201
|
Napel S, Mu W, Jardim‐Perassi BV, Aerts HJWL, Gillies RJ. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer 2018; 124:4633-4649. [PMID: 30383900 PMCID: PMC6482447 DOI: 10.1002/cncr.31630] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/07/2022]
Abstract
Although cancer often is referred to as "a disease of the genes," it is indisputable that the (epi)genetic properties of individual cancer cells are highly variable, even within the same tumor. Hence, preexisting resistant clones will emerge and proliferate after therapeutic selection that targets sensitive clones. Herein, the authors propose that quantitative image analytics, known as "radiomics," can be used to quantify and characterize this heterogeneity. Virtually every patient with cancer is imaged radiologically. Radiomics is predicated on the beliefs that these images reflect underlying pathophysiologies, and that they can be converted into mineable data for improved diagnosis, prognosis, prediction, and therapy monitoring. In the last decade, the radiomics of cancer has grown from a few laboratories to a worldwide enterprise. During this growth, radiomics has established a convention, wherein a large set of annotated image features (1-2000 features) are extracted from segmented regions of interest and used to build classifier models to separate individual patients into their appropriate class (eg, indolent vs aggressive disease). An extension of this conventional radiomics is the application of "deep learning," wherein convolutional neural networks can be used to detect the most informative regions and features without human intervention. A further extension of radiomics involves automatically segmenting informative subregions ("habitats") within tumors, which can be linked to underlying tumor pathophysiology. The goal of the radiomics enterprise is to provide informed decision support for the practice of precision oncology.
Collapse
Affiliation(s)
- Sandy Napel
- Department of RadiologyStanford UniversityStanfordCalifornia
| | - Wei Mu
- Department of Cancer PhysiologyH. Lee Moffitt Cancer CenterTampaFlorida
| | | | - Hugo J. W. L. Aerts
- Dana‐Farber Cancer Institute, Department of Radiology, Brigham and Women’s HospitalHarvard Medical SchoolBostonMassachusetts
| | - Robert J. Gillies
- Department of Cancer PhysiologyH. Lee Moffitt Cancer CenterTampaFlorida
| |
Collapse
|
202
|
Luo J, Ning Z, Zhang S, Feng Q, Zhang Y. Bag of deep features for preoperative prediction of sentinel lymph node metastasis in breast cancer. ACTA ACUST UNITED AC 2018; 63:245014. [DOI: 10.1088/1361-6560/aaf241] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
203
|
Li S, Yang N, Li B, Zhou Z, Hao H, Folkert MR, Iyengar P, Westover K, Choy H, Timmerman R, Jiang S, Wang J. A pilot study using kernelled support tensor machine for distant failure prediction in lung SBRT. Med Image Anal 2018; 50:106-116. [PMID: 30266009 PMCID: PMC6237633 DOI: 10.1016/j.media.2018.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022]
Abstract
We developed a kernelled support tensor machine (KSTM)-based model with tumor tensors derived from pre-treatment PET and CT imaging as input to predict distant failure in early stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT). The patient cohort included 110 early stage NSCLC patients treated with SBRT, 25 of whom experienced failure at distant sites. Three-dimensional tumor tensors were constructed and used as input for the KSTM-based classifier. A KSTM iterative algorithm with a convergent proof was developed to train the weight vectors for every mode of the tensor for the classifier. In contrast to conventional radiomics approaches that rely on handcrafted imaging features, the KSTM-based classifier uses 3D imaging as input, taking full advantage of the imaging information. The KSTM-based classifier preserves the intrinsic 3D geometry structure of the medical images and the correlation in the original images and trains the classification hyper-plane in an adaptive feature tensor space. The KSTM-based predictive algorithm was compared with three conventional machine learning models and three radiomics approaches. For PET and CT, the KSTM-based predictive method achieved the highest prediction results among the seven methods investigated in this study based on 10-fold cross validation and independent testing.
Collapse
Affiliation(s)
- Shulong Li
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image, Processing, Southern Medical University, Guangzhou 510515, China
| | - Ning Yang
- Department of Medical Imaging, Guangdong No.2 Provincial People's Hospital, Guangzhou 510317, China
| | - Bin Li
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image, Processing, Southern Medical University, Guangzhou 510515, China
| | - Zhiguo Zhou
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | - Hongxia Hao
- School of Computer Science and Technology, Xidian University, Xi'an 710071, China
| | - Michael R Folkert
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | - Kenneth Westover
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | - Hak Choy
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | - Steve Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas 75235, USA.
| |
Collapse
|
204
|
Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.09.013] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
205
|
Zhang L, Gooya A, Pereanez M, Dong B, Piechnik S, Neubauer S, Petersen S, Frangi AF. Automatic Assessment of Full Left Ventricular Coverage in Cardiac Cine Magnetic Resonance Imaging with Fisher Discriminative 3D CNN. IEEE Trans Biomed Eng 2018; 66:1975-1986. [PMID: 30475705 DOI: 10.1109/tbme.2018.2881952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Cardiac magnetic resonance (CMR) images play a growing role in the diagnostic imaging of cardiovascular diseases. Full coverage of the left ventricle (LV), from base to apex, is a basic criterion for CMR image quality and necessary for accurate measurement of cardiac volume and functional assessment. Incomplete coverage of the LV is identified through visual inspection, which is time-consuming and usually done retrospectively in the assessment of large imaging cohorts. This paper proposes a novel automatic method for determining LV coverage from CMR images by using Fisher-discriminative three-dimensional (FD3D) convolutional neural networks (CNNs). In contrast to our previous method employing 2D CNNs, this approach utilizes spatial contextual information in CMR volumes, extracts more representative high-level features and enhances the discriminative capacity of the baseline 2D CNN learning framework, thus achieving superior detection accuracy. A two-stage framework is proposed to identify missing basal and apical slices in measurements of CMR volume. First, the FD3D CNN extracts high-level features from the CMR stacks. These image representations are then used to detect the missing basal and apical slices. Compared to the traditional 3D CNN strategy, the proposed FD3D CNN minimizes within-class scatter and maximizes between-class scatter. We performed extensive experiments to validate the proposed method on more than 5,000 independent volumetric CMR scans from the UK Biobank study, achieving low error rates for missing basal/apical slice detection (4.9%/4.6%). The proposed method can also be adopted for assessing LV coverage for other types of CMR image data.
Collapse
|
206
|
Feng B, Hoskins W, Zhang Y, Meng Z, Samuels DC, Wang J, Xia R, Liu C, Tang J, Guo Y. Bi-stream CNN Down Syndrome screening model based on genotyping array. BMC Med Genomics 2018; 11:105. [PMID: 30453947 PMCID: PMC6245487 DOI: 10.1186/s12920-018-0416-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Human Down syndrome (DS) is usually caused by genomic micro-duplications and dosage imbalances of human chromosome 21. It is associated with many genomic and phenotype abnormalities. Even though human DS occurs about 1 per 1,000 births worldwide, which is a very high rate, researchers haven't found any effective method to cure DS. Currently, the most efficient ways of human DS prevention are screening and early detection. METHODS In this study, we used deep learning techniques and analyzed a set of Illumina genotyping array data. We built a bi-stream convolutional neural networks model to screen/predict the occurrence of DS. Firstly, we built image input data by converting the intensities of each SNP site into chromosome SNP maps. Next, we proposed a bi-stream convolutional neural network (CNN) architecture with nine layers and two branch models. We further merged two CNN branch models into one model in the fourth convolutional layer, and output the prediction in the last layer. RESULTS Our bi-stream CNN model achieved 99.3% average accuracies, and very low false-positive and false-negative rates, which was necessary for further applications in disease prediction and medical practice. We further visualized the feature maps and learned filters from intermediate convolutional layers, which showed the genomic patterns and correlated SNPs variations in human DS genomes. We also compared our methods with other CNN and traditional machine learning models. We further analyzed and discussed the characteristics and strengths of our bi-stream CNN model. CONCLUSIONS Our bi-stream model used two branch CNN models to learn the local genome features and regional patterns among adjacent genes and SNP sites from two chromosomes simultaneously. It achieved the best performance in all evaluating metrics when compared with two single-stream CNN models and three traditional machine-learning algorithms. The visualized feature maps also provided opportunities to study the genomic markers and pathway components associated with Human DS, which provided insights for gene therapy and genomic medicine developments.
Collapse
Affiliation(s)
- Bing Feng
- College of Education, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.,Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA
| | - William Hoskins
- Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA
| | - Yan Zhang
- Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA.,School of Computer Science and Technology, Tianjin University, 300072, Tianjin, 300072, People's Republic of China
| | - Zibo Meng
- Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA
| | - David C Samuels
- Vanderbilt University School of Medicine,Vanderbilt University, Nashville, 37232, TN, USA
| | - Jiandong Wang
- Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA
| | - Ruofan Xia
- Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA
| | - Chao Liu
- College of Education, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Jijun Tang
- College of Education, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China. .,Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA. .,School of Computer Science and Technology, Tianjin University, 300072, Tianjin, 300072, People's Republic of China.
| | - Yan Guo
- School of Medicine,The University of New Mexico, Albuquerque, 87131, NM, USA.
| |
Collapse
|
207
|
Pelka O, Nensa F, Friedrich CM. Annotation of enhanced radiographs for medical image retrieval with deep convolutional neural networks. PLoS One 2018; 13:e0206229. [PMID: 30419028 PMCID: PMC6231616 DOI: 10.1371/journal.pone.0206229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
The number of images taken per patient scan has rapidly increased due to advances in software, hardware and digital imaging in the medical domain. There is the need for medical image annotation systems that are accurate as manual annotation is impractical, time-consuming and prone to errors. This paper presents modeling approaches performed to automatically classify and annotate radiographs using several classification schemes, which can be further applied for automatic content-based image retrieval (CBIR) and computer-aided diagnosis (CAD). Different image preprocessing and enhancement techniques were applied to augment grayscale radiographs by virtually adding two extra layers. The Image Retrieval in Medical Applications (IRMA) Code, a mono-hierarchical multi-axial code, served as a basis for this work. To extensively evaluate the image enhancement techniques, five classification schemes including the complete IRMA code were adopted. The deep convolutional neural network systems Inception-v3 and Inception-ResNet-v2, and Random Forest models with 1000 trees were trained using extracted Bag-of-Keypoints visual representations. The classification model performances were evaluated using the ImageCLEF 2009 Medical Annotation Task test set. The applied visual enhancement techniques proved to achieve better annotation accuracy in all classification schemes.
