201
|
Tian H, Gao P, Chen Z, Li Y, Li Y, Wang Y, Zhou J, Li G, Ma T. Compositions and Abundances of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Water-Flooded Petroleum Reservoirs with Different Temperatures in China. Front Microbiol 2017; 8:143. [PMID: 28210252 PMCID: PMC5288354 DOI: 10.3389/fmicb.2017.00143] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) have been studied extensively in the petroleum industry due to their role in corrosion, but very little is known about sulfur-oxidizing bacteria (SOB), which drive the oxidization of sulfur-compounds produced by the activity of SRB in petroleum reservoirs. Here, we surveyed the community structure, diversity and abundance of SRB and SOB simultaneously based on 16S rRNA, dsrB and soxB gene sequencing, and quantitative PCR analyses, respectively in petroleum reservoirs with different physicochemical properties. Similar to SRB, SOB were found widely inhabiting the analyzed reservoirs with high diversity and different structures. The dominant SRB belonged to the classes Deltaproteobacteria and Clostridia, and included the Desulfotignum, Desulfotomaculum, Desulfovibrio, Desulfobulbus, and Desulfomicrobium genera. The most frequently detected potential SOB were Sulfurimonas, Thiobacillus, Thioclava, Thiohalomonas and Dechloromonas, and belonged to Betaproteobacteria, Alphaproteobacteria, and Epsilonproteobacteria. Among them, Desulfovibrio, Desulfomicrobium, Thioclava, and Sulfurimonas were highly abundant in the low-temperature reservoirs, while Desulfotomaculum, Desulfotignum, Thiobacillus, and Dechloromonas were more often present in high-temperature reservoirs. The relative abundances of SRB and SOB varied and were present at higher proportions in the relatively high-temperature reservoirs. Canonical correspondence analysis also revealed that the SRB and SOB communities in reservoirs displayed high niche specificity and were closely related to reservoir temperature, pH of the formation brine, and sulfate concentration. In conclusion, this study extends our knowledge about the distribution of SRB and SOB communities in petroleum reservoirs.
Collapse
Affiliation(s)
- Huimei Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Peike Gao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Zhaohui Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Yanshu Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Yan Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Yansen Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Jiefang Zhou
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University Tianjin, China
| |
Collapse
|
202
|
Slobodkina GB, Mardanov AV, Ravin NV, Frolova AA, Chernyh NA, Bonch-Osmolovskaya EA, Slobodkin AI. Respiratory Ammonification of Nitrate Coupled to Anaerobic Oxidation of Elemental Sulfur in Deep-Sea Autotrophic Thermophilic Bacteria. Front Microbiol 2017; 8:87. [PMID: 28194142 PMCID: PMC5276818 DOI: 10.3389/fmicb.2017.00087] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/12/2017] [Indexed: 02/05/2023] Open
Abstract
Respiratory ammonification of nitrate is the microbial process that determines the retention of nitrogen in an ecosystem. To date, sulfur-dependent dissimilatory nitrate reduction to ammonium has been demonstrated only with sulfide as an electron donor. We detected a novel pathway that couples the sulfur and nitrogen cycles. Thermophilic anaerobic bacteria Thermosulfurimonas dismutans and Dissulfuribacter thermophilus, isolated from deep-sea hydrothermal vents, grew autotrophically with elemental sulfur as an electron donor and nitrate as an electron acceptor producing sulfate and ammonium. The genomes of both bacteria contain a gene cluster that encodes a putative nitrate ammonification enzyme system. Nitrate reduction occurs via a Nap-type complex. The reduction of produced nitrite to ammonium does not proceed via the canonical Nrf system because nitrite reductase NrfA is absent in the genomes of both microorganisms. The genome of D. thermophilus encodes a complete sulfate reduction pathway, while the Sox sulfur oxidation system is missing, as shown previously for T. dismutans. Thus, in high-temperature environments, nitrate ammonification with elemental sulfur may represent an unrecognized route of primary biomass production. Moreover, the anaerobic oxidation of sulfur compounds coupled to growth has not previously been demonstrated for the members of Thermodesulfobacteria or Deltaproteobacteria, which were considered exclusively as participants of the reductive branch of the sulfur cycle.
Collapse
Affiliation(s)
- Galina B Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Anastasia A Frolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Nikolay A Chernyh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Alexander I Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
203
|
Jewell TNM, Karaoz U, Bill M, Chakraborty R, Brodie EL, Williams KH, Beller HR. Metatranscriptomic Analysis Reveals Unexpectedly Diverse Microbial Metabolism in a Biogeochemical Hot Spot in an Alluvial Aquifer. Front Microbiol 2017; 8:40. [PMID: 28179898 PMCID: PMC5264521 DOI: 10.3389/fmicb.2017.00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/06/2017] [Indexed: 02/05/2023] Open
Abstract
Organic matter deposits in alluvial aquifers have been shown to result in the formation of naturally reduced zones (NRZs), which can modulate aquifer redox status and influence the speciation and mobility of metals, affecting groundwater geochemistry. In this study, we sought to better understand how natural organic matter fuels microbial communities within anoxic biogeochemical hot spots (NRZs) in a shallow alluvial aquifer at the Rifle (CO) site. We conducted a 20-day microcosm experiment in which NRZ sediments, which were enriched in buried woody plant material, served as the sole source of electron donors and microorganisms. The microcosms were constructed and incubated under anaerobic conditions in serum bottles with an initial N2 headspace and were sampled every 5 days for metagenome and metatranscriptome profiles in combination with biogeochemical measurements. Biogeochemical data indicated that the decomposition of native organic matter occurred in different phases, beginning with mineralization of dissolved organic matter (DOM) to CO2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. A pulse of methanogenesis co-occurred with acetogenesis, but only accounted for a small fraction of carbon flux. The depletion of DOM over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage (~8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO2 fixation, H2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly expressed (>98th percentile) transcripts, including acetone carboxylase and cell-wall-associated hydrolases with unknown substrates (numerous lesser expressed cell-wall-associated hydrolases targeted peptidoglycan). Many of the most highly expressed hydrolases belonged to a Ca. Bathyarchaeota strain and may have been associated with recycling of bacterial biomass. Overall, these results highlight the complex nature of organic matter transformation in NRZs and the microbial metabolic pathways that interact to mediate redox status and elemental cycling.
Collapse
Affiliation(s)
- Talia N M Jewell
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Markus Bill
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Romy Chakraborty
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Kenneth H Williams
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Harry R Beller
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| |
Collapse
|
204
|
Mühling M, Poehlein A, Stuhr A, Voitel M, Daniel R, Schlömann M. Reconstruction of the Metabolic Potential of Acidophilic Sideroxydans Strains from the Metagenome of an Microaerophilic Enrichment Culture of Acidophilic Iron-Oxidizing Bacteria from a Pilot Plant for the Treatment of Acid Mine Drainage Reveals Metabolic Versatility and Adaptation to Life at Low pH. Front Microbiol 2016; 7:2082. [PMID: 28066396 PMCID: PMC5178258 DOI: 10.3389/fmicb.2016.02082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/08/2016] [Indexed: 11/13/2022] Open
Abstract
Bacterial community analyses of samples from a pilot plant for the treatment of acid mine drainage (AMD) from the lignite-mining district in Lusatia (East Germany) had previously demonstrated the dominance of two groups of acidophilic iron oxidizers: the novel candidate genus "Ferrovum" and a group comprising Gallionella-like strains. Since pure culture had proven difficult, previous studies have used genome analyses of co-cultures consisting of "Ferrovum" and a strain of the heterotrophic acidophile Acidiphilium in order to obtain insight into the life style of these novel bacteria. Here we report on attempts to undertake a similar study on Gallionella-like acidophiles from AMD. Isolates belonging to the family Gallionellaceae are still restricted to the microaerophilic and neutrophilic iron oxidizers Sideroxydans and Gallionella. Availability of genomic or metagenomic sequence data of acidophilic strains of these genera should, therefore, be relevant for defining adaptive strategies in pH homeostasis. This is particularly the case since complete genome sequences of the neutrophilic strains G. capsiferriformans ES-2 and S. lithotrophicus ES-1 permit the direct comparison of the metabolic capacity of neutrophilic and acidophilic members of the same genus and, thus, the detection of biochemical features that are specific to acidophilic strains to support life under acidic conditions. Isolation attempts undertaken in this study resulted in the microaerophilic enrichment culture ADE-12-1 which, based on 16S rRNA gene sequence analysis, consisted of at least three to four distinct Gallionellaceae strains that appear to be closely related to the neutrophilic iron oxidizer S. lithotrophicus ES-1. Key hypotheses inferred from the metabolic reconstruction of the metagenomic sequence data of these acidophilic Sideroxydans strains include the putative role of urea hydrolysis, formate oxidation and cyanophycin decarboxylation in pH homeostasis.
