant revealed by GC-MS (gas chromatography-mass spectrometry) testing, particularly less accumulated in fatty acids, primary alcohols, alkanes and alkenes, and an abnormal increase in secondary alcohols with carbon lengths from C29 to C35 in tdr. Microarray data revealed that a group of genes putatively involved in lipid transport and metabolism were significantly altered in the tdr mutant, indicating the critical role of TDR in the formation of the pollen wall. Also, a wide range of genes (236 in total-154 up-regulated and 82 down-regulated) exhibited statistically significant expressional differences between wild-type and tdr. In addition to its function in promoting tapetum PCD, TDR possibly plays crucial regulatory roles in several basic biological processes during rice pollen development.
Collapse
Affiliation(s)
- Da-Sheng Zhang
- Shanghai Jiao Tong University, Shanghai Institutes for Biological Sciences, China
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Mintz-Oron S, Mandel T, Rogachev I, Feldberg L, Lotan O, Yativ M, Wang Z, Jetter R, Venger I, Adato A, Aharoni A. Gene expression and metabolism in tomato fruit surface tissues. PLANT PHYSIOLOGY 2008; 147:823-51. [PMID: 18441227 PMCID: PMC2409049 DOI: 10.1104/pp.108.116004] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 04/08/2008] [Indexed: 05/07/2023]
Abstract
The cuticle, covering the surface of all primary plant organs, plays important roles in plant development and protection against the biotic and abiotic environment. In contrast to vegetative organs, very little molecular information has been obtained regarding the surfaces of reproductive organs such as fleshy fruit. To broaden our knowledge related to fruit surface, comparative transcriptome and metabolome analyses were carried out on peel and flesh tissues during tomato (Solanum lycopersicum) fruit development. Out of 574 peel-associated transcripts, 17% were classified as putatively belonging to metabolic pathways generating cuticular components, such as wax, cutin, and phenylpropanoids. Orthologs of the Arabidopsis (Arabidopsis thaliana) SHINE2 and MIXTA-LIKE regulatory factors, activating cutin and wax biosynthesis and fruit epidermal cell differentiation, respectively, were also predominantly expressed in the peel. Ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and gas chromatography-mass spectrometry using a flame ionization detector identified 100 metabolites that are enriched in the peel tissue during development. These included flavonoids, glycoalkaloids, and amyrin-type pentacyclic triterpenoids as well as polar metabolites associated with cuticle and cell wall metabolism and protection against photooxidative stress. Combined results at both transcript and metabolite levels revealed that the formation of cuticular lipids precedes phenylpropanoid and flavonoid biosynthesis. Expression patterns of reporter genes driven by the upstream region of the wax-associated SlCER6 gene indicated progressive activity of this wax biosynthetic gene in both fruit exocarp and endocarp. Peel-associated genes identified in our study, together with comparative analysis of genes enriched in surface tissues of various other plant species, establish a springboard for future investigations of plant surface biology.
Collapse
Affiliation(s)
- Shira Mintz-Oron
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
He XC, Qin YM, Xu Y, Hu CY, Zhu YX. Molecular cloning, expression profiling, and yeast complementation of 19 beta-tubulin cDNAs from developing cotton ovules. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2687-95. [PMID: 18596112 PMCID: PMC2486464 DOI: 10.1093/jxb/ern127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microtubules are a major structural component of the cytoskeleton and participate in cell division, intracellular transport, and cell morphogenesis. In the present study, 795 cotton tubulin expressed sequence tags were analysed and 19 beta-tubulin genes (TUB) cloned from a cotton cDNA library. Among the group, 12 cotton TUBs (GhTUBs) are reported for the first time here. Transcription profiling revealed that nine GhTUBs were highly expressed in elongating fibre cells as compared with fuzzless-lintless mutant ovules. Treating cultured wild-type cotton ovules with exogenous phytohormones showed that individual genes can be induced by different agents. Gibberellin induced expression of GhTUB1 and GhTUB3, ethylene induced expression of GhTUB5, GhTUB9, and GhTUB12, brassinosteroids induced expression of GhTUB1, GhTUB3, GhTUB9, and GhTUB12, and lignoceric acid induced expression of GhTUB1, GhTUB3, and GhTUB12. When GhTUBs were transformed into the Saccharomyces cerevisiae inviable mutant, tub2, which is deficient in beta-tubulin, one ovule-specific and eight of nine fibre-preferential GhTUBs rescued this lethality. This study suggests that the proteins encoded by cotton GhTUBs are involved during cotton fibre development.
Collapse
Affiliation(s)
| | - Yong-Mei Qin
- To whom correspondence should be addressed. E-mail:
| | | | | | | |
Collapse
|