201
|
Choi JY, Hong JM, Kim TJ, Kim BG, Huh K. Uric acid is a useful marker to differentiate between responsive and refractory status epilepticus. Clin Neurol Neurosurg 2019; 184:105454. [PMID: 31376771 DOI: 10.1016/j.clineuro.2019.105454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 07/04/2019] [Accepted: 07/23/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Early recognition of refractory status epilepticus (RSE) is essential to select an appropriate treatment strategy and is closely associated with the outcome. Only few studies of RSE biomarkers exist; hence, we investigated the serum levels of uric acid (UA), albumin, and C-reactive protein (CRP) as potential serologic biomarkers for RSE. PATIENTS AND METHODS Consecutive status epilepticus (SE) patients who had serial conventional blood tests in a referral hospital over a period of 10 years were retrospectively analyzed. Patients with anoxic encephalopathy, renal failure, acute stroke, and myocardial infarction were excluded. RSE was defined as seizure continuing after the first- and second-line treatments. We also assessed SE severity in all included patients using the Status Epilepticus Severity Score (STESS). General demographics and blood test findings were compared between responsive SE and RSE patients. RESULTS A total of 141 patients (99 responsive and 42 refractory) were recruited from our SE registry. Compared to responsive patients, patients with RSE showed a higher STESS, lower initial albumin levels, lower initial UA levels, lower follow-up UA levels, and greater reduction of UA levels. The RSE group more frequently had acute symptomatic etiology, showed longer hospitalization, and had poorer functional outcomes compared to the responsive-SE group. All evaluated UA level parameters exhibited significant areas under the curve in receiver operating characteristic analyses, predictive of RSE. Initial UA levels, as well as changes therein, were significantly associated with RSE in multivariate logistic regression analysis. CONCLUSION UA levels at initial and follow-up evaluations, and changes therein differentiated responsive SE and RSE, demonstrating the feasibility of UA serum levels as a biomarker for RSE.
Collapse
Affiliation(s)
- Jun Young Choi
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kyoon Huh
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
202
|
H S N, Paudel YN, K L K. Envisioning the neuroprotective effect of Metformin in experimental epilepsy: A portrait of molecular crosstalk. Life Sci 2019; 233:116686. [PMID: 31348946 DOI: 10.1016/j.lfs.2019.116686] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Epilepsy is a neurological disorder characterized by an enduring predisposition to generate and aggravate epileptic seizures affecting around 1% of global population making it a serious health concern. Despite the recent advances in epilepsy research, no disease-modifying treatment able to terminate epileptogenesis have been reported yet reflecting the complexity in understanding the disease pathogenesis. To overcome the current treatment gap against epilepsy, one effective approach is to explore anti-epileptic effects from a drug that are approved to treat non-epileptic diseases. In this regard, Metformin emerged as an ideal candidate which is a first line treatment option for type 2 diabetes mellitus (T2DM), has conferred neuroprotection in several in vivo neurological disorders such as Alzheimer's diseases (AD), Parkinson's disease (PD), Stroke, Huntington's diseases (HD) including epilepsy. In addition, Metformin has ameliorated cognitive alteration, learning and memory induced by epilepsy as well as in animal model of AD. Herein, we review the promising findings demonstrated upon Metformin treatment against animal model of epilepsy however, the precise underlying mechanism of anti-epileptic potential of Metformin is not well understood. However, there is a growing understanding that Metformin demonstrates its anti-epileptic effect mainly via ameliorating brain oxidative damage, activation of AMPK, inhibition of mTOR pathway, downregulation of α-synuclein, reducing apoptosis, downregulation of BDNF and TrkB level. These reflects that Metformin being non-anti-epileptic drug (AED) has a potential to ameliorate the cellular pathways that were impaired in epilepsy reflecting its therapeutical potential against epileptic seizure that might plausibly overcome the limitations of today epilepsy treatment.
Collapse
Affiliation(s)
- Nandini H S
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Krishna K L
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India.
| |
Collapse
|
203
|
Kothur K, Bandodkar S, Wienholt L, Chu S, Pope A, Gill D, Dale RC. Etiology is the key determinant of neuroinflammation in epilepsy: Elevation of cerebrospinal fluid cytokines and chemokines in febrile infection‐related epilepsy syndrome and febrile status epilepticus. Epilepsia 2019; 60:1678-1688. [DOI: 10.1111/epi.16275] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/09/2019] [Accepted: 06/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Kavitha Kothur
- Neuroimmunology Group Kids Neuroscience Centre The University of Sydney Sydney New South Wales Australia
- T. Y. Nelson Department of Neurology and Neurosurgery The Children's Hospital at Westmead Westmead New South Wales Australia
| | - Sushil Bandodkar
- Department of Biochemistry The Children's Hospital at Westmead Westmead New South Wales Australia
| | - Louise Wienholt
- Department of Clinical Immunology Royal Prince Alfred Hospital Camperdown New South Wales, Australia
| | - Stephanie Chu
- Department of Clinical Immunology Royal Prince Alfred Hospital Camperdown New South Wales, Australia
| | - Alun Pope
- Eastern Health Clinical School Monash University Clayton Victoria Australia
| | - Deepak Gill
- Neuroimmunology Group Kids Neuroscience Centre The University of Sydney Sydney New South Wales Australia
- T. Y. Nelson Department of Neurology and Neurosurgery The Children's Hospital at Westmead Westmead New South Wales Australia
| | - Russell C. Dale
- Neuroimmunology Group Kids Neuroscience Centre The University of Sydney Sydney New South Wales Australia
- T. Y. Nelson Department of Neurology and Neurosurgery The Children's Hospital at Westmead Westmead New South Wales Australia
| |
Collapse
|
204
|
Kobylarek D, Iwanowski P, Lewandowska Z, Limphaibool N, Szafranek S, Labrzycka A, Kozubski W. Advances in the Potential Biomarkers of Epilepsy. Front Neurol 2019; 10:685. [PMID: 31312171 PMCID: PMC6614180 DOI: 10.3389/fneur.2019.00685] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a group of chronic neurological disorders characterized by recurrent, spontaneous, and unpredictable seizures. It is one of the most common neurological disorders, affecting tens of millions of people worldwide. Comprehensive studies on epilepsy in recent decades have revealed the complexity of epileptogenesis, in which immunological processes, epigenetic modifications, and structural changes in neuronal tissues have been identified as playing a crucial role. This review discusses the recent advances in the biomarkers of epilepsy. We evaluate the possible molecular background underlying the clinical changes observed in recent studies, focusing on therapeutic investigations, and the evidence of their safety and efficacy in the human population. This article reviews the pathophysiology of epilepsy, including recent reports on the effects of oxidative stress and hypoxia, and focuses on specific biomarkers and their clinical implications, along with further perspectives in epilepsy research.
Collapse
Affiliation(s)
- Dominik Kobylarek
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
205
|
Deng J, Xu T, Yang J, Zhang KM, Li Q, Yu XY, Li R, Fu J, Jiang Q, Ma JX, Chen YM. Sema7A, a brain immune regulator, regulates seizure activity in PTZ-kindled epileptic rats. CNS Neurosci Ther 2019; 26:101-116. [PMID: 31179640 PMCID: PMC6930824 DOI: 10.1111/cns.13181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Aims Semaphorin7A (Sema7A) plays an important role in the immunoregulation of the brain. In our study, we aimed to investigate the expression patterns of Sema7A in epilepsy and further explore the roles of Sema7A in the regulation of seizure activity and the inflammatory response in PTZ‐kindled epileptic rats. Methods First, we measured the Sema7A expression levels in patients with temporal lobe epilepsy (TLE) and in rats of a PTZ‐kindled epilepsy rat model. Second, to explore the role of Sema7A in the regulation of seizure activity, we conducted epilepsy‐related behavioral experiments after knockdown and overexpression of Sema7A in the rat hippocampal dentate gyrus (DG). Possible Sema7A‐related brain immune regulators (eg, ERK phosphorylation, IL‐6, and TNF‐α) were also investigated. Additionally, the growth of mossy fibers was visualized by anterograde tracing using injections of biotinylated dextran amine (BDA) into the DG region. Results Sema7A expression was markedly upregulated in the brain tissues of TLE patients and rats of the epileptic model after PTZ kindling. After knockdown of Sema7A, seizure activity was suppressed based on the latency to the first epileptic seizure, number of seizures, and duration of seizures. Conversely, overexpression of Sema7A promoted seizures. Overexpression of Sema7A increased the expression levels of the inflammatory cytokines, IL‐6 and TNF‐α, ERK phosphorylation, and growth of mossy fibers in PTZ‐kindled epileptic rats. Conclusion Sema7A is upregulated in the epileptic brain and plays a potential role in the regulation of seizure activity in PTZ‐kindled epileptic rats, which may be related to neuroinflammation. Sema7A promotes the inflammatory cytokines TNF‐α and IL‐6 as well as the growth of mossy fibers through the ERK pathway, suggesting that Sema7A may promote seizures by increasing neuroinflammation and activating pathological neural circuits. Sema7A plays a critical role in epilepsy and could be a potential therapeutic target for this neurological disorder.
Collapse
Affiliation(s)
- Jing Deng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chonqing, China
| | - Tao Xu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Juan Yang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Ke-Ming Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Xin-Yuan Yu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Rong Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Jie Fu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Qian Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Jing-Xi Ma
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chonqing, China.,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Yang-Mei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| |
Collapse
|
206
|
Zhang W, Wang L, Pang X, Zhang J, Guan Y. Role of microRNA-155 in modifying neuroinflammation and γ-aminobutyric acid transporters in specific central regions after post-ischaemic seizures. J Cell Mol Med 2019; 23:5017-5024. [PMID: 31144434 PMCID: PMC6653087 DOI: 10.1111/jcmm.14358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 04/14/2019] [Indexed: 12/16/2022] Open
Abstract
In the central nervous system, interleukin (IL)‐1β, IL‐6 and tumour necrosis factor (TNF)‐α have a regulatory role in pathophysiological processes of epilepsy. In addition, γ‐aminobutyric acid (GABA) transporter type 1 and type 3 (GAT‐1 and GAT‐3) modulate the levels of extracellular GABA in involvement in the neuroinflammation on epileptogenesis. Thus, in the current report we examined the effects of inhibiting microRNA‐155 (miR‐155) on the levels of IL‐1β, IL‐6 and TNF‐α, and expression of GAT‐1 and GAT‐3 in the parietal cortex, hippocampus and amygdala of rats with nonconvulsive seizure (NCS) following cerebral ischaemia. Real time RT‐PCR, ELISA and Western blot analysis were used to examine the miR‐155, proinflammatory cytokines (PICs) and GAT‐1/GAT‐3 respectively. With induction of NCS, the levels of miR‐155 were amplified in the parietal cortex, hippocampus and amygdala and this was accompanied with increases of IL‐1β, IL‐6 and TNF‐α. In those central areas, expression of GAT‐1 and GAT‐3 was upregulated; and GABA was reduced in rats following NCS. Intracerebroventricular infusion of miR‐155 inhibitor attenuated the elevation of PICs, amplification of GAT‐1 and GAT‐3 and impairment of GABA. Furthermore, inhibition of miR‐155 decreased the number of NCS events following cerebral ischaemia. Inhibition of miR‐155 further improved post‐ischaemia‐evoked NCS by altering neuroinflammation‐GABA signal pathways in the parietal cortex, hippocampus and amygdala. Results suggest the role of miR‐155 in regulating post‐ischaemic seizures via PICs‐GABA mechanisms.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Luping Wang
- Department of Anesthesiology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xiaochuan Pang
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Guan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
207
|
Ebrahimi F, Sadr SS, Roghani M, Khamse S, Mohammadian Haftcheshmeh S, Navid Hamidi M, Mohseni-Moghaddam P, Zamani E. Assessment of the protective effect of KN-93 drug in systemic epilepsy disorders induced by pilocarpine in male rat. J Cell Biochem 2019; 120:15906-15914. [PMID: 31074121 DOI: 10.1002/jcb.28864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Epileptic seizures occur as a consequence of a sudden imbalance between the stimuli and inhibitors within the network of cortical neurons in favor of the stimulus. One of the drugs that induce epilepsy is pilocarpine. Systemic injection of pilocarpine affects on muscarinic receptors. Increasing evidence has addressed the implication of KN-93 by blocking Ca2+ /calmodulin-dependent protein kinase II (CaMKII), suppressing oxidative stress and inflammation, and also reducing neuron decay. So, we aimed to evaluate the potential preventive effects of KN-93 in systemic epilepsy disorders induced by pilocarpine. MATERIALS AND METHODS In this animal study, male rats were divided into five groups including treatment group (KN-93 with the dose of 5 mM/10 µL dimethyl sulfoxide (DMSO) before inducing epilepsy by 380 mg/kg pilocarpine) KN-93 group (received 5 mM KN-93), control group, epilepsy group (received 380 mg/kg pilocarpine Intraperitoneal), and sham group (received 10 µL DMSO). Oxidative stress was assessed by measuring its indicators including the concentration of malondialdehyde (MDA), nitrite, glutathione (GSH), as well as the antioxidant activity of catalase. In addition, serum levels of proinflammatory mediators including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were determined. RESULTS Pretreatment with KN-93 significantly reduced oxidative stress index by reducing the concentration of MDA, nitrite, and increasing the level of GSH. In addition, low concentrations of TNF-α and IL-1β were observed in hippocampus supernatant of KN-93 pretreated rats in comparison with the pilocarpine groups. Moreover, administration of KN-93 improved neuronal density and attenuated the seizure activity and behavior. CONCLUSIONS Overall, our findings suggest that KN-93 can effectively suppress oxidative stress and inflammation. Furthermore, KN-93 is able to attenuate seizure behaviors by preventing its effects on neuron loss, so, it is valuable for the treatment of epileptic seizures.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Department of Physiology, School of Medicine, Shahed University and Medicinal Plant Research Center, Tehran, Iran
| | - Safoura Khamse
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadian Haftcheshmeh
- Department of Medical Immunology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojdeh Navid Hamidi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Elham Zamani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
208
|
Kanthasamy A, Jin H, Charli A, Vellareddy A, Kanthasamy A. Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. Pharmacol Ther 2019; 197:61-82. [PMID: 30677475 PMCID: PMC6520143 DOI: 10.1016/j.pharmthera.2019.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the increased incidence of neurodegenerative diseases worldwide, Parkinson's disease (PD) represents the second-most common neurodegenerative disease. PD is a progressive multisystem neurodegenerative disorder characterized by a marked loss of nigrostriatal dopaminergic neurons and the formation of Lewy pathology in diverse brain regions. Although the mechanisms underlying dopaminergic neurodegeneration remain poorly characterized, data from animal models and postmortem studies have revealed that heightened inflammatory responses mediated via microglial and astroglial activation and the resultant release of proinflammatory factors may act as silent drivers of neurodegeneration. In recent years, numerous studies have demonstrated a positive association between the exposure to environmental neurotoxicants and the etiology of PD. Although it is unclear whether neuroinflammation drives pesticide-induced neurodegeneration, emerging evidence suggests that the failure to dampen neuroinflammatory mechanisms may account for the increased vulnerability to pesticide neurotoxicity. Furthermore, recent studies provide additional evidence that shifts the focus from a neuron-centric view to glial-associated neurodegeneration following pesticide exposure. In this review, we propose to summarize briefly the possible factors that regulate neuroinflammatory processes during environmental neurotoxicant exposure with a focus on the potential roles of mitochondria-driven redox mechanisms. In this context, a critical discussion of the data obtained from experimental research and possible epidemiological studies is included. Finally, we hope to provide insights on the pivotal role of exosome-mediated intercellular transmission of aggregated proteins in microglial activation response and the resultant dopaminergic neurodegeneration after exposure to pesticides. Collectively, an improved understanding of glia-mediated neuroinflammatory signaling might provide novel insights into the mechanisms that contribute to neurodegeneration induced by environmental neurotoxicant exposure.
