201
|
Wang B, Wei J, Wang Y, Chen L, Liang G. Polycalin is involved in the toxicity and resistance to Cry1Ac toxin in Helicoverpa armigera (Hübner). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21661. [PMID: 32011765 DOI: 10.1002/arch.21661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/02/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Polycalin has been confirmed as a binding protein of the Cry toxins in a few Lepidoptera insects, but its function in the action mechanism of Cry1Ac and whether it is involved in resistance evolution are still unclear. In this study, Ligand blot and enzyme-linked immunosorbent assays showed that Helicoverpa armigera polycalin could specifically interact with Cry1Ac with a high affinity (Kd = 118.80 nM). Importantly, antisera blocking polycalin in H. armigera larvae decreased the toxicity of Cry1Ac by 31.84%. Furthermore, the relative gene and protein expressions were lower in Cry1Ac-resistant strain (LF60) than that in Cry1Ac-susceptible strain (LF). These findings indicated that H. armigera polycalin was a possible receptor of Cry1Ac and may be contributed to the resistance to Cry1Ac.
Collapse
Affiliation(s)
- Bingjie Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management of Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yanan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
202
|
Wang X, Xu Y, Huang J, Jin W, Yang Y, Wu Y. CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin. Toxins (Basel) 2020; 12:toxins12040246. [PMID: 32290427 PMCID: PMC7232378 DOI: 10.3390/toxins12040246] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
The adoption of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystalline (Cry) proteins has reduced insecticide application, increased yields, and contributed to food safety worldwide. However, the efficacy of transgenic Bt crops is put at risk by the adaptive resistance evolution of target pests. Previous studies indicate that resistance to Bacillus thuringiensis Cry1A and Cry1F toxins was genetically linked with mutations of ATP-binding cassette (ABC) transporter subfamily C gene ABCC2 in at least seven lepidopteran insects. Several strains selected in the laboratory of the Asian corn borer, Ostrinia furnacalis, a destructive pest of corn in Asian Western Pacific countries, developed high levels of resistance to Cry1A and Cry1F toxins. The causality between the O. furnacalisABCC2 (OfABCC2) gene and resistance to Cry1A and Cry1F toxins remains unknown. Here, we successfully generated a homozygous strain (OfC2-KO) of O. furnacalis with an 8-bp deletion mutation of ABCC2 by the CRISPR/Cas9 approach. The 8-bp deletion mutation results in a frame shift in the open reading frame of transcripts, which produced a predicted protein truncated in the TM4-TM5 loop region. The knockout strain OfC2-KO showed much more than a 300-fold resistance to Cry1Fa, and low levels of resistance to Cry1Ab and Cry1Ac (<10-fold), but no significant effects on the toxicities of Cry1Aa and two chemical insecticides (abamectin and chlorantraniliprole), compared to the background NJ-S strain. Furthermore, we found that the Cry1Fa resistance was autosomal, recessive, and significantly linked with the 8-bp deletion mutation of OfABCC2 in the OfC2-KO strain. In conclusion, in vivo functional investigation demonstrates the causality of the OfABCC2 truncating mutation with high-level resistance to the Cry1Fa toxin in O. furnacalis. Our results suggest that the OfABCC2 protein might be a functional receptor for Cry1Fa and reinforces the association of this gene to the mode of action of the Cry1Fa toxin.
Collapse
Affiliation(s)
| | | | | | | | | | - Yidong Wu
- Correspondence: ; Tel.: +86-25-8439-6062
| |
Collapse
|
203
|
Protein-Lipid Interaction of Cytolytic Toxin Cyt2Aa2 on Model Lipid Bilayers of Erythrocyte Cell Membrane. Toxins (Basel) 2020; 12:toxins12040226. [PMID: 32260286 PMCID: PMC7232533 DOI: 10.3390/toxins12040226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 11/24/2022] Open
Abstract
Cytolytic toxin (Cyt) is a toxin among Bacillus thuringiensis insecticidal proteins. Cyt toxin directly interacts with membrane lipids for cytolytic action. However, low hemolytic activity is desired to avoid non-specific effects in mammals. In this work, the interaction between Cyt2Aa2 toxin and model lipid bilayers mimicking the erythrocyte membrane was investigated for Cyt2Aa2 wild type (WT) and the T144A mutant, a variant with lower hemolytic activity. Quartz crystal microbalance with dissipation (QCM-D) results revealed a smaller lipid binding capacity for the T144A mutant than for the WT. In particular, the T144A mutant was unable to bind to the phosphatidylcholine lipid (POPC) bilayer. However, the addition of cholesterol (Chol) or sphingomyelin (SM) to the POPC bilayer promoted binding of the T144 mutant. Moreover, atomic force microscopy (AFM) images unveiled small aggregates of the T144A mutant on the 1:1 sphingomyelin/POPC bilayers. In contrast, the lipid binding trend for WT and T144A mutant was comparable for the 1:0.4 POPC/cholesterol and the 1:1:1 sphingomyelin/POPC/cholesterol bilayers. Furthermore, the binding of WT and T144A mutant onto erythrocyte cells was investigated. The experiments showed that the T144A mutant and the WT bind onto different areas of the erythrocyte membrane. Overall the results suggest that the T144 residue plays an important role for lipid binding.
Collapse
|
204
|
Liu J, Wang L, Zhou G, Gao S, Sun T, Liu J, Gao B. Midgut transcriptome analysis of Clostera anachoreta treated with lethal and sublethal Cry1Ac protoxin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21638. [PMID: 31702074 DOI: 10.1002/arch.21638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Clostera anachoreta is one of the important Lepidoptera insect pests in forestry, especially in poplars woods in China, Europe, Japan, and India, and so forth, and also the target insect of Cry1Ac toxin and Bt plants. Six genes, HSC70, GNB2L/RACK1, PNLIP, BI1-like, arylphorin type 2, and PKM were found in this study, and they might be associated with the response to the Cry1Ac toxin, found by analyzing the transcriptome data. And the PI3K-Akt pathway was highly enriched in differentially expressed unigenes and linked to several crucial pathways, including the B-cell receptor signaling pathway, toll-like receptor pathway, and mitogen-activated protein kinase signaling pathway. They might be involved in the recovery stage of the damaged midgut during the response to sublethal doses of Cry1Ac toxin. This is the first study conducted to specifically investigate C. anachoreta response to Cry toxin stress using large-scale sequencing technologies, and the results highlighted some important genes and pathways that could be involved in Btcry1Ac resistance development or could serve as targets for biologically based control mechanisms of this insect pest.