Collapse
Affiliation(s)
- Obioma Pelka
- Department of Computer Science, University of Applied Sciences and Arts Dortmund (FHDO), Dortmund, NRW Germany
- Faculty of Medicine, University of Duisburg-Essen, Essen, NRW, Germany
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, NRW, Germany
| | - Christoph M. Friedrich
- Department of Computer Science, University of Applied Sciences and Arts Dortmund (FHDO), Dortmund, NRW Germany
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, NRW, Germany
| |
Collapse
|
208
|
Zhang R, Zheng Y, Poon CC, Shen D, Lau JY. Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker. PATTERN RECOGNITION 2018; 83:209-219. [PMID: 31105338 PMCID: PMC6519928 DOI: 10.1016/j.patcog.2018.05.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A computer-aided detection (CAD) tool for locating and detecting polyps can help reduce the chance of missing polyps during colonoscopy. Nevertheless, state-of-the-art algorithms were either computationally complex or suffered from low sensitivity and therefore unsuitable to be used in real clinical setting. In this paper, a novel regression-based Convolutional Neural Network (CNN) pipeline is presented for polyp detection during colonoscopy. The proposed pipeline was constructed in two parts: 1) to learn the spatial features of colorectal polyps, a fast object detection algorithm named ResYOLO was pre-trained with a large non-medical image database and further fine-tuned with colonoscopic images extracted from videos; and 2) temporal information was incorporated via a tracker named Efficient Convolution Operators (ECO) for refining the detection results given by ResYOLO. Evaluated on 17,574 frames extracted from 18 endoscopic videos of the AsuMayoDB, the proposed method was able to detect frames with polyps with a precision of 88.6%, recall of 71.6% and processing speed of 6.5 frames per second, i.e. the method can accurately locate polyps in more frames and at a faster speed compared to existing methods. In conclusion, the proposed method has great potential to be used to assist endoscopists in tracking polyps during colonoscopy.
Collapse
Affiliation(s)
- Ruikai Zhang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Yali Zheng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Carmen C.Y. Poon
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong
- Corresponding author
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, NC, USA
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Corresponding author at: Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, NC, USA.
| | - James Y.W. Lau
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
209
|
Iqbal T, Ali H. Generative Adversarial Network for Medical Images (MI-GAN). J Med Syst 2018; 42:231. [DOI: 10.1007/s10916-018-1072-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/17/2018] [Indexed: 01/22/2023]
|
210
|
Hou F, Wu Z, Hu Z, Xiao Z, Wang L, Zhang X, Li G. Comparison Study on the Prediction of Multiple Molecular Properties by Various Neural Networks. J Phys Chem A 2018; 122:9128-9134. [DOI: 10.1021/acs.jpca.8b09376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Fang Hou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenyao Wu
- School of Computer Software, Tianjin University, Tianjin University, Tianjin 300072, China
| | - Zheng Hu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhourong Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
211
|
Iakovidis DK, Georgakopoulos SV, Vasilakakis M, Koulaouzidis A, Plagianakos VP. Detecting and Locating Gastrointestinal Anomalies Using Deep Learning and Iterative Cluster Unification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2196-2210. [PMID: 29994763 DOI: 10.1109/tmi.2018.2837002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This paper proposes a novel methodology for automatic detection and localization of gastrointestinal (GI) anomalies in endoscopic video frame sequences. Training is performed with weakly annotated images, using only image-level, semantic labels instead of detailed, and pixel-level annotations. This makes it a cost-effective approach for the analysis of large videoendoscopy repositories. Other advantages of the proposed methodology include its capability to suggest possible locations of GI anomalies within the video frames, and its generality, in the sense that abnormal frame detection is based on automatically derived image features. It is implemented in three phases: 1) it classifies the video frames into abnormal or normal using a weakly supervised convolutional neural network (WCNN) architecture; 2) detects salient points from deeper WCNN layers, using a deep saliency detection algorithm; and 3) localizes GI anomalies using an iterative cluster unification (ICU) algorithm. ICU is based on a pointwise cross-feature-map (PCFM) descriptor extracted locally from the detected salient points using information derived from the WCNN. Results, from extensive experimentation using publicly available collections of gastrointestinal endoscopy video frames, are presented. The data sets used include a variety of GI anomalies. Both anomaly detection and localization performance achieved, in terms of the area under receiver operating characteristic (AUC), were >80%. The highest AUC for anomaly detection was obtained on conventional gastroscopy images, reaching 96%, and the highest AUC for anomaly localization was obtained on wireless capsule endoscopy images, reaching 88%.
Collapse
|
212
|
Lee JH, Baek JH, Kim JH, Shim WH, Chung SR, Choi YJ, Lee JH. Deep Learning-Based Computer-Aided Diagnosis System for Localization and Diagnosis of Metastatic Lymph Nodes on Ultrasound: A Pilot Study. Thyroid 2018; 28:1332-1338. [PMID: 30132411 DOI: 10.1089/thy.2018.0082] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The presence of metastatic lymph nodes is a prognostic indicator for patients with thyroid carcinomas and is an important determinant of clinical decision making. However, evaluating neck lymph nodes requires experience and is labor- and time-intensive. Therefore, the development of a computer-aided diagnosis (CAD) system to identify and differentiate metastatic lymph nodes may be useful. METHODS From January 2008 to December 2016, we retrieved clinical records for 804 consecutive patients with 812 lymph nodes. The status of all lymph nodes was confirmed by fine-needle aspiration. The datasets were split into training (263 benign and 286 metastatic lymph nodes), validation (30 benign and 33 metastatic lymph nodes), and test (100 benign and 100 metastatic lymph nodes). Using the VGG-Class Activation Map model, we developed a CAD system to localize and differentiate the metastatic lymph nodes. We then evaluated the diagnostic performance of this CAD system in our test set. RESULTS In the test set, the accuracy, sensitivity, and specificity of our model for predicting lymph node malignancy were 83.0%, 79.5%, and 87.5%, respectively. The CAD system clearly detected the locations of the lymph nodes, which not only provided identifying data, but also demonstrated the basis of decisions. CONCLUSION We developed a deep learning-based CAD system for the localization and differentiation of metastatic lymph nodes from thyroid cancer on ultrasound. This CAD system is highly sensitive and may be used as a screening tool; however, as it is relatively less specific, the screening results should be validated by experienced physicians.
Collapse
Affiliation(s)
- Jeong Hoon Lee
- 1 Division of Biomedical Informatics, Seoul National University Biomedical Informatics, Seoul National University College of Medicine , Seoul, Korea
| | - Jung Hwan Baek
- 2 Department of Radiology and the Research Institute of Radiology University of Ulsan College of Medicine , Seoul, Korea
| | - Ju Han Kim
- 1 Division of Biomedical Informatics, Seoul National University Biomedical Informatics, Seoul National University College of Medicine , Seoul, Korea
| | - Woo Hyun Shim
- 2 Department of Radiology and the Research Institute of Radiology University of Ulsan College of Medicine , Seoul, Korea
- 3 ASAN Institute for Life Sciences, University of Ulsan College of Medicine , Seoul, Korea
| | - Sae Rom Chung
- 2 Department of Radiology and the Research Institute of Radiology University of Ulsan College of Medicine , Seoul, Korea
| | - Young Jun Choi
- 2 Department of Radiology and the Research Institute of Radiology University of Ulsan College of Medicine , Seoul, Korea
| | - Jeong Hyun Lee
- 2 Department of Radiology and the Research Institute of Radiology University of Ulsan College of Medicine , Seoul, Korea
| |
Collapse
|
213
|
Classification of lung adenocarcinoma transcriptome subtypes from pathological images using deep convolutional networks. Int J Comput Assist Radiol Surg 2018; 13:1905-1913. [PMID: 30159833 PMCID: PMC6223755 DOI: 10.1007/s11548-018-1835-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022]
Abstract
Purpose Convolutional neural networks have become rapidly popular for image recognition and image analysis because of its powerful potential. In this paper, we developed a method for classifying subtypes of lung adenocarcinoma from pathological images using neural network whose that can evaluate phenotypic features from wider area to consider cellular distributions. Methods In order to recognize the types of tumors, we need not only to detail features of cells, but also to incorporate statistical distribution of the different types of cells. Variants of autoencoders as building blocks of pre-trained convolutional layers of neural networks are implemented. A sparse deep autoencoder which minimizes local information entropy on the encoding layer is then proposed and applied to images of size \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2048\times 2048$$\end{document}2048×2048. We applied this model for feature extraction from pathological images of lung adenocarcinoma, which is comprised of three transcriptome subtypes previously defined by the Cancer Genome Atlas network. Since the tumor tissue is composed of heterogeneous cell populations, recognition of tumor transcriptome subtypes requires more information than local pattern of cells. The parameters extracted using this approach will then be used in multiple reduction stages to perform classification on larger images. Results We were able to demonstrate that these networks successfully recognize morphological features of lung adenocarcinoma. We also performed classification and reconstruction experiments to compare the outputs of the variants. The results showed that the larger input image that covers a certain area of the tissue is required to recognize transcriptome subtypes. The sparse autoencoder network with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2048 \times 2048$$\end{document}2048×2048 input provides a 98.9% classification accuracy. Conclusion This study shows the potential of autoencoders as a feature extraction paradigm and paves the way for a whole slide image analysis tool to predict molecular subtypes of tumors from pathological features.
Collapse
|
214
|
Chmelik J, Jakubicek R, Walek P, Jan J, Ourednicek P, Lambert L, Amadori E, Gavelli G. Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data. Med Image Anal 2018; 49:76-88. [PMID: 30114549 DOI: 10.1016/j.media.2018.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 07/06/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023]
Abstract
This paper aims to address the segmentation and classification of lytic and sclerotic metastatic lesions that are difficult to define by using spinal 3D Computed Tomography (CT) images obtained from highly pathologically affected cases. As the lesions are ill-defined and consequently it is difficult to find relevant image features that would enable detection and classification of lesions by classical methods of texture and shape analysis, the problem is solved by automatic feature extraction provided by a deep Convolutional Neural Network (CNN). Our main contributions are: (i) individual CNN architecture, and pre-processing steps that are dependent on a patient data and a scan protocol - it enables work with different types of CT scans; (ii) medial axis transform (MAT) post-processing for shape simplification of segmented lesion candidates with Random Forest (RF) based meta-analysis; and (iii) usability of the proposed method on whole-spine CTs (cervical, thoracic, lumbar), which is not treated in other published methods (they work with thoracolumbar segments of spine only). Our proposed method has been tested on our own dataset annotated by two mutually independent radiologists and has been compared to other published methods. This work is part of the ongoing complex project dealing with spine analysis and spine lesion longitudinal studies.