Collapse
Affiliation(s)
- Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Adhithiya Charli
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anantharam Vellareddy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
209
|
ABC transporters in drug-resistant epilepsy: mechanisms of upregulation and therapeutic approaches. Pharmacol Res 2019; 144:357-376. [PMID: 31051235 DOI: 10.1016/j.phrs.2019.04.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Drug-resistant epilepsy (DRE) affects approximately one third of epileptic patients. Among various theories that try to explain multidrug resistance, the transporter hypothesis is the most extensively studied. Accordingly, the overexpression of efflux transporters in the blood-brain barrier (BBB), mainly from the ATP binding cassette (ABC) superfamily, may be responsible for hampering the access of antiepileptic drugs into the brain. P-glycoprotein and other efflux transporters are known to be upregulated in endothelial cells, astrocytes and neurons of the neurovascular unit, a functional barrier critically involved in the brain penetration of drugs. Inflammation and oxidative stress involved in the pathophysiology of epilepsy together with uncontrolled recurrent seizures, drug-associated induction and genetic polymorphisms are among the possible causes of ABC transporters overexpression in DRE. The aforementioned pathological mechanisms will be herein discussed together with the multiple strategies to overcome the activity of efflux transporters in the BBB - from direct transporters inhibition to down-regulation of gene expression resorting to RNA interference (RNAi), or by targeting key modulators of inflammation and seizure-mediated signalling.
Collapse
|
210
|
Neuroprotective and anti-inflammatory effects of isoliquiritigenin in kainic acid-induced epileptic rats via the TLR4/MYD88 signaling pathway. Inflammopharmacology 2019; 27:1143-1153. [DOI: 10.1007/s10787-019-00592-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/29/2019] [Indexed: 10/26/2022]
|
211
|
Zhu X, Liu J, Huang S, Zhu W, Wang Y, Chen O, Xue J. Neuroprotective effects of isoliquiritigenin against cognitive impairment via suppression of synaptic dysfunction, neuronal injury, and neuroinflammation in rats with kainic acid-induced seizures. Int Immunopharmacol 2019; 72:358-366. [PMID: 31030091 DOI: 10.1016/j.intimp.2019.04.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/28/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023]
Abstract
Epileptogenesis is a dynamic process initiated by insults to brain and commonly accompanied by cognitive impairment. Isoliquiritigenin (ISL), a flavonoid in licorice, has a broad spectrum of biological effects including anti-inflammatory and antioxidant activities. However, the protective effects of ISL against cognitive impairment in epileptic processes and the underlying molecular mechanism are not well understood. To address these questions, we established an reproducible seizure model by intracerebroventricular injection of kainic acid (KA) in 21-day-old rats; ISL was intraperitoneally administered three times prior to KA injection, and changes in cognitive function; synaptic plasticity; neuronal injury; number of glial cells; and expression of pro-inflammatory cytokines and nuclear factor-like (NRF)2 signaling and NACHT, LRR, and PYD domains-containing protein (NLRP)3 inflammasome components in the hippocampus were examined. Rats with KA-induced seizures showed longer average escape latency and decreases in the number of platform crossings and average time spent in the target quadrant in the Morris water maze; ISL pretreatment reversed this decline in cognitive impairment and increased the protein levels of synaptophysin, postsynaptic density-95 and brain-derived neurotrophic factor while reducing the number of Fluoro Jade B-positive cells, microglia, and astrocytes; cleaved-Caspase-3 and -9 protein levels; and tumor necrosis factor-α, interleukin (IL)-1β, and IL-18 production. It also enhanced the nuclear localization of NRF2, hemeoxygenase-1, and NAD(P)H:quinone oxidoreductase (NQO) 1, and reversed the upregulation of NLRP3 inflammasome components NLRP3 and Caspase-1 induced by KA injection. Thus, ISL protects against cognitive impairment in KA-induced epileptic processes possibly through regulation of NRF2 signaling and the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Department of Pediatrics, the Second Hospital of Shandong University, Jinan 250012, China
| | - Jiankun Liu
- Department of Ophthalmology, the Second People's Hospital of Jinan City, Jinan 250000, China
| | - Shanying Huang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Jinan 250012, China
| | - Weiwei Zhu
- Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan 250000, China
| | - Yibiao Wang
- Department of Pediatrics, the Second Hospital of Shandong University, Jinan 250012, China
| | - Ou Chen
- Department of Pediatrics, the Second Hospital of Shandong University, Jinan 250012, China; Nursing School, Shandong University, Jinan 250012, China.
| | - Jiang Xue
- Department of Pediatrics, the Second Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
212
|
Kundap UP, Paudel YN, Kumari Y, Othman I, Shaikh MF. Embelin Prevents Seizure and Associated Cognitive Impairments in a Pentylenetetrazole-Induced Kindling Zebrafish Model. Front Pharmacol 2019; 10:315. [PMID: 31057394 PMCID: PMC6478791 DOI: 10.3389/fphar.2019.00315] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/14/2019] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is a neuronal disorder associated with several neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Despite having more than 20 anti-epileptic drugs (AEDs), they only provide a symptomatic treatment. As well as, currently available AEDs also displayed cognitive alterations in addition to retarding seizure. This leads to the need for exploring new molecules that not only retard seizure but also improve cognitive impairment. Embelin (EMB) is a benzoquinone derivative which has already demonstrated its pharmacological potentials against arrays of neurological conditions. The current study developed a chronic kindling model in adult zebrafish by using repeated administration of small doses of pentylenetetrazole (PTZ) and a single dose of Kainic acid (KA) to investigate the associated memory impairment. This has been done by using the three-axis maze which is a conventional method to test the learning ability and egocentric memory in zebrafish. As well as, the ameliorative potential of EMB has been evaluated against chronic epilepsy-related memory alterations. Moreover the expression level of pro-inflammatory genes such as C-C motif ligand 2 (CCL2), toll-like receptor-4 (TLR4), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and interferon-γ (IFN-γ) were evaluated. The level of several neurotransmitters such as γ-aminobutyric acid (GABA), acetylcholine (Ach) and glutamate (Glu) was evaluated by liquid chromatography-mass spectrometry (LC-MS). The results showed that daily dose of PTZ 80 mg/kg for 10 days successfully induces a kindling effect in zebrafish, whereas the single dose of KA did not. As compared to control, the PTZ and KA group demonstrates impairment in memory as demonstrated by the three-axis maze. The PTZ group treated with a series of EMB doses (ranging from 0.156 to 0.625 mg/kg) was found to have retarded seizure as well as significantly reduces epilepsy-induced memory alteration. In addition, EMB treatment reduces the expression of inflammatory markers implicating its anti-inflammatory potential. Moreover, levels of GABA, Ach, and glutamate are increased in EMB administered group as compared to the PTZ administered group. Overall, findings demonstrate that EMB might be a potential candidate against chronic epilepsy-related cognitive dysfunction as EMB prevents the seizures, so we expect it to prevent the associated neuroinflammation and learning deficit.
Collapse
Affiliation(s)
- Uday Praful Kundap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,University of Montreal Hospital Centre (CRCHUM), Montreal, QC, Canada
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Iekshan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
213
|
Sun Y, Ma J, Li D, Li P, Zhou X, Li Y, He Z, Qin L, Liang L, Luo X. Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in epileptic seizures. J Neuroinflammation 2019; 16:66. [PMID: 30922332 PMCID: PMC6437919 DOI: 10.1186/s12974-019-1452-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Microglia are important for secreting chemical mediators of inflammatory responses in the central nervous system. Interleukin (IL)-10 and IL-1β secreted by glial cells support neuronal functions, but the related mechanisms remain vague. Our goal was to demonstrate the efficacy of IL-10 in suppressing IL-1β and in inflammasome activation in mice with epileptic seizure based on an epileptic-seizure mouse model. METHODS In this study, mice in which epileptic seizures were induced by administering picrotoxin (PTX) were used as a case group, and mice injected with saline were employed as the control group. The expression of nucleic acids, cytokines, or signaling pathways was detected by reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), flow cytometry, and Western blotting. RESULTS Our results demonstrated that IL-10 inhibits IL-1β production through two distinct mechanisms: (1) Treatment with lipopolysaccharides (LPS) results in IL-10 overexpression in microglia and reduced NLRP3 inflammasome activity, thus inhibiting caspase-1-related IL-1β maturation; (2) next, autocrine IL-10 was found to subsequently promote signal transducer and activator of transcription-3 (STAT-3), reducing amounts of pro-IL-1β. CONCLUSIONS Our results indicate that IL-10 is potentially effective in the treatment of inflammation encephalopathy, and suggest the potential usefulness of IL-10 for treating autoimmune or inflammatory ailments.