Collapse
Affiliation(s)
- Jie Liu
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Liucheng Wang
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Guona Zhou
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Suhong Gao
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Changli, China
| | - Tianhua Sun
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Junxia Liu
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| | - Baojia Gao
- Ecological Laboratory, Forestry College, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
205
|
Yan X, Lu J, Ren M, He Y, Wang Y, Wang Z, He K. Insecticidal Activity of 11 Bt toxins and 3 Transgenic Maize Events Expressing Vip3Aa19 to Black Cutworm, Agrotis ipsilon (Hufnagel). INSECTS 2020; 11:insects11040208. [PMID: 32230856 PMCID: PMC7240488 DOI: 10.3390/insects11040208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022]
Abstract
Black cutworm (BCW), Agrotis ipsilon (Hufnagel), is an occasional pest of maize that can cause considerable economic loss and injury to corn seedlings. This research mainly assessed the susceptibility of BCW neonates to 11 Bt toxins (Cry1Ab, Cry1Ac, Cry1Ah, Cry1F, Cry1Ie, Cry1B, Cry2Aa, Vip3_ch1, Vip3_ch4, Vip3Ca2, Vip3Aa19) by exposing neonates to an artificial diet containing Bt toxins and evaluated the efficacy of three transgenic maize events (C008, C009, C010) expressing Vip3Aa19 toxin against BCW. The toxin-diet bioassay data indicated that Vip3Aa19 protein (LC50 = 0.43 μg/g) was the most active against BCW. Chimeric protein Vip3_ch1 (LC50 = 5.53 μg/g), Cry1F (LC50 = 83.62 μg/g) and Cry1Ac (LC50 = 184.77 μg/g) were less toxic. BCW was very tolerant to the other Bt toxins tested, with LC50 values more than 200 μg/g. Greenhouse studies were conducted with artificial infestations at the whorl stage by placing second-instar BCW larvae into whorl leaf and the fourth-instar larvae at the base of maize seedings. These results suggest that these transgenic maize events expressing Vip3Aa19 can provide effective control for BCW.
Collapse
Affiliation(s)
- Xiaorui Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (Z.W.)
| | - Junjiao Lu
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China; (J.L.); (M.R.)
| | - Meifeng Ren
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China; (J.L.); (M.R.)
| | - Yin He
- Department of Physical Medicine and Rehabilitation, University of Alabama, Birmingham, AL 35401, USA;
| | - Yueqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (Z.W.)
- Correspondence: (Y.W.); (K.H.); Tel./Fax: +86-10-6281-5932
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (Z.W.)
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (Z.W.)
- Correspondence: (Y.W.); (K.H.); Tel./Fax: +86-10-6281-5932
| |
Collapse
|
206
|
Shikov AE, Malovichko YV, Skitchenko RK, Nizhnikov AA, Antonets KS. No More Tears: Mining Sequencing Data for Novel Bt Cry Toxins with CryProcessor. Toxins (Basel) 2020; 12:toxins12030204. [PMID: 32210056 PMCID: PMC7150774 DOI: 10.3390/toxins12030204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/21/2020] [Accepted: 03/18/2020] [Indexed: 11/23/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a natural pathogen of insects and some other groups of invertebrates that produces three-domain Cry (3d-Cry) toxins, which are highly host-specific pesticidal proteins. These proteins represent the most commonly used bioinsecticides in the world and are used for commercial purposes on the market of insecticides, being convergent with the paradigm of sustainable growth and ecological development. Emerging resistance to known toxins in pests stresses the need to expand the list of known toxins to broaden the horizons of insecticidal approaches. For this purpose, we have elaborated a fast and user-friendly tool called CryProcessor, which allows productive and precise mining of 3d-Cry toxins. The only existing tool for mining Cry toxins, called a BtToxin_scanner, has significant limitations such as limited query size, lack of accuracy and an outdated database. In order to find a proper solution to these problems, we have developed a robust pipeline, capable of precise 3d-Cry toxin mining. The unique feature of the pipeline is the ability to search for Cry toxins sequences directly on assembly graphs, providing an opportunity to analyze raw sequencing data and overcoming the problem of fragmented assemblies. Moreover, CryProcessor is able to predict precisely the domain layout in arbitrary sequences, allowing the retrieval of sequences of definite domains beyond the bounds of a limited number of toxins presented in CryGetter. Our algorithm has shown efficiency in all its work modes and outperformed its analogues on large amounts of data. Here, we describe its main features and provide information on its benchmarking against existing analogues. CryProcessor is a novel, fast, convenient, open source (https://github.com/lab7arriam/cry_processor), platform-independent, and precise instrument with a console version and elaborated web interface (https://lab7.arriam.ru/tools/cry_processor). Its major merits could make it possible to carry out massive screening for novel 3d-Cry toxins and obtain sequences of specific domains for further comprehensive in silico experiments in constructing artificial toxins.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Correspondence: (A.E.S); (K.S.A.); Tel.: +7-812-470-5100 (A.E.S.); +7-812-470-5100 (K.S.A.)
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | | | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Correspondence: (A.E.S); (K.S.A.); Tel.: +7-812-470-5100 (A.E.S.); +7-812-470-5100 (K.S.A.)
| |
Collapse
|
207
|
Ren X, Wang Y, Ma Y, Jiang W, Ma X, Hu H, Wang D, Ma Y. Midgut de novo transcriptome analysis and gene expression profiling of Spodoptera exigua larvae exposed with sublethal concentrations of Cry1Ca protein. 3 Biotech 2020; 10:138. [PMID: 32158634 DOI: 10.1007/s13205-020-2129-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/11/2020] [Indexed: 12/01/2022] Open
Abstract
Spodoptera exigua (Hübner) is a polyphagous pest on agricultural crops, whose control is based mainly on the application of chemical insecticides. Bacillus thuringiensis (Bt) is one of the most important biological agents that have been successfully applied as a biological control, and Cry1Ca protein is considered to be active against S. exigua. Therefore, to understand the response of S. exigua to Cry1Ca protein, high-throughput sequencing was used to analyse the S. exigua larval midgut after treatment with sublethal concentrations of Cry1Ca protein. Transcriptome data showed that a total of 98,571 unigenes with an N50 value of 1135 bp and a mean length of 653 bp were obtained. Furthermore, 2962 differentially expressed genes (DEGs) were identified after Cry1Ca challenge, including 1508 up-regulated and 1454 down-regulated unigenes. Among these DEGs, detoxification (CYP, CarE, and GST) and Bt resistance (ALP, APN, and ABC transporter)-related genes were differentially expressed in the midgut of S. exigua after Cry1Ca treatment. However, most DEGs of protective enzymes were down-regulated, while most DEGs related with serine protease and REPAT were up-regulated. Furthermore, almost all DEGs related to the immune signaling pathway, antimicrobial protein, and lysozyme were up-regulated by Cry1Ca treatment. These results indicated that the detoxification enzyme, protective enzymes, Bt resistance-related genes, serine protease, REPAT, and the immune response might have been involved in the response of S. exigua to Cry1Ca protein. In summary, analysis of the transcriptomal expression of genes involved in Cry1Ca protein against S. exigua provided potential clues for elucidating the host response processes and defensive mechanisms underlying Cry1Ca toxicity.