Collapse
Affiliation(s)
- Jiri Chmelik
- Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Technicka 3082/12, 616 00, Czechia.
| | - Roman Jakubicek
- Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Technicka 3082/12, 616 00, Czechia
| | - Petr Walek
- Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Technicka 3082/12, 616 00, Czechia
| | - Jiri Jan
- Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Technicka 3082/12, 616 00, Czechia
| | - Petr Ourednicek
- Philips Healthcare, AE Eindhoven, High Tech Campus 34, 5656, Netherlands; Department of Medical Imaging, St. Anne's University Hospital Brno and Faculty of Medicine Masaryk University Brno, Brno, Pekarska 663/53, 656 91 Czechia
| | - Lukas Lambert
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, U Nemocnice 499/2, 128 08, Czechia
| | - Elena Amadori
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola FC, Via Piero Maroncelli 40, 470 14, Italy
| | - Giampaolo Gavelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola FC, Via Piero Maroncelli 40, 470 14, Italy
| |
Collapse
|
215
|
Nishio M, Sugiyama O, Yakami M, Ueno S, Kubo T, Kuroda T, Togashi K. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS One 2018; 13:e0200721. [PMID: 30052644 PMCID: PMC6063408 DOI: 10.1371/journal.pone.0200721] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/29/2018] [Indexed: 12/31/2022] Open
Abstract
We developed a computer-aided diagnosis (CADx) method for classification between benign nodule, primary lung cancer, and metastatic lung cancer and evaluated the following: (i) the usefulness of the deep convolutional neural network (DCNN) for CADx of the ternary classification, compared with a conventional method (hand-crafted imaging feature plus machine learning), (ii) the effectiveness of transfer learning, and (iii) the effect of image size as the DCNN input. Among 1240 patients of previously-built database, computed tomography images and clinical information of 1236 patients were included. For the conventional method, CADx was performed by using rotation-invariant uniform-pattern local binary pattern on three orthogonal planes with a support vector machine. For the DCNN method, CADx was evaluated using the VGG-16 convolutional neural network with and without transfer learning, and hyperparameter optimization of the DCNN method was performed by random search. The best averaged validation accuracies of CADx were 55.9%, 68.0%, and 62.4% for the conventional method, the DCNN method with transfer learning, and the DCNN method without transfer learning, respectively. For image size of 56, 112, and 224, the best averaged validation accuracy for the DCNN with transfer learning were 60.7%, 64.7%, and 68.0%, respectively. DCNN was better than the conventional method for CADx, and the accuracy of DCNN improved when using transfer learning. Also, we found that larger image sizes as inputs to DCNN improved the accuracy of lung nodule classification.
Collapse
Affiliation(s)
- Mizuho Nishio
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Preemptive Medicine and Lifestyle-related Disease Research Center, Kyoto University Hospital, Kyoto, Japan
- * E-mail: ,
| | - Osamu Sugiyama
- Preemptive Medicine and Lifestyle-related Disease Research Center, Kyoto University Hospital, Kyoto, Japan
| | - Masahiro Yakami
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Preemptive Medicine and Lifestyle-related Disease Research Center, Kyoto University Hospital, Kyoto, Japan
| | - Syoko Ueno
- Department of Social Informatics, Kyoto University Graduate School of Informatics Yoshidahonmachi, Kyoto, Japan
| | - Takeshi Kubo
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Kuroda
- Division of Medical Information Technology and Administrative Planning, Kyoto University Hospital, Kyoto, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
216
|
Yan K, Wang X, Lu L, Summers RM. DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J Med Imaging (Bellingham) 2018; 5:036501. [PMID: 30035154 DOI: 10.1117/1.jmi.5.3.036501] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
Extracting, harvesting, and building large-scale annotated radiological image datasets is a greatly important yet challenging problem. Meanwhile, vast amounts of clinical annotations have been collected and stored in hospitals' picture archiving and communication systems (PACS). These types of annotations, also known as bookmarks in PACS, are usually marked by radiologists during their daily workflow to highlight significant image findings that may serve as reference for later studies. We propose to mine and harvest these abundant retrospective medical data to build a large-scale lesion image dataset. Our process is scalable and requires minimum manual annotation effort. We mine bookmarks in our institute to develop DeepLesion, a dataset with 32,735 lesions in 32,120 CT slices from 10,594 studies of 4,427 unique patients. There are a variety of lesion types in this dataset, such as lung nodules, liver tumors, enlarged lymph nodes, and so on. It has the potential to be used in various medical image applications. Using DeepLesion, we train a universal lesion detector that can find all types of lesions with one unified framework. In this challenging task, the proposed lesion detector achieves a sensitivity of 81.1% with five false positives per image.
Collapse
Affiliation(s)
- Ke Yan
- National Institutes of Health, Clinical Center, Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Bethesda, Maryland, United States
| | - Xiaosong Wang
- National Institutes of Health, Clinical Center, Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Bethesda, Maryland, United States
| | - Le Lu
- National Institutes of Health, Clinical Center, Clinical Image Processing Service, Radiology and Imaging Sciences, Bethesda, Maryland, United States
| | - Ronald M Summers
- National Institutes of Health, Clinical Center, Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Bethesda, Maryland, United States
| |
Collapse
|
217
|
Hamwood J, Alonso-Caneiro D, Read SA, Vincent SJ, Collins MJ. Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers. BIOMEDICAL OPTICS EXPRESS 2018; 9:3049-3066. [PMID: 29984082 PMCID: PMC6033561 DOI: 10.1364/boe.9.003049] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 05/06/2023]
Abstract
Deep learning strategies, particularly convolutional neural networks (CNNs), are especially suited to finding patterns in images and using those patterns for image classification. The method is normally applied to an image patch and assigns a class weight to the patch; this method has recently been used to detect the probability of retinal boundary locations in OCT images, which is subsequently used to segment the OCT image using a graph-search approach. This paper examines the effects of a number of modifications to the CNN architecture with the aim of optimizing retinal layer segmentation, specifically the effect of patch size as well as the network architecture design on CNN performance and subsequent layer segmentation. The results demonstrate that increasing patch size can improve the performance of the classification and provides a more reliable segmentation in the analysis of retinal layer characteristics in OCT imaging. Similarly, this work shows that changing aspects of the CNN network design can also significantly improve the segmentation results. This work also demonstrates that the performance of the method can change depending on the number of classes (i.e. boundaries) used to train the CNN, with fewer classes showing an inferior performance due to the presence of similar image features between classes that can trigger false positives. Changes in the network (patch size and or architecture) can be applied to provide a superior segmentation performance, which is robust to the class effect. The findings from this work may inform future CNN development in OCT retinal image analysis.
Collapse
Affiliation(s)
- Jared Hamwood
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Scott A. Read
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Stephen J. Vincent
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael J. Collins
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
218
|
Chang P, Grinband J, Weinberg BD, Bardis M, Khy M, Cadena G, Su MY, Cha S, Filippi CG, Bota D, Baldi P, Poisson LM, Jain R, Chow D. Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. AJNR Am J Neuroradiol 2018; 39:1201-1207. [PMID: 29748206 DOI: 10.3174/ajnr.a5667] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation. MATERIALS AND METHODS MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate dehydrogenase 1 (IDH1) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features critical for successful classification. RESULTS Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status, 83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR suppression, extent of edema, extent of necrosis, and textural features. CONCLUSIONS Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior feature selection or human-directed training.
Collapse
Affiliation(s)
- P Chang
- From the Department of Radiology (P.C., S.C.), University of California, San Francisco, San Francisco, California
| | - J Grinband
- Department of Radiology (J.G.), Columbia University, New York, New York
| | - B D Weinberg
- Department of Radiology (B.D.W.), Emory University School of Medicine, Atlanta, Georgia
| | - M Bardis
- Departments of Radiology (M.B., M.K., M.-Y.S., D.C.)
| | - M Khy
- Departments of Radiology (M.B., M.K., M.-Y.S., D.C.)
| | | | - M-Y Su
- Departments of Radiology (M.B., M.K., M.-Y.S., D.C.)
| | - S Cha
- From the Department of Radiology (P.C., S.C.), University of California, San Francisco, San Francisco, California
| | - C G Filippi
- Department of Radiology (C.G.F.), North Shore University Hospital, Long Island, New York
| | | | - P Baldi
- School of Information and Computer Sciences (P.B.), University of California, Irvine, Irvine, California
| | - L M Poisson
- Department of Public Health Sciences (L.M.P.), Henry Ford Health System, Detroit, Michigan
| | - R Jain
- Departments of Radiology and Neurosurgery (R.J.), New York University, New York, New York
| | - D Chow
- Departments of Radiology (M.B., M.K., M.-Y.S., D.C.)
| |
Collapse
|
219
|
Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of Deep Learning and Reinforcement Learning to Biological Data. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:2063-2079. [PMID: 29771663 DOI: 10.1109/tnnls.2018.2790388] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Rapid advances in hardware-based technologies during the past decades have opened up new possibilities for life scientists to gather multimodal data in various application domains, such as omics, bioimaging, medical imaging, and (brain/body)-machine interfaces. These have generated novel opportunities for development of dedicated data-intensive machine learning techniques. In particular, recent research in deep learning (DL), reinforcement learning (RL), and their combination (deep RL) promise to revolutionize the future of artificial intelligence. The growth in computational power accompanied by faster and increased data storage, and declining computing costs have already allowed scientists in various fields to apply these techniques on data sets that were previously intractable owing to their size and complexity. This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data. In addition, we compare the performances of DL techniques when applied to different data sets across various application domains. Finally, we outline open issues in this challenging research area and discuss future development perspectives.