Collapse
Affiliation(s)
- Yi Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiangjun Ma
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Dongfang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Pinggan Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaolin Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhanwen He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lijun Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liyang Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiangyang Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Department of Pediatric, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
214
|
Allen LA, Vos SB, Kumar R, Ogren JA, Harper RK, Winston GP, Balestrini S, Wandschneider B, Scott CA, Ourselin S, Duncan JS, Lhatoo SD, Harper RM, Diehl B. Cerebellar, limbic, and midbrain volume alterations in sudden unexpected death in epilepsy. Epilepsia 2019; 60:718-729. [PMID: 30868560 DOI: 10.1111/epi.14689] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The processes underlying sudden unexpected death in epilepsy (SUDEP) remain elusive, but centrally mediated cardiovascular or respiratory collapse is suspected. Volume changes in brain areas mediating recovery from extreme cardiorespiratory challenges may indicate failure mechanisms and allow prospective identification of SUDEP risk. METHODS We retrospectively imaged SUDEP cases (n = 25), patients comparable for age, sex, epilepsy syndrome, localization, and disease duration who were high-risk (n = 25) or low-risk (n = 23), and age- and sex-matched healthy controls (n = 25) with identical high-resolution T1-weighted scans. Regional gray matter volume, determined by voxel-based morphometry, and segmentation-derived structure sizes were compared across groups, controlling for total intracranial volume, age, and sex. RESULTS Substantial bilateral gray matter loss appeared in SUDEP cases in the medial and lateral cerebellum. This was less prominent in high-risk subjects and absent in low-risk subjects. The periaqueductal gray, left posterior and medial thalamus, left hippocampus, and bilateral posterior cingulate also showed volume loss in SUDEP. High-risk subjects showed left thalamic volume reductions to a lesser extent. Bilateral amygdala, entorhinal, and parahippocampal volumes increased in SUDEP and high-risk patients, with the subcallosal cortex enlarged in SUDEP only. Disease duration correlated negatively with parahippocampal volume. Volumes of the bilateral anterior insula and midbrain in SUDEP cases were larger the closer to SUDEP from magnetic resonance imaging. SIGNIFICANCE SUDEP victims show significant tissue loss in areas essential for cardiorespiratory recovery and enhanced volumes in areas that trigger hypotension or impede respiratory patterning. Those changes may shed light on SUDEP pathogenesis and prospectively detect patterns identifying those at risk.
Collapse
Affiliation(s)
- Luke A Allen
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK.,Magnetic Resonance Imaging Unit, Epilepsy Society, London, UK.,Center for Sudden Unexpected Death in Epilepsy Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Sjoerd B Vos
- Magnetic Resonance Imaging Unit, Epilepsy Society, London, UK.,Center for Sudden Unexpected Death in Epilepsy Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland.,Wellcome/Engineering and Physical Sciences Research Council Centre for Interventional and Surgical Sciences, University College London, London, , UK.,Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Rajesh Kumar
- Center for Sudden Unexpected Death in Epilepsy Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California.,Department of Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California.,Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Jennifer A Ogren
- Center for Sudden Unexpected Death in Epilepsy Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland.,Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Rebecca K Harper
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK.,Magnetic Resonance Imaging Unit, Epilepsy Society, London, UK
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK.,Magnetic Resonance Imaging Unit, Epilepsy Society, London, UK
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK.,Magnetic Resonance Imaging Unit, Epilepsy Society, London, UK
| | - Catherine A Scott
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK.,Center for Sudden Unexpected Death in Epilepsy Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Sebsatien Ourselin
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK.,Magnetic Resonance Imaging Unit, Epilepsy Society, London, UK
| | - Samden D Lhatoo
- Center for Sudden Unexpected Death in Epilepsy Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland.,Epilepsy Center, Neurological Institute, University Hospitals Case Medical Center, Cleveland, Ohio.,Department of Neurology, University of Texas Health Sciences Center at Houston, United States
| | - Ronald M Harper
- Center for Sudden Unexpected Death in Epilepsy Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California.,Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK.,Magnetic Resonance Imaging Unit, Epilepsy Society, London, UK.,Center for Sudden Unexpected Death in Epilepsy Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| |
Collapse
|
215
|
Xu N, Huang F, Jian C, Qin L, Lu F, Wang Y, Zhang Z, Zhang Q. Neuroprotective effect of salidroside against central nervous system inflammation-induced cognitive deficits: A pivotal role of sirtuin 1-dependent Nrf-2/HO-1/NF-κB pathway. Phytother Res 2019; 33:1438-1447. [PMID: 30848530 DOI: 10.1002/ptr.6335] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/17/2019] [Accepted: 02/09/2019] [Indexed: 12/21/2022]
Abstract
Central nervous system (CNS) inflammation occurs in cognitive dysfunctions, but the underlying mechanisms remain unclear. Here, we investigated the role of sirtuin 1 (SIRT1) and salidroside in CNS inflammation-induced cognitive deficits model. In vivo, CNS inflammation was initiated by a single intracerebroventricular injection of lipopolysaccharide (LPS). The levels of inflammatory cytokines and the capability of free radial scavenging were determined after the LPS challenge. In vivo, salidroside and nicotinamide, a SIRT1 inhibitor, were used in PC12 cell. Of note, with the treatment of salidroside, LPS-induced learning and memory impairments were effectively improved. Salidroside also remarkably inhibited the inflammatory cytokines, up-regulated the concentration of superoxide dismutase and inhibited the vitalities of malondialdehyde in serum, hippocampus, and cell supernatant. Besides, the expression of Sirt1, Nrf-2, HO-1, Bax, Bcl-2, caspase-9, and caspase-3 and the phosphorylation of AMPK, NF-κBp65, and IκBα were increased accompanying with the LPS-induced cognitive impairments, which were significantly suppressed by salidroside treatment. In PC12 cell model, nicotinamide significantly abrogated the beneficial effects of salidroside, as indicated by the antioxidant, anti-inflammatory, and antiapoptosis signaling. Together, our results showed that salidroside may be a novel therapy drug in neurodegenerative diseases, and the protective effect was involved in SIRT1-dependent Nrf-2/HO-1/NF-κB pathway.
Collapse
Affiliation(s)
- Ning Xu
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| | - Fang Huang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| | - Chongdong Jian
- Department of Neurology, Affiliated Hospital of Youjiang Medical for Nationalities, Baise, China
| | - Lina Qin
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| | - Fang Lu
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| | - Yimei Wang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| | - Zhao Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| | - Qian Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| |
Collapse
|
216
|
Inoue R, Sakaue Y, Kawada Y, Tamaki R, Yasukawa Z, Ozeki M, Ueba S, Sawai C, Nonomura K, Tsukahara T, Naito Y. Dietary supplementation with partially hydrolyzed guar gum helps improve constipation and gut dysbiosis symptoms and behavioral irritability in children with autism spectrum disorder. J Clin Biochem Nutr 2019; 64:217-223. [PMID: 31138955 PMCID: PMC6529696 DOI: 10.3164/jcbn.18-105] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
Prebiotic dietary water-soluble fiber obtained from partially hydrolyzed guar gum was added to diets of children with autism spectrum disorders who presented constipation symptoms. Supplementation with partially hydrolyzed guar gum altered gut microbiota and significantly increased the frequency of defecation per week and altered the gut microbiota. In addition, supplementation with partially hydrolyzed guar gum significantly (p<0.05) decreased and tended to decrease (p = 0.07) the concentrations of serum interleukin-1β and tumor necrosis factor-α, respectively. More importantly, supplementation with partially hydrolyzed guar gum significantly ameliorated behavioral irritability as per the Aberrant Behavior Checklist, Japanese Version. The present study demonstrated that supplementation with partially hydrolyzed guar gum to diets of constipated autism spectrum disorders children helped improve constipation and gut dysbiosis symptoms, which in turn helped attenuate the level of serum inflammation cytokines and behavioral irritability.
Collapse
Affiliation(s)
- Ryo Inoue
- Laboratory of Animal Science, Department of Agriculture and Life Science, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yuko Sakaue
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yuki Kawada
- Laboratory of Animal Science, Department of Agriculture and Life Science, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Ryuji Tamaki
- Laboratory of Animal Science, Department of Agriculture and Life Science, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Zenta Yasukawa
- Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Makoto Ozeki
- Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Satoko Ueba
- Moriyama Municipal Hospital, 4-14-1 Moriyama, Shiga 524-0022, Japan
| | - Chihiro Sawai
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Kazuo Nonomura
- Moriyama Municipal Hospital, 4-14-1 Moriyama, Shiga 524-0022, Japan
| | | | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
217
|
Abstract
Several aspects of thermoregulation play a role in epilepsy. Circuitries involved in thermoregulation are affected by seizures and epilepsy, hyperthermia may be both cause and result of seizures, and hypothermia may prevent or abort seizures. Autonomic manifestations of seizures including thermoregulatory disturbances are common in a variety of clinical epilepsy syndromes. Experimental hyperthermia has been studied extensively, predominantly to investigate febrile seizures of childhood. In particular prolonged or complex febrile seizures have been associated with the later development of epilepsy in adulthood and the pathophysiology of how febrile seizures cause epilepsy is of tremendous interest. Febrile seizures represent an opportunity to potentially intervene early in life in susceptible individuals and affect epileptogenesis. The pathophysiologic underpinnings of how hyperthermia induces seizures and how this in turn results in epilepsy are controversial, but likely involve multiple factors. Both glutamatergic and GABAergic neurotransmission is affected, and numerous mutations in genes encoding ion channels have been identified. Cytokines such as interleukin-1β have been implicated in febrile seizures as well as susceptibility to provoked seizures later in life. Hyperthermia is a common feature of generalized convulsive status epilepticus, but may also be seen with nonconvulsive seizures, indicating involvement of thermoregulatory centers.
Collapse
Affiliation(s)
- Sebastian Pollandt
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States.
| | - Thomas P Bleck
- Departments of Neurological Sciences, Neurosurgery, Medicine, and Anesthesiology, Rush Medical College, Chicago, IL, United States; Clinical Neurophysiology Laboratory, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
218
|
Kovács Z, D'Agostino DP, Diamond DM, Ari C. Exogenous Ketone Supplementation Decreased the Lipopolysaccharide-Induced Increase in Absence Epileptic Activity in Wistar Albino Glaxo Rijswijk Rats. Front Mol Neurosci 2019; 12:45. [PMID: 30930744 PMCID: PMC6427924 DOI: 10.3389/fnmol.2019.00045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/05/2019] [Indexed: 12/02/2022] Open
Abstract
It has been demonstrated previously that exogenous ketone supplements such as ketone ester (KE) decreased absence epileptic activity in a well-studied animal model of human absence epilepsy, Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. It is known that lipopolysaccharide (LPS)-generated changes in inflammatory processes increase absence epileptic activity, while previous studies show that ketone supplement-evoked ketosis can modulate inflammatory processes. Thus, we investigated in the present study whether administration of exogenous ketone supplements, which were mixed with standard rodent chow (containing 10% KE + 10% ketone salt/KS, % by weight, KEKS) for 10 days, can modulate the LPS-evoked changes in absence epileptic activity in WAG/Rij rats. At first, KEKS food alone was administered and changes in spike-wave discharge (SWD) number, SWD time, discharge frequency within SWDs, blood glucose, and beta-hydroxybutyrate (βHB) levels, as well as body weight and sleep-waking stages were measured. In a separate experiment, intraperitoneal (i.p.) injection of LPS (50 μg/kg) alone and a cyclooxygenase 1 and 2 (COX-1 and COX-2) inhibitor indomethacin (10 mg/kg) alone, as well as combined IP injection of indomethacin with LPS (indomethacin + LPS) were applied in WAG/Rij rats to elucidate their influences on SWD number. In order to determine whether KEKS food can modify the LPS-evoked changes in SWD number, KEKS food in combination with IP LPS (50 μg/kg) (KEKS + LPS), as well as KEKS food with IP indomethacin (10 mg/kg) and LPS (50 μg/kg) (KEKS + indomethacin + LPS) were also administered. We demonstrated that KEKS food significantly increased blood βHB levels and decreased not only the spontaneously generated absence epileptic activity (SWD number), but also the LPS-evoked increase in SWD number in WAG/Rij rats. Our results suggest that administration of exogenous ketone supplements (ketogenic foods) may be a promising therapeutic tool in the treatment of epilepsy.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Dominic P D'Agostino
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Institute for Human and Machine Cognition, Ocala, FL, United States
| | - David M Diamond
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Comparative Neuroscience Research Laboratory, Department of Psychology, University of South Florida, Tampa, FL, United States
| | - Csilla Ari
- Comparative Neuroscience Research Laboratory, Department of Psychology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
219
|
Liang LP, Pearson-Smith JN, Huang J, McElroy P, Day BJ, Patel M. Neuroprotective Effects of AEOL10150 in a Rat Organophosphate Model. Toxicol Sci 2019; 162:611-621. [PMID: 29272548 DOI: 10.1093/toxsci/kfx283] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prolonged seizure activity or status epilepticus (SE) is one of the most critical manifestations of organophosphate exposure. Previous studies in our laboratory have demonstrated that oxidative stress is a critical mediator of SE-induced neuronal injury. The goal of this study was to determine if diisopropylflurorphoshate (DFP) exposure in rats resulted in oxidative stress and whether scavenging reactive oxygen species attenuated DFP-induced neurotoxicity. DFP treatment increased indices of oxidative stress in a time- and region- dependent manner. Neuronal loss measured by Fluoro-Jade B staining was significantly increased in the hippocampus, piriform cortex and amygdala following DFP. Similarly, levels of the proinflammatory cytokines, particularly TNF-α, IL-6, and KC/GRO were significantly increased in the piriform cortex and in the hippocampus following DFP treatment. The catalytic antioxidant AEOL10150, when treatment was initiated 5 min after DFP-induced SE, significantly attenuated indices of oxidative stress, neuroinflammation and neuronal damage. This study suggests that catalytic antioxidant treatment may be useful as a novel therapy to attenuate secondary neuronal injury following organophosphate exposure.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | | | - Jie Huang
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Pallavi McElroy
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,Department of Medicine, National Jewish Health, Denver, Colorado
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
220
|
Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1098-1112. [PMID: 30703511 DOI: 10.1016/j.bbadis.2019.01.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Glutamate-mediated excitotoxicity, neuroinflammation, and oxidative stress are common underlying events in neurodegeneration. This pathogenic "triad" characterizes the neurobiology of epilepsy, leading to seizure-induced cell death, increased susceptibility to neuronal synchronization and network alterations. Along with other maladaptive changes, these events pave the way to spontaneous recurrent seizures and progressive degeneration of the interested brain areas. In vivo models of epilepsy are available to explore such epileptogenic mechanisms, also assessing the efficacy of chemoprevention and therapy strategies at the pre-clinical level. The kainic acid model of pharmacological excitotoxicity and epileptogenesis is one of the most investigated mimicking the chronicization profile of temporal lobe epilepsy in humans. Its pathogenic cues include inflammatory and neuronal death pathway activation, mitochondrial disturbances and lipid peroxidation of several regions of the brain, the most vulnerable being the hippocampus. The importance of neuroinflammation and lipid peroxidation as underlying molecular events of brain damage was demonstrated in this model by the possibility to counteract the related maladaptive morphological and functional changes of this organ with vitamin E, the main fat-soluble cellular antioxidant and "conditional" co-factor of enzymatic pathways involved in polyunsaturated lipid metabolism and inflammatory signaling. The present review paper provides an overview of the literature supporting the potential for a timely intervention with vitamin E therapy in clinical management of seizures and epileptogenic processes associated with excitotoxicity, neuroinflammation and lipid peroxidation, i.e. the pathogenic "triad".