Collapse
Affiliation(s)
- Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Yingying Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
- Honghu Agricultural Technology Extension Center, Jingzhou, 433200 Hubei China
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Weili Jiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan China
| |
Collapse
|
208
|
Wang J, Ma H, Zhao S, Huang J, Yang Y, Tabashnik BE, Wu Y. Functional redundancy of two ABC transporter proteins in mediating toxicity of Bacillus thuringiensis to cotton bollworm. PLoS Pathog 2020; 16:e1008427. [PMID: 32191775 PMCID: PMC7108736 DOI: 10.1371/journal.ppat.1008427] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/31/2020] [Accepted: 02/21/2020] [Indexed: 01/20/2023] Open
Abstract
Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. Better understanding of the genetic basis of resistance is needed to more effectively monitor, manage, and counter pest resistance to Bt toxins. Here we used CRISPR/Cas9 gene editing to clarify the genetics of Bt resistance and the associated effects on susceptibility to other microbial insecticides in one of the world's most damaging pests, the cotton bollworm (Helicoverpa armigera). We discovered that CRISPR-mediated knockouts of ATP-binding cassette (ABC) transporter genes HaABCC2 and HaABCC3 together caused >15,000-fold resistance to Bt toxin Cry1Ac, whereas knocking out either HaABCC2 or HaABCC3 alone had little or no effect. Inheritance of resistance was autosomal and recessive. Bioassays of progeny from interstrain crosses revealed that one wild type allele of either HaABCC2 or HaABCC3 is sufficient to sustain substantial susceptibility to Cry1Ac. In contrast with previous results, susceptibility to two insecticides derived from bacteria other than Bt (abamectin and spinetoram), was not affected by knocking out HaABCC2, HaABCC3, or both. The results here provide the first evidence that either HaABCC2 or HaABCC3 protein is sufficient to confer substantial susceptibility to Cry1Ac. The functional redundancy of these two proteins in toxicity of Cry1Ac to H. armigera is expected to reduce the likelihood of field-evolved resistance relative to disruption of a toxic process where mutations affecting a single protein can confer resistance.
Collapse
Affiliation(s)
- Jing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huanhuan Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shan Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianlei Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bruce E. Tabashnik
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
209
|
The Cry48Aa N-terminal Domain is Responsible for Cry48Aa–Cry49Aa Interaction in Lysinibacillus sphaericus Toxin. Curr Microbiol 2020; 77:1217-1222. [DOI: 10.1007/s00284-020-01907-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/29/2020] [Indexed: 10/24/2022]
|
210
|
Khorramnejad A, Domínguez-Arrizabalaga M, Caballero P, Escriche B, Bel Y. Study of the Bacillus thuringiensis Cry1Ia Protein Oligomerization Promoted by Midgut Brush Border Membrane Vesicles of Lepidopteran and Coleopteran Insects, or Cultured Insect Cells. Toxins (Basel) 2020; 12:toxins12020133. [PMID: 32098045 PMCID: PMC7076784 DOI: 10.3390/toxins12020133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Bacillus thuringiensis (Bt) produces insecticidal proteins that are either secreted during the vegetative growth phase or accumulated in the crystal inclusions (Cry proteins) in the stationary phase. Cry1I proteins share the three domain (3D) structure typical of crystal proteins but are secreted to the media early in the stationary growth phase. In the generally accepted mode of action of 3D Cry proteins (sequential binding model), the formation of an oligomer (tetramer) has been described as a major step, necessary for pore formation and subsequent toxicity. To know if this could be extended to Cry1I proteins, the formation of Cry1Ia oligomers was studied by Western blot, after the incubation of trypsin activated Cry1Ia with insect brush border membrane vesicles (BBMV) or insect cultured cells, using Cry1Ab as control. Our results showed that Cry1Ia oligomers were observed only after incubation with susceptible coleopteran BBMV, but not following incubation with susceptible lepidopteran BBMV or non-susceptible Sf21 insect cells, while Cry1Ab oligomers were persistently detected after incubation with all insect tissues tested, regardless of its host susceptibility. The data suggested oligomerization may not necessarily be a requirement for the toxicity of Cry1I proteins.
Collapse
Affiliation(s)
- Ayda Khorramnejad
- Departamento de Genética/ERI BioTecMed, Universitat de València, Burjassot, 46100 València, Spain; (A.K.); (B.E.)
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj 31578-77871, Alborz, Iran
| | - Mikel Domínguez-Arrizabalaga
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain; (M.D.-A.); (P.C.)
| | - Primitivo Caballero
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, Pamplona, 31006 Navarra, Spain; (M.D.-A.); (P.C.)
| | - Baltasar Escriche
- Departamento de Genética/ERI BioTecMed, Universitat de València, Burjassot, 46100 València, Spain; (A.K.); (B.E.)
| | - Yolanda Bel
- Departamento de Genética/ERI BioTecMed, Universitat de València, Burjassot, 46100 València, Spain; (A.K.); (B.E.)