Collapse
Affiliation(s)
- Martin Mühling
- Institute of Biological Sciences, Technische Universität Bergakademie Freiberg Freiberg, Germany
| | - Anja Poehlein
- Georg-August-University Göttingen, Genomic and Applied Microbiology and Göttingen Genomics, Laboratory Göttingen, Germany
| | - Anna Stuhr
- Institute of Biological Sciences, Technische Universität Bergakademie Freiberg Freiberg, Germany
| | - Matthias Voitel
- Institute of Biological Sciences, Technische Universität Bergakademie Freiberg Freiberg, Germany
| | - Rolf Daniel
- Georg-August-University Göttingen, Genomic and Applied Microbiology and Göttingen Genomics, Laboratory Göttingen, Germany
| | - Michael Schlömann
- Institute of Biological Sciences, Technische Universität Bergakademie Freiberg Freiberg, Germany
| |
Collapse
|
205
|
Reiss RA, Guerra P, Makhnin O. Metagenome phylogenetic profiling of microbial community evolution in a tetrachloroethene-contaminated aquifer responding to enhanced reductive dechlorination protocols. Stand Genomic Sci 2016; 11:88. [PMID: 27980706 PMCID: PMC5131427 DOI: 10.1186/s40793-016-0209-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023] Open
Abstract
Chlorinated solvent contamination of potable water supplies is a serious problem worldwide. Biostimulation protocols can successfully remediate chlorinated solvent contamination through enhanced reductive dechlorination pathways, however the process is poorly understood and sometimes stalls creating a more serious problem. Whole metagenome techniques have the potential to reveal details of microbial community changes induced by biostimulation. Here we compare the metagenome of a tetrachloroethene contaminated Environmental Protection Agency Superfund Site before and after the application of biostimulation protocols. Environmental DNA was extracted from uncultured microbes that were harvested by on-site filtration of groundwater one month prior to and five months after the injection of emulsified vegetable oil, nutrients, and hydrogen gas bioamendments. Pair-end libraries were prepared for high-throughput DNA sequencing and 90 basepairs from both ends of randomly fragmented 400 basepair DNA fragments were sequenced. Over 31 millions reads were annotated with Metagenome Rapid Annotation using Subsystem Technology representing 32 prokaryotic phyla, 869 genera, and 3,181 species. A 3.6 log2 fold increase in biomass as measured by DNA yield per mL water was measured, but there was a 9% decrease in the number of genera detected post-remediation. We apply Bayesian statistical methods to assign false discovery rates to fold-change abundance data and use Zipf’s power law to filter genera with low read counts. Plotting the log-rank against the log-fold-change facilitates the visualization of the changes in the community in response to the enhanced reductive dechlorination protocol. Members of the Archaea domain increased 4.7 log2 fold, dominated by methanogens. Prior to remediation, classes Alphaproteobacteria and Betaproteobacteria dominated the community but exhibit significant decreases five months after biostimulation. Geobacter and Sulfurospirillum replace “Sideroxydans” and Burkholderia as the most abundant genera. As a result of biostimulation, Deltaproteobacteria and Epsilonproteobacteria capable of dehalogenation, iron and sulfate reduction, and sulfur oxidation increase. Matches to thermophilic, haloalkane respiring archaea is evidence for additional species involved in biodegradation of chlorinated solvents. Additionally, potentially pathogenic bacteria increase, indicating that there may be unintended consequences of bioremediation.
Collapse
Affiliation(s)
- Rebecca A Reiss
- New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 USA
| | - Peter Guerra
- AMEC Foster Wheeler Environment & Infrastructure, Inc, 8519 Jefferson NE, Albuquerque, NM 87113 USA
| | - Oleg Makhnin
- New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 USA
| |
Collapse
|
206
|
Ray S, Ghosh S, Bagchi A. Molecular Interactions, Structural Transitions and Alterations in SoxB Protein Due to SoxYZ Interaction from Two Distinct β-Proteobacteria: An In silico Approach Towards the Thiosulfate Oxidation and Recycling of SoxY Protein. Interdiscip Sci 2016; 10:390-399. [PMID: 27896664 DOI: 10.1007/s12539-016-0199-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/01/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Microbial oxidation-reduction reactions utilizing the environmental thiosulfate ions and mediated mainly by the sox operon are very much essential to maintain the sulfur balance in the environment. Majority of the previously documented wet laboratory studies show genetics behind the functionality of Sox proteins encoded by the sox operon. However, the molecular details of the involvements of the essential SoxB, SoxY and SoxZ proteins in the beta-proteobacteria have not yet been elucidated. In this work, an attempt was made to analyze the interaction profiles of the aforementioned SoxB, SoxY and SoxZ proteins to predict their roles in biological sulfur oxidation process. In order to establish the possible roles of these Sox proteins, we built the homology models of these proteins from the two different beta-proteobacteria Dechloromonas aromatica and Thiobacillus denitrificans. We then used molecular docking and simulation studies to further analyze the interaction profiles of these sox proteins. Our analyses revealed that SoxB protein from T. denitrificans exhibited steadier and stronger interactions with SoxYZ protein complex. On the other hand, SoxB protein from D. aromatica was found to exhibit a spontaneous interaction with greater ΔG values and therefore was well documented to exhibit a dual role. This is the first research article to discern the molecular level of interaction profiles of SoxB with SoxYZ protein complex in the beta-proteobacteria D. aromatica and T. denitrificans during the oxidations of thiosulfate. It would further prompt the future investigation into the mutational impact on the sequential interaction pattern in sox operon.
Collapse
Affiliation(s)
- Sujay Ray
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, 741245, India
| | - Semanti Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, 741245, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, West Bengal, 741245, India.
| |
Collapse
|
207
|
Guo W, Zhang H, Zhou W, Wang Y, Zhou H, Chen X. Sulfur Metabolism Pathways in Sulfobacillus acidophilus TPY, A Gram-Positive Moderate Thermoacidophile from a Hydrothermal Vent. Front Microbiol 2016; 7:1861. [PMID: 27917169 PMCID: PMC5114278 DOI: 10.3389/fmicb.2016.01861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Sulfobacillus acidophilus TPY, isolated from a hydrothermal vent in the Pacific Ocean, is a moderately thermoacidophilic Gram-positive bacterium that can oxidize ferrous iron or sulfur compounds to obtain energy. In this study, comparative transcriptomic analyses of S. acidophilus TPY were performed under different redox conditions. Based on these results, pathways involved in sulfur metabolism were proposed. Additional evidence was obtained by analyzing mRNA abundance of selected genes involved in the sulfur metabolism of sulfur oxygenase reductase (SOR)-overexpressed S. acidophilus TPY recombinant under different redox conditions. Comparative transcriptomic analyses of S. acidophilus TPY cultured in the presence of ferrous sulfate (FeSO4) or elemental sulfur (S0) were employed to detect differentially transcribed genes and operons involved in sulfur metabolism. The mRNA abundances of genes involved in sulfur metabolism decreased in cultures containing elemental sulfur, as opposed to cultures in which FeSO4 was present where an increase in the expression of sulfur metabolism genes, particularly sulfite reductase (SiR) involved in the dissimilatory sulfate reduction, was observed. SOR, whose mRNA abundance increased in S0 culture, may play an important role in the initial sulfur oxidation. In order to confirm the pathways, SOR overexpression in S. acidophilus TPY and subsequent mRNA abundance analysis of sulfur metabolism-related genes were carried out. Conjugation-based transformation of pTrc99A derived plasmid from heterotrophic E. coli to facultative autotrophic S. acidophilus TPY was developed in this study. Transconjugation between E. coli and S. acidophilus was performed on modified solid 2:2 medium at pH 4.8 and 37°C for 72 h. The SOR-overexpressed recombinant S. acidophilus TPY-SOR had a [Formula: see text]-accumulation increase, higher oxidation/ reduction potentials (ORPs) and lower pH compared with the wild type strain in the late growth stage of S0 culture condition. The transcript level of sor gene in the recombinant strain increased in both S0 and FeSO4 culture conditions, which influenced the transcription of other genes in the proposed sulfur metabolism pathways. Overall, these results expand our understanding of sulfur metabolism within the Sulfobacillus genus and provide a successful gene-manipulation method.
Collapse
Affiliation(s)
- Wenbin Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic AdministrationXiamen, China
| | - Huijun Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic AdministrationXiamen, China
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
| | - Wengen Zhou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic AdministrationXiamen, China
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
| | - Yuguang Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic AdministrationXiamen, China
| | - Hongbo Zhou
- Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South UniversityChangsha, China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic AdministrationXiamen, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory forMarine Science and TechnologyQingdao, China
| |
Collapse
|
208
|
Narayan KD, Sabat SC, Das SK. Mechanism of electron transport during thiosulfate oxidation in an obligately mixotrophic bacterium Thiomonas bhubaneswarensis strain S10 (DSM 18181 T). Appl Microbiol Biotechnol 2016; 101:1239-1252. [PMID: 27832308 DOI: 10.1007/s00253-016-7958-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/14/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
This study describes the thiosulfate-supported respiratory electron transport activity of Thiomonas bhubaneswarensis strain S10 (DSM 18181T). Whole-genome sequence analysis revealed the presence of complete sox (sulfur oxidation) gene cluster (soxCDYZAXB) including the sulfur oxygenase reductase (SOR), sulfide quinone reductase (SQR), sulfide dehydrogenase (flavocytochrome c (fcc)), thiosulfate dehydrogenase (Tsd), sulfite dehydrogenase (SorAB), and intracellular sulfur oxidation protein (DsrE/DsrF). In addition, genes encoding respiratory electron transport chain components viz. complex I (NADH dehydrogenase), complex II (succinate dehydrogenase), complex III (ubiquinone-cytochrome c reductase), and various types of terminal oxidases (cytochrome c and quinol oxidase) were identified in the genome. Using site-specific electron donors and inhibitors and by analyzing the cytochrome spectra, we identified the shortest thiosulfate-dependent electron transport chain in T. bhubaneswarensis DSM 18181T. Our results showed that thiosulfate supports the electron transport activity in a bifurcated manner, donating electrons to quinol (bd) and cytochrome c (Caa 3 ) oxidase; these two sites (quinol oxidase and cytochrome c oxidase) also showed differences in their phosphate esterification potential (oxidative phosphorylation efficiency (P/O)). Further, it was evidenced that the substrate-level phosphorylation is the major contributor to the total energy budget in this bacterium.
Collapse
Affiliation(s)
- Kunwar Digvijay Narayan
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, India
| | - Surendra Chandra Sabat
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, India
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, India.
| |
Collapse
|
209
|
Wang ZB, Li YQ, Lin JQ, Pang X, Liu XM, Liu BQ, Wang R, Zhang CJ, Wu Y, Lin JQ, Chen LX. The Two-Component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus. Front Microbiol 2016; 7:1755. [PMID: 27857710 PMCID: PMC5093147 DOI: 10.3389/fmicb.2016.01755] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/19/2016] [Indexed: 01/10/2023] Open
Abstract
Acidithiobacillus caldus (A. caldus) is a common bioleaching bacterium that possesses a sophisticated and highly efficient inorganic sulfur compound metabolism network. Thiosulfate, a central intermediate in the sulfur metabolism network of A. caldus and other sulfur-oxidizing microorganisms, can be metabolized via the tetrathionate intermediate (S4I) pathway catalyzed by thiosulfate:quinol oxidoreductase (Tqo or DoxDA) and tetrathionate hydrolase (TetH). In A. caldus, there is an additional two-component system called RsrS-RsrR. Since rsrS and rsrR are arranged as an operon with doxDA and tetH in the genome, we suggest that the regulation of the S4I pathway may occur via the RsrS-RsrR system. To examine the regulatory role of the two-component system RsrS-RsrR on the S4I pathway, ΔrsrR and ΔrsrS strains were constructed in A. caldus using a newly developed markerless gene knockout method. Transcriptional analysis of the tetH cluster in the wild type and mutant strains revealed positive regulation of the S4I pathway by the RsrS-RsrR system. A 19 bp inverted repeat sequence (IRS, AACACCTGTTACACCTGTT) located upstream of the tetH promoter was identified as the binding site for RsrR by using electrophoretic mobility shift assays (EMSAs) in vitro and promoter-probe vectors in vivo. In addition, ΔrsrR, and ΔrsrS strains cultivated in K2S4O6-medium exhibited significant growth differences when compared with the wild type. Transcriptional analysis indicated that the absence of rsrS or rsrR had different effects on the expression of genes involved in sulfur metabolism and signaling systems. Finally, a model of tetrathionate sensing by RsrS, signal transduction via RsrR, and transcriptional activation of tetH-doxDA was proposed to provide insights toward the understanding of sulfur metabolism in A. caldus. This study also provided a powerful genetic tool for studies in A. caldus.