Collapse
|
220
|
Meyer P, Noblet V, Mazzara C, Lallement A. Survey on deep learning for radiotherapy. Comput Biol Med 2018; 98:126-146. [PMID: 29787940 DOI: 10.1016/j.compbiomed.2018.05.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022]
Abstract
More than 50% of cancer patients are treated with radiotherapy, either exclusively or in combination with other methods. The planning and delivery of radiotherapy treatment is a complex process, but can now be greatly facilitated by artificial intelligence technology. Deep learning is the fastest-growing field in artificial intelligence and has been successfully used in recent years in many domains, including medicine. In this article, we first explain the concept of deep learning, addressing it in the broader context of machine learning. The most common network architectures are presented, with a more specific focus on convolutional neural networks. We then present a review of the published works on deep learning methods that can be applied to radiotherapy, which are classified into seven categories related to the patient workflow, and can provide some insights of potential future applications. We have attempted to make this paper accessible to both radiotherapy and deep learning communities, and hope that it will inspire new collaborations between these two communities to develop dedicated radiotherapy applications.
Collapse
Affiliation(s)
- Philippe Meyer
- Department of Medical Physics, Paul Strauss Center, Strasbourg, France.
| | | | | | | |
Collapse
|
221
|
Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A. Deep Learning: A Primer for Radiologists. Radiographics 2018; 37:2113-2131. [PMID: 29131760 DOI: 10.1148/rg.2017170077] [Citation(s) in RCA: 681] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deep learning is a class of machine learning methods that are gaining success and attracting interest in many domains, including computer vision, speech recognition, natural language processing, and playing games. Deep learning methods produce a mapping from raw inputs to desired outputs (eg, image classes). Unlike traditional machine learning methods, which require hand-engineered feature extraction from inputs, deep learning methods learn these features directly from data. With the advent of large datasets and increased computing power, these methods can produce models with exceptional performance. These models are multilayer artificial neural networks, loosely inspired by biologic neural systems. Weighted connections between nodes (neurons) in the network are iteratively adjusted based on example pairs of inputs and target outputs by back-propagating a corrective error signal through the network. For computer vision tasks, convolutional neural networks (CNNs) have proven to be effective. Recently, several clinical applications of CNNs have been proposed and studied in radiology for classification, detection, and segmentation tasks. This article reviews the key concepts of deep learning for clinical radiologists, discusses technical requirements, describes emerging applications in clinical radiology, and outlines limitations and future directions in this field. Radiologists should become familiar with the principles and potential applications of deep learning in medical imaging. ©RSNA, 2017.
Collapse
Affiliation(s)
- Gabriel Chartrand
- From the Departments of Radiology (G.C., E.V., A.T.) and Hepatopancreatobiliary Surgery (S.T.), Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, 850 rue Saint-Denis, Montréal, QC, Canada H2X 0A9; Imagia Cybernetics, Montréal, Québec, Canada (G.C., M.D.); Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, Calif (P.M.C.); Montreal Institute for Learning Algorithms, Montréal, Québec, Canada (E.V., M.D., C.J.P.); École Polytechnique, Montréal, Québec, Canada (E.V., C.J.P., S.K.); Department of Surgery, University of Montreal, Montréal, Québec, Canada (S.T.); and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (S.T., S.K., A.T.)
| | - Phillip M Cheng
- From the Departments of Radiology (G.C., E.V., A.T.) and Hepatopancreatobiliary Surgery (S.T.), Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, 850 rue Saint-Denis, Montréal, QC, Canada H2X 0A9; Imagia Cybernetics, Montréal, Québec, Canada (G.C., M.D.); Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, Calif (P.M.C.); Montreal Institute for Learning Algorithms, Montréal, Québec, Canada (E.V., M.D., C.J.P.); École Polytechnique, Montréal, Québec, Canada (E.V., C.J.P., S.K.); Department of Surgery, University of Montreal, Montréal, Québec, Canada (S.T.); and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (S.T., S.K., A.T.)
| | - Eugene Vorontsov
- From the Departments of Radiology (G.C., E.V., A.T.) and Hepatopancreatobiliary Surgery (S.T.), Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, 850 rue Saint-Denis, Montréal, QC, Canada H2X 0A9; Imagia Cybernetics, Montréal, Québec, Canada (G.C., M.D.); Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, Calif (P.M.C.); Montreal Institute for Learning Algorithms, Montréal, Québec, Canada (E.V., M.D., C.J.P.); École Polytechnique, Montréal, Québec, Canada (E.V., C.J.P., S.K.); Department of Surgery, University of Montreal, Montréal, Québec, Canada (S.T.); and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (S.T., S.K., A.T.)
| | - Michal Drozdzal
- From the Departments of Radiology (G.C., E.V., A.T.) and Hepatopancreatobiliary Surgery (S.T.), Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, 850 rue Saint-Denis, Montréal, QC, Canada H2X 0A9; Imagia Cybernetics, Montréal, Québec, Canada (G.C., M.D.); Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, Calif (P.M.C.); Montreal Institute for Learning Algorithms, Montréal, Québec, Canada (E.V., M.D., C.J.P.); École Polytechnique, Montréal, Québec, Canada (E.V., C.J.P., S.K.); Department of Surgery, University of Montreal, Montréal, Québec, Canada (S.T.); and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (S.T., S.K., A.T.)
| | - Simon Turcotte
- From the Departments of Radiology (G.C., E.V., A.T.) and Hepatopancreatobiliary Surgery (S.T.), Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, 850 rue Saint-Denis, Montréal, QC, Canada H2X 0A9; Imagia Cybernetics, Montréal, Québec, Canada (G.C., M.D.); Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, Calif (P.M.C.); Montreal Institute for Learning Algorithms, Montréal, Québec, Canada (E.V., M.D., C.J.P.); École Polytechnique, Montréal, Québec, Canada (E.V., C.J.P., S.K.); Department of Surgery, University of Montreal, Montréal, Québec, Canada (S.T.); and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (S.T., S.K., A.T.)
| | - Christopher J Pal
- From the Departments of Radiology (G.C., E.V., A.T.) and Hepatopancreatobiliary Surgery (S.T.), Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, 850 rue Saint-Denis, Montréal, QC, Canada H2X 0A9; Imagia Cybernetics, Montréal, Québec, Canada (G.C., M.D.); Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, Calif (P.M.C.); Montreal Institute for Learning Algorithms, Montréal, Québec, Canada (E.V., M.D., C.J.P.); École Polytechnique, Montréal, Québec, Canada (E.V., C.J.P., S.K.); Department of Surgery, University of Montreal, Montréal, Québec, Canada (S.T.); and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (S.T., S.K., A.T.)
| | - Samuel Kadoury
- From the Departments of Radiology (G.C., E.V., A.T.) and Hepatopancreatobiliary Surgery (S.T.), Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, 850 rue Saint-Denis, Montréal, QC, Canada H2X 0A9; Imagia Cybernetics, Montréal, Québec, Canada (G.C., M.D.); Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, Calif (P.M.C.); Montreal Institute for Learning Algorithms, Montréal, Québec, Canada (E.V., M.D., C.J.P.); École Polytechnique, Montréal, Québec, Canada (E.V., C.J.P., S.K.); Department of Surgery, University of Montreal, Montréal, Québec, Canada (S.T.); and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (S.T., S.K., A.T.)
| | - An Tang
- From the Departments of Radiology (G.C., E.V., A.T.) and Hepatopancreatobiliary Surgery (S.T.), Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, 850 rue Saint-Denis, Montréal, QC, Canada H2X 0A9; Imagia Cybernetics, Montréal, Québec, Canada (G.C., M.D.); Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, Calif (P.M.C.); Montreal Institute for Learning Algorithms, Montréal, Québec, Canada (E.V., M.D., C.J.P.); École Polytechnique, Montréal, Québec, Canada (E.V., C.J.P., S.K.); Department of Surgery, University of Montreal, Montréal, Québec, Canada (S.T.); and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada (S.T., S.K., A.T.)
| |
Collapse
|
222
|
Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, Ferrero E, Agapow PM, Zietz M, Hoffman MM, Xie W, Rosen GL, Lengerich BJ, Israeli J, Lanchantin J, Woloszynek S, Carpenter AE, Shrikumar A, Xu J, Cofer EM, Lavender CA, Turaga SC, Alexandari AM, Lu Z, Harris DJ, DeCaprio D, Qi Y, Kundaje A, Peng Y, Wiley LK, Segler MHS, Boca SM, Swamidass SJ, Huang A, Gitter A, Greene CS. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface 2018; 15:20170387. [PMID: 29618526 PMCID: PMC5938574 DOI: 10.1098/rsif.2017.0387] [Citation(s) in RCA: 895] [Impact Index Per Article: 127.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 03/07/2018] [Indexed: 11/12/2022] Open
Abstract
Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine.
Collapse
Affiliation(s)
- Travers Ching
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Daniel S Himmelstein
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brett K Beaulieu-Jones
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandr A Kalinin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Gregory P Way
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enrico Ferrero
- Computational Biology and Stats, Target Sciences, GlaxoSmithKline, Stevenage, UK
| | | | - Michael Zietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xie
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-processing and Informatics Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Benjamin J Lengerich
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Johnny Israeli
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Jack Lanchantin
- Department of Computer Science, University of Virginia, Charlottesville, VA, USA
| | - Stephen Woloszynek
- Ecological and Evolutionary Signal-processing and Informatics Laboratory, Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| | - Evan M Cofer
- Department of Computer Science, Trinity University, San Antonio, TX, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Christopher A Lavender
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Srinivas C Turaga
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Amr M Alexandari
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information and National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David J Harris
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | | | - Yanjun Qi
- Department of Computer Science, University of Virginia, Charlottesville, VA, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Yifan Peng
- National Center for Biotechnology Information and National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Laura K Wiley
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marwin H S Segler
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
| | - S Joshua Swamidass
- Department of Pathology and Immunology, Washington University in Saint Louis, St Louis, MO, USA
| | - Austin Huang
- Department of Medicine, Brown University, Providence, RI, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
223
|
Al-Masni MA, Al-Antari MA, Park JM, Gi G, Kim TY, Rivera P, Valarezo E, Choi MT, Han SM, Kim TS. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 157:85-94. [PMID: 29477437 DOI: 10.1016/j.cmpb.2018.01.017] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/08/2017] [Accepted: 01/15/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel Computer-Aided Diagnosis (CAD) system based on one of the regional deep learning techniques, a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Although most previous studies only deal with classification of masses, our proposed YOLO-based CAD system can handle detection and classification simultaneously in one framework. METHODS The proposed CAD system contains four main stages: preprocessing of mammograms, feature extraction utilizing deep convolutional networks, mass detection with confidence, and finally mass classification using Fully Connected Neural Networks (FC-NNs). In this study, we utilized original 600 mammograms from Digital Database for Screening Mammography (DDSM) and their augmented mammograms of 2,400 with the information of the masses and their types in training and testing our CAD. The trained YOLO-based CAD system detects the masses and then classifies their types into benign or malignant. RESULTS Our results with five-fold cross validation tests show that the proposed CAD system detects the mass location with an overall accuracy of 99.7%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 97%. CONCLUSIONS Our proposed system even works on some challenging breast cancer cases where the masses exist over the pectoral muscles or dense regions.