- Correspondence:
| |
Collapse
|
211
|
Zhou J, Guo Z, Kang S, Qin J, Gong L, Sun D, Guo L, Zhu L, Bai Y, Zhang Z, Zhou X, Zhang Y. Reduced expression of the P-glycoprotein gene PxABCB1 is linked to resistance to Bacillus thuringiensis Cry1Ac toxin in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2020; 76:712-720. [PMID: 31359575 DOI: 10.1002/ps.5569] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Rapid evolution of pest resistance has seriously threatened the sustainable use of Bacillus thuringiensis (Bt). The diamondback moth, Plutella xylostella (L.), is the first pest to develop resistance to Bt biopesticides in the open field, which renders it an excellent model to explore the molecular basis of Bt resistance in insects. Our previous midgut transcriptome and RNA-Seq profiles showed that the P-glycoprotein gene PxABCB1 was down-regulated in two Cry1Ac-resistant P. xylostella strains, suggesting its potential involvement in Cry1Ac resistance in P. xylostella. RESULTS In this study, the bona fide full-length cDNA sequence of the PxABCB1 gene was cloned and analyzed, and the expression of the PxABCB1 gene was detected in all tissues and developmental stages, with the highest expression in midgut tissue and the female adult stage. Although no consistent non-synonymous mutations were identified between the susceptible and resistant strains, PxABCB1 gene expression was remarkably decreased in all resistant strains, and the association was further validated by Cry1Ac selection in the moderately resistant SZ-R strain. Moreover, knockdown of the PxABCB1 gene expression resulted in significantly reduced larval susceptibility to Cry1Ac toxin in the DBM1Ac-S strain, and decreased expression of the PxABCB1 gene was tightly linked to Cry1Ac resistance in P. xylostella. CONCLUSION Our results demonstrated that down-regulation of the PxABCB1 gene is associated with both laboratory-selected and field-evolved Cry1Ac resistance in P. xylostella. This knowledge will be conducive to further elucidating the complicated molecular basis of Bt resistance and developing new insect resistance management tactics. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junlei Zhou
- Longping Branch, Graduate School of Hunan University, Changsha, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Qin
- Longping Branch, Graduate School of Hunan University, Changsha, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Le Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liuhong Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Bai
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhuzhu Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomao Zhou
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
212
|
Shabbir MZ, Zhang T, Prabu S, Wang Y, Wang Z, Bravo A, Soberón M, He K. Identification of Cry1Ah-binding proteins through pull down and gene expression analysis in Cry1Ah-resistant and susceptible strains of Ostrinia furnacalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:200-208. [PMID: 31973858 DOI: 10.1016/j.pestbp.2019.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Bacillus thuringiensis produces insecticidal Cry toxins used in the control of multiple insect pests. Evolution of insect resistance to Bt toxins endangers the use of Cry toxins for pest control. Analysis of the Cry1Ah-binding proteins from brush border membrane vesicles (BBMV) of Ostrinia furnacalis, Asian corn borer (ACB) from the Cry1Ah-resistant (ACB-AhR) and susceptible (ACB-BtS) strains was performed by an improved pull down assay that includes coupling Cry1Ah to NHS-activated Sepharose combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our data show that Cry1Ah bound to alkaline phosphatase (ALP), cadherin-like (CAD), actin, aminopeptidase-N (APN), prophenoloxidase (proPO), serine proteinase inhibitor (SPI), immulectin, and V-ATPase and to other proteins that were not previously characterized as Cry-binding proteins in ACB-BtS strain. Analysis of Cry1Ah-pulled down proteins of the BBMV from ACB-AhR revealed that Cry1Ah toxin did not bind to ALP in ACB-AhR strain, suggesting that this protein may correlate with the resistant phenotype of this strain. Additionally, we analyzed the expression of representative genes coding for Cry1Ah-binding proteins such as ALP, APN, CAD, proPO, SPI, and immulectin by qRT-PCR. ACB-AhR showed increased expression levels of proPO (7.5 fold), ALP (6.2 fold) and APN (1.4 fold) in comparison to ACB-BtS strain. In contrast, the cad gene showed slight decreased expression in ACB-AhR strain (0.7 fold) compared with ACB-BtS strain. Our data suggest that differences in the susceptibility to Cry1Ah toxin in the ACB-AhR strain may be associated with reduced ALP binding sites and with an increased immune response. This study also brings evidence of a possible binding interaction of Cry1Ah toxin to immune related proteins like proPO.
Collapse
Affiliation(s)
- Muhammad Zeeshan Shabbir
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Sivaprasath Prabu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yueqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
213
|
Zhu B, Sun X, Nie X, Liang P, Gao X. MicroRNA-998-3p contributes to Cry1Ac-resistance by targeting ABCC2 in lepidopteran insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103283. [PMID: 31759051 DOI: 10.1016/j.ibmb.2019.103283] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Cry protein toxins produced by Bacillus thuringiensis (Bt) are now widely used in sprays and transgenic crops to control insect pests. Most recently, ATP-binding cassette transporter proteins (ABC transporter), including ABCC2, ABCC3, ABCG1, ABCA2 and ABCB1, were reported as putative receptors for different Cry toxins. However, little is known about the regulatory mechanism involved in the expression of these ABC transporter genes. In the present study, a conserved target site of miR-998-3p was identified from the coding sequence (CDS) of ABCC2 in diverse lepidopteran insects. Luciferase reporter assays demonstrated that miR-998-3p could bind to the CDS of ABCC2 and down-regulate its expression through a conserved site and several non-conserved sites in three representative lepidopteran pests, including Helicoverpa armigera, Spodoptera exigua and Plutella xylostella. Injection of miR-998-3p agomir significantly reduced the abundance of ABCC2, accompanied by increased tolerance to Cry1Ac toxin in H. armigera, S. exigua and P. xylostella (Cry-S) larvae, while injection of miR-998-3p antagomir increased the abundance of ABCC2 dramatically, and thereby reduced the Cry1Ac resistance in a Cry1Ac resistant population of P. xylostella (GX-R). These results give a better understanding of the mechanisms of post-transcriptional regulation of ABCC2, and will be helpful for further studies on the role of miRNAs in the regulation of Cry1Ac resistance in lepidopteran pests.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Xi Sun
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Ximan Nie
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
214
|