Collapse
Affiliation(s)
- Zhao-Bao Wang
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Ya-Qing Li
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Xin Pang
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Xiang-Mei Liu
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | | | - Rui Wang
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Cheng-Jia Zhang
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Yan Wu
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Jian-Qiang Lin
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University Jinan, China
| |
Collapse
|
210
|
Structural Stability, Transitions, and Interactions within SoxYZCD-Thiosulphate from Sulfurimonas denitrificans: An In Silico Molecular Outlook for Maintaining Environmental Sulphur Cycle. JOURNAL OF BIOPHYSICS 2016; 2016:8683713. [PMID: 27777586 PMCID: PMC5061964 DOI: 10.1155/2016/8683713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/01/2016] [Indexed: 11/17/2022]
Abstract
Thiosulphate oxidation (an essential mechanism) serves to maintain the global sulphur cycle. Earlier experimental and computational studies dealt with environmental thiosulphate oxidation but none dealt with thiosulphate oxidation from deep ocean belts. Wet-laboratory experimental research shows that epsilon-proteobacteria Sulfurimonas denitrificans possess sox (sulphur-oxidizing) operon and perform thiosulphate oxidation efficiently underneath the oceans. From this specific sox operon, SoxCD complex recycles the thiosulphate-bound SoxY from SoxYZ complex to balance the environmental sulphur cycle. So, four chief proteins were variedly modeled and relevant simulated interactive structures were obtained. The final simulated tetraprotein complex (SoxYZCD) from docked SoxYZ and SoxCD complexes was disclosed to be a highly interactive one with predominant ionic residues. Free energy of folding, solvent accessibility, and conformational shifts (coil-like conformation to helices and sheets) were observed in SoxYZ complex after interacting with SoxCD. The stability of the complex (SoxYZCD) after simulation was also observed through the electrostatic surface potential values. These evaluations were rationalized via biostatistics. This aids SoxCD for recycling SoxY along with thiosulphate, which remains interconnected by four H-bonds with SoxY. Therefore, this novel exploration is endowed with the detailed molecular viewpoint for maintaining the sulphur cycle (globally) including the ocean belts.
Collapse
|
211
|
Bacterial communities involved in sulfur transformations in wastewater treatment plants. Appl Microbiol Biotechnol 2016; 100:10125-10135. [DOI: 10.1007/s00253-016-7839-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 10/20/2022]
|
212
|
Jewell TNM, Karaoz U, Brodie EL, Williams KH, Beller HR. Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow alluvial aquifer. THE ISME JOURNAL 2016; 10:2106-17. [PMID: 26943628 PMCID: PMC4989316 DOI: 10.1038/ismej.2016.25] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/06/2016] [Accepted: 01/10/2016] [Indexed: 11/29/2022]
Abstract
Groundwater ecosystems are conventionally thought to be fueled by surface-derived allochthonous organic matter and dominated by heterotrophic microbes living under often-oligotrophic conditions. However, in a 2-month study of nitrate amendment to a perennially suboxic aquifer in Rifle (CO), strain-resolved metatranscriptomic analysis revealed pervasive and diverse chemolithoautotrophic bacterial activity relevant to C, S, N and Fe cycling. Before nitrate injection, anaerobic ammonia-oxidizing (anammox) bacteria accounted for 16% of overall microbial community gene expression, whereas during the nitrate injection, two other groups of chemolithoautotrophic bacteria collectively accounted for 80% of the metatranscriptome: (1) members of the Fe(II)-oxidizing Gallionellaceae family and (2) strains of the S-oxidizing species, Sulfurimonas denitrificans. Notably, the proportion of the metatranscriptome accounted for by these three groups was considerably greater than the proportion of the metagenome coverage that they represented. Transcriptional analysis revealed some unexpected metabolic couplings, in particular, putative nitrate-dependent Fe(II) and S oxidation among nominally microaerophilic Gallionellaceae strains, including expression of periplasmic (NapAB) and membrane-bound (NarGHI) nitrate reductases. The three most active groups of chemolithoautotrophic bacteria in this study had overlapping metabolisms that allowed them to occupy different yet related metabolic niches throughout the study. Overall, these results highlight the important role that chemolithoautotrophy can have in aquifer biogeochemical cycling, a finding that has broad implications for understanding terrestrial carbon cycling and is supported by recent studies of geochemically diverse aquifers.
Collapse
Affiliation(s)
- Talia N M Jewell
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kenneth H Williams
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Harry R Beller
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
213
|
Desmond-Le Quéméner E, Rimboud M, Bridier A, Madigou C, Erable B, Bergel A, Bouchez T. Biocathodes reducing oxygen at high potential select biofilms dominated by Ectothiorhodospiraceae populations harboring a specific association of genes. BIORESOURCE TECHNOLOGY 2016; 214:55-62. [PMID: 27126080 DOI: 10.1016/j.biortech.2016.04.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 06/05/2023]
Abstract
Biocathodes polarized at high potential are promising for enhancing Microbial Fuel Cell performances but the microbes and genes involved remain poorly documented. Here, two sets of five oxygen-reducing biocathodes were formed at two potentials (-0.4V and +0.1V vs. saturated calomel electrode) and analyzed combining electrochemical and metagenomic approaches. Slower start-up but higher current densities were observed at high potential and a distinctive peak increasing over time was recorded on cyclic voltamogramms, suggesting the growth of oxygen reducing microbes. 16S pyrotag sequencing showed the enrichment of two operational taxonomic units (OTUs) affiliated to Ectothiorodospiraceae on high potential electrodes with the best performances. Shotgun metagenome sequencing and a newly developed method for the identification of Taxon Specific Gene Annotations (TSGA) revealed Ectothiorhodospiraceae specific genes possibly involved in electron transfer and in autotrophic growth. These results give interesting insights into the genetic features underlying the selection of efficient oxygen reducing microbes on biocathodes.
Collapse
Affiliation(s)
| | - Mickaël Rimboud
- Laboratoire de Génie Chimique (LGC), CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
| | - Arnaud Bridier
- Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | - Céline Madigou
- Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique (LGC), CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique (LGC), CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
| | - Théodore Bouchez
- Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France.
| |
Collapse
|
214
|
Kadnikov VV, Ivasenko DA, Beletskii AV, Mardanov AV, Danilova EV, Pimenov NV, Karnachuk OV, Ravin NV. A novel uncultured bacterium of the family Gallionellaceae: Description and genome reconstruction based on metagenomic analysis of microbial community in acid mine drainage. Microbiology (Reading) 2016. [DOI: 10.1134/s002626171604010x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
215
|
Seston SL, Beinart RA, Sarode N, Shockey AC, Ranjan P, Ganesh S, Girguis PR, Stewart FJ. Metatranscriptional Response of Chemoautotrophic Ifremeria nautilei Endosymbionts to Differing Sulfur Regimes. Front Microbiol 2016; 7:1074. [PMID: 27486438 PMCID: PMC4949241 DOI: 10.3389/fmicb.2016.01074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/27/2016] [Indexed: 12/26/2022] Open
Abstract
Endosymbioses between animals and chemoautotrophic bacteria are ubiquitous at hydrothermal vents. These environments are distinguished by high physico-chemical variability, yet we know little about how these symbioses respond to environmental fluctuations. We therefore examined how the γ-proteobacterial symbionts of the vent snail Ifremeria nautilei respond to changes in sulfur geochemistry. Via shipboard high-pressure incubations, we subjected snails to 105 μM hydrogen sulfide (LS), 350 μM hydrogen sulfide (HS), 300 μM thiosulfate (TS) and seawater without any added inorganic electron donor (ND). While transcript levels of sulfur oxidation genes were largely consistent across treatments, HS and TS treatments stimulated genes for denitrification, nitrogen assimilation, and CO2 fixation, coincident with previously reported enhanced rates of inorganic carbon incorporation and sulfur oxidation in these treatments. Transcripts for genes mediating oxidative damage were enriched in the ND and LS treatments, potentially due to a reduction in O2 scavenging when electron donors were scarce. Oxidative TCA cycle gene transcripts were also more abundant in ND and LS treatments, suggesting that I. nautilei symbionts may be mixotrophic when inorganic electron donors are limiting. These data reveal the extent to which I. nautilei symbionts respond to changes in sulfur concentration and species, and, interpreted alongside coupled biochemical metabolic rates, identify gene targets whose expression patterns may be predictive of holobiont physiology in environmental samples.
Collapse
Affiliation(s)
| | - Roxanne A Beinart
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA, USA
| | - Neha Sarode
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Abigail C Shockey
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Madison, WI, USA
| | - Piyush Ranjan
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Sangita Ganesh
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA, USA
| | - Frank J Stewart
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|
216
|
Imhoff JF. New Dimensions in Microbial Ecology-Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment. Microorganisms 2016; 4:microorganisms4020019. [PMID: 27681913 PMCID: PMC5029485 DOI: 10.3390/microorganisms4020019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022] Open
Abstract
During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5'phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane monooxygenase (pmoA) for methane oxidizing bacteria.