Collapse
Affiliation(s)
- Mohammed A Al-Masni
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Mugahed A Al-Antari
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Jeong-Min Park
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Geon Gi
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Tae-Yeon Kim
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Patricio Rivera
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Edwin Valarezo
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Mun-Taek Choi
- School of Mechanical Engineering, Sungkyunkwan University, Republic of Korea.
| | - Seung-Moo Han
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| | - Tae-Seong Kim
- Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
224
|
Anthimopoulos M, Christodoulidis S, Ebner L, Geiser T, Christe A, Mougiakakou S. Semantic Segmentation of Pathological Lung Tissue With Dilated Fully Convolutional Networks. IEEE J Biomed Health Inform 2018; 23:714-722. [PMID: 29993791 DOI: 10.1109/jbhi.2018.2818620] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Early and accurate diagnosis of interstitial lung diseases (ILDs) is crucial for making treatment decisions, but can be challenging even for experienced radiologists. The diagnostic procedure is based on the detection and recognition of the different ILD pathologies in thoracic CT scans, yet their manifestation often appears similar. In this study, we propose the use of a deep purely convolutional neural network for the semantic segmentation of ILD patterns, as the basic component of a computer aided diagnosis system for ILDs. The proposed CNN, which consists of convolutional layers with dilated filters, takes as input a lung CT image of arbitrary size and outputs the corresponding label map. We trained and tested the network on a data set of 172 sparsely annotated CT scans, within a cross-validation scheme. The training was performed in an end-to-end and semisupervised fashion, utilizing both labeled and nonlabeled image regions. The experimental results show significant performance improvement with respect to the state of the art.
Collapse
|
225
|
A deep learning approach for pose estimation from volumetric OCT data. Med Image Anal 2018; 46:162-179. [PMID: 29550582 DOI: 10.1016/j.media.2018.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/18/2018] [Accepted: 03/09/2018] [Indexed: 01/22/2023]
Abstract
Tracking the pose of instruments is a central problem in image-guided surgery. For microscopic scenarios, optical coherence tomography (OCT) is increasingly used as an imaging modality. OCT is suitable for accurate pose estimation due to its micrometer range resolution and volumetric field of view. However, OCT image processing is challenging due to speckle noise and reflection artifacts in addition to the images' 3D nature. We address pose estimation from OCT volume data with a new deep learning-based tracking framework. For this purpose, we design a new 3D convolutional neural network (CNN) architecture to directly predict the 6D pose of a small marker geometry from OCT volumes. We use a hexapod robot to automatically acquire labeled data points which we use to train 3D CNN architectures for multi-output regression. We use this setup to provide an in-depth analysis on deep learning-based pose estimation from volumes. Specifically, we demonstrate that exploiting volume information for pose estimation yields higher accuracy than relying on 2D representations with depth information. Supporting this observation, we provide quantitative and qualitative results that 3D CNNs effectively exploit the depth structure of marker objects. Regarding the deep learning aspect, we present efficient design principles for 3D CNNs, making use of insights from the 2D deep learning community. In particular, we present Inception3D as a new architecture which performs best for our application. We show that our deep learning approach reaches errors at our ground-truth label's resolution. We achieve a mean average error of 14.89 ± 9.3 µm and 0.096 ± 0.072° for position and orientation learning, respectively.
Collapse
|
226
|
Giger ML. Machine Learning in Medical Imaging. J Am Coll Radiol 2018; 15:512-520. [PMID: 29398494 DOI: 10.1016/j.jacr.2017.12.028] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022]
Abstract
Advances in both imaging and computers have synergistically led to a rapid rise in the potential use of artificial intelligence in various radiological imaging tasks, such as risk assessment, detection, diagnosis, prognosis, and therapy response, as well as in multi-omics disease discovery. A brief overview of the field is given here, allowing the reader to recognize the terminology, the various subfields, and components of machine learning, as well as the clinical potential. Radiomics, an expansion of computer-aided diagnosis, has been defined as the conversion of images to minable data. The ultimate benefit of quantitative radiomics is to (1) yield predictive image-based phenotypes of disease for precision medicine or (2) yield quantitative image-based phenotypes for data mining with other -omics for discovery (ie, imaging genomics). For deep learning in radiology to succeed, note that well-annotated large data sets are needed since deep networks are complex, computer software and hardware are evolving constantly, and subtle differences in disease states are more difficult to perceive than differences in everyday objects. In the future, machine learning in radiology is expected to have a substantial clinical impact with imaging examinations being routinely obtained in clinical practice, providing an opportunity to improve decision support in medical image interpretation. The term of note is decision support, indicating that computers will augment human decision making, making it more effective and efficient. The clinical impact of having computers in the routine clinical practice may allow radiologists to further integrate their knowledge with their clinical colleagues in other medical specialties and allow for precision medicine.
Collapse
Affiliation(s)
- Maryellen L Giger
- Department of Radiology, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
227
|
González G, Washko GR, Estépar RSJ. Deep learning for biomarker regression: application to osteoporosis and emphysema on chest CT scans. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10574:105741H. [PMID: 30122802 PMCID: PMC6097534 DOI: 10.1117/12.2293455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
INTRODUCTION Biomarker computation using deep-learning often relies on a two-step process, where the deep learning algorithm segments the region of interest and then the biomarker is measured. We propose an alternative paradigm, where the biomarker is estimated directly using a regression network. We showcase this image-to-biomarker paradigm using two biomarkers: the estimation of bone mineral density (BMD) and the estimation of lung percentage of emphysema from CT scans. MATERIALS AND METHODS We use a large database of 9,925 CT scans to train, validate and test the network for which reference standard BMD and percentage emphysema have been already computed. First, the 3D dataset is reduced to a set of canonical 2D slices where the organ of interest is visible (either spine for BMD or lungs for emphysema). This data reduction is performed using an automatic object detector. Second, The regression neural network is composed of three convolutional layers, followed by a fully connected and an output layer. The network is optimized using a momentum optimizer with an exponential decay rate, using the root mean squared error as cost function. RESULTS The Pearson correlation coefficients obtained against the reference standards are r = 0.940 (p < 0.00001) and r = 0.976 (p < 0.00001) for BMD and percentage emphysema respectively. CONCLUSIONS The deep-learning regression architecture can learn biomarkers from images directly, without indicating the structures of interest. This approach simplifies the development of biomarker extraction algorithms. The proposed data reduction based on object detectors conveys enough information to compute the biomarkers of interest.
Collapse
Affiliation(s)
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine. Department of Medicine. Brigham and Women's Hospital. 75 Francis St, Boston, MA. USA
| | - Raúl San José Estépar
- Applied Chest Imaging Laboratory. Department of Radiology. Brigham and Women's Hospital. 1249 Boylston St, Boston MA, 02115
| |
Collapse
|
228
|
Roth HR, Lu L, Lay N, Harrison AP, Farag A, Sohn A, Summers RM. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Med Image Anal 2018; 45:94-107. [PMID: 29427897 DOI: 10.1016/j.media.2018.01.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/13/2022]
Abstract
Accurate and automatic organ segmentation from 3D radiological scans is an important yet challenging problem for medical image analysis. Specifically, as a small, soft, and flexible abdominal organ, the pancreas demonstrates very high inter-patient anatomical variability in both its shape and volume. This inhibits traditional automated segmentation methods from achieving high accuracies, especially compared to the performance obtained for other organs, such as the liver, heart or kidneys. To fill this gap, we present an automated system from 3D computed tomography (CT) volumes that is based on a two-stage cascaded approach-pancreas localization and pancreas segmentation. For the first step, we localize the pancreas from the entire 3D CT scan, providing a reliable bounding box for the more refined segmentation step. We introduce a fully deep-learning approach, based on an efficient application of holistically-nested convolutional networks (HNNs) on the three orthogonal axial, sagittal, and coronal views. The resulting HNN per-pixel probability maps are then fused using pooling to reliably produce a 3D bounding box of the pancreas that maximizes the recall. We show that our introduced localizer compares favorably to both a conventional non-deep-learning method and a recent hybrid approach based on spatial aggregation of superpixels using random forest classification. The second, segmentation, phase operates within the computed bounding box and integrates semantic mid-level cues of deeply-learned organ interior and boundary maps, obtained by two additional and separate realizations of HNNs. By integrating these two mid-level cues, our method is capable of generating boundary-preserving pixel-wise class label maps that result in the final pancreas segmentation. Quantitative evaluation is performed on a publicly available dataset of 82 patient CT scans using 4-fold cross-validation (CV). We achieve a (mean ± std. dev.) Dice similarity coefficient (DSC) of 81.27 ± 6.27% in validation, which significantly outperforms both a previous state-of-the art method and a preliminary version of this work that report DSCs of 71.80 ± 10.70% and 78.01 ± 8.20%, respectively, using the same dataset.