Guo Z, Gong L, Kang S, Zhou J, Sun D, Qin J, Guo L, Zhu L, Bai Y, Bravo A, Soberón M, Zhang Y. Comprehensive analysis of Cry1Ac protoxin activation mediated by midgut proteases in susceptible and resistant Plutella xylostella (L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:23-30. [PMID: 31973862 DOI: 10.1016/j.pestbp.2019.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/21/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Insecticidal Cry toxins produced by Bacillus thuringiensis (Bt) have been widely used to control agricultural pests in both foliage sprays and transgenic crops. Nevertheless, rapid evolution of insect resistance to Cry toxins requires elucidation of the molecular mechanisms involved in Cry resistance. Two proposed models have been described to explain the toxicity of Cry proteins, the classic model states that Cry protoxin is activated by midgut proteases resulting in activated toxin that binds to receptors and forms a pore in the midgut cells triggering larval death, and the newly proposed dual model of the mode of action of Bt Cry toxins states that protoxin and activated toxins may have different mechanisms of action since several resistant strains to activated Cry toxins are still susceptible to the same Cry-protoxin. Protoxin activation by midgut proteases is a key step in both models. Herein, we evaluated Cry1Ac protoxin activation in a susceptible Plutella xylostella (L.) strain (DBM1Ac-S) and in the near-isogenic strain (NIL-R) with high field-evolved Cry1Ac resistance. Previous work showed that Cry1Ac resistance in NIL-R correlates with reduced binding to midgut receptors due to enhanced MAPK signaling pathway and down regulation of ABCC2 receptor. However, reduced midgut trypsin levels and altered midgut protease gene transcription were also observed in the Cry1Ac-resistant field isolated strain that is parent of the NIL-R strain. Therefore, we analyzed the midgut protease activities in both DBM1Ac-S and NIL-R strains. Detection of enzymatic activities showed that caseinolytic protease, trypsin and chymotrypsin activities were not significantly different between the susceptible and resistant strains. Furthermore, treatment with different trypsin or chymotrypsin inhibitors, such as Nα-tosyl-l-lysine chloromethyl ketone (TLCK) or Np-tosyl-L-phenylalanine chloromethyl ketone (TPCK) did not affect the susceptibility to Cry1Ac protoxin of the DBM1Ac-S and NIL-R larvae. Bioassay results indicated that the NIL-R larvae showed similar resistant levels to both Cry1Ac protoxin and trypsin-activated toxin. Taken together, our results demonstrated that high-level field-evolved Cry1Ac resistance in the NIL-R strain is independent of Cry1Ac protoxin activation and the specific protoxin mechanism of action. This discovery will strengthen our comprehensive understanding of the complex mechanistic basis of Bt resistance in different insects.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lijun Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junlei Zhou
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Le Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liuhong Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Bai
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
215
|
Liu S, Wang S, Wu S, Wu Y, Yang Y. Proteolysis activation of Cry1Ac and Cry2Ab protoxins by larval midgut juice proteases from Helicoverpa armigera. PLoS One 2020; 15:e0228159. [PMID: 32004347 PMCID: PMC6994024 DOI: 10.1371/journal.pone.0228159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022] Open
Abstract
Proteolytic processing of Bacillus thuringiensis (Bt) Cry protoxins by insect midgut proteases is critical to their insecticidal activities against target insects. Although transgenic Bt cotton expressing Cry1Ac and Cry2Ab proteins have been widely used for control of the cotton bollworm (Helicoverpa armigera) in the field, the proteolytic cleavage sites in the two protoxins targeted by H. armigera midgut proteases are still not clear. In this study, the proteolysis of Cry1Ac and Cry2Ab protoxins by midgut juice prepared from midgut tissue of H. armigera larvae was investigated. Cleavage of Cry1Ac protoxin by midgut proteases formed a major protein fragment of ~65 kDa, and N-terminal sequencing revealed that cleavage occurred at Arg28 in the fore-end of helix α-1 in domain I of Cry1Ac. Cleavage of Cry2Ab protoxin by midgut juice proteases produced a major protein fragment of ~50 kDa, and the cleavage occurred at Arg139 between helices α-3 and α-4 in domain I of Cry2Ab. The amino acids Arg28 of Cry1Ac and Arg139 of Cry2Ab were predicted as putative trypsin cleavage sites. Bioassay data showed that the toxicities (LC50s) of Cry1Ac and Cry2Ab protoxins were equivalent to those of their respective midgut juice-activated toxins in the susceptible SCD strain of H. armigera. Identification of the exact sites of N-terminal activation of Cry1Ac and Cry2Ab protoxins will provide a basis for a better understanding of the mode of action and resistance mechanisms based on aberrant activation of these protoxins in H. armigera.
Collapse
Affiliation(s)
- Shaoyan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuo Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
216
|
Xie S, Vallet M, Sun C, Kunert M, David A, Zhang X, Chen B, Lu X, Boland W, Shao Y. Biocontrol Potential of a Novel Endophytic Bacterium From Mulberry ( Morus) Tree. Front Bioeng Biotechnol 2020; 7:488. [PMID: 32039187 PMCID: PMC6990687 DOI: 10.3389/fbioe.2019.00488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/30/2019] [Indexed: 01/18/2023] Open
Abstract
Mulberry (Morus) is an economically important woody tree that is suitable for use in sericulture as forage and in medicine. However, this broad-leaved tree is facing multiple threats ranging from phytopathogens to insect pests. Here, a Gram-positive, endospore-forming bacterium (ZJU1) was frequently isolated from healthy mulberry plants by screening for foliar endophytes showing antagonism against pathogens and pests. Whole-genome sequencing and annotation resulted in a genome size of 4.06 Mb and classified the bacterium as a novel strain of Bacillus amyloliquefaciens that has rarely been identified from tree leaves. An integrative approach combining traditional natural product chemistry, activity bioassays, and high-resolution mass spectrometry confirmed that strain ZJU1 uses a blend of antimicrobials including peptides and volatile organic compounds to oppose Botrytis cinerea, a major phytopathogenic fungus causing mulberry gray mold disease. We showed that the inoculation of endophyte-free plants with ZJU1 significantly decreased both leaf necrosis and mortality under field conditions. In addition to the direct interactions of endophytes with foliar pathogens, in planta studies suggested that the inoculation of endophytes also induced plant systemic defense, including high expression levels of mulberry disease resistance genes. Moreover, when applied to the generalist herbivore Spodoptera litura, ZJU1 was sufficient to reduce the pest survival rate below 50%. A previously undiscovered crystal toxin (Cry10Aa) could contribute to this insecticidal effect against notorious lepidopteran pests. These unique traits clearly demonstrate that B. amyloliquefaciens ZJU1 is promising for the development of successful strategies for biocontrol applications. The search for new plant-beneficial microbes and engineering microbiomes is therefore of great significance for sustainably improving plant performance.
Collapse
Affiliation(s)
- Sen Xie
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Marine Vallet
- Max Planck Fellow Group on Plankton Community Interaction, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anja David
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Bosheng Chen
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
217
|
Gong L, Kang S, Zhou J, Sun D, Guo L, Qin J, Zhu L, Bai Y, Ye F, Akami M, Wu Q, Wang S, Xu B, Yang Z, Bravo A, Soberón M, Guo Z, Wen L, Zhang Y. Reduced Expression of a Novel Midgut Trypsin Gene Involved in Protoxin Activation Correlates with Cry1Ac Resistance in a Laboratory-Selected Strain of Plutella xylostella (L.). Toxins (Basel) 2020; 12:toxins12020076. [PMID: 31979385 PMCID: PMC7076802 DOI: 10.3390/toxins12020076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/05/2022] Open
Abstract
Bacillus thuringiensis (Bt) produce diverse insecticidal proteins to kill insect pests. Nevertheless, evolution of resistance to Bt toxins hampers the sustainable use of this technology. Previously, we identified down-regulation of a trypsin-like serine protease gene PxTryp_SPc1 in the midgut transcriptome and RNA-Seq data of a laboratory-selected Cry1Ac-resistant Plutella xylostella strain, SZ-R. We show here that reduced PxTryp_SPc1 expression significantly reduced caseinolytic and trypsin protease activities affecting Cry1Ac protoxin activation, thereby conferring higher resistance to Cry1Ac protoxin than activated toxin in SZ-R strain. Herein, the full-length cDNA sequence of PxTryp_SPc1 gene was cloned, and we found that it was mainly expressed in midgut tissue in all larval instars. Subsequently, we confirmed that the PxTryp_SPc1 gene was significantly decreased in SZ-R larval midgut and was further reduced when selected with high dose of Cry1Ac protoxin. Moreover, down-regulation of the PxTryp_SPc1 gene was genetically linked to resistance to Cry1Ac in the SZ-R strain. Finally, RNAi-mediated silencing of PxTryp_SPc1 gene expression decreased larval susceptibility to Cry1Ac protoxin in the susceptible DBM1Ac-S strain, supporting that low expression of PxTryp_SPc1 gene is involved in Cry1Ac resistance in P. xylostella. These findings contribute to understanding the role of midgut proteases in the mechanisms underlying insect resistance to Bt toxins.
Collapse
Affiliation(s)
- Lijun Gong
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Junlei Zhou
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Le Guo
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Liuhong Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Yang Bai
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Fan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Mazarin Akami
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
| | - Zhongxia Yang
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, Mexico; (A.B.); (M.S.)
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, Mexico; (A.B.); (M.S.)
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
- Correspondence: (Z.G.); (L.W.); (Y.Z.); Tel.: +86-10-82109518 (Z.G.); +86-0731-84618163 (L.W.); +86-10-62152945 (Y.Z.)
| | - Lizhang Wen
- College of Plant Protection, Hunan Agricultural University, Changsha 410125, China; (L.G.); (L.G.); (F.Y.); (Z.Y.)
- Correspondence: (Z.G.); (L.W.); (Y.Z.); Tel.: +86-10-82109518 (Z.G.); +86-0731-84618163 (L.W.); +86-10-62152945 (Y.Z.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.K.); (J.Z.); (D.S.); (J.Q.); (L.Z.); (Y.B.); (M.A.); (Q.W.); (S.W.); (B.X.)
- Correspondence: (Z.G.); (L.W.); (Y.Z.); Tel.: +86-10-82109518 (Z.G.); +86-0731-84618163 (L.W.); +86-10-62152945 (Y.Z.)
| |
Collapse
|
218
|
Fabrick JA, Mathew LG, LeRoy DM, Hull JJ, Unnithan GC, Yelich AJ, Carrière Y, Li X, Tabashnik BE. Reduced cadherin expression associated with resistance to Bt toxin Cry1Ac in pink bollworm. PEST MANAGEMENT SCIENCE 2020; 76:67-74. [PMID: 31140680 DOI: 10.1002/ps.5496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Better understanding of the molecular basis of resistance is needed to improve management of pest resistance to transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Here we analyzed resistance of the pink bollworm (Pectinophora gossypiella) to Bt toxin Cry1Ac, which is used widely in transgenic Bt cotton. Field-evolved practical resistance of pink bollworm to Cry1Ac is widespread in India, but not in China or the United States. Previous work with laboratory- and field-selected pink bollworm indicated that resistance to Cry1Ac is caused by changes in the amino acid sequence of a midgut cadherin protein (PgCad1) that binds Cry1Ac in susceptible larvae. RESULTS Relative to a susceptible strain, the laboratory-selected APHIS-R strain had 530-fold resistance to Cry1Ac with autosomal recessive inheritance. Unlike previous results, resistance in this strain was not consistently associated with insertions or deletions in the expected amino acid sequence of PgCad1. However, this resistance was associated with 79- to 190-fold reduced transcription of the PgCad1 gene and markedly lower abundance of PgCad1 protein. CONCLUSION The ability of pink bollworm and other major pests to evolve resistance to Bt toxins via both qualitative and quantitative changes in receptor proteins demonstrates their remarkable adaptability and presents challenges for monitoring and managing resistance to Bt crops. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jeffrey A Fabrick
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Lolita G Mathew
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
- Pairwise Plants, Research Triangle Park, NC, USA
| | - Dannialle M LeRoy
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - J Joe Hull
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | | | - Alex J Yelich
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
219
|
Sun Y, Yang P, Jin H, Liu H, Zhou H, Qiu L, Lin Y, Ma W. Knockdown of the aminopeptidase N genes decreases susceptibility of Chilo suppressalis larvae to Cry1Ab/Cry1Ac and Cry1Ca. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:36-42. [PMID: 31836052 DOI: 10.1016/j.pestbp.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Bacillus thuringiensis (Bt) insecticide is currently the most widely used bioinsecticide. Bt expressing cry genes are some of the most successful foreign-genome-inserting genes used in transgenic insect-resistant crop development. Cry toxins are resistant to lepidopteran pests, such as Chilo suppressalis, a major insect pest of rice worldwide. Since Cry toxins exert their activity by binding to specific receptors in the midgut of target insects, identification of functional Cry toxin receptors in the midgut of C. suppressalis larvae is crucial to evaluate potential resistance mechanisms and develop effective strategies for inhibiting insect resistance. In this study, we isolated two aminopeptidase N genes (APN6 and APN8) from C. suppressalis and determined that they were expressed in the foregut. APN6 was highly expressed at the fourth instar, and APN8 was highly expressed in adult and pupa. Knockdown of CsAPN6 and CsAPN8 by RNA interference resulted in significantly decreased susceptibility of larvae to Bt rice varieties TT51 (expressing cry1Ac/cry1Ab fusion genes) and T1C-19 (expressing cry1Ca), but not T2A-1 (expressing cry2Aa). These findings suggest that both APN6 and APN8 are involved in the toxicity of Cry1Ac/Cry1Ab and Cry1Ca toxins.
Collapse
Affiliation(s)
- Yajie Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Pan Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huihui Jin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hui Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hao Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
220
|
Tabashnik BE, Carrière Y. Global Patterns of Resistance to Bt Crops Highlighting Pink Bollworm in the United States, China, and India. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2513-2523. [PMID: 31254345 DOI: 10.1093/jee/toz173] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 05/29/2023]
Abstract
Crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt) have advanced pest control, but their benefits have been reduced by evolution of resistance in pests. The global monitoring data reviewed here reveal 19 cases of practical resistance to Bt crops, which is field-evolved resistance that reduces Bt crop efficacy and has practical consequences for pest control. Each case represents the responses of one pest species in one country to one Bt toxin. The results with pink bollworm (Pectinophora gossypiella) and Bt cotton differ strikingly among the world's three leading cotton-producing nations. In the southwestern United States, farmers delayed resistance by planting non-Bt cotton refuges from 1996 to 2005, then cooperated in a program that used Bt cotton, mass releases of sterile moths, and other tactics to eradicate this pest from the region. In China, farmers reversed low levels of pink bollworm resistance to Bt cotton by planting second-generation hybrid seeds from crosses between Bt and non-Bt cotton. This approach yields a refuge of 25% non-Bt cotton plants randomly interspersed within fields of Bt cotton. Farmers adopted this tactic voluntarily and unknowingly, not to manage resistance, but apparently because of its perceived short-term agronomic and economic benefits. In India, where non-Bt cotton refuges have been scarce and pink bollworm resistance to pyramided Bt cotton producing Cry1Ac and Cry2Ab toxins is widespread, integrated pest management emphasizing shortening of the cotton season, destruction of crop residues, and other tactics is now essential.
Collapse
Affiliation(s)
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ
| |
Collapse
|
221
|
Bel Y, Zack M, Narva K, Escriche B. Specific binding of Bacillus thuringiensis Cry1Ea toxin, and Cry1Ac and Cry1Fa competition analyses in Anticarsia gemmatalis and Chrysodeixis includens. Sci Rep 2019; 9:18201. [PMID: 31796830 PMCID: PMC6890801 DOI: 10.1038/s41598-019-54850-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022] Open
Abstract
Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper) are two important defoliation pests of soybeans. In the present study, we have investigated the susceptibility and brush border membrane-binding properties of both species to Bacillus thuringiensis Cry1Ea toxin. Bioassays performed in first-instar larvae demonstrated potent activity against both soybean pests in terms of mortality or practical mortality. Competition-binding studies carried out with 125Iodine-labelled Cry1Ea, demonstrated the presence of specific binding sites on the midgut brush border membrane vesicles (BBMV) of both insect species. Heterologous competition-binding experiments indicated that Cry1Ea does not share binding sites with Cry1Ac or Cry1Fa in either soybean pest. This study contributes to the knowledge of Cry1Ea toxicity and midgut binding sites in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ea with other Bt proteins aimed at controlling lepidopteran pests in soybeans.
Collapse
Affiliation(s)
- Yolanda Bel
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, , Universitat de València, 46100, Burjassot, Spain
| | - Marc Zack
- Dow AgroSciences, Indianapolis, Indiana, USA
| | - Ken Narva
- Dow AgroSciences, Indianapolis, Indiana, USA
| | - Baltasar Escriche
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, , Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
222
|
Liu Y, Zhou Z, Wang Z, Zhong B, Shu C, Zhang J. Replacement of loop2 and 3 of Cry1Ai in domain II affects specificity to the economically important insect Bombyx mori. J Invertebr Pathol 2019; 169:107296. [PMID: 31778713 DOI: 10.1016/j.jip.2019.107296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis Cry1Ai belongs to three-domain Cry toxins and only shows growth inhibition effects against the agricultural pest Helicoverpa armigera, although it exhibits high toxicity against the non-target insect Bombyx mori. In previous studies, loop2 and loop3 on domain II from Cry1Ah were found to be related to binding and high toxicity against H. armigera. However, toxicity for B. mori of Cry1Ai-h-loop2, obtained by replacing loop 2 from Cry1Ah into Cry1Ai, was not modified. In this study, to further characterize the role of loop2 and loop3 in Cry1Ai, all of the amino acids in these two loops were substituted with the same amount of alanine residues. The Cry1Ai-loop3 mutant exhibited significantly lower toxicity against B. mori, but the toxicity of the loop2 mutant was not significantly changed. Furthermore, the double-exchange mutant Cry1Ai-h-loop2&3, replacing loop2 and loop3 from Cry1Ah into Cry1Ai, showed decreased toxicity against B. mori related to Cry1Ai. In addition, we found that the binding affinity of Cry1Ai-h-loop2&3 with brush border membrane vesicles (BBMVs) from the midgut of B. mori was lower than that of Cry1Ai, which correlates with the reduced toxicity.
Collapse
Affiliation(s)
- Yuxiao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zishan Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
223
|
Insect Hsp90 Chaperone Assists Bacillus thuringiensis Cry Toxicity by Enhancing Protoxin Binding to the Receptor and by Protecting Protoxin from Gut Protease Degradation. mBio 2019; 10:mBio.02775-19. [PMID: 31772047 PMCID: PMC6879724 DOI: 10.1128/mbio.02775-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bacillus thuringiensis took advantage of important insect cellular proteins, such as chaperones, involved in maintaining protein homeostasis, to enhance its insecticidal activity. This constitutes a positive loop where the concentrations of Hsp90 and Hsp70 in the gut lumen are likely to increase as midgut cells burst due to Cry1A pore formation action. Hsp90 protects Cry1A protoxin from degradation and enhances receptor binding, resulting in increased toxicity. The effect of insect chaperones on Cry toxicity could have important biotechnological applications to enhance the toxicity of Cry proteins to insect pests, especially those that show low susceptibility to these toxins. Bacillus thuringiensis Cry proteins are pore-forming insecticidal toxins with specificity against different crop pests and insect vectors of human diseases. Previous work suggested that the insect host Hsp90 chaperone could be involved in Cry toxin action. Here, we show that the interaction of Cry toxins with insect Hsp90 constitutes a positive loop to enhance the performance of these toxins. Plutella xylostella Hsp90 (PxHsp90) greatly enhanced Cry1Ab or Cry1Ac toxicity when fed together to P. xylostella larvae and also in the less susceptible Spodoptera frugiperda larvae. PxHsp90 bound Cry1Ab and Cry1Ac protoxins in an ATP- and chaperone activity-dependent interaction. The chaperone Hsp90 participates in the correct folding of proteins and may suppress mutations of some client proteins, and we show here that PxHsp90 recovered the toxicity of the Cry1AbG439D protoxin affected in receptor binding, in contrast to the Cry1AbR99E or Cry1AbE129K mutant, affected in oligomerization or membrane insertion, respectively, which showed a slight toxicity improvement. Specifically, PxHsp90 enhanced the binding of Cry1AbG439D protoxin to the cadherin receptor. Furthermore, PxHsp90 protected Cry1A protoxins from degradation by insect midgut proteases. Our data show that PxHsp90 assists Cry1A proteins by enhancing their binding to the receptor and by protecting Cry protoxin from gut protease degradation. Finally, we show that the insect cochaperone protein PxHsp70 also increases the toxicity of Cry1Ac in P. xylostella larvae, in contrast to a bacterial GroEL chaperone, which had a marginal effect, indicating that the use of insect chaperones along with Cry toxins could have important biotechnological applications for the improvement of Cry insecticidal activity, resulting in effective control of insect pests.