Collapse
Affiliation(s)
- Johannes F Imhoff
- GEOMAR Helmholtz-Zentrum für Ozeanforschung, Düsternbrooker Weg 20, D-24105 Kiel, Germany.
| |
Collapse
|
217
|
Sanliyuksel Yucel D, Balci N, Baba A. Generation of Acid Mine Lakes Associated with Abandoned Coal Mines in Northwest Turkey. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:757-782. [PMID: 26987541 DOI: 10.1007/s00244-016-0270-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
A total of five acid mine lakes (AMLs) located in northwest Turkey were investigated using combined isotope, molecular, and geochemical techniques to identify geochemical processes controlling and promoting acid formation. All of the investigated lakes showed typical characteristics of an AML with low pH (2.59-3.79) and high electrical conductivity values (1040-6430 μS/cm), in addition to high sulfate (594-5370 mg/l) and metal (aluminum [Al], iron [Fe], manganese [Mn], nickel [Ni], and zinc [Zn]) concentrations. Geochemical and isotope results showed that the acid-generation mechanism and source of sulfate in the lakes can change and depends on the age of the lakes. In the relatively older lakes (AMLs 1 through 3), biogeochemical Fe cycles seem to be the dominant process controlling metal concentration and pH of the water unlike in the younger lakes (AMLs 4 and 5). Bacterial species determined in an older lake (AML 2) indicate that biological oxidation and reduction of Fe and S are the dominant processes in the lakes. Furthermore, O and S isotopes of sulfate indicate that sulfate in the older mine lakes may be a product of much more complex oxidation/dissolution reactions. However, the major source of sulfate in the younger mine lakes is in situ pyrite oxidation catalyzed by Fe(III) produced by way of oxidation of Fe(II). Consistent with this, insignificant fractionation between δ(34) [Formula: see text] and δ(34) [Formula: see text] values indicated that the oxidation of pyrite, along with dissolution and precipitation reactions of Fe(III) minerals, is the main reason for acid formation in the region. Overall, the results showed that acid generation during early stage formation of an AML associated with pyrite-rich mine waste is primarily controlled by the oxidation of pyrite with Fe cycles becoming the dominant processes regulating pH and metal cycles in the later stages of mine lake development.
Collapse
Affiliation(s)
- Deniz Sanliyuksel Yucel
- Department of Geological Engineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, Turkey.
| | - Nurgul Balci
- Department of Geological Engineering, Faculty of Mines, Istanbul Technical University, Istanbul, Turkey
| | - Alper Baba
- Department of Civil Engineering, Engineering Faculty, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
218
|
Mineralogical Diversity in Lake Pavin: Connections with Water Column Chemistry and Biomineralization Processes. MINERALS 2016. [DOI: 10.3390/min6020024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
219
|
Insight into the Conformational Variations in SoxYZ Protein Complex from Two Different Members of the β-Proteobacterial Family Involved in Sulfur Oxidation. Interdiscip Sci 2016; 9:309-321. [PMID: 26961384 DOI: 10.1007/s12539-016-0153-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/27/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
Sulfur anions serve as the important environmental pollutants. Microbes use hydrogen sulfide in different redox reactions and thus make the environment pollution-free. The sulfur redox processes are performed by a gene cluster called the sox operon, possessed by a diverse set of microorganisms. However, most of the previous studies were confined to α-proteobacteria. In this work, we tried to elucidate the mechanistic details of sulfur oxidation in β-proteobacteria. We compared the molecular mechanism of sulfur oxidation process using Dechloromonas aromatica and Thiobacillus denitrificans. Dechloromonas aromatica possesses the entire sox operon, whereas T. denitrificans lacks SoxCD. In both the organisms, SoxYZ complex formation is essential for thiosulfate oxidation. This SoxYZ protein complex interacts with SoxCD and SoxAX, respectively, for recycling the thiosulfate-bound SoxY protein. For this purpose, individual proteins were modeled via manifold modeling techniques. Protein-protein docking studies were executed to generate duo- and quadro-protein complexes. Different stability parameters such as free energy of folding, solvent accessibility area (for final complexes), and electrostatic surface potential (for SoxYZ complexes) were calculated and analyzed. Fifteen strengthening ionic interactions were accomplished in the SoxYZAX complex, whereas eight such interactions were observed in SoxYZCD complex. From the result, SoxYZAX complex was found to be more stable and interactive one. This study is the first of its kind that analyzes the comparative aspects of the binding interactions of the proteins involved in redox reactions of sulfur anions. This study may, therefore, be helpful in tailoring the microorganisms to function in a better way to remove the environmental sulfur pollutants.
Collapse
|
220
|
Baatar B, Chiang PW, Rogozin DY, Wu YT, Tseng CH, Yang CY, Chiu HH, Oyuntsetseg B, Degermendzhy AG, Tang SL. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia. PLoS One 2016; 11:e0150847. [PMID: 26934492 PMCID: PMC4775032 DOI: 10.1371/journal.pone.0150847] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/19/2016] [Indexed: 12/20/2022] Open
Abstract
Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.
Collapse
Affiliation(s)
- Bayanmunkh Baatar
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Ting Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | - Cheng-Yu Yang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Hui Chiu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Bolormaa Oyuntsetseg
- School of Art and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | | | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
221
|
Das S, Chou ML, Jean JS, Liu CC, Yang HJ. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 542:642-652. [PMID: 26546760 DOI: 10.1016/j.scitotenv.2015.10.122] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
Although rice cultivated under water-saturated conditions as opposed to submerged conditions has received considerable attention with regard to reducing As levels in rice grain, the rhizosphere microbiome potentially influencing As-biotransformation and bioavailability in a rice ecosystem has rarely been studied. In this study, the impacts of flooded, non-flooded and alternate wetting and drying (AWD) practices on rhizosphere bacterial composition and activities that could potentially impact As speciation and accumulation in rhizosphere soil and pore water, As fractions in rhizosphere soil and As speciation and distribution in plant parts were assessed. The results revealed that in addition to pore water As concentration, non-specifically sorbed As fraction, specifically sorbed As fraction and amorphous iron oxide bound As fraction in soil were bio-available to rice plants. In the flooded treatment, As(III) in the pore water was the predominant As species, accounting for 87.3-93.6% of the total As, whereas in the non-flooded and AWD treatments, As(V) was the dominant As species, accounting for 89.6-96.2% and 73.0-83.0%, respectively. The genera Ohtaekwangia, Geobacter, Anaeromyxobacter, Desulfuromonas, Desulfocapsa, Desulfobulbus, and Lacibacter were found in relatively high abundance in the flooded soil, whereas the genera Acinetobacter, Ignavibacterium, Thiobacillus, and Lysobacter were detected in relatively high abundance in the non-flooded soil. Admittedly, the decrease in As level in rice cultivated under the non-flooded and AWD conditions was mostly linked to a relatively high soil redox potential, low As(III) concentration in the soil pore water, a decrease in the relative abundance of As-, Fe- and sulfur-reducing bacteria and an increase in the relative abundance of As-, Fe- and sulfur-oxidizing bacteria in the rhizosphere soil of the rice. This study demonstrated that with substantial reduction in grain As levels and higher water productivity, AWD practice in rice cultivation should be favored over the non-flooded and continuously flooded rice cultivations in As-contaminated sites.
Collapse
Affiliation(s)
- Suvendu Das
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Mon-Lin Chou
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jiin-Shuh Jean
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Chia-Chuan Liu
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Huai-Jen Yang
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
222
|
Steen IH, Dahle H, Stokke R, Roalkvam I, Daae FL, Rapp HT, Pedersen RB, Thorseth IH. Novel Barite Chimneys at the Loki's Castle Vent Field Shed Light on Key Factors Shaping Microbial Communities and Functions in Hydrothermal Systems. Front Microbiol 2016; 6:1510. [PMID: 26779165 PMCID: PMC4703759 DOI: 10.3389/fmicb.2015.01510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/14/2015] [Indexed: 01/23/2023] Open
Abstract
In order to fully understand the cycling of elements in hydrothermal systems it is critical to understand intra-field variations in geochemical and microbiological processes in both focused, high-temperature and diffuse, low-temperature areas. To reveal important causes and effects of this variation, we performed an extensive chemical and microbiological characterization of a low-temperature venting area in the Loki's Castle Vent Field (LCVF). This area, located at the flank of the large sulfide mound, is characterized by numerous chimney-like barite (BaSO4) structures (≤ 1 m high) covered with white cotton-like microbial mats. Results from geochemical analyses, microscopy (FISH, SEM), 16S rRNA gene amplicon-sequencing and metatranscriptomics were compared to results from previous analyses of biofilms growing on black smoker chimneys at LCVF. Based on our results, we constructed a conceptual model involving the geochemistry and microbiology in the LCVF. The model suggests that CH4 and H2S are important electron donors for microorganisms in both high-temperature and low-temperature areas, whereas the utilization of H2 seems restricted to high-temperature areas. This further implies that sub-seafloor processes can affect energy-landscapes, elemental cycling, and the metabolic activity of primary producers on the seafloor. In the cotton-like microbial mats on top of the active barite chimneys, a unique network of single cells of Epsilonproteobacteria interconnected by threads of extracellular polymeric substances (EPS) was seen, differing significantly from the long filamentous Sulfurovum filaments observed in biofilms on the black smokers. This network also induced nucleation of barite crystals and is suggested to play an essential role in the formation of the microbial mats and the chimneys. Furthermore, it illustrates variations in how different genera of Epsilonproteobacteria colonize and position cells in different vent fluid mixing zones within a vent field. This may be related to niche-specific physical characteristics. Altogether, the model provides a reference for future studies and illustrates the importance of systematic comparative studies of spatially closely connected niches in order to fully understand the geomicrobiology of hydrothermal systems.
Collapse
Affiliation(s)
- Ida H Steen
- Centre for Geobiology, University of BergenBergen, Norway; Department of Biology, University of BergenBergen, Norway
| | - Håkon Dahle
- Centre for Geobiology, University of BergenBergen, Norway; Department of Biology, University of BergenBergen, Norway
| | - Runar Stokke
- Centre for Geobiology, University of BergenBergen, Norway; Department of Biology, University of BergenBergen, Norway
| | - Irene Roalkvam
- Centre for Geobiology, University of BergenBergen, Norway; Department of Biology, University of BergenBergen, Norway
| | - Frida-Lise Daae
- Centre for Geobiology, University of BergenBergen, Norway; Department of Biology, University of BergenBergen, Norway
| | - Hans Tore Rapp
- Centre for Geobiology, University of BergenBergen, Norway; Department of Biology, University of BergenBergen, Norway
| | - Rolf B Pedersen
- Centre for Geobiology, University of BergenBergen, Norway; Department of Earth Science, University of BergenBergen, Norway
| | - Ingunn H Thorseth
- Centre for Geobiology, University of BergenBergen, Norway; Department of Earth Science, University of BergenBergen, Norway
| |
Collapse
|
223
|
Wang X, Xu G, Wan C, Ren Y, Tian E. Improved biomass production by humic analog anthraquinone-2-sulfonate from kitchen waste in a two-phase system. RSC Adv 2016. [DOI: 10.1039/c5ra18240a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The volatile fatty acids from kitchen waste were used as substrates of anoxygenic photosynthetic bacteria (APB) in a dark-photo fermentation reactor, and anthraquinone-2-sulfonate (AQS) was firstly applied to boost the biomass yield.