Collapse
Affiliation(s)
- Holger R Roth
- Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Clinical Image Processing Service, Radiology and Imaging Sciences Department, National Institutes of Health Clinical Center, Bethesda, MD 20892-1182, USA.
| | - Le Lu
- Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Clinical Image Processing Service, Radiology and Imaging Sciences Department, National Institutes of Health Clinical Center, Bethesda, MD 20892-1182, USA.
| | - Nathan Lay
- Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Clinical Image Processing Service, Radiology and Imaging Sciences Department, National Institutes of Health Clinical Center, Bethesda, MD 20892-1182, USA
| | - Adam P Harrison
- Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Clinical Image Processing Service, Radiology and Imaging Sciences Department, National Institutes of Health Clinical Center, Bethesda, MD 20892-1182, USA
| | - Amal Farag
- Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Clinical Image Processing Service, Radiology and Imaging Sciences Department, National Institutes of Health Clinical Center, Bethesda, MD 20892-1182, USA
| | - Andrew Sohn
- Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Clinical Image Processing Service, Radiology and Imaging Sciences Department, National Institutes of Health Clinical Center, Bethesda, MD 20892-1182, USA
| | - Ronald M Summers
- Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Clinical Image Processing Service, Radiology and Imaging Sciences Department, National Institutes of Health Clinical Center, Bethesda, MD 20892-1182, USA.
| |
Collapse
|
229
|
Zhang L, Lu L, Summers RM, Kebebew E, Yao J. Convolutional Invasion and Expansion Networks for Tumor Growth Prediction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:638-648. [PMID: 29408791 PMCID: PMC5812268 DOI: 10.1109/tmi.2017.2774044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tumor growth is associated with cell invasion and mass-effect, which are traditionally formulated by mathematical models, namely reaction-diffusion equations and biomechanics. Such models can be personalized based on clinical measurements to build the predictive models for tumor growth. In this paper, we investigate the possibility of using deep convolutional neural networks to directly represent and learn the cell invasion and mass-effect, and to predict the subsequent involvement regions of a tumor. The invasion network learns the cell invasion from information related to metabolic rate, cell density, and tumor boundary derived from multimodal imaging data. The expansion network models the mass-effect from the growing motion of tumor mass. We also study different architectures that fuse the invasion and expansion networks, in order to exploit the inherent correlations among them. Our network can easily be trained on population data and personalized to a target patient, unlike most previous mathematical modeling methods that fail to incorporate population data. Quantitative experiments on a pancreatic tumor data set show that the proposed method substantially outperforms a state-of-the-art mathematical model-based approach in both accuracy and efficiency, and that the information captured by each of the two subnetworks is complementary.
Collapse
|
230
|
González G, Ash SY, Vegas-Sánchez-Ferrero G, Onieva Onieva J, Rahaghi FN, Ross JC, Díaz A, San José Estépar R, Washko GR. Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography. Am J Respir Crit Care Med 2018; 197:193-203. [PMID: 28892454 PMCID: PMC5768902 DOI: 10.1164/rccm.201705-0860oc] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Deep learning is a powerful tool that may allow for improved outcome prediction. OBJECTIVES To determine if deep learning, specifically convolutional neural network (CNN) analysis, could detect and stage chronic obstructive pulmonary disease (COPD) and predict acute respiratory disease (ARD) events and mortality in smokers. METHODS A CNN was trained using computed tomography scans from 7,983 COPDGene participants and evaluated using 1,000 nonoverlapping COPDGene participants and 1,672 ECLIPSE participants. Logistic regression (C statistic and the Hosmer-Lemeshow test) was used to assess COPD diagnosis and ARD prediction. Cox regression (C index and the Greenwood-Nam-D'Agnostino test) was used to assess mortality. MEASUREMENTS AND MAIN RESULTS In COPDGene, the C statistic for the detection of COPD was 0.856. A total of 51.1% of participants in COPDGene were accurately staged and 74.95% were within one stage. In ECLIPSE, 29.4% were accurately staged and 74.6% were within one stage. In COPDGene and ECLIPSE, the C statistics for ARD events were 0.64 and 0.55, respectively, and the Hosmer-Lemeshow P values were 0.502 and 0.380, respectively, suggesting no evidence of poor calibration. In COPDGene and ECLIPSE, CNN predicted mortality with fair discrimination (C indices, 0.72 and 0.60, respectively), and without evidence of poor calibration (Greenwood-Nam-D'Agnostino P values, 0.307 and 0.331, respectively). CONCLUSIONS A deep-learning approach that uses only computed tomography imaging data can identify those smokers who have COPD and predict who are most likely to have ARD events and those with the highest mortality. At a population level CNN analysis may be a powerful tool for risk assessment.
Collapse
Affiliation(s)
- Germán González
- Sierra Research, Alicante, Spain
- Applied Chest Imaging Laboratory, Department of Radiology, and
| | - Samuel Y. Ash
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston Massachusetts
| | | | | | - Farbod N. Rahaghi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston Massachusetts
| | - James C. Ross
- Applied Chest Imaging Laboratory, Department of Radiology, and
| | - Alejandro Díaz
- Applied Chest Imaging Laboratory, Department of Radiology, and
| | | | - George R. Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston Massachusetts
| |
Collapse
|
231
|
Xu L, Tetteh G, Lipkova J, Zhao Y, Li H, Christ P, Piraud M, Buck A, Shi K, Menze BH. Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on 68Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:2391925. [PMID: 29531504 PMCID: PMC5817261 DOI: 10.1155/2018/2391925] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/29/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022]
Abstract
The identification of bone lesions is crucial in the diagnostic assessment of multiple myeloma (MM). 68Ga-Pentixafor PET/CT can capture the abnormal molecular expression of CXCR-4 in addition to anatomical changes. However, whole-body detection of dozens of lesions on hybrid imaging is tedious and error prone. It is even more difficult to identify lesions with a large heterogeneity. This study employed deep learning methods to automatically combine characteristics of PET and CT for whole-body MM bone lesion detection in a 3D manner. Two convolutional neural networks (CNNs), V-Net and W-Net, were adopted to segment and detect the lesions. The feasibility of deep learning for lesion detection on 68Ga-Pentixafor PET/CT was first verified on digital phantoms generated using realistic PET simulation methods. Then the proposed methods were evaluated on real 68Ga-Pentixafor PET/CT scans of MM patients. The preliminary results showed that deep learning method can leverage multimodal information for spatial feature representation, and W-Net obtained the best result for segmentation and lesion detection. It also outperformed traditional machine learning methods such as random forest classifier (RF), k-Nearest Neighbors (k-NN), and support vector machine (SVM). The proof-of-concept study encourages further development of deep learning approach for MM lesion detection in population study.
Collapse
Affiliation(s)
- Lina Xu
- Department of Informatics, Technische Universität München, Munich, Germany
- Department of Nuclear Medicine, Klinikum Rechts der Isar, TU München, Munich, Germany
| | - Giles Tetteh
- Department of Informatics, Technische Universität München, Munich, Germany
- Institute of Medical Engineering, Technische Universität München, Munich, Germany
| | - Jana Lipkova
- Department of Informatics, Technische Universität München, Munich, Germany
- Institute of Medical Engineering, Technische Universität München, Munich, Germany
| | - Yu Zhao
- Department of Informatics, Technische Universität München, Munich, Germany
- Institute of Medical Engineering, Technische Universität München, Munich, Germany
| | - Hongwei Li
- Department of Informatics, Technische Universität München, Munich, Germany
- Institute of Medical Engineering, Technische Universität München, Munich, Germany
| | - Patrick Christ
- Department of Informatics, Technische Universität München, Munich, Germany
- Institute of Medical Engineering, Technische Universität München, Munich, Germany
| | - Marie Piraud
- Department of Informatics, Technische Universität München, Munich, Germany
- Institute of Medical Engineering, Technische Universität München, Munich, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, Universität Würzburg, Würzburg, Germany
| | - Kuangyu Shi
- Department of Nuclear Medicine, Klinikum Rechts der Isar, TU München, Munich, Germany
| | - Bjoern H. Menze
- Department of Informatics, Technische Universität München, Munich, Germany
- Institute of Medical Engineering, Technische Universität München, Munich, Germany
| |
Collapse
|
232
|
Imaging Genetic Heterogeneity in Glioblastoma and Other Glial Tumors: Review of Current Methods and Future Directions. AJR Am J Roentgenol 2018; 210:30-38. [DOI: 10.2214/ajr.17.18754] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
233
|
Wang H, Zhao T, Li LC, Pan H, Liu W, Gao H, Han F, Wang Y, Qi Y, Liang Z. A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2018; 26:171-187. [PMID: 29036877 DOI: 10.3233/xst-17302] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The malignancy risk differentiation of pulmonary nodule is one of the most challenge tasks of computer-aided diagnosis (CADx). Most recently reported CADx methods or schemes based on texture and shape estimation have shown relatively satisfactory on differentiating the risk level of malignancy among the nodules detected in lung cancer screening. However, the existing CADx schemes tend to detect and analyze characteristics of pulmonary nodules from a statistical perspective according to local features only. Enlightened by the currently prevailing learning ability of convolutional neural network (CNN), which simulates human neural network for target recognition and our previously research on texture features, we present a hybrid model that takes into consideration of both global and local features for pulmonary nodule differentiation using the largest public database founded by the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). By comparing three types of CNN models in which two of them were newly proposed by us, we observed that the multi-channel CNN model yielded the best discrimination in capacity of differentiating malignancy risk of the nodules based on the projection of distributions of extracted features. Moreover, CADx scheme using the new multi-channel CNN model outperformed our previously developed CADx scheme using the 3D texture feature analysis method, which increased the computed area under a receiver operating characteristic curve (AUC) from 0.9441 to 0.9702.
Collapse
Affiliation(s)
- Huafeng Wang
- North China University of Technology, School of Electrical Information, Beijing, China
- School of Software Engineering, Beihang University, Beijing, China
| | - Tingting Zhao
- School of Software Engineering, Beihang University, Beijing, China
| | - Lihong Connie Li
- Department of Engineering Science and Physics, City University of New York at CSI, Staten Island, NY, USA
| | - Haixia Pan
- School of Software Engineering, Beihang University, Beijing, China
| | - Wanquan Liu
- North China University of Technology, School of Electrical Information, Beijing, China
| | - Haoqi Gao
- School of Software Engineering, Beihang University, Beijing, China
| | - Fangfang Han
- Department of Biomedical, Northeast University, Shenyan, China
| | - Yuehai Wang
- North China University of Technology, School of Electrical Information, Beijing, China
| | - Yifan Qi
- School of Software Engineering, Beihang University, Beijing, China
| | - Zhengrong Liang
- Department of Radiology, State University of New York at Stony Brook, NY, USA
| |
Collapse
|
234
|
Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W, Liu W, Yu L. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images. EJNMMI Res 2017; 7:11. [PMID: 28130689 PMCID: PMC5272853 DOI: 10.1186/s13550-017-0260-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND This study aimed to compare one state-of-the-art deep learning method and four classical machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer (NSCLC) from 18F-FDG PET/CT images. Another objective was to compare the discriminative power of the recently popular PET/CT texture features with the widely used diagnostic features such as tumor size, CT value, SUV, image contrast, and intensity standard deviation. The four classical machine learning methods included random forests, support vector machines, adaptive boosting, and artificial neural network. The deep learning method was the convolutional neural networks (CNN). The five methods were evaluated using 1397 lymph nodes collected from PET/CT images of 168 patients, with corresponding pathology analysis results as gold standard. The comparison was conducted using 10 times 10-fold cross-validation based on the criterion of sensitivity, specificity, accuracy (ACC), and area under the ROC curve (AUC). For each classical method, different input features were compared to select the optimal feature set. Based on the optimal feature set, the classical methods were compared with CNN, as well as with human doctors from our institute. RESULTS For the classical methods, the diagnostic features resulted in 81~85% ACC and 0.87~0.92 AUC, which were significantly higher than the results of texture features. CNN's sensitivity, specificity, ACC, and AUC were 84, 88, 86, and 0.91, respectively. There was no significant difference between the results of CNN and the best classical method. The sensitivity, specificity, and ACC of human doctors were 73, 90, and 82, respectively. All the five machine learning methods had higher sensitivities but lower specificities than human doctors. CONCLUSIONS The present study shows that the performance of CNN is not significantly different from the best classical methods and human doctors for classifying mediastinal lymph node metastasis of NSCLC from PET/CT images. Because CNN does not need tumor segmentation or feature calculation, it is more convenient and more objective than the classical methods. However, CNN does not make use of the import diagnostic features, which have been proved more discriminative than the texture features for classifying small-sized lymph nodes. Therefore, incorporating the diagnostic features into CNN is a promising direction for future research.