Collapse
|
224
|
Rodríguez-González Á, Porteous-Álvarez AJ, Val MD, Casquero PA, Escriche B. Toxicity of five Cry proteins against the insect pest Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae). J Invertebr Pathol 2019; 169:107295. [PMID: 31783031 DOI: 10.1016/j.jip.2019.107295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 11/29/2022]
Abstract
The beetle Acanthoscelides obtectus (Say) causes severe post-harvest losses in the common bean (Phaseolus vulgaris). Under laboratory conditions, the susceptibility of A. obtectus to five coleopteran-specific Cry toxic proteins from Bacillus thuringiensis (Cry1Ba, Cry1Ia, Cry3Aa, Cry7Ab, and Cry23/37) was evaluated. After 30 days exposure, Cry proteins demonstrated high activity against A. obtectus adults (100% mortality). Proteins showed statistical differences in toxicity parameters compared to the control treatment, but the parameters were similar among them, and indicated that the final toxic effects can be observed after the 24th day. The toxic effects on A. obtectus larvae were evaluated indirectly by allowing adults to oviposit on treated beans and recording the emergence of F1 adults. All treatments resulted in a lower rate of successful emergence compared to the control treatment, ranging from 60% (Cry23/37) to 10% (Cry1Ia) reduction in eclosion. Finally, to evaluate the ability of Cry proteins to protect the beans against A. obtectus; the number of beans infested, the number of holes in each bean and bean weight loss were determined 45 days after the treatment. The parameters showed significant bean protection by all Cry proteins analyzed compared to control treatment. Cry23/37 showed the best results, however, results for the other proteins were similar. The proteins belong to different Cry protein families, which suggest that they could be used in combination to increase plant protection without compromising resistance management. Moreover, adult emergence and bean protection results indicate differences among the proteins, which may suggest different modes of action. Our results indicate that the studied Cry proteins can be applied for the control of A. obtectus larvae and adults.
Collapse
Affiliation(s)
- Álvaro Rodríguez-González
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS). Instituto de Medio Ambiente Recursos Naturales y Biodiversidad. Universidad de León, Avenida de Portugal 41, León 24071, Spain.
| | - Alejandra J Porteous-Álvarez
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS). Instituto de Medio Ambiente Recursos Naturales y Biodiversidad. Universidad de León, Avenida de Portugal 41, León 24071, Spain
| | - Mario Del Val
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS). Instituto de Medio Ambiente Recursos Naturales y Biodiversidad. Universidad de León, Avenida de Portugal 41, León 24071, Spain
| | - Pedro A Casquero
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS). Instituto de Medio Ambiente Recursos Naturales y Biodiversidad. Universidad de León, Avenida de Portugal 41, León 24071, Spain
| | - Baltasar Escriche
- ERI de Biotecnología y Biomedicina (BIOTECMED), Departamento de Genética, Universitat de València, Burjassot 46100, Spain
| |
Collapse
|
225
|
Wei J, Zhang Y, An S. The progress in insect cross-resistance among Bacillus thuringiensis toxins. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21547. [PMID: 30864250 DOI: 10.1002/arch.21547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Bt crop pyramids produce two or more Bt proteins active to broaden the spectrum of action and to delay the development of resistance in exposed insect populations. The cross-resistance between Bt toxins is a vital restriction factor for Bt crop pyramids, which may reduce the effect of pyramid strategy. In this review, the status of the cross-resistance among more than 20 Bt toxins that are most commonly used against 13 insect pests was analyzed. The potential mechanisms of cross-resistance are discussed. The corresponding measures, including pyramid RNA interference and Bt toxin, "high dose/refuge," and so on are advised to be taken for adopting the pyramided strategy to delay the Bt evolution of resistance and control the target pest insect.
Collapse
Affiliation(s)
- Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yaling Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
226
|
Wang L, Pokharel SS, Chen F. Arbuscular mycorrhizal fungi alter the food utilization, growth, development and reproduction of armyworm (Mythimna separata) fed on Bacillus thuringiensis maize. PeerJ 2019; 7:e7679. [PMID: 31565581 PMCID: PMC6745183 DOI: 10.7717/peerj.7679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/15/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The cultivation of Bt maize (maize genetically modified with Bacillus thuringiensis) continues to expand globally. Arbuscular mycorrhizal fungi (AMF), an important kind of microorganism closely related to soil fertility and plant nutrition, may influence the ecological risk of target lepidopteran pests in Bt crops. METHODS In this study, transgenic Bt maize (Line IE09S034 with Cry1Ie vs. its parental line of non-Bt maize cv. Xianyu335) was inoculated with a species of AMF, Glomus caledonium (GC). Its effects on the food utilization, reproduction and development of armyworm, Mythimna separata, were studied in a potted experiment from 2017 to 2018. RESULTS GC inoculation increased the AMF colonization of both modified and non-modified maize, and also increased the grain weight per plant and 1,000-grain weight of modified and non-modified maize. However, the cultivation of Bt maize did not significantly affect the AMF colonization. The feeding of M. separata with Bt maize resulted in a notable decrease in RCR (relative consumption rate), RGR (relative growth rate), AD (approximate digestibility), ECD (efficiency of conversion of digested food) and ECI (efficiency of conversion of ingested food) parameters in comparison to those observed in larvae fed with non-Bt maize in 2017 and 2018, regardless of GC inoculation. Furthermore, remarkable prolongation of larval life span and decreases in the rate of pupation, weight of pupa, rate of eclosion, fecundity and adult longevity of M. separata were observed in the Bt treatment regardless of GC