Collapse
Affiliation(s)
- Xingzu Wang
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Guihua Xu
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Chunli Wan
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Yiwei Ren
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Enling Tian
- Key Laboratory of Reservoir Aquatic Environment
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| |
Collapse
|
224
|
Florentino AP, Weijma J, Stams AJM, Sánchez-Andrea I. Ecophysiology and Application of Acidophilic Sulfur-Reducing Microorganisms. BIOTECHNOLOGY OF EXTREMOPHILES: 2016. [DOI: 10.1007/978-3-319-13521-2_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
225
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 527] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
226
|
Vikram S, Guerrero LD, Makhalanyane TP, Le PT, Seely M, Cowan DA. Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community. Environ Microbiol 2015; 18:1875-88. [PMID: 26470632 DOI: 10.1111/1462-2920.13088] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 11/28/2022]
Abstract
In hyperarid ecosystems, macroscopic communities are often restricted to cryptic niches, such as hypoliths (microbial communities found beneath translucent rocks), which are widely distributed in hyperarid desert environments. While hypolithic communities are considered to play a major role in productivity, the functional guilds implicated in these processes remain unclear. Here, we describe the metagenomic sequencing, assembly and analysis of hypolithic microbial communities from the Namib Desert. Taxonomic analyses using Small Subunit phylogenetic markers showed that bacterial phylotypes (93%) dominated the communities, with relatively small proportions of archaea (0.43%) and fungi (5.6%). Refseq-viral database analysis showed the presence of double stranded DNA viruses (7.8% contigs), dominated by Caudovirales (59.2%). Analysis of functional genes and metabolic pathways revealed that cyanobacteria were primarily responsible for photosynthesis with the presence of multiple copies of genes for both photosystems I and II, with a smaller but significant fraction of proteobacterial anoxic photosystem II genes. Hypolithons demonstrated an extensive genetic capacity for the degradation of phosphonates and mineralization of organic sulphur. Surprisingly, we were unable to show the presence of genes representative of complete nitrogen cycles. Taken together, our analyses suggest an extensive capacity for carbon, phosphate and sulphate cycling but only limited nitrogen biogeochemistry.
Collapse
Affiliation(s)
- Surendra Vikram
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Leandro D Guerrero
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Phuong T Le
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.,Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
| | - Mary Seely
- Gobabeb Research and Training Centre, Walvis Bay, Namibia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
227
|
Slobodkina GB, Baslerov RV, Novikov AA, Viryasov MB, Bonch-Osmolovskaya EA, Slobodkin AI. Inmirania thermothiophila gen. nov., sp. nov., a thermophilic, facultatively autotrophic, sulfur-oxidizing gammaproteobacterium isolated from a shallow-sea hydrothermal vent. Int J Syst Evol Microbiol 2015; 66:701-706. [PMID: 26582356 DOI: 10.1099/ijsem.0.000773] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thermophilic, facultatively autotrophic bacterium, strain S2479T, was isolated from a thermal spring located in a tidal zone of a geothermally heated beach (Kuril Islands, Russia). Cells of strain S2479T were rod-shaped and motile with a Gram-negative cell-wall type. The temperature range for growth was 35-68 °C (optimum 65 °C), and the pH range for growth was pH 5.5-8.8 (optimum pH 6.5). Growth of strain S2479T was observed in the presence of NaCl concentrations ranging from 0.5 to 3.5 % (w/v) (optimum 1.5-2.0 %). The strain oxidized sulfur and thiosulfate as sole energy sources for autotrophic growth under anaerobic conditions with nitrate as electron acceptor. Strain S2479T was also capable of heterotrophic growth by reduction of nitrate with oxidation of low-chain fatty acids and a limited number of other carboxylic acids or with complex proteinaceous compounds. Nitrate was reduced to N2. Sulfur compounds were oxidized to sulfate. Strain S2479T did not grow aerobically during incubation at atmospheric concentration of oxygen but was able to grow microaerobically (1 % of oxygen in gas phase). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was a member of the family Ectothiorhodospiraceae, order Chromatiales, class Gammaproteobacteria. On the basis of phylogenetic and phenotypic properties, strain S2479T represents a novel species of a new genus, for which the name Inmirania thermothiophila gen. nov., sp. nov. is proposed. The type strain of the type species is S2479T ( = DSM 100275T = VKM B-2962T).
Collapse
Affiliation(s)
- Galina B Slobodkina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071 Moscow, Russia
| | - Roman V Baslerov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect 33, bld. 2, 119071 Moscow, Russia
| | - Andrei A Novikov
- Gubkin Russian State University of Oil and Gas, Leninskiy Prospect 65, 117485 Moscow, Russia
| | - Mikhail B Viryasov
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1, 119899 Moscow, Russia
| | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071 Moscow, Russia
| | - Alexander I Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071 Moscow, Russia
| |
Collapse
|
228
|
First Azospirillum genome from aquatic environments: Whole-genome sequence of Azospirillum thiophilum BV-S(T), a novel diazotroph harboring a capacity of sulfur-chemolithotrophy from a sulfide spring. Mar Genomics 2015; 25:21-24. [PMID: 26545806 DOI: 10.1016/j.margen.2015.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 11/21/2022]
Abstract
Azospirillum thiophilum BV-S(T), isolated from a sulfide spring, is a novel nitrogen-fixing bacterium harboring sulfur-lithotrophy. In order to identify genetic characteristics with habitat- and metabolic features contrasting to those from terrestrial Azospirillum species, we present here the genome sequence of a novel species A. thiophilum BV-S(T), with a significance of first genome report in the aquatic Azospirillum species. The genome of strain BV-S(T) is comprised of 7.6Mb chromosome with a GC content of 68.2%. This information will contribute to expand understandings of sulfur-oxidizer microbes that preserve inherencies as a diazotroph, and further it will provide insights into genome plasticity of the genus Azospirillum for niche specific adaptations.
Collapse
|
229
|
Meyer DD, Andrino FG, Possedente de Lira S, Fornaro A, Corção G, Brandelli A. Sulphate production by Paracoccus pantotrophus ATCC 35512 from different sulphur substrates: sodium thiosulphate, sulphite and sulphide. ENVIRONMENTAL TECHNOLOGY 2015; 37:768-773. [PMID: 26269005 DOI: 10.1080/09593330.2015.1081411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
One of the problems in waste water treatment plants (WWTPs) is the increase in emissions of hydrogen sulphide (H2S), which can cause damage to the health of human populations and ecosystems. To control emissions of this gas, sulphur-oxidizing bacteria can be used to convert H2S to sulphate. In this work, sulphate detection was performed by spectrophotometry, ion chromatography and atomic absorption spectrometry, using Paracoccus pantotrophus ATCC 35512 as a reference strain growing in an inorganic broth supplemented with sodium thiosulphate (Na2S2O3·5H2O), sodium sulphide (Na2S) or sodium sulphite (Na2SO3), separately. The strain was metabolically competent in sulphate production. However, it was only possible to observe significant differences in sulphate production compared to abiotic control when the inorganic medium was supplemented with sodium thiosulphate. The three methods for sulphate detection showed similar patterns, although the chromatographic method was the most sensitive for this study. This strain can be used as a reference for sulphate production in studies with sulphur-oxidizing bacteria originating from environmental samples of WWTPs.
Collapse
Affiliation(s)
- Daniel Derrossi Meyer
- a Departamento de Microbiologia , Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul , Rua Sarmento Leite 500, 90050-170 Porto Alegre , Brazil
| | - Felipe Gabriel Andrino
- b Escola Superior de Agricultura Luiz de Queiroz (ESALQ) , Universidade de São Paulo , Av. Pádua Dias 11, 13418-900 Piracicaba , Brazil
| | - Simone Possedente de Lira
- b Escola Superior de Agricultura Luiz de Queiroz (ESALQ) , Universidade de São Paulo , Av. Pádua Dias 11, 13418-900 Piracicaba , Brazil
| | - Adalgiza Fornaro
- c Departamento de Ciências Atmosféricas , Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo , Rua do Matão 1226, 05508-090 São Paulo , Brazil
| | - Gertrudes Corção
- a Departamento de Microbiologia , Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul , Rua Sarmento Leite 500, 90050-170 Porto Alegre , Brazil
| | - Adriano Brandelli
- d Departamento de Ciência de Alimentos , Universidade Federal do Rio Grande do Sul , Av. Bento Gonçalves 9500, 91501-970 Porto Alegre , Brazil
| |
Collapse
|
230
|
Noguerola I, Picazo A, Llirós M, Camacho A, Borrego CM. Diversity of freshwaterEpsilonproteobacteriaand dark inorganic carbon fixation in the sulphidic redoxcline of a meromictic karstic lake. FEMS Microbiol Ecol 2015. [PMID: 26195601 DOI: 10.1093/femsec/fiv086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Imma Noguerola
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain
| | - Antonio Picazo
- Cavanilles Institute for Biodiversity and Evolutionary Biology and Department of Microbiology and Ecology, Edificio de Investigación 'Jeroni Muñoz', Campus de Burjassot, Universitat de Valencia, E-46100, Burjassot, Valencia, Spain
| | - Marc Llirós
- Université Catholique de Louvain, Institut des Sciences de la Vie, Place Croix du Sud, 4/5 L07.07.06, B-1348 Louvain-La-Neuve, Belgium
| | - Antonio Camacho
- Cavanilles Institute for Biodiversity and Evolutionary Biology and Department of Microbiology and Ecology, Edificio de Investigación 'Jeroni Muñoz', Campus de Burjassot, Universitat de Valencia, E-46100, Burjassot, Valencia, Spain
| | - Carles M Borrego
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain Water Quality and Microbial Diversity, Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003 Girona, Spain
| |
Collapse
|
231
|
Resilience and receptivity worked in tandem to sustain a geothermal mat community amidst erratic environmental conditions. Sci Rep 2015; 5:12179. [PMID: 26184838 PMCID: PMC4505329 DOI: 10.1038/srep12179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/17/2015] [Indexed: 11/23/2022] Open
Abstract
To elucidate how geothermal irregularities affect the sustainability of high-temperature microbiomes we studied the synecological dynamics of a geothermal microbial mat community (GMMC) vis-à-vis fluctuations in its environment. Spatiotemporally-discrete editions of a photosynthetic GMMC colonizing the travertine mound of a circum-neutral hot spring cluster served as the model-system. In 2010 a strong geyser atop the mound discharged mineral-rich hot water, which nourished a GMMC continuum from the proximal channels (PC) upto the slope environment (SE) along the mound’s western face. In 2011 that geyser extinguished and consequently the erstwhile mats disappeared. Nevertheless, two relatively-weaker vents erupted in the southern slope and their mineral-poor outflow supported a small GMMC patch in the SE. Comparative metagenomics showed that this mat was a relic of the 2010 community, conserved via population dispersal from erstwhile PC as well as SE niches. Subsequently in 2012, as hydrothermal activity augmented in the southern slope, ecological niches widened and the physiologically-heterogeneous components of the 2011 “seed-community” split into PC and SE meta-communities, thereby reclaiming either end of the thermal gradient. Resilience of incumbent populations, and the community’s receptiveness towards immigrants, were the key qualities that ensured the GMMC’s sustenance amidst habitat degradation and dispersal to discrete environments.