Collapse
Affiliation(s)
- Hongkai Wang
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, No. 2 Linggong Street, Ganjingzi District, Dalian, Liaoning, 116024, China
| | - Zongwei Zhou
- Department of Biomedical Informatics and the College of Health Solutions, Arizona State University, 13212 East Shea Boulevard, Scottsdale, AZ, 85259, USA
| | - Yingci Li
- Center of PET/CT, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Zhonghua Chen
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, No. 2 Linggong Street, Ganjingzi District, Dalian, Liaoning, 116024, China
| | - Peiou Lu
- Center of PET/CT, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Wenzhi Wang
- Center of PET/CT, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Wanyu Liu
- HIT-INSA Sino French Research Centre for Biomedical Imaging, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Lijuan Yu
- Center of PET/CT, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, China.
| |
Collapse
|
235
|
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal 2017; 42:60-88. [PMID: 28778026 DOI: 10.1016/j.media.2017.07.005] [Citation(s) in RCA: 4777] [Impact Index Per Article: 597.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Geert Litjens
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Thijs Kooi
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Francesco Ciompi
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mohsen Ghafoorian
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Bram van Ginneken
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Clara I Sánchez
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
236
|
A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep 2017; 7:13206. [PMID: 29038455 PMCID: PMC5643429 DOI: 10.1038/s41598-017-13448-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/22/2017] [Indexed: 01/11/2023] Open
Abstract
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g. , MSR-RF C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.
Collapse
|
237
|
Kooi T, Karssemeijer N. Classifying symmetrical differences and temporal change for the detection of malignant masses in mammography using deep neural networks. J Med Imaging (Bellingham) 2017; 4:044501. [PMID: 29021992 PMCID: PMC5633751 DOI: 10.1117/1.jmi.4.4.044501] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/12/2017] [Indexed: 01/27/2023] Open
Abstract
We investigate the addition of symmetry and temporal context information to a deep convolutional neural network (CNN) with the purpose of detecting malignant soft tissue lesions in mammography. We employ a simple linear mapping that takes the location of a mass candidate and maps it to either the contralateral or prior mammogram, and regions of interest (ROIs) are extracted around each location. Two different architectures are subsequently explored: (1) a fusion model employing two datastreams where both ROIs are fed to the network during training and testing and (2) a stagewise approach where a single ROI CNN is trained on the primary image and subsequently used as a feature extractor for both primary and contralateral or prior ROIs. A "shallow" gradient boosted tree classifier is then trained on the concatenation of these features and used to classify the joint representation. The baseline yielded an AUC of 0.87 with confidence interval [0.853, 0.893]. For the analysis of symmetrical differences, the first architecture where both primary and contralateral patches are presented during training obtained an AUC of 0.895 with confidence interval [0.877, 0.913], and the second architecture where a new classifier is retrained on the concatenation an AUC of 0.88 with confidence interval [0.859, 0.9]. We found a significant difference between the first architecture and the baseline at high specificity with [Formula: see text]. When using the same architectures to analyze temporal change, we yielded an AUC of 0.884 with confidence interval [0.865, 0.902] for the first architecture and an AUC of 0.879 with confidence interval [0.858, 0.898] in the second setting. Although improvements for temporal analysis were consistent, they were not found to be significant. The results show our proposed method is promising and we suspect performance can greatly be improved when more temporal data become available.
Collapse
Affiliation(s)
- Thijs Kooi
- RadboudUMC Nijmegen, Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| | - Nico Karssemeijer
- RadboudUMC Nijmegen, Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Nijmegen, The Netherlands
| |
Collapse
|
238
|
Aubreville M, Knipfer C, Oetter N, Jaremenko C, Rodner E, Denzler J, Bohr C, Neumann H, Stelzle F, Maier A. Automatic Classification of Cancerous Tissue in Laserendomicroscopy Images of the Oral Cavity using Deep Learning. Sci Rep 2017; 7:11979. [PMID: 28931888 PMCID: PMC5607286 DOI: 10.1038/s41598-017-12320-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) is a common type of cancer of the oral epithelium. Despite their high impact on mortality, sufficient screening methods for early diagnosis of OSCC often lack accuracy and thus OSCCs are mostly diagnosed at a late stage. Early detection and accurate outline estimation of OSCCs would lead to a better curative outcome and a reduction in recurrence rates after surgical treatment. Confocal Laser Endomicroscopy (CLE) records sub-surface micro-anatomical images for in vivo cell structure analysis. Recent CLE studies showed great prospects for a reliable, real-time ultrastructural imaging of OSCC in situ. We present and evaluate a novel automatic approach for OSCC diagnosis using deep learning technologies on CLE images. The method is compared against textural feature-based machine learning approaches that represent the current state of the art. For this work, CLE image sequences (7894 images) from patients diagnosed with OSCC were obtained from 4 specific locations in the oral cavity, including the OSCC lesion. The present approach is found to outperform the state of the art in CLE image recognition with an area under the curve (AUC) of 0.96 and a mean accuracy of 88.3% (sensitivity 86.6%, specificity 90%).
Collapse
Affiliation(s)
- Marc Aubreville
- Pattern Recognition Lab, Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Christian Knipfer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolai Oetter
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Jaremenko
- Pattern Recognition Lab, Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Erik Rodner
- Computer Vision Group, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Joachim Denzler
- Computer Vision Group, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Christopher Bohr
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helmut Neumann
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,First Department of Internal Medicine, University Hospital Mainz, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Florian Stelzle
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
239
|
Han S, Kang HK, Jeong JY, Park MH, Kim W, Bang WC, Seong YK. A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys Med Biol 2017; 62:7714-7728. [PMID: 28753132 DOI: 10.1088/1361-6560/aa82ec] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this research, we exploited the deep learning framework to differentiate the distinctive types of lesions and nodules in breast acquired with ultrasound imaging. A biopsy-proven benchmarking dataset was built from 5151 patients cases containing a total of 7408 ultrasound breast images, representative of semi-automatically segmented lesions associated with masses. The dataset comprised 4254 benign and 3154 malignant lesions. The developed method includes histogram equalization, image cropping and margin augmentation. The GoogLeNet convolutionary neural network was trained to the database to differentiate benign and malignant tumors. The networks were trained on the data with augmentation and the data without augmentation. Both of them showed an area under the curve of over 0.9. The networks showed an accuracy of about 0.9 (90%), a sensitivity of 0.86 and a specificity of 0.96. Although target regions of interest (ROIs) were selected by radiologists, meaning that radiologists still have to point out the location of the ROI, the classification of malignant lesions showed promising results. If this method is used by radiologists in clinical situations it can classify malignant lesions in a short time and support the diagnosis of radiologists in discriminating malignant lesions. Therefore, the proposed method can work in tandem with human radiologists to improve performance, which is a fundamental purpose of computer-aided diagnosis.
Collapse
Affiliation(s)
- Seokmin Han
- Korea National University of Transportation, Uiwang-si, Kyunggi-do, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
240
|
Li H, Giger ML, Huynh BQ, Antropova NO. Deep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full-field digital mammograms. J Med Imaging (Bellingham) 2017; 4:041304. [PMID: 28924576 DOI: 10.1117/1.jmi.4.4.041304] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/18/2017] [Indexed: 01/11/2023] Open
Abstract
To evaluate deep learning in the assessment of breast cancer risk in which convolutional neural networks (CNNs) with transfer learning are used to extract parenchymal characteristics directly from full-field digital mammographic (FFDM) images instead of using computerized radiographic texture analysis (RTA), 456 clinical FFDM cases were included: a "high-risk" BRCA1/2 gene-mutation carriers dataset (53 cases), a "high-risk" unilateral cancer patients dataset (75 cases), and a "low-risk dataset" (328 cases). Deep learning was compared to the use of features from RTA, as well as to a combination of both in the task of distinguishing between high- and low-risk subjects. Similar classification performances were obtained using CNN [area under the curve [Formula: see text]; standard error [Formula: see text]] and RTA ([Formula: see text]; [Formula: see text]) in distinguishing BRCA1/2 carriers and low-risk women. However, in distinguishing unilateral cancer patients and low-risk women, performance was significantly greater with CNN ([Formula: see text]; [Formula: see text]) compared to RTA ([Formula: see text]; [Formula: see text]). Fusion classifiers performed significantly better than the RTA-alone classifiers with AUC values of 0.86 and 0.84 in differentiating BRCA1/2 carriers from low-risk women and unilateral cancer patients from low-risk women, respectively. In conclusion, deep learning extracted parenchymal characteristics from FFDMs performed as well as, or better than, conventional texture analysis in the task of distinguishing between cancer risk populations.
Collapse
Affiliation(s)
- Hui Li
- University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Maryellen L Giger
- University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Benjamin Q Huynh
- University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Natalia O Antropova
- University of Chicago, Department of Radiology, Chicago, Illinois, United States
| |
Collapse
|
241
|
Synergistic Combination of Learned and Hand-Crafted Features for Prostate Lesion Classification in Multiparametric Magnetic Resonance Imaging. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-66179-7_45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
242
|
Tu X, Xie M, Gao J, Ma Z, Chen D, Wang Q, Finlayson SG, Ou Y, Cheng JZ. Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with Convolutional Neural Network. Sci Rep 2017; 7:8533. [PMID: 28864824 PMCID: PMC5581338 DOI: 10.1038/s41598-017-08040-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 06/29/2017] [Indexed: 12/17/2022] Open
Abstract
We present a computer-aided diagnosis system (CADx) for the automatic categorization of solid, part-solid and non-solid nodules in pulmonary computerized tomography images using a Convolutional Neural Network (CNN). Provided with only a two-dimensional region of interest (ROI) surrounding each nodule, our CNN automatically reasons from image context to discover informative computational features. As a result, no image segmentation processing is needed for further analysis of nodule attenuation, allowing our system to avoid potential errors caused by inaccurate image processing. We implemented two computerized texture analysis schemes, classification and regression, to automatically categorize solid, part-solid and non-solid nodules in CT scans, with hierarchical features in each case learned directly by the CNN model. To show the effectiveness of our CNN-based CADx, an established method based on histogram analysis (HIST) was implemented for comparison. The experimental results show significant performance improvement by the CNN model over HIST in both classification and regression tasks, yielding nodule classification and rating performance concordant with those of practicing radiologists. Adoption of CNN-based CADx systems may reduce the inter-observer variation among screening radiologists and provide a quantitative reference for further nodule analysis.
Collapse
Affiliation(s)
- Xiaoguang Tu
- School of Communication and Information Engineering, University of Electronic Science and Technology of China, Xiyuan Ave. 2006, West Hi-Tech Zone, Chengdu, Sichuan, 611731, China
| | - Mei Xie
- School of Electronic Engineering, University of Electronic Science and Technology of China, Xiyuan Ave. 2006, West Hi-Tech Zone, Chengdu, Sichuan, 611731, China.
| | - Jingjing Gao
- School of Electronic Engineering, University of Electronic Science and Technology of China, Xiyuan Ave. 2006, West Hi-Tech Zone, Chengdu, Sichuan, 611731, China
| | - Zheng Ma
- School of Communication and Information Engineering, University of Electronic Science and Technology of China, Xiyuan Ave. 2006, West Hi-Tech Zone, Chengdu, Sichuan, 611731, China
| | - Daiqiang Chen
- Third Military Medical University, Chongqing, 400038, China
| | - Qingfeng Wang
- School of Software Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Samuel G Finlayson
- Department of Systems Biology, Harvard Medical School, 10 Shattuck St., Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology (HST), 77 Massachusetts Avenue, E25-518, Cambridge, MA, 02139, USA
| | - Yangming Ou
- Department of Radiology, Harvard Medical School, 1 Autumn St., Boston, MA, 02215, USA
| | - Jie-Zhi Cheng
- Department and Graduate Institute of Electrical Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan, 333, Taiwan.
| |
Collapse
|
243
|
Wang X, Guo Y, Wang Y, Yu J. Automatic breast tumor detection in ABVS images based on convolutional neural network and superpixel patterns. Neural Comput Appl 2017. [DOI: 10.1007/s00521-017-3138-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
244
|
Shi K, Gao F, Navab N, Schnabel J, Shi P, Ziegler SI. Editorial for the special issue of "Computational methods for molecular imaging" for computerized medical imaging and graphics. Comput Med Imaging Graph 2017; 60:1-2. [PMID: 28701281 DOI: 10.1016/j.compmedimag.2017.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kuangyu Shi
- Dept. Nuclear Medicine, Technische Universität München, Munich, Germany.
| | - Fei Gao
- Molecular Imaging Division, Siemens Healthineers, USA
| | - Nassir Navab
- Chair for Computer-aided Medical Procedure, Technische Universität München, Munich, Germany
| | - Julia Schnabel
- Dept. Biomedical Engineering, King's College London, London, UK
| | - Pengcheng Shi
- Golisano College of Computing and Information Sciences, Rochester Institute of Technology, USA
| | - Sibylle I Ziegler
- Dept. Nuclear Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
245
|
Torabi A, Zareayan Jahromy F, Daliri MR. Semantic Category-Based Classification Using Nonlinear Features and Wavelet Coefficients of Brain Signals. Cognit Comput 2017. [DOI: 10.1007/s12559-017-9487-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
246
|
Abstract
This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.
Collapse
Affiliation(s)
- Dinggang Shen
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina 27599;
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea;
| | - Guorong Wu
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina 27599;
| | - Heung-Il Suk
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
247
|
Zhang J, Li S, Wang R. Pattern Recognition of Momentary Mental Workload Based on Multi-Channel Electrophysiological Data and Ensemble Convolutional Neural Networks. Front Neurosci 2017; 11:310. [PMID: 28611583 PMCID: PMC5447754 DOI: 10.3389/fnins.2017.00310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/16/2017] [Indexed: 12/01/2022] Open
Abstract
In this paper, we deal with the Mental Workload (MWL) classification problem based on the measured physiological data. First we discussed the optimal depth (i.e., the number of hidden layers) and parameter optimization algorithms for the Convolutional Neural Networks (CNN). The base CNNs designed were tested according to five classification performance indices, namely Accuracy, Precision, F-measure, G-mean, and required training time. Then we developed an Ensemble Convolutional Neural Network (ECNN) to enhance the accuracy and robustness of the individual CNN model. For the ECNN design, three model aggregation approaches (weighted averaging, majority voting and stacking) were examined and a resampling strategy was used to enhance the diversity of individual CNN models. The results of MWL classification performance comparison indicated that the proposed ECNN framework can effectively improve MWL classification performance and is featured by entirely automatic feature extraction and MWL classification, when compared with traditional machine learning methods.
Collapse
Affiliation(s)
- Jianhua Zhang
- School of Information Science and Engineering, East China University of Science and TechnologyShanghai, China
| | - Sunan Li
- School of Information Science and Engineering, East China University of Science and TechnologyShanghai, China
| | - Rubin Wang
- School of Sciences, East China University of Science and TechnologyShanghai, China
| |
Collapse
|
248
|
Zhang L, Nogues I, Summers RM, Liu S, Yao J. DeepPap: Deep Convolutional Networks for Cervical Cell Classification. IEEE J Biomed Health Inform 2017; 21:1633-1643. [PMID: 28541229 DOI: 10.1109/jbhi.2017.2705583] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Automation-assisted cervical screening via Pap smear or liquid-based cytology (LBC) is a highly effective cell imaging based cancer detection tool, where cells are partitioned into "abnormal" and "normal" categories. However, the success of most traditional classification methods relies on the presence of accurate cell segmentations. Despite sixty years of research in this field, accurate segmentation remains a challenge in the presence of cell clusters and pathologies. Moreover, previous classification methods are only built upon the extraction of hand-crafted features, such as morphology and texture. This paper addresses these limitations by proposing a method to directly classify cervical cells-without prior segmentation-based on deep features, using convolutional neural networks (ConvNets). First, the ConvNet is pretrained on a natural image dataset. It is subsequently fine-tuned on a cervical cell dataset consisting of adaptively resampled image patches coarsely centered on the nuclei. In the testing phase, aggregation is used to average the prediction scores of a similar set of image patches. The proposed method is evaluated on both Pap smear and LBC datasets. Results show that our method outperforms previous algorithms in classification accuracy (98.3%), area under the curve (0.99) values, and especially specificity (98.3%), when applied to the Herlev benchmark Pap smear dataset and evaluated using five-fold cross validation. Similar superior performances are also achieved on the HEMLBC (H&E stained manual LBC) dataset. Our method is promising for the development of automation-assisted reading systems in primary cervical screening.
Collapse
|
249
|
Wu L, Cheng JZ, Li S, Lei B, Wang T, Ni D. FUIQA: Fetal Ultrasound Image Quality Assessment With Deep Convolutional Networks. IEEE TRANSACTIONS ON CYBERNETICS 2017; 47:1336-1349. [PMID: 28362600 DOI: 10.1109/tcyb.2017.2671898] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The quality of ultrasound (US) images for the obstetric examination is crucial for accurate biometric measurement. However, manual quality control is a labor intensive process and often impractical in a clinical setting. To improve the efficiency of examination and alleviate the measurement error caused by improper US scanning operation and slice selection, a computerized fetal US image quality assessment (FUIQA) scheme is proposed to assist the implementation of US image quality control in the clinical obstetric examination. The proposed FUIQA is realized with two deep convolutional neural network models, which are denoted as L-CNN and C-CNN, respectively. The L-CNN aims to find the region of interest (ROI) of the fetal abdominal region in the US image. Based on the ROI found by the L-CNN, the C-CNN evaluates the image quality by assessing the goodness of depiction for the key structures of stomach bubble and umbilical vein. To further boost the performance of the L-CNN, we augment the input sources of the neural network with the local phase features along with the original US data. It will be shown that the heterogeneous input sources will help to improve the performance of the L-CNN. The performance of the proposed FUIQA is compared with the subjective image quality evaluation results from three medical doctors. With comprehensive experiments, it will be illustrated that the computerized assessment with our FUIQA scheme can be comparable to the subjective ratings from medical doctors.
Collapse
|
250
|
Fang L, Cunefare D, Wang C, Guymer RH, Li S, Farsiu S. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. BIOMEDICAL OPTICS EXPRESS 2017; 8:2732-2744. [PMID: 28663902 PMCID: PMC5480509 DOI: 10.1364/boe.8.002732] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/22/2017] [Accepted: 04/23/2017] [Indexed: 05/18/2023]
Abstract
We present a novel framework combining convolutional neural networks (CNN) and graph search methods (termed as CNN-GS) for the automatic segmentation of nine layer boundaries on retinal optical coherence tomography (OCT) images. CNN-GS first utilizes a CNN to extract features of specific retinal layer boundaries and train a corresponding classifier to delineate a pilot estimate of the eight layers. Next, a graph search method uses the probability maps created from the CNN to find the final boundaries. We validated our proposed method on 60 volumes (2915 B-scans) from 20 human eyes with non-exudative age-related macular degeneration (AMD), which attested to effectiveness of our proposed technique.
Collapse
Affiliation(s)
- Leyuan Fang
- Departments of Biomedical Engineering Duke University, Durham, NC 27708, USA
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
| | - David Cunefare
- Departments of Biomedical Engineering Duke University, Durham, NC 27708, USA
| | - Chong Wang
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
| | - Robyn H. Guymer
- Centre for Eye Research Australia University of Melbourne, Department of Surgery, Royal Victorian Eye and Ear Hospital, Victoria 3002, Australia
| | - Shutao Li
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
| | - Sina Farsiu
- Departments of Biomedical Engineering Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|