Collapse
|
221
|
The Protective Role of Peroxisome Proliferator-Activated Receptor-Gamma in Seizure and Neuronal Excitotoxicity. Mol Neurobiol 2019; 56:5497-5506. [PMID: 30623373 DOI: 10.1007/s12035-018-1457-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
The peroxisome proliferator-activated receptor (PPAR) family, type II nucleus receptors have been successfully tested for their neuroprotective potential in certain central nervous system diseases. The aim of the present study was to determine if modulation by PPAR-γ could attenuate pilocarpine-induced seizures and decrease neuronal excitability. Adult male C57BL/6 mice were divided into two groups: one group received pretreatment with pioglitazone and the other received dimethyl sulfoxide (DMSO) for a period of 2 weeks. Status epilepticus was then induced in both groups by lithium-pilocarpine, after which seizure susceptibility, severity, and mortality were evaluated. Hippocampal histopathology was carried out on all mice at 24 h post-status epilepticus as well as blood-brain barrier (BBB) damage analysis. With the aid of patch clamp technology, the hippocampal neuronal excitability from mice with PPAR-γ 50% expression (PpargC/C) and PPAR-γ 25% expression (PpargC/-), as well as the effect of pioglitazone on the sodium currents in hippocampal neurons, were evaluated. It was found that pioglitazone, a PPAR-γ agonist, could attenuate pilocarpine-induced seizure severity in mice. Pathological examination showed that pioglitazone significantly attenuated pilocarpine-induced status epilepticus-related hippocampal neuronal loss and BBB damage. Further characterization of neuronal excitability revealed higher excitability in the brain slices from mice with PpargC/- expression, compared with the PpargC/C group. It was also found that pioglitazone could decrease sodium currents in hippocampal neurons. In conclusion, PPAR-γ deficiency aggravated neuronal excitability and excitotoxicity. PPAR-γ attenuated pilocarpine-induced seizure severity, neuronal loss, BBB damage, and sodium currents in hippocampal neurons. Modulation of PPAR-γ could be a potential novel treatment for epileptic seizures.
Collapse
|
222
|
Ghorbanian D, Ghasemi-Kasman M, Hashemian M, Gorji E, Gol M, Feizi F, Kazemi S, Ashrafpour M, Moghadamnia AA. Myristica Fragrans Houtt Extract Attenuates Neuronal Loss and Glial Activation in Pentylenetetrazol-Induced Kindling Model. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:812-825. [PMID: 31531064 PMCID: PMC6706727 DOI: 10.22037/ijpr.2019.1100670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inflammatory reactions are closely associated with the development and progression of epilepsy. It has been shown that inhibition of pro-inflammatory cytokines, which are released from activated astrocytes and microglia, are considered to be an effective therapeutic approach for the treatment of epileptic disorders. Regarding the anti-inflammatory effects of nutmeg (Myristica fragrans Houtt), the present study was designed to investigate whether the nutmeg ethanolic extract could exert anticonvulsant and inhibitory effects on glial activation in pentylenetetrazol (PTZ)-induced mice model of kindling. Ethanolic extract of nutmeg was administrated intraperitoneally (i.p.) 1 hour before PTZ injection or one week before PTZ as a separate group, to become fully-kindled. The chemical components of nutmeg extract were analyzed by gas chromatography mass spectrometry (GC-MS). Immunostaining against neuronal and glial markers was performed on hippocampus sections. GC-MS data indicated that the main components of nutmeg extract are myristic acid (39.93%), elemicin (22.16%) and myristicin (11.17%). Behavioral studies showed that pre-treatment of nutmeg extract effectively reduced seizures behavior, decreased cell death, and ameliorated glial activation that is followed by PTZ administration. In conclusion, nutmeg extract might be regarded as a useful supplementary agent in epilepsy treatment through its attenuation of neuronal loss and glial activation.
Collapse
Affiliation(s)
- Davoud Ghorbanian
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mona Hashemian
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
| | - Elaheh Gorji
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
| | - Mohammad Gol
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Manouchehr Ashrafpour
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Department of Physiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
223
|
Zhang H, Tan JZ, Luo J, Wang W. Chitinase-3-like protein 1 may be a potential biomarker in patients with drug-resistant epilepsy. Neurochem Int 2018; 124:62-67. [PMID: 30584894 DOI: 10.1016/j.neuint.2018.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/30/2023]
Abstract
The mechanisms of the pathogenesis of epilepsy remain unclear. Recent research shows that the inflammatory process occurring in the brain may be a common and critical mechanism of seizures. Chitinase-3-like protein 1 (CHI3L1 or YKL-40) is a newly discovered inflammatory factor. We aimed to evaluate the role of YKL-40 as a biomarker for epilepsy. 124 subjects were classified as control group (n = 23), new-diagnosis epilepsy group (NDE, n = 34), drug responsive epilepsy group (DPE, n = 37), and drug-resistant epilepsy group (DRE, n = 30) YKL-40 was measured by ELISA in serum and cerebrospinal fluid (CSF). The concentrations of serum and CSF YKL-40 and its diagnostic accuracy for epilepsy were analysed. Patients with DRE had higher concentrations of YKL-40 in serum and CSF, while patients with NDE and DPE had increased YKL-40 levels in CSF but not serum in comparison with control. Moreover, serum and CSF YKL-40 provide high diagnostic accuracy for DRE. YKL-40 may play a possible pathogenic role in epilepsy. YKL-40 may represent a potential biomarker of brain inflammation in patients with DRE.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jia-Ze Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
224
|
Ayas ZO, Kotan D, Akdogan M, Gunel ME. Serum Prolidase Enzyme Activity Level: Not a Predictive Biomarker for Epilepsy. Eurasian J Med 2018; 51:27-30. [PMID: 30911252 DOI: 10.5152/eurasianjmed.2018.18183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022] Open
Abstract
Objective Oxidative stress (OS) and inflammation are considered responsible for the pathogenesis of epilepsy. Prolidase has an extremely important role in proline recycling for collagen synthesis. Higher than normal proline levels have been shown to increase OS. Furthermore, prolidase activity is associated with inflammation during fibrotic process. No study has yet investigated the relationship between epilepsy and prolidase enzyme activity (PEA). In this study, we aimed to contribute to the existing literature by assessing postictal PEA levels, which are correlated with inflammation and OS, to determine whether PEA levels may be used as a biomarker for epilepsy. Materials and Methods This study included patients with epilepsy who presented to the emergency department within first 6 h of a seizure. Results The epileptic group included 27 patients (16 males, 11 females) and the control group included 31 healthy individuals (11 males, 20 females). The mean age of the epilepsy (n=27) and healthy control group (n=31) was 43.1±20.2 and 51.9±21 years, respectively. Serum PEA levels were 1171.90±343.3 in the epileptic group and 1137.1±295.6 in the control group. There were no significant differences between two groups (p>0.05). Conclusion Our study results suggest that although PEA is an enzyme associated with OS and inflammation, it is still not an ideal biomarker for epileptic patients. This study is important because it investigated PEA in patients with idiopathic epilepsy for the first time.
Collapse
Affiliation(s)
| | - Dilcan Kotan
- Department of Neurology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Mehmet Akdogan
- Department of Biochemistry, Sakarya University School of Medicine, Sakarya, Turkey
| | - Mustafa Ercan Gunel
- Department of Emergency, Sakarya University School of Medicine, Sakarya, Turkey
| |
Collapse
|
225
|
Cavarsan CF, Malheiros J, Hamani C, Najm I, Covolan L. Is Mossy Fiber Sprouting a Potential Therapeutic Target for Epilepsy? Front Neurol 2018; 9:1023. [PMID: 30555406 PMCID: PMC6284045 DOI: 10.3389/fneur.2018.01023] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) caused by hippocampal sclerosis is one of the most frequent focal epilepsies in adults. It is characterized by focal seizures that begin in the hippocampus, sometimes spread to the insulo-perisylvian regions and may progress to secondary generalized seizures. Morphological alterations in hippocampal sclerosis are well defined. Among them, hippocampal sclerosis is characterized by prominent cell loss in the hilus and CA1, and abnormal mossy fiber sprouting (granular cell axons) into the dentate gyrus inner molecular layer. In this review, we highlight the role of mossy fiber sprouting in seizure generation and hippocampal excitability and discuss the response of alternative treatment strategies in terms of MFS and spontaneous recurrent seizures in models of TLE (temporal lobe epilepsy).
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jackeline Malheiros
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clement Hamani
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
226
|
Holley AJ, Hodges SL, Nolan SO, Binder M, Okoh JT, Ackerman K, Tomac LA, Lugo JN. A single seizure selectively impairs hippocampal-dependent memory and is associated with alterations in PI3K/Akt/mTOR and FMRP signaling. Epilepsia Open 2018; 3:511-523. [PMID: 30525120 PMCID: PMC6276778 DOI: 10.1002/epi4.12273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 02/03/2023] Open
Abstract
Objective A single brief seizure before learning leads to spatial and contextual memory impairment in rodents without chronic epilepsy. These results suggest that memory can be impacted by seizure activity in the absence of epilepsy pathology. In this study, we investigated the types of memory affected by a seizure and the time course of impairment. We also examined alterations to mammalian target of rapamycin (mTOR) and fragile X mental retardation protein (FMRP) signaling, which modulate elements of the synapse and may underlie impairment. Methods We induced a single seizure and investigated hippocampal and nonhippocampal memory using trace fear conditioning, novel object recognition (NOR), and accelerating rotarod to determine the specificity of impairment in mice. We used western blot analysis to examine for changes to cellular signaling and synaptic proteins 1 h, 24 h, and 1 week after a seizure. We also included a histologic examination to determine if cell loss or gross lesions might alternatively explain memory deficits. Results Behavioral results indicated that a seizure before learning leads to impairment of trace fear memory that worsens over time. In contrast, nonhippocampal memory was unaffected by a seizure in the NOR and rotarod tasks. Western analysis indicated increased hippocampal phospho‐S6 and total FMRP 1 h following a seizure. Tissue taken 24 h after a seizure indicated increased hippocampal GluA1, suggesting increased α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptor expression. Histologic analysis indicated that neither cell loss nor lesions are present after a single seizure. Significance The presence of memory impairment in the absence of damage suggests that memory impairment caused by seizure activity differs from general memory impairment in epilepsy. Instead, memory impairment after a single seizure is associated with alterations to mTOR and FMRP signaling, which leads to a disruption of synaptic proteins involved in consolidation of long‐term memory. These results have implications for understanding memory impairment in epilepsy.