Collapse
|
232
|
Klatt JM, Polerecky L. Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation. Front Microbiol 2015; 6:484. [PMID: 26052315 PMCID: PMC4440400 DOI: 10.3389/fmicb.2015.00484] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/02/2015] [Indexed: 11/13/2022] Open
Abstract
Chemolithoautotrophic sulfur oxidizing bacteria (SOB) couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen, and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a generic theoretical framework for linking the stoichiometry and energy conservation efficiency of autotrophic sulfur oxidation while accounting for the partitioning of the reduced sulfur pool between the energy generating and energy conserving steps as well as between the main possible products (sulfate vs. zero-valent sulfur). Using this framework, we show that the energy conservation efficiency varies widely among SOB with no apparent relationship to their phylogeny. Aerobic SOB equipped with reverse dissimilatory sulfite reductase tend to have higher efficiency than those relying on the complete Sox pathway, whereas for anaerobic SOB the presence of membrane-bound, as opposed to periplasmic, nitrate reductase systems appears to be linked to higher efficiency. We employ the framework to also show how limited rate measurements can be used to estimate the primary productivity of SOB without the knowledge of the sulfate-to-zero-valent-sulfur production ratio. Finally, we discuss how the framework can help researchers gain new insights into the activity of SOB and their niches.
Collapse
Affiliation(s)
| | - Lubos Polerecky
- Max Planck Institute for Marine MicrobiologyBremen, Germany
- Department of Earth Sciences – Geochemistry, Faculty of Geosciences, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
233
|
Carolan MT, Smith JM, Beman JM. Transcriptomic evidence for microbial sulfur cycling in the eastern tropical North Pacific oxygen minimum zone. Front Microbiol 2015; 6:334. [PMID: 26029168 PMCID: PMC4426714 DOI: 10.3389/fmicb.2015.00334] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/03/2015] [Indexed: 01/06/2023] Open
Abstract
Microbial communities play central roles in ocean biogeochemical cycles, and are particularly important in in oceanic oxygen minimum zones (OMZs). However, the key carbon, nitrogen, and sulfur (S) cycling processes catalyzed by OMZ microbial communities are poorly constrained spatially, temporally, and with regard to the different microbial groups involved. Here we sample across dissolved oxygen (DO) gradients in the oceans’ largest OMZ by volume—the eastern tropical North Pacific ocean, or ETNP—and quantify 16S rRNA and functional gene transcripts to detect and constrain the activity of different S-cycling groups. Based on gene expression profiles, putative dissimilatory sulfite reductase (dsrA) genes are actively expressed within the ETNP OMZ. dsrA expression was limited almost entirely to samples with elevated nitrite concentrations, consistent with previous observations in the Eastern Tropical South Pacific OMZ. dsrA and ‘reverse’ dissimilatory sulfite reductase (rdsrA) genes are related and the associated enzymes are known to operate in either direction—reducing or oxidizing different S compounds. We found that rdsrA genes and soxB genes were expressed in the same samples, suggestive of active S cycling in the ETNP OMZ. These data provide potential thresholds for S cycling in OMZs that closely mimic recent predictions, and indicate that S cycling may be broadly relevant in OMZs.
Collapse
Affiliation(s)
- Molly T Carolan
- Life and Environmental Sciences and Sierra Nevada Research Institute, University of California at Merced Merced, CA, USA
| | - Jason M Smith
- Monterey Bay Aquarium Research Institute Moss Landing, CA, USA
| | - J M Beman
- Monterey Bay Aquarium Research Institute Moss Landing, CA, USA
| |
Collapse
|
234
|
Abstract
Hydrogen sulfide (H₂S) has emerged as an important signaling molecule with beneficial effects on various cellular processes affecting, for example, cardiovascular and neurological functions. The physiological importance of H₂S is motivating efforts to develop strategies for modulating its levels. However, advancement in the field of H₂S-based therapeutics is hampered by fundamental gaps in our knowledge of how H₂S is regulated, its mechanism of action, and its molecular targets. This review provides an overview of sulfur metabolism; describes recent progress that has shed light on the mechanism of H₂S as a signaling molecule; and examines nutritional regulation of sulfur metabolism, which pertains to health and disease.
Collapse
Affiliation(s)
- Omer Kabil
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600;
| | | | | |
Collapse
|
235
|
Rowe AR, Chellamuthu P, Lam B, Okamoto A, Nealson KH. Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism. Front Microbiol 2015; 5:784. [PMID: 25642220 PMCID: PMC4294203 DOI: 10.3389/fmicb.2014.00784] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/21/2014] [Indexed: 11/13/2022] Open
Abstract
Little is known about the importance and/or mechanisms of biological mineral oxidation in sediments, partially due to the difficulties associated with culturing mineral-oxidizing microbes. We demonstrate that electrochemical enrichment is a feasible approach for isolation of microbes capable of gaining electrons from insoluble minerals. To this end we constructed sediment microcosms and incubated electrodes at various controlled redox potentials. Negative current production was observed in incubations and increased as redox potential decreased (tested −50 to −400 mV vs. Ag/AgCl). Electrode-associated biomass responded to the addition of nitrate and ferric iron as terminal electron acceptors in secondary sediment-free enrichments. Elemental sulfur, elemental iron and amorphous iron sulfide enrichments derived from electrode biomass demonstrated products indicative of sulfur or iron oxidation. The microbes isolated from these enrichments belong to the genera Halomonas, Idiomarina, Marinobacter, and Pseudomonas of the Gammaproteobacteria, and Thalassospira and Thioclava from the Alphaproteobacteria. Chronoamperometry data demonstrates sustained electrode oxidation from these isolates in the absence of alternate electron sources. Cyclic voltammetry demonstrated the variability in dominant electron transfer modes or interactions with electrodes (i.e., biofilm, planktonic or mediator facilitated) and the wide range of midpoint potentials observed for each microbe (from 8 to −295 mV vs. Ag/AgCl). The diversity of extracellular electron transfer mechanisms observed in one sediment and one redox condition, illustrates the potential importance and abundance of these interactions. This approach has promise for increasing our understanding the extent and diversity of microbe mineral interactions, as well as increasing the repository of microbes available for electrochemical applications.
Collapse
Affiliation(s)
- Annette R Rowe
- Department of Earth Sciences, University of Southern California, Los Angeles Los Angeles, CA, USA
| | - Prithiviraj Chellamuthu
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles Los Angeles, CA, USA
| | - Bonita Lam
- Department Marine and Environmental Biology, University of Southern California, Los Angeles Los Angeles, CA, USA
| | - Akihiro Okamoto
- Department of Applied Chemistry, University of Tokyo Tokyo, Japan
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles Los Angeles, CA, USA ; Department of Molecular and Computational Biology, University of Southern California, Los Angeles Los Angeles, CA, USA ; Department Marine and Environmental Biology, University of Southern California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
236
|
Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics. ISME JOURNAL 2015; 9:1648-61. [PMID: 25575307 PMCID: PMC4478705 DOI: 10.1038/ismej.2014.254] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 11/09/2022]
Abstract
Stratified sulfurous lakes are appropriate environments for studying the links between composition and functionality in microbial communities and are potentially modern analogs of anoxic conditions prevailing in the ancient ocean. We explored these aspects in the Lake Banyoles karstic area (NE Spain) through metagenomics and in silico reconstruction of carbon, nitrogen and sulfur metabolic pathways that were tightly coupled through a few bacterial groups. The potential for nitrogen fixation and denitrification was detected in both autotrophs and heterotrophs, with a major role for nitrogen and carbon fixations in Chlorobiaceae. Campylobacterales accounted for a large percentage of denitrification genes, while Gallionellales were putatively involved in denitrification, iron oxidation and carbon fixation and may have a major role in the biogeochemistry of the iron cycle. Bacteroidales were also abundant and showed potential for dissimilatory nitrate reduction to ammonium. The very low abundance of genes for nitrification, the minor presence of anammox genes, the high potential for nitrogen fixation and mineralization and the potential for chemotrophic CO2 fixation and CO oxidation all provide potential clues on the anoxic zones functioning. We observed higher gene abundance of ammonia-oxidizing bacteria than ammonia-oxidizing archaea that may have a geochemical and evolutionary link related to the dominance of Fe in these environments. Overall, these results offer a more detailed perspective on the microbial ecology of anoxic environments and may help to develop new geochemical proxies to infer biology and chemistry interactions in ancient ecosystems.
Collapse
|
237
|
Gregoire P, Engelbrektson A, Hubbard CG, Metlagel Z, Csencsits R, Auer M, Conrad ME, Thieme J, Northrup P, Coates JD. Control of sulfidogenesis through bio-oxidation of H2S coupled to (per)chlorate reduction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:558-564. [PMID: 25756108 DOI: 10.1111/1758-2229.12156] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigated H2S attenuation by dissimilatory perchlorate-reducing bacteria (DPRB). All DPRB tested oxidized H2S coupled to (per)chlorate reduction without sustaining growth. H2S was preferentially utilized over organic electron donors resulting in an enriched (34S)-elemental sulfur product. Electron microscopy revealed elemental sulfur production in the cytoplasm and on the cell surface of the DPRB Azospira suillum. Based on our results, we propose a novel hybrid enzymatic-abiotic mechanism for H2S oxidation similar to that recently proposed for nitrate-dependent Fe(II) oxidation. The results of this study have implications for the control of biosouring and biocorrosion in a range of industrial environments.