Collapse
Affiliation(s)
- Andrew J Holley
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | | | - Suzanne O Nolan
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - Matthew Binder
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - James T Okoh
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - Kaylin Ackerman
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - Lindsey A Tomac
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - Joaquin N Lugo
- Institute of Biomedical Studies Baylor University Waco Texas U.S.A.,Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| |
Collapse
|
227
|
Gulcebi MI, Kendirli T, Turgan ZA, Patsalos PN, Onat Yilmaz F. The effect of serum levetiracetam concentrations on therapeutic response and IL1-beta concentration in patients with epilepsy. Epilepsy Res 2018; 148:17-22. [PMID: 30326332 DOI: 10.1016/j.eplepsyres.2018.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/07/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Assessment of the relevance between serum drug concentration to its therapeutic response is a valid monitoring strategy for the clinical efficacy of antiepileptic drugs (AEDs). Levetiracetam (LEV) is a broad spectrum AED with a possible anti-inflammatory effect. We aimed to determine the relationship between LEV concentrations and its therapeutic response, and the effect of LEV on IL1-beta concentrations in patients with epilepsy. METHODS Patients on monotherapy (n = 7) or polytherapy (n = 15) with LEV for their seizures management were included. Blood samples of each patient were collected: just before LEV intake, 1 h, 2 h, 4 h and 8 h following the last dose. Serum LEV concentrations were measured by liquid chromatography mass spectrometry and IL1-beta concentrations by chemiluminescent immunometric assay. Concentration to dose (C/D) ratio values was used for analyses. LEV concentrations were compared between responders (≤1 seizure/month) and non-responders (>1 seizure/month) and patients with or without adverse reactions. IL1-beta concentrations before and at 2 h following LEV ingestion were compared in order to detect the effect of the increase in serum LEV concentration on IL1-beta. RESULTS Although there was no change in LEV (C/D) ratio or LEV maximum concentration (Cmax)/D ratio of the responders and non-responders, the C/D ratio following 1 h of LEV intake (2.17 ± 0.59 kg.day/L) and Cmax/D ratio (2.25 ± 0.56 kg.day/L) in the patients with adverse effects was significantly higher than for the patients without adverse effects (1.09 ± 0.12 kg.day/L and 1.49 ± 0.14 kg.day/L respectively). A statistically significant decrease was found in the IL1-beta concentration to LEV (C/D) ratio with the increase in LEV concentration in patients on LEV monotherapy. CONCLUSION The possible relationship between LEV Cmax and its therapeutic response or IL1-beta concentrations may be an importance indication of LEV antiepileptic efficacy. Consequently, monitoring LEV Cmax values may enhance LEV adherence because patients would be less likely to develop adverse effects.
Collapse
Affiliation(s)
- Medine I Gulcebi
- Department of Medical Pharmacology, School of Medicine, University of Marmara, Istanbul, Turkey
| | - Tansel Kendirli
- Department of Neurology, School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Zehra Asik Turgan
- Department of Medical Pharmacology, School of Medicine, University of Marmara, Istanbul, Turkey
| | - Philip N Patsalos
- Department of Clinical & Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, United Kingdom; Therapeutic Drug Monitoring Unit, Chalfont Centre for Epilepsy, Chalfont St. Peter, United Kingdom
| | - Filiz Onat Yilmaz
- Department of Medical Pharmacology, School of Medicine, University of Marmara, Istanbul, Turkey.
| |
Collapse
|
228
|
Mercado-Gómez OF, Córdova-Dávalos L, García-Betanzo D, Rocha L, Alonso-Vanegas MA, Cienfuegos J, Guevara-Guzmán R. Overexpression of inflammatory-related and nitric oxide synthase genes in olfactory bulbs from frontal lobe epilepsy patients. Epilepsy Res 2018; 148:37-43. [PMID: 30366204 DOI: 10.1016/j.eplepsyres.2018.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/12/2018] [Accepted: 09/22/2018] [Indexed: 01/06/2023]
Abstract
Neuroinflammation has been shown to constitute a crucial mechanism in the pathophysiology of epileptic brain and several genes of inflammatory mediators have been detected in surgically resected hippocampus tissue but not in non-related seizure brain regions. Interestingly, it has been reported an olfactory dysfunction in frontal lobe epilepsy (FLE). Our aim was to quantify the gene expression of inflammatory-related and nitric oxide synthase genes in olfactory bulbs (OB) tissue from FLE patients. RNA was isolated from OB resection of FLE patients and autopsy subjects without any neurological disease (n = 7, each). After cDNA synthesis, we performed qPCR for interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nuclear factor κB p65 (RELA), Toll-like receptor 4 (TLR 4), its agonist high mobility group box 1 (HMGB 1) as well nitric oxide synthase isozymes (NOS 1, 2 and 3). We found a significant increase in gene expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), TLR4 receptor and in its agonist HMGB1 and the downstream transcription factor NFκB p65. Moreover, we observed an increase of both NOS1 and NOS3 and a slightly increase of NOS2; however, it was not significant. Our study describes the overexpression of inflammatory-related genes and NOS isozymes in OB from FLE patients. Even though, the number of patients was limited, our findings could point out that neuroinflammation and nitrosative stress-related genes in the OB could be produced in general manner in all brain regions and thus contribute in part, to the olfactory dysfunction observed in FLE patients.
Collapse
Affiliation(s)
- Octavio Fabián Mercado-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad deMéxico, Mexico
| | - Laura Córdova-Dávalos
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad deMéxico, Mexico; Departmento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, 14330, Ciudad deMéxico, Mexico; Sección de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", 14269, Ciudad deMéxico, Mexico
| | - Delfina García-Betanzo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad deMéxico, Mexico
| | - Luisa Rocha
- Departmento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, 14330, Ciudad deMéxico, Mexico
| | - Mario Arturo Alonso-Vanegas
- Sección de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", 14269, Ciudad deMéxico, Mexico
| | - Jesús Cienfuegos
- Sección de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", 14269, Ciudad deMéxico, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad deMéxico, Mexico.
| |
Collapse
|
229
|
Han K, Wang QY, Wang CX, Luan SY, Tian WP, Wang Y, Zhang RY. Ghrelin improves pilocarpine‑induced cerebral cortex inflammation in epileptic rats by inhibiting NF‑κB and TNF‑α. Mol Med Rep 2018; 18:3563-3568. [PMID: 30106107 PMCID: PMC6131597 DOI: 10.3892/mmr.2018.9381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/27/2016] [Indexed: 12/28/2022] Open
Abstract
Ghrelin has a protective function in the nervous system, including anti‑inflammatory and antiapoptotic. The objective of the present study was to examine the anti‑inflammatory effects of the ghrelin on nuclear factor‑κB (NF‑κB) and tumor necrosis factor‑α (TNF‑α) gene and protein expression in an epileptic seizure model. Epileptic seizures were induced in healthy male Wistar rats (~3 weeks old) with 300 mg/kg pilocarpine, and brains from rats with Racine stage IV or V seizures were investigated further in the present study. The effect of ghrelin treatment on TNF‑α and NF‑κB protein and mRNA expression was assessed by immunohistochemistry and semi‑quantitative reverse transcription polymerase chain reaction, respectively. TNF‑α and NF‑κB protein and mRNA expression were significantly increased in the pilocarpine and the pilocarpine + saline groups compared with the control group. Ghrelin intervention significantly decreased TNF‑α and NF‑κB protein and mRNA expression compared with the pilocarpine and the pilocarpine + saline groups, although it did not reduce expression levels to those seen in the normal control group. Ghrelin reduces inflammation in cortical neurons following epileptic seizure, and therefore may reduce necrosis and the loss of nerve cells, preserving the normal function of the cortex. Ghrelin may alleviate cortex inflammation reaction by adjusting the TNF‑α and NF‑κB so as to reduce child epilepsy attack repeatedly. The findings of the present study may contribute to the clarification of the role of Ghrelin in the brain in seizure‑induced immune system physiology and may also present novel approaches to the etiology and treatment of epileptic seizures.
Collapse
Affiliation(s)
- Kun Han
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Qing-Yi Wang
- Department of Pain Medicine, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Cai-Xia Wang
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Shao-Yong Luan
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Wen-Peng Tian
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Yue Wang
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Rui-Yun Zhang
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
230
|
Liu JT, Wu SX, Zhang H, Kuang F. Inhibition of MyD88 Signaling Skews Microglia/Macrophage Polarization and Attenuates Neuronal Apoptosis in the Hippocampus After Status Epilepticus in Mice. Neurotherapeutics 2018; 15:1093-1111. [PMID: 30112701 PMCID: PMC6277303 DOI: 10.1007/s13311-018-0653-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammation is implicated in epileptogenesis. Activated microglia and macrophages (MG/MΦ) are found in the brains of patients with epilepsy-related diseases and animal models of epilepsy. It is not yet known how the MG/MΦ activation phenotype affects pathological changes in the brain after a single seizure. In this study, we had 2 main purposes: first, to characterize post-status epilepticus (SE) inflammation by tracking MG/MΦ polarization, and, second, to explore the role of an innate immune receptor adaptor protein, namely, myeloid differentiation primary response gene 88 (MyD88), in the induction of SE in a mouse model. A lithium-pilocarpine model of seizure conditions was generated in C57BL/6 mice. The intensity and distribution of MG/MΦ polarization were tracked by fluorescent immunohistochemistry and Western blotting for the polarization markers inducible nitrogen oxygenized synthase, arginase-1, CD163, and mannose receptor. We observed steadily increasing M1 MG/MΦ along with MyD88 signal upregulation after SE in the hippocampi of mice, whereas the M2 marker arginase-1 was localized mainly in astrocytes rather than in MG/MΦ. Inhibition or gene knockout of MyD88 reduced M1 MG/MΦ and gliosis although increasing M2 MG/MΦ in the hippocampi of SE mice. MyD88 inhibition also augmented glutamate transporter 1 expression and reduced N-methyl-D-aspartate receptor NR1 subunit expression in the hippocampus to protect pyramidal neurons from apoptosis. These data suggest that MG/MΦ polarization after SE impacts the pathological outcome of the hippocampus via MyD88 signaling and point to MyD88 as a potential neuroprotective target for epilepsy therapy.
Collapse
Affiliation(s)
- Jin-Tao Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
- Institute of Neurosciences, Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China
- Department of Orthopedics, The 413th Hospital of the Chinese People's Liberation Army, Zhoushan, 316000, China
| | - Sheng-Xi Wu
- Institute of Neurosciences, Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China
| | - Hua Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, 710038, China.
| | - Fang Kuang
- Institute of Neurosciences, Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
231
|
Yon JM, Kim YB, Park D. The Ethanol Fraction of White Rose Petal Extract Abrogates Excitotoxicity-Induced Neuronal Damage In Vivo and In Vitro through Inhibition of Oxidative Stress and Proinflammation. Nutrients 2018; 10:1375. [PMID: 30261613 PMCID: PMC6213719 DOI: 10.3390/nu10101375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 01/10/2023] Open
Abstract
Since oxidative stress and inflammation are involved in seizure-related neurotoxicity, the neuroprotective effect of a white rose (Rosa hybrida) petal extract (WRPE) in mice that are challenged with kainic acid (KA) were examined using behavioral epileptiform seizures as well as biochemical and morphological parameters of oxidative stress and inflammation. WRPE (50⁻200 mg/kg) was orally administered to male ICR mice for 15 days, and intraperitoneally challenged with KA (30 mg/kg). Seizure activity, lipid peroxidation, inflammatory cytokines, and related enzymes were analyzed in the brain tissue, in addition to the morphological alterations in the hippocampal pyramidal neurons. Separately, antioxidant ingredients in WRPE were analyzed, and antioxidant, anti-inflammatory, and neuroprotective activities of WRPE were investigated in HB1.F3 human neural stem cells (NSCs) to elucidate underlying mechanisms. Total polyphenol and flavonoid contents in WRPE were 303.3 ± 15.3 mg gallic acid equivalent/g extract and 18.5 ± 2.2 mg catechin/g extract, respectively. WRPE exhibited strong radical-scavenging activities and inhibited lipid peroxidation in vitro, and protected glutamate-induced cytotoxicity in NSCs by suppressing inflammatory process. Treatment with WRPE attenuated epileptiform seizure scores to a half level in KA-challenged mice, and decreased hippocampal pyramidal neuronal injury and loss (cresyl violet and DAPI staining) as well as astrocyte activation (GFAP immunostaining). Lipid peroxidation was inhibited, and mRNA expression of antioxidant enzymes (GPx, PHGPx, SOD1, and SOD2) were recovered in the brain tissues. Inflammatory parameters (cytokines and enzymes) including NF-kB, IL-1β, TNF-α, IL-6, HMGB1, TGF-β, iNOS, COX2, and GFAP mRNAs and proteins were also down-regulated by WRPE treatment. Taken together, the results indicate that WRPE could attenuate KA-induced brain injury through antioxidative and anti-inflammatory activities.
Collapse
Affiliation(s)
- Jung-Min Yon
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Yun-Bae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju, Chungbuk 28173, Korea.
| |
Collapse
|
232
|
Iqubal A, Sharma S, Sharma K, Bhavsar A, Hussain I, Iqubal MK, Kumar R. Intranasally administered pitavastatin ameliorates pentylenetetrazol-induced neuroinflammation, oxidative stress and cognitive dysfunction. Life Sci 2018; 211:172-181. [PMID: 30227132 DOI: 10.1016/j.lfs.2018.09.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
AIM The present study aimed to evaluate the neuroprotective potential of intranasally administered pitavastatin in the PTZ-induced kindling model. MATERIALS AND METHODS Subconvulsant dose of PTZ (35 mg/kg, i.p) was administered on an alternate day until the development of kindling. Behavioural test, biochemical tests and inflammatory cytokines were estimated. Comparative molecular docking study of sodium valproate (VPA) and pitavastatin was performed to predict the binding affinity with GABAA and GABA transaminase. Intranasally administered pitavastatin (0.5 mg/kg and 1 mg/kg) and VPA (200 mg/kg) were used to investigate its protective effect. KEY FINDINGS Comparative in-silico study showed docking score of -4.56 and -2.86 against GABAA receptor whereas -5.56 and -1.86, against GABA transaminase. Root mean square deviation (RMSD) of 0.39A and 0.55A was found for pitavastatin and VPA, respectively. The present study showed the dose-dependent protective effect of intranasally administered pitavastatin and oral VPA against PTZ-induced seizure, cognitive impairment, oxidative stress, and neuroinflammation. SIGNIFICANCE Our findings suggest that the intranasally administered pitavastatin is potential therapeutic approach to managing PTZ-induced kindling and associated comorbid conditions via its antioxidant, anti-inflammatory, and anticonvulsant potential. Further, pitavastatin can modulate GABAA receptor and GABA transaminase enzyme to ameliorate seizure. Meanwhile, more extensive studies are required to establish the molecular mechanism underlying the neuroprotective effect of pitavastatin.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ashish Bhavsar
- School of Pharmaceutical Science, RGPV, Bhopal MP-462036, India
| | - Ibrahim Hussain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ratendra Kumar
- Om Bioscience and Pharma College, Roorkee-Haridwar, Uttarakhand 249405, India.
| |
Collapse
|
233
|
Paudel YN, Shaikh MF, Chakraborti A, Kumari Y, Aledo-Serrano Á, Aleksovska K, Alvim MKM, Othman I. HMGB1: A Common Biomarker and Potential Target for TBI, Neuroinflammation, Epilepsy, and Cognitive Dysfunction. Front Neurosci 2018; 12:628. [PMID: 30271319 PMCID: PMC6142787 DOI: 10.3389/fnins.2018.00628] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
High mobility group box protein 1 (HMGB1) is a ubiquitous nuclear protein released by glia and neurons upon inflammasome activation and activates receptor for advanced glycation end products (RAGE) and toll-like receptor (TLR) 4 on the target cells. HMGB1/TLR4 axis is a key initiator of neuroinflammation. In recent days, more attention has been paid to HMGB1 due to its contribution in traumatic brain injury (TBI), neuroinflammatory conditions, epileptogenesis, and cognitive impairments and has emerged as a novel target for those conditions. Nevertheless, HMGB1 has not been portrayed as a common prognostic biomarker for these HMGB1 mediated pathologies. The current review discusses the contribution of HMGB1/TLR4/RAGE signaling in several brain injury, neuroinflammation mediated disorders, epileptogenesis and cognitive dysfunctions and in the light of available evidence, argued the possibilities of HMGB1 as a common viable biomarker of the above mentioned neurological dysfunctions. Furthermore, the review also addresses the result of preclinical studies focused on HMGB1 targeted therapy by the HMGB1 antagonist in several ranges of HMGB1 mediated conditions and noted an encouraging result. These findings suggest HMGB1 as a potential candidate to be a common biomarker of TBI, neuroinflammation, epileptogenesis, and cognitive dysfunctions which can be used for early prediction and progression of those neurological diseases. Future study should explore toward the translational implication of HMGB1 which can open the windows of opportunities for the development of innovative therapeutics that could prevent several associated HMGB1 mediated pathologies discussed herein.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ayanabha Chakraborti
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ángel Aledo-Serrano
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Katina Aleksovska
- Medical Faculty, Department of Neurology, "Saints Cyril and Methodius" University, Skopje, Macedonia
| | | | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
234
|
Broekaart DWM, Anink JJ, Baayen JC, Idema S, de Vries HE, Aronica E, Gorter JA, van Vliet EA. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia 2018; 59:1931-1944. [PMID: 30194729 DOI: 10.1111/epi.14550] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Because brain inflammation may contribute to the pathophysiology of temporal lobe epilepsy (TLE), we investigated the expression of various inflammatory markers of the innate and adaptive immune system in the epileptogenic human and rat hippocampus in relation to seizure activity and blood-brain barrier (BBB) dysfunction. METHODS Immunohistochemistry was performed using various immune cell markers (for microglia, monocytes, macrophages, T lymphocytes, and dendritic cells) on hippocampal sections of drug-resistant TLE patients and patients who died after status epilepticus. The expression of these markers was also studied in the electrical post-status epilepticus rat model for TLE, during the acute, latent, and chronic epileptic phase. BBB dysfunction was assessed using albumin immunohistochemistry and the BBB tracer fluorescein. RESULTS Monocyte infiltration, microglia, and perivascular macrophage activation were persistently increased in both epileptogenic human and rat hippocampus, whereas T lymphocytes and dendritic cells were not or were scarcely detected. In addition to this, increased expression of C-C motif ligand 2 (CCL2) and osteopontin was observed. In humans, the expression of CD68 and CCL2 was related to the duration of epilepsy and type of pathology. In rats, the expression of CD68, CCL2, and the perivascular macrophage marker CD163 was related to the duration of the initial insult and to the number of spontaneous seizures. Interestingly, the number of CD163-positive perivascular macrophages was also positively correlated to BBB dysfunction in chronic epileptic rats. SIGNIFICANCE These data suggest a proepileptogenic role for monocytes/macrophages and other cells of the innate immune response, possibly via increased BBB leakage, and indicate that T cells and dendritic cells, which are closely associated with the adaptive immune response, are only sparsely infiltrated during epileptogenesis in the electrical post-status epilepticus rat model. Future studies should reveal the relative importance of these immune cells and whether specific manipulation can modify or prevent epileptogenesis.
Collapse
Affiliation(s)
- Diede W M Broekaart
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Erwin A van Vliet
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
235
|
Zhand A, Sayad A, Ghafouri-Fard S, Arsang-Jang S, Mazdeh M, Taheri M. Expression analysis of GRIN2B, BDNF, and IL-1β genes in the whole blood of epileptic patients. Neurol Sci 2018; 39:1945-1953. [PMID: 30140987 DOI: 10.1007/s10072-018-3533-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
Abstract
Epilepsy is a brain disorder with a global prevalence of 1%. It has been attributed to genetics and environmental factors. Despite efforts to identify the molecular pathology of epilepsy, the underlying mechanism is not understood yet. This study was carried out to compare GRIN2B, BDNF, and IL-1β gene expressions in 50 patients suffering from generalized epilepsy with tonic-colonic seizures and 50 age- and sex-matched healthy subjects using TaqMan Real-time PCR. Our results demonstrated significant upregulation of these genes in people with epilepsy compared with healthy subjects. We also found a positive correlation between GRIN2B and BDNF expression (r2=0.4619, p < 0.0001), BDNF and IL-1β expression (r2 = 0.515, p < 0.0001), and GRIN2B and IL-1β gene expressions (r2 = 0.666, p < 0.0001) which implies the possibility to estimate the expression level of these genes by assessment of expression of one of them. Considering the results of the previous animal studies which showed upregulation of these genes in brain tissues of epileptic animals, the expression levels of GRIN2B, BDNF, and IL-1β in blood samples might be related to their expression in brain samples. Future studies are needed to assess the role of these genes in the pathogenesis of epilepsy and evaluate whether altered expression of these genes along with imaging methods can facilitate subtyping the epilepsy.
Collapse
Affiliation(s)
- Anoushe Zhand
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran. .,Urogenital Stem Cell Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| |
Collapse
|
236
|
Paudel YN, Shaikh MF, Shah S, Kumari Y, Othman I. Role of inflammation in epilepsy and neurobehavioral comorbidities: Implication for therapy. Eur J Pharmacol 2018; 837:145-155. [PMID: 30125565 DOI: 10.1016/j.ejphar.2018.08.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epilepsy is a devastating condition affecting around 70 million people worldwide. Moreover, the quality of life of people with epilepsy (PWE) is worsened by a series of comorbidities. The neurobehavioral comorbidities discussed herein share a reciprocal and complex relationship with epilepsy, which ultimately complicates the treatment process in PWE. Understanding the mechanistic pathway by which these comorbidities are associated with epilepsy might be instrumental in developing therapeutic interventions. Inflammatory cytokine signaling in the brain regulates important brain functions including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, dopaminergic transmission, the kynurenine pathway, and affects neurogenesis as well as the neural circuitry of moods. In this review, we hypothesize that the complex relationship between epilepsy and its related comorbidities (cognitive impairment, depression, anxiety, autism, and schizophrenia) can be unraveled through the inflammatory mechanism that plays a prominent role in all these individual conditions. An ample amount of evidence is available reporting the role of inflammation in epilepsy and all individual comorbid condition but their complex relationship with epilepsy has not yet been explored through the prospective of inflammatory pathway. Our review suggests that epilepsy and its neurobehavioral comorbidities are associated with elevated levels of several key inflammatory markers. This review also sheds light on the mechanistic association between epilepsy and its neurobehavioral comorbidities. Moreover, we analyzed several anti-inflammatory therapies available for epilepsy and its neurobehavioral comorbidities. We suggest, these anti-inflammatory therapies might be a possible intervention and could be a promising strategy for preventing epileptogenesis and its related neurobehavioral comorbidities.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia.
| | - Sadia Shah
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
237
|
Kalozoumi G, Kel-Margoulis O, Vafiadaki E, Greenberg D, Bernard H, Soreq H, Depaulis A, Sanoudou D. Glial responses during epileptogenesis in Mus musculus point to potential therapeutic targets. PLoS One 2018; 13:e0201742. [PMID: 30114263 PMCID: PMC6095496 DOI: 10.1371/journal.pone.0201742] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/21/2018] [Indexed: 01/21/2023] Open
Abstract
The Mesio-Temporal Lobe Epilepsy syndrome is the most common form of intractable epilepsy. It is characterized by recurrence of focal seizures and is often associated with hippocampal sclerosis and drug resistance. We aimed to characterize the molecular changes occurring during the initial stages of epileptogenesis in search of new therapeutic targets for Mesio-Temporal Lobe Epilepsy. We used a mouse model obtained by intra-hippocampal microinjection of kainate and performed hippocampal whole genome expression analysis at 6h, 12h and 24h post-injection, followed by multilevel bioinformatics analysis. We report significant changes in immune and inflammatory responses, neuronal network reorganization processes and glial functions, predominantly initiated during status epilepticus at 12h and persistent after the end of status epilepticus at 24h post-kainate. Upstream regulator analysis highlighted Cyba, Cybb and Vim as central regulators of multiple overexpressed genes implicated in glial responses at 24h. In silico microRNA analysis indicated that miR-9, miR-19b, miR-129, and miR-223 may regulate the expression of glial-associated genes at 24h. Our data support the hypothesis that glial-mediated inflammatory response holds a key role during epileptogenesis, and that microglial cells may participate in the initial process of epileptogenesis through increased ROS production via the NOX complex.
Collapse
Affiliation(s)
- Georgia Kalozoumi
- Clinical Genomics and Pharmacogenomics Unit, 4 Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - David Greenberg
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Antoine Depaulis
- INSERM, Grenoble, France
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
- CHU de Grenoble, Hôpital Michallon, Grenoble, France
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4 Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
238
|
de Gois da Silva ML, da Silva Oliveira GL, de Oliveira Bezerra D, da Rocha Neto HJ, Feitosa MLT, Argôlo Neto NM, Rizzo MDS, de Carvalho MAM. Neurochemical properties of neurospheres infusion in experimental-induced seizures. Tissue Cell 2018; 54:47-54. [PMID: 30309509 DOI: 10.1016/j.tice.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Cell replacement through neural stem cells has been a promising alternative therapy for neurodegenerative diseases. It was evaluated the possible protect and/or prevent role of neurospheres in experimental models of epilepsy by the use of biomarkers of oxidative stress and histopathological analysis. After 1 h of the epileptic inductions by pilocarpine, pentylenotetrazole and picrotoxin, rats were infused with a suspension of 2 × 106 cells/0.25 mL, marked with Qtracker® 655, via caudal vein. In the control group epilepsy was not induced, but received the cell infusion under the same conditions of other groups. After 30 days, the rats were euthanized, and the removal of the brain was proceeded to later perform the assays oxidative stress and histopathology analysis. Thiobarbituric acid and nitrite levels were elevated in epileptic groups treated with neurospheres, and the levels of reduced glutathione, superoxide dismutase and catalase were reduced when compared to non-treated groups. The performance of oxidative enzymes from pilocarpine group treated with neurospheres showed slight increase. Histopathological evaluation observed distribution of neurospheres throughout the brain tissue, with viable cells and in process of differentiation in the pilocarpine group, but with differentiation and regeneration compromised in epilepsy by picrotoxin and pentylenetetrazole due to a microenvironment of oxidative stress. Neural stem cell therapy has a promising potential for protection in the pilocarpine epilepsy model, suggesting that the antioxidant system of neurospheres could reduce oxidative damage generated by seizure.
Collapse
Affiliation(s)
| | - George Laylson da Silva Oliveira
- Postgraduate program in biotechnology-RENORBIO, Federal University of Piauí, Teresina, PI, Ininga Campus, Brazil; Department of Biology, Federal Institute of Mato Grosso, Guarantã do Norte - MT, Guarantã do Norte Campus, Brazil.
| | - Dayseanny de Oliveira Bezerra
- Integrated Nucleus of Morphology and Stem Cell Research, Agrarian Sciences Center, Federal University of Piauí, Teresina, PI, Ininga Campus, Brazil.
| | - Hermínio José da Rocha Neto
- Integrated Nucleus of Morphology and Stem Cell Research, Agrarian Sciences Center, Federal University of Piauí, Teresina, PI, Ininga Campus, Brazil.
| | - Matheus Levi Tajra Feitosa
- Integrated Nucleus of Morphology and Stem Cell Research, Agrarian Sciences Center, Federal University of Piauí, Teresina, PI, Ininga Campus, Brazil; State University of Maranhão, São Luis, MA, Brazil.
| | - Napoleão Martins Argôlo Neto
- Integrated Nucleus of Morphology and Stem Cell Research, Agrarian Sciences Center, Federal University of Piauí, Teresina, PI, Ininga Campus, Brazil.
| | - Marcia Dos Santos Rizzo
- Department of Morphology, Health Sciences Center, Federal University of Piauí, Teresina, PI, Ininga Campus, Brazil.
| | - Maria Acelina Martins de Carvalho
- Postgraduate program in biotechnology-RENORBIO, Federal University of Piauí, Teresina, PI, Ininga Campus, Brazil; Integrated Nucleus of Morphology and Stem Cell Research, Agrarian Sciences Center, Federal University of Piauí, Teresina, PI, Ininga Campus, Brazil.
| |
Collapse
|
239
|
Bhardwaj A, Bhardwaj R, Dhawan DK, Kaur T. Exploring the Effect of Endoplasmic Reticulum Stress Inhibition by 4-Phenylbutyric Acid on AMPA-Induced Hippocampal Excitotoxicity in Rat Brain. Neurotox Res 2018; 35:83-91. [DOI: 10.1007/s12640-018-9932-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/05/2023]
|
240
|
Li TR, Jia YJ, Wang Q, Shao XQ, Zhang P, Lv RJ. Correlation between tumor necrosis factor alpha mRNA and microRNA-155 expression in rat models and patients with temporal lobe epilepsy. Brain Res 2018; 1700:56-65. [PMID: 30006293 DOI: 10.1016/j.brainres.2018.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023]
Abstract
Accumulative evidence demonstrates that there is an inseparable connection between inflammation and temporal lobe epilepsy (TLE). Some recent studies have found that the multifunctional microRNA-155 (miR-155) is a key regulator in controlling the neuroinflammatory response of TLE rodent animals and patients. The aim of the present study was to investigate the dynamic expression pattern of tumor necrosis factor alpha (TNF-α) as a pro-inflammatory cytokine and miR-155 as a posttranscriptional inflammation-related miRNA in the hippocampus of TLE rat models and patients. We performed real-time quantitative PCR (qRT-PCR) on the rat hippocampus 2 h, 7 days, 21 days and 60 days following kainic acid-induced status epilepticus (SE) and on hippocampi obtained from TLE patients and normal controls. To further characterize the relationship between TNF-α and miR-155, we examined the effect of antagonizing miR-155 on TNF-α secretion using its antagomir. Here, we found that TNF-α secretion and miR-155 expression levels were correlated after SE. The expression of TNF-α reached peak levels in the acute phase (2h post-SE) of seizure and then gradually decreased; however, it rose again in the chronic phase (60 days post-SE). miR-155 expression started to increase 2 h post-SE, reached peak levels in the latent phase (7 days post-SE) of seizure and then gradually decreased. The variation in the trend of miR-155 lagged behind that of TNF-α. In patients with TLE, the expression levels of both TNF-α and miR-155 were also significantly increased. Furthermore, antagonizing miR-155 inhibited the production of TNF-α in the hippocampal tissues of TLE rat models. Our findings demonstrate a critical role for miR-155 in the physiological regulation of the TNF-α pro-inflammatory response and elucidate the role of neuroinflammation in the pathogenesis of TLE. Therefore, regulation of the miR-155/TNF-α axis may be a new therapeutic target for TLE.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, 88 Road of JianKang, WeiHui, Xinxiang 453100, PR China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, 6 TianTanXiLi, Dongcheng District, Beijing 100050, PR China
| | - Yan-Jie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 East Road of JianShe, Erqi District, Zhengzhou 450052, PR China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, 6 TianTanXiLi, Dongcheng District, Beijing 100050, PR China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, 6 TianTanXiLi, Dongcheng District, Beijing 100050, PR China
| | - Ping Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, 88 Road of JianKang, WeiHui, Xinxiang 453100, PR China
| | - Rui-Juan Lv
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, 6 TianTanXiLi, Dongcheng District, Beijing 100050, PR China.
| |
Collapse
|
241
|
Magalhães DM, Pereira N, Rombo DM, Beltrão-Cavacas C, Sebastião AM, Valente CA. Ex vivo model of epilepsy in organotypic slices-a new tool for drug screening. J Neuroinflammation 2018; 15:203. [PMID: 29996878 PMCID: PMC6042335 DOI: 10.1186/s12974-018-1225-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Epilepsy is a prevalent neurological disorder worldwide. It is characterized by an enduring predisposition to generate seizures and its development is accompanied by alterations in many cellular processes. Organotypic slice cultures represent a multicellular environment with the potential to assess biological mechanisms, and they are used as a starting point for refining molecules for in vivo studies. Here, we investigated organotypic slice cultures as a model of epilepsy. METHODS We assessed, by electrophysiological recordings, the spontaneous activity of organotypic slices maintained under different culture protocols. Moreover, we evaluated, through molecular-based approaches, neurogenesis, neuronal death, gliosis, expression of proinflammatory cytokines, and activation of NLRP3 inflammasome (nucleotide-binding, leucine-rich repeat, pyrin domain) as biomarkers of neuroinflammation. RESULTS We demonstrated that organotypic slices, maintained under a serum deprivation culture protocol, develop epileptic-like activity. Furthermore, throughout a comparative study with slices that do not depict any epileptiform activity, slices with epileptiform activity were found to display significant differences in terms of inflammation-related features, such as (1) increased neuronal death, with higher incidence in CA1 pyramidal neurons of the hippocampus; (2) activation of astrocytes and microglia, assessed through western blot and immunohistochemistry; (3) upregulation of proinflammatory cytokines, specifically interleukin-1β (IL-1β), interleukin-6, and tumor necrosis factor α, revealed by qPCR; and (4) enhanced expression of NLRP3, assessed by western blot, together with increased NLRP3 activation, showed by IL-1β quantification. CONCLUSIONS Thus, organotypic slice cultures gradually deprived of serum mimic the epileptic-like activity, as well as the inflammatory events associated with in vivo epilepsy. This system can be considered a new tool to explore the interplay between neuroinflammation and epilepsy and to screen potential drug candidates, within the inflammatory cascades, to reduce/halt epileptogenesis.
Collapse
Affiliation(s)
- Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Noémia Pereira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo M Rombo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Beltrão-Cavacas
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
242
|
Morales-Sosa M, Orozco-Suárez S, Vega-García A, Caballero-Chacón S, Feria-Romero IA. Immunomodulatory effect of Celecoxib on HMGB1/TLR4 pathway in a recurrent seizures model in immature rats. Pharmacol Biochem Behav 2018; 170:79-86. [DOI: 10.1016/j.pbb.2018.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022]
|
243
|
Luo WD, Min JW, Huang WX, Wang X, Peng YY, Han S, Yin J, Liu WH, He XH, Peng BW. Vitexin reduces epilepsy after hypoxic ischemia in the neonatal brain via inhibition of NKCC1. J Neuroinflammation 2018; 15:186. [PMID: 29925377 PMCID: PMC6011387 DOI: 10.1186/s12974-018-1221-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic brain damage, characterized by tissue loss and neurologic dysfunction, is a leading cause of mortality and a devastating disease of the central nervous system. We have previously shown that vitexin has been attributed various medicinal properties and has been demonstrated to have neuroprotective roles in neonatal brain injury models. In the present study, we continued to reinforce and validate the basic understanding of vitexin (45 mg/kg) as a potential treatment for epilepsy and explored its possible underlying mechanisms. METHODS P7 Sprague-Dawley (SD) rats that underwent right common carotid artery ligation and rat brain microvascular endothelial cells (RBMECs) were used for the assessment of Na+-K+-Cl- co-transporter1 (NKCC1) expression, BBB permeability, cytokine expression, and neutrophil infiltration by western blot, q-PCR, flow cytometry (FCM), and immunofluorescence respectively. Furthermore, brain electrical activity in freely moving rats was recorded by electroencephalography (EEG). RESULTS Our data showed that NKCC1 expression was attenuated in vitexin-treated rats compared to the expression in the HI group in vivo. Oxygen glucose deprivation/reoxygenation (OGD) was performed on RBMECs to explore the role of NKCC1 and F-actin in cytoskeleton formation with confocal microscopy, N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide, and FCM. Concomitantly, treatment with vitexin effectively alleviated OGD-induced NKCC1 expression, which downregulated F-actin expression in RBMECs. In addition, vitexin significantly ameliorated BBB leakage and rescued the expression of tight junction-related protein ZO-1. Furthermore, inflammatory cytokine and neutrophil infiltration were concurrently and progressively downregulated with decreasing BBB permeability in rats. Vitexin also significantly suppressed brain electrical activity in neonatal rats. CONCLUSIONS Taken together, these results confirmed that vitexin effectively alleviates epilepsy susceptibility through inhibition of inflammation along with improved BBB integrity. Our study provides a strong rationale for the further development of vitexin as a promising therapeutic candidate treatment for epilepsy in the immature brain.
Collapse
Affiliation(s)
- Wen-di Luo
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Hubei Donghu Rd 185#, Wuhan, 430071, Hubei, China
| | - Jia-Wei Min
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Hubei Donghu Rd 185#, Wuhan, 430071, Hubei, China
| | - Wen-Xian Huang
- Department of Pathology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xin Wang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Hubei Donghu Rd 185#, Wuhan, 430071, Hubei, China
| | - Yuan-Yuan Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Hubei Donghu Rd 185#, Wuhan, 430071, Hubei, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Hubei Donghu Rd 185#, Wuhan, 430071, Hubei, China.
| |
Collapse
|
244
|
Sen A, Capelli V, Husain M. Cognition and dementia in older patients with epilepsy. Brain 2018; 141:1592-1608. [PMID: 29506031 PMCID: PMC5972564 DOI: 10.1093/brain/awy022] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
With advances in healthcare and an ageing population, the number of older adults with epilepsy is set to rise substantially across the world. In developed countries the highest incidence of epilepsy is already in people over 65 and, as life expectancy increases, individuals who developed epilepsy at a young age are also living longer. Recent findings show that older persons with epilepsy are more likely to suffer from cognitive dysfunction and that there might be an important bidirectional relationship between epilepsy and dementia. Thus some people with epilepsy may be at a higher risk of developing dementia, while individuals with some forms of dementia, particularly Alzheimer's disease and vascular dementia, are at significantly higher risk of developing epilepsy. Consistent with this emerging view, epidemiological findings reveal that people with epilepsy and individuals with Alzheimer's disease share common risk factors. Recent studies in Alzheimer's disease and late-onset epilepsy also suggest common pathological links mediated by underlying vascular changes and/or tau pathology. Meanwhile electrophysiological and neuroimaging investigations in epilepsy, Alzheimer's disease, and vascular dementia have focused interest on network level dysfunction, which might be important in mediating cognitive dysfunction across all three of these conditions. In this review we consider whether seizures promote dementia, whether dementia causes seizures, or if common underlying pathophysiological mechanisms cause both. We examine the evidence that cognitive impairment is associated with epilepsy in older people (aged over 65) and the prognosis for patients with epilepsy developing dementia, with a specific emphasis on common mechanisms that might underlie the cognitive deficits observed in epilepsy and Alzheimer's disease. Our analyses suggest that there is considerable intersection between epilepsy, Alzheimer's disease and cerebrovascular disease raising the possibility that better understanding of shared mechanisms in these conditions might help to ameliorate not just seizures, but also epileptogenesis and cognitive dysfunction.
Collapse
Affiliation(s)
- Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Valentina Capelli
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Masud Husain
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
- Department of Experimental Psychology, University of Oxford, UK
| |
Collapse
|
245
|
Deshmukh A, Leichner J, Bae J, Song Y, Valdés-Hernández PA, Lin WC, Riera JJ. Histological Characterization of the Irritative Zones in Focal Cortical Dysplasia Using a Preclinical Rat Model. Front Cell Neurosci 2018; 12:52. [PMID: 29867355 PMCID: PMC5968101 DOI: 10.3389/fncel.2018.00052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
Current clinical practice in focal epilepsy involves brain source imaging (BSI) to localize brain areas where from interictal epileptiform discharges (IEDs) emerge. These areas, named irritative zones, have been useful to define candidate seizures-onset zones during pre-surgical workup. Since human histological data are mostly available from final resected zones, systematic studies characterizing pathophysiological mechanisms and abnormal molecular/cellular substrates in irritative zones—independent of them being epileptogenic—are challenging. Combining BSI and histological analysis from all types of irritative zones is only possible through the use of preclinical animal models. Here, we recorded 32-channel spontaneous electroencephalographic data from rats that have focal cortical dysplasia (FCD) and chronic seizures. BSI for different IED subtypes was performed using the methodology presented in Bae et al. (2015). Post-mortem brain sections containing irritative zones were stained to quantify anatomical, functional, and inflammatory biomarkers specific for epileptogenesis, and the results were compared with those obtained using the contralateral healthy brain tissue. We found abnormal anatomical structures in all irritative zones (i.e., larger neuronal processes, glioreactivity, and vascular cuffing) and larger expressions for neurotransmission (i.e., NR2B) and inflammation (i.e., ILβ1, TNFα and HMGB1). We conclude that irritative zones in this rat preclinical model of FCD comprise abnormal tissues disregarding whether they are actually involved in icto-genesis or not. We hypothesize that seizure perpetuation happens gradually; hence, our results could support the use of IED-based BSI for the early diagnosis and preventive treatment of potential epileptic foci. Further verifications in humans are yet needed.
Collapse
Affiliation(s)
- Abhay Deshmukh
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jared Leichner
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jihye Bae
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Yinchen Song
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Pedro A Valdés-Hernández
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Wei-Chiang Lin
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jorge J Riera
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| |
Collapse
|
246
|
Autistic traits in epilepsy models: Why, when and how? Epilepsy Res 2018; 144:62-70. [PMID: 29783181 DOI: 10.1016/j.eplepsyres.2018.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/18/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a common comorbidity of epilepsy and seizures and/or epileptiform activity are observed in a significant proportion of ASD patients. Current research also implies that autistic traits can be observed to a various degree in mice and rats with seizures. This suggests that there are shared mechanisms in both ASD and epilepsy syndromes. Here, we first review the standard, validated methods used to assess autistic traits in animal models as well as their limitations with regards to epilepsy models. We then discuss two of the potential pathological processes that could be shared between ASD and epilepsy. We first focus on functional implications of neuroinflammation including changes to excitable networks mediated by inflammatory regulators. Finally we examine mechanisms at the cellular and network level involved in neuronal excitability, timing and network coordination that may directly lead to behavioral disturbances present in both epilepsy and ASD. This mini-review summarizes the work first presented at an Investigators Workshop at the 2016 American Epilepsy Society meeting.
Collapse
|
247
|
Gao B, Wu Y, Yang YJ, Li WZ, Dong K, Zhou J, Yin YY, Huang DK, Wu WN. Sinomenine exerts anticonvulsant profile and neuroprotective activity in pentylenetetrazole kindled rats: involvement of inhibition of NLRP1 inflammasome. J Neuroinflammation 2018; 15:152. [PMID: 29776417 PMCID: PMC5960124 DOI: 10.1186/s12974-018-1199-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/13/2018] [Indexed: 02/08/2023] Open
Abstract
Background Epilepsy is a common neurological disorder and is not well controlled by available antiepileptic drugs (AEDs). Inflammation is considered to be a critical factor in the pathophysiology of epilepsy. Sinomenine (SN), a bioactive alkaloid with anti-inflammatory effect, exerts neuroprotective activity in many nervous system diseases. However, little is known about the effect of SN on epilepsy. Methods The chronic epilepsy model was established by pentylenetetrazole (PTZ) kindling. Morris water maze (MWM) was used to test spatial learning and memory ability. H.E. staining and Hoechst 33258 staining were used to evaluate hippocampal neuronal damage. The expression of nucleotide oligomerization domain (NOD)-like receptor protein 1 (NLRP1) inflammasome complexes and the level of inflammatory cytokines were determined by western blot, quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA) kits. Results SN (20, 40, and 80 mg/kg) dose-dependently disrupts the kindling acquisition process, which decreases the seizure scores and the incidence of fully kindling. SN also increases the latency of seizure and decreases the duration of seizure in fully kindled rats. In addition, different doses of SN block the hippocampal neuronal damage and minimize the impairment of spatial learning and memory in PTZ kindled rats. Finally, PTZ kindling increases the expression of NLRP1 inflammasome complexes and the levels of inflammatory cytokines IL-1β, IL-18, IL-6, and TNF-α, which are all attenuated by SN in a dose- dependent manner. Conclusions SN exerts anticonvulsant and neuroprotective activity in PTZ kindling model of epilepsy. Disrupting the kindling acquisition, which inhibits NLRP1 inflammasome-mediated inflammatory process, might be involved in its effects. Electronic supplementary material The online version of this article (10.1186/s12974-018-1199-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Gao
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yuan-Jian Yang
- Department of Psychiatry and Medical Experimental Center, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, 330029, People's Republic of China
| | - Wei-Zu Li
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Kun Dong
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jun Zhou
- Department of Pharmacy, Xi'an Chest Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710061, People's Republic of China
| | - Yan-Yan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Da-Ke Huang
- Synthetic Laboratory, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wen-Ning Wu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
248
|
Goschorska M, Baranowska-Bosiacka I, Gutowska I, Tarnowski M, Piotrowska K, Metryka E, Safranow K, Chlubek D. Effect of acetylcholinesterase inhibitors donepezil and rivastigmine on the activity and expression of cyclooxygenases in a model of the inflammatory action of fluoride on macrophages obtained from THP-1 monocytes. Toxicology 2018; 406-407:9-20. [PMID: 29777723 DOI: 10.1016/j.tox.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/31/2022]
Abstract
Inflammation is an important factor in the development of many diseases of the central nervous system, including Alzheimer's disease and other types of dementia. Given that acetylcholinesterase inhibitors are also currently believed to have anti-inflammatory properties, the purpose of this study was to investigate the effect of acetylcholinesterase inhibitors (rivastigmine, donepezil) on cyclooxygenase activity and expression using the proinflammatory action of fluoride (F-) on cultured macrophages obtained from THP-1 monocytes. COX-1 and COX-2 activity was determined through measurement of the products of prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) in cell culture supernatants. Expression of COX-1 and COX-2 proteins was examined immunocytochemically, and mRNA expression was determined by qRT PCR. Our study confirmed the inhibitory effects of donepezil and rivastigmine on the production of PGE2, TXB2, COX-1 and COX-2 mRNA and protein expression in macrophages. We also demonstrated that the pro-inflammatory effect of fluoride may be reduced by the use of both drugs. The additive effect of these drugs cannot be ruled out, and effects other than those observed in the use of one drug should also be taken into account.
Collapse
Affiliation(s)
- Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, Szczecin 71-460, Poland.
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin 70-111, Poland.
| |
Collapse
|
249
|
Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation 2018; 15:144. [PMID: 29764485 PMCID: PMC5952578 DOI: 10.1186/s12974-018-1192-7] [Citation(s) in RCA: 446] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/06/2018] [Indexed: 12/18/2022] Open
Abstract
Epilepsy, a neurological disease characterized by recurrent seizures, is often associated with a history of previous lesions in the nervous system. Impaired regulation of the activation and resolution of inflammatory cells and molecules in the injured neuronal tissue is a critical factor to the development of epilepsy. However, it is still unclear as to how that unbalanced regulation of inflammation contributes to epilepsy. Therefore, one of the goals in epilepsy research is to identify and elucidate the interconnected inflammatory pathways in systemic and neurological disorders that may further develop epilepsy progression. In this paper, inflammatory molecules, in neurological and systemic disorders (rheumatoid arthritis, Crohn’s, Type I Diabetes, etc.) that could contribute to epilepsy development, are reviewed. Understanding the neurobiology of inflammation in epileptogenesis will contribute to the development of new biomarkers for better screening of patients at risk for epilepsy and new therapeutic targets for both prophylaxis and treatment of epilepsy.
Collapse
Affiliation(s)
- Amna Rana
- Department of Pathology and Anatomy, Department of Neurology, Eastern Virginia Medical School, 700 W. Olney Road, Lewis Hall, Office 2174, Norfolk, VA, 23507, USA
| | - Alberto E Musto
- Department of Pathology and Anatomy, Department of Neurology, Eastern Virginia Medical School, 700 W. Olney Road, Lewis Hall, Office 2174, Norfolk, VA, 23507, USA.
| |
Collapse
|
250
|
Notch Signaling Regulates Microglial Activation and Inflammatory Reactions in a Rat Model of Temporal Lobe Epilepsy. Neurochem Res 2018; 43:1269-1282. [PMID: 29737480 DOI: 10.1007/s11064-018-2544-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/23/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023]
Abstract
The inflammatory response mediated by microglia in the central nervous system is closely related to epilepsy. Notch signaling plays an important role in the microglial activation during hypoxia. This study aimed to investigate whether Notch signaling is involved in microglial activation and subsequent inflammation-related neuronal injury during the process of epileptogenesis in a rat model of temporal lobe epilepsy. By using western blotting, real-time quantitative PCR, immunohistochemistry and immunofluorescence labeling, we found that the expression of Notch signaling increased after status epilepticus and that a γ-secretase inhibitor could significantly inhibit the upregulation of Notch signaling, the activation of microglia, and the release of proinflammatory cytokines. Likewise, the neuronal apoptosis and loss in the hippocampus after SE were attenuated by the γ-secretase inhibitor. These results suggest that Notch signaling plays a key role in neuroinflammation and inflammation-related neuronal damage in epilepsy, and γ-secretase inhibitors may become a novel prospective therapeutic agent for epilepsy.
Collapse
|