Collapse
|
238
|
Hug K, Maher WA, Stott MB, Krikowa F, Foster S, Moreau JW. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand. Front Microbiol 2014; 5:569. [PMID: 25414696 PMCID: PMC4220137 DOI: 10.3389/fmicb.2014.00569] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/09/2014] [Indexed: 11/13/2022] Open
Abstract
Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with increased sequences from Aquificaceae, supports a role for methyltransferase in thermophilic arsenic resistance. Our study highlights microbial contributions to coupled arsenic and sulfur cycling at Champagne Pool, with implications for understanding the evolution of microbial arsenic resistance in sulfidic geothermal systems.
Collapse
Affiliation(s)
- Katrin Hug
- Geomicrobiology Laboratory, School of Earth Sciences, University of MelbourneMelbourne, VIC, Australia
| | - William A. Maher
- Ecochemistry Laboratory, Institute for Applied Ecology, University of CanberraCanberra, ACT, Australia
| | | | - Frank Krikowa
- Ecochemistry Laboratory, Institute for Applied Ecology, University of CanberraCanberra, ACT, Australia
| | - Simon Foster
- Ecochemistry Laboratory, Institute for Applied Ecology, University of CanberraCanberra, ACT, Australia
| | - John W. Moreau
- Geomicrobiology Laboratory, School of Earth Sciences, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
239
|
Dmytrenko O, Russell SL, Loo WT, Fontanez KM, Liao L, Roeselers G, Sharma R, Stewart FJ, Newton ILG, Woyke T, Wu D, Lang JM, Eisen JA, Cavanaugh CM. The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis. BMC Genomics 2014; 15:924. [PMID: 25342549 PMCID: PMC4287430 DOI: 10.1186/1471-2164-15-924] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was sequenced. RESULTS Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction, the S. velum symbiont genome was large (2.7 Mb), GC-rich (51%), and contained a large number (78) of mobile genetic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes, including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as an endosymbiont, the bacterium may have the capacity to live outside the host. CONCLUSIONS The physiological dexterity indicated by the genome substantially improves our understanding of the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may inhabit during their lifecycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jonathan A Eisen
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, 4081 Biological Laboratories, Cambridge, MA 02138, USA.
| | | |
Collapse
|
240
|
Härtig C, Lohmayer R, Kolb S, Horn MA, Inskeep WP, Planer-Friedrich B. Chemolithotrophic growth of the aerobic hyperthermophilic bacteriumThermocrinis ruberOC 14/7/2 on monothioarsenate and arsenite. FEMS Microbiol Ecol 2014; 90:747-60. [DOI: 10.1111/1574-6941.12431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Cornelia Härtig
- Department of Environmental Geochemistry; Bayreuth Center for Ecology and Environmental Research (BayCEER); University of Bayreuth; Bayreuth Germany
| | - Regina Lohmayer
- Department of Environmental Geochemistry; Bayreuth Center for Ecology and Environmental Research (BayCEER); University of Bayreuth; Bayreuth Germany
| | - Steffen Kolb
- Department of Ecological Microbiology; Bayreuth Center for Ecology and Environmental Research (BayCEER); University of Bayreuth; Bayreuth Germany
| | - Marcus A. Horn
- Department of Ecological Microbiology; Bayreuth Center for Ecology and Environmental Research (BayCEER); University of Bayreuth; Bayreuth Germany
| | - William P. Inskeep
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute (TBI); Montana State University; Bozeman MT USA
| | - Britta Planer-Friedrich
- Department of Environmental Geochemistry; Bayreuth Center for Ecology and Environmental Research (BayCEER); University of Bayreuth; Bayreuth Germany
| |
Collapse
|
241
|
Patterns of Macroinvertebrate and Fish Diversity in Freshwater Sulphide Springs. DIVERSITY-BASEL 2014. [DOI: 10.3390/d6030597] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Extreme environments are characterised by the presence of physicochemical stressors and provide unique study systems to address problems in evolutionary ecology research. Sulphide springs provide an example of extreme freshwater environments; because hydrogen sulphide’s adverse physiological effects induce mortality in metazoans even at micromolar concentrations. Sulphide springs occur worldwide, but while microbial communities in sulphide springs have received broad attention, little is known about macroinvertebrates and fish inhabiting these toxic environments. We reviewed qualitative occurrence records of sulphide spring faunas on a global scale and present a quantitative case study comparing diversity patterns in sulphidic and adjacent non-sulphidic habitats across replicated river drainages in Southern Mexico. While detailed studies in most regions of the world remain scarce, available data suggests that sulphide spring faunas are characterised by low species richness. Dipterans (among macroinvertebrates) and cyprinodontiforms (among fishes) appear to dominate the communities in these habitats. At least in fish, there is evidence for the presence of highly endemic species and populations exclusively inhabiting sulphide springs. We provide a detailed discussion of traits that might predispose certain taxonomic groups to colonize sulphide springs, how colonizers subsequently adapt to cope with sulphide toxicity, and how adaptation may be linked to speciation processes.
Collapse
|
242
|
Yousuf B, Kumar R, Mishra A, Jha B. Unravelling the carbon and sulphur metabolism in coastal soil ecosystems using comparative cultivation-independent genome-level characterisation of microbial communities. PLoS One 2014; 9:e107025. [PMID: 25225969 PMCID: PMC4167329 DOI: 10.1371/journal.pone.0107025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/07/2014] [Indexed: 11/23/2022] Open
Abstract
Bacterial autotrophy contributes significantly to the overall carbon balance, which stabilises atmospheric CO2 concentration and decelerates global warming. Little attention has been paid to different modes of carbon/sulphur metabolism mediated by autotrophic bacterial communities in terrestrial soil ecosystems. We studied these pathways by analysing the distribution and abundance of the diagnostic metabolic marker genes cbbM, apsA and soxB, which encode for ribulose-1,5-bisphosphate carboxylase/oxygenase, adenosine phosphosulphate reductase and sulphate thiohydrolase, respectively, among different contrasting soil types. Additionally, the abundance of community members was assessed by quantifying the gene copy numbers for 16S rRNA, cbbL, cbbM, apsA and soxB. Distinct compositional differences were observed among the clone libraries, which revealed a dominance of phylotypes associated with carbon and sulphur cycling, such as Gammaproteobacteria (Thiohalomonas, Allochromatium, Chromatium, Thiomicrospira) and Alphaproteobacteria (Rhodopseudomonas, Rhodovulum, Paracoccus). The rhizosphere soil was devoid of sulphur metabolism, as the soxB and apsA genes were not observed in the rhizosphere metagenome, which suggests the absence or inadequate representation of sulphur-oxidising bacteria. We hypothesise that the novel Gammaproteobacteria sulphur oxidisers might be actively involved in sulphur oxidation and inorganic carbon fixation, particularly in barren saline soil ecosystems, suggesting their significant putative ecological role and contribution to the soil carbon pool.
Collapse
Affiliation(s)
- Basit Yousuf
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Raghawendra Kumar
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Avinash Mishra
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
- * E-mail: (AM); (BJ)
| | - Bhavanath Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
- * E-mail: (AM); (BJ)
| |
Collapse
|
243
|
Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014; 18:791-809. [PMID: 25156418 PMCID: PMC4158274 DOI: 10.1007/s00792-014-0670-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/26/2014] [Indexed: 01/26/2023]
Abstract
Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art 'meta-omic' techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments.
Collapse
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, RAS, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Tom Berben
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Emily Denise Melton
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Lex Overmars
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte D. Vavourakis
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerard Muyzer
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
244
|
Hamilton TL, Bovee RJ, Thiel V, Sattin SR, Mohr W, Schaperdoth I, Vogl K, Gilhooly WP, Lyons TW, Tomsho LP, Schuster SC, Overmann J, Bryant DA, Pearson A, Macalady JL. Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake. GEOBIOLOGY 2014; 12:451-68. [PMID: 24976102 DOI: 10.1111/gbi.12092] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/30/2014] [Indexed: 05/10/2023]
Abstract
Mahoney Lake represents an extreme meromictic model system and is a valuable site for examining the organisms and processes that sustain photic zone euxinia (PZE). A single population of purple sulfur bacteria (PSB) living in a dense phototrophic plate in the chemocline is responsible for most of the primary production in Mahoney Lake. Here, we present metagenomic data from this phototrophic plate--including the genome of the major PSB, as obtained from both a highly enriched culture and from the metagenomic data--as well as evidence for multiple other taxa that contribute to the oxidative sulfur cycle and to sulfate reduction. The planktonic PSB is a member of the Chromatiaceae, here renamed Thiohalocapsa sp. strain ML1. It produces the carotenoid okenone, yet its closest relatives are benthic PSB isolates, a finding that may complicate the use of okenone (okenane) as a biomarker for ancient PZE. Favorable thermodynamics for non-phototrophic sulfide oxidation and sulfate reduction reactions also occur in the plate, and a suite of organisms capable of oxidizing and reducing sulfur is apparent in the metagenome. Fluctuating supplies of both reduced carbon and reduced sulfur to the chemocline may partly account for the diversity of both autotrophic and heterotrophic species. Collectively, the data demonstrate the physiological potential for maintaining complex sulfur and carbon cycles in an anoxic water column, driven by the input of exogenous organic matter. This is consistent with suggestions that high levels of oxygenic primary production maintain episodes of PZE in Earth's history and that such communities should support a diversity of sulfur cycle reactions.
Collapse
Affiliation(s)
- T L Hamilton
- Department of Geosciences, Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Tian RM, Wang Y, Bougouffa S, Gao ZM, Cai L, Bajic V, Qian PY. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge. Environ Microbiol 2014; 16:3548-61. [DOI: 10.1111/1462-2920.12586] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Ren-Mao Tian
- Divison of Life Science; Hong Kong University of Science and Technology; Hong Kong
| | - Yong Wang
- Divison of Life Science; Hong Kong University of Science and Technology; Hong Kong
- Sanya Institute of Deep Sea Science and Engineering; Chinese Academy of Sciences; San Ya Hai Nan China
| | - Salim Bougouffa
- Computational Bioscience Research Center (CBRC); King Abdullah University of Science and Technology (KAUST); Thuwal Saudi Arabia
| | - Zhao-Ming Gao
- Divison of Life Science; Hong Kong University of Science and Technology; Hong Kong
- Sanya Institute of Deep Sea Science and Engineering; Chinese Academy of Sciences; San Ya Hai Nan China
| | - Lin Cai
- Divison of Life Science; Hong Kong University of Science and Technology; Hong Kong
| | - Vladimir Bajic
- Computational Bioscience Research Center (CBRC); King Abdullah University of Science and Technology (KAUST); Thuwal Saudi Arabia
| | - Pei-Yuan Qian
- Divison of Life Science; Hong Kong University of Science and Technology; Hong Kong
| |
Collapse
|
246
|
Nunoura T, Takaki Y, Kazama H, Kakuta J, Shimamura S, Makita H, Hirai M, Miyazaki M, Takai K. Physiological and genomic features of a novel sulfur-oxidizing gammaproteobacterium belonging to a previously uncultivated symbiotic lineage isolated from a hydrothermal vent. PLoS One 2014; 9:e104959. [PMID: 25133584 PMCID: PMC4136832 DOI: 10.1371/journal.pone.0104959] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/15/2014] [Indexed: 12/04/2022] Open
Abstract
Strain Hiromi 1, a sulfur-oxidizing gammaproteobacterium was isolated from a hydrothermal vent chimney in the Okinawa Trough and represents a novel genus that may include a phylogenetic group found as endosymbionts of deep-sea gastropods. The SSU rRNA gene sequence similarity between strain Hiromi 1 and the gastropod endosymbionts was approximately 97%. The strain was shown to grow both chemolithoautotrophically and chemolithoheterotrophically with an energy metabolism of sulfur oxidation and O2 or nitrate reduction. Under chemolithoheterotrophic growth conditions, the strain utilized organic acids and proteinaceous compounds as the carbon and/or nitrogen sources but not the energy source. Various sugars did not support growth as a sole carbon source. The observation of chemolithoheterotrophy in this strain is in line with metagenomic analyses of endosymbionts suggesting the occurrence of chemolithoheterotrophy in gammaproteobacterial symbionts. Chemolithoheterotrophy and the presence of homologous genes for virulence- and quorum sensing-related functions suggest that the sulfur-oxidizing chomolithotrophic microbes seek animal bodies and microbial biofilm formation to obtain supplemental organic carbons in hydrothermal ecosystems.
Collapse
Affiliation(s)
- Takuro Nunoura
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
- * E-mail:
| | - Yoshihiro Takaki
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Hiromi Kazama
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Jungo Kakuta
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Shigeru Shimamura
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Hiroko Makita
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Miho Hirai
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Masayuki Miyazaki
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
247
|
Liu LJ, Stockdreher Y, Koch T, Sun ST, Fan Z, Josten M, Sahl HG, Wang Q, Luo YM, Liu SJ, Dahl C, Jiang CY. Thiosulfate transfer mediated by DsrE/TusA homologs from acidothermophilic sulfur-oxidizing archaeon Metallosphaera cuprina. J Biol Chem 2014; 289:26949-26959. [PMID: 25122768 PMCID: PMC4175335 DOI: 10.1074/jbc.m114.591669] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Conserved clusters of genes encoding DsrE and TusA homologs occur in many archaeal and bacterial sulfur oxidizers. TusA has a well documented function as a sulfurtransferase in tRNA modification and molybdenum cofactor biosynthesis in Escherichia coli, and DsrE is an active site subunit of the DsrEFH complex that is essential for sulfur trafficking in the phototrophic sulfur-oxidizing Allochromatium vinosum. In the acidothermophilic sulfur (S0)- and tetrathionate (S4O62−)-oxidizing Metallosphaera cuprina Ar-4, a dsrE3A-dsrE2B-tusA arrangement is situated immediately between genes encoding dihydrolipoamide dehydrogenase and a heterodisulfide reductase-like complex. In this study, the biochemical features and sulfur transferring abilities of the DsrE2B, DsrE3A, and TusA proteins were investigated. DsrE3A and TusA proved to react with tetrathionate but not with NaSH, glutathione persulfide, polysulfide, thiosulfate, or sulfite. The products were identified as protein-Cys-S-thiosulfonates. DsrE3A was also able to cleave the thiosulfate group from TusA-Cys18-S-thiosulfonate. DsrE2B did not react with any of the sulfur compounds tested. DsrE3A and TusA interacted physically with each other and formed a heterocomplex. The cysteine residue (Cys18) of TusA is crucial for this interaction. The single cysteine mutants DsrE3A-C93S and DsrE3A-C101S retained the ability to transfer the thiosulfonate group to TusA. TusA-C18S neither reacted with tetrathionate nor was it loaded with thiosulfate with DsrE3A-Cys-S-thiosulfonate as the donor. The transfer of thiosulfate, mediated by a DsrE-like protein and TusA, is unprecedented not only in M. cuprina but also in other sulfur-oxidizing prokaryotes. The results of this study provide new knowledge on oxidative microbial sulfur metabolism.
Collapse
Affiliation(s)
- Li-Jun Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,; University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Yvonne Stockdreher
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhems-Universität Bonn, 53115 Bonn, Germany
| | - Tobias Koch
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhems-Universität Bonn, 53115 Bonn, Germany
| | - Shu-Tao Sun
- Core Facility and Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Michaele Josten
- Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie, Abteilung Pharmazeutische Mikrobiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Hans-Georg Sahl
- Institut für Medizinische Mikrobiologie, Immunologie und Parasitologie, Abteilung Pharmazeutische Mikrobiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Qian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Ming Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,; Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,.
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhems-Universität Bonn, 53115 Bonn, Germany,.
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,; Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,.
| |
Collapse
|
248
|
Yin H, Zhang X, Li X, He Z, Liang Y, Guo X, Hu Q, Xiao Y, Cong J, Ma L, Niu J, Liu X. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans. BMC Microbiol 2014; 14:179. [PMID: 24993543 PMCID: PMC4109375 DOI: 10.1186/1471-2180-14-179] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/19/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing technology, the whole genome sequence analysis of A. thiooxidans has allowed preliminary models to be built for genes/enzymes involved in key energy pathways like sulfur oxidation. RESULTS The genome of A. thiooxidans A01 was sequenced and annotated. It contains key sulfur oxidation enzymes involved in the oxidation of elemental sulfur and RISCs, such as sulfur dioxygenase (SDO), sulfide quinone reductase (SQR), thiosulfate:quinone oxidoreductase (TQO), tetrathionate hydrolase (TetH), sulfur oxidizing protein (Sox) system and their associated electron transport components. Also, the sulfur oxygenase reductase (SOR) gene was detected in the draft genome sequence of A. thiooxidans A01, and multiple sequence alignment was performed to explore the function of groups of related protein sequences. In addition, another putative pathway was found in the cytoplasm of A. thiooxidans, which catalyzes sulfite to sulfate as the final product by phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate (APS) kinase. This differs from its closest relative Acidithiobacillus caldus, which is performed by sulfate adenylyltransferase (SAT). Furthermore, real-time quantitative PCR analysis showed that most of sulfur oxidation genes were more strongly expressed in the S0 medium than that in the Na2S2O3 medium at the mid-log phase. CONCLUSION Sulfur oxidation model of A. thiooxidans A01 has been constructed based on previous studies from other sulfur oxidizing strains and its genome sequence analyses, providing insights into our understanding of its physiology and further analysis of potential functions of key sulfur oxidation genes.
Collapse
Affiliation(s)
- Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xiaoqi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhili He
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xue Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Qi Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jing Cong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Liyuan Ma
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
249
|
Thomas F, Giblin AE, Cardon ZG, Sievert SM. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments. Front Microbiol 2014; 5:309. [PMID: 25009538 PMCID: PMC4068000 DOI: 10.3389/fmicb.2014.00309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/05/2014] [Indexed: 12/02/2022] Open
Abstract
Salt marshes are highly productive ecosystems hosting an intense sulfur (S) cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB). Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT)-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.
Collapse
Affiliation(s)
- François Thomas
- Watson Laboratory, Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Anne E Giblin
- Marine Biological Laboratory, The Ecosystems Center, Woods Hole MA, USA
| | - Zoe G Cardon
- Marine Biological Laboratory, The Ecosystems Center, Woods Hole MA, USA
| | - Stefan M Sievert
- Watson Laboratory, Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| |
Collapse
|
250
|
Guo X, Yin H, Liang Y, Hu Q, Zhou X, Xiao Y, Ma L, Zhang X, Qiu G, Liu X. Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans strain ST. PLoS One 2014; 9:e99417. [PMID: 24940621 PMCID: PMC4062416 DOI: 10.1371/journal.pone.0099417] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/14/2014] [Indexed: 12/21/2022] Open
Abstract
The genus Sulfobacillus is a cohort of mildly thermophilic or thermotolerant acidophiles within the phylum Firmicutes and requires extremely acidic environments and hypersalinity for optimal growth. However, our understanding of them is still preliminary partly because few genome sequences are available. Here, the draft genome of Sulfobacillus thermosulfidooxidans strain ST was deciphered to obtain a comprehensive insight into the genetic content and to understand the cellular mechanisms necessary for its survival. Furthermore, the expressions of key genes related with iron and sulfur oxidation were verified by semi-quantitative RT-PCR analysis. The draft genome sequence of Sulfobacillus thermosulfidooxidans strain ST, which encodes 3225 predicted coding genes on a total length of 3,333,554 bp and a 48.35% G+C, revealed the high degree of heterogeneity with other Sulfobacillus species. The presence of numerous transposases, genomic islands and complete CRISPR/Cas defence systems testifies to its dynamic evolution consistent with the genome heterogeneity. As expected, S. thermosulfidooxidans encodes a suit of conserved enzymes required for the oxidation of inorganic sulfur compounds (ISCs). The model of sulfur oxidation in S. thermosulfidooxidans was proposed, which showed some different characteristics from the sulfur oxidation of Gram-negative A. ferrooxidans. Sulfur oxygenase reductase and heterodisulfide reductase were suggested to play important roles in the sulfur oxidation. Although the iron oxidation ability was observed, some key proteins cannot be identified in S. thermosulfidooxidans. Unexpectedly, a predicted sulfocyanin is proposed to transfer electrons in the iron oxidation. Furthermore, its carbon metabolism is rather flexible, can perform the transformation of pentose through the oxidative and non-oxidative pentose phosphate pathways and has the ability to take up small organic compounds. It encodes a multitude of heavy metal resistance systems to adapt the heavy metal-containing environments.
Collapse
Affiliation(s)
- Xue Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Qi Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xishu Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Liyuan Ma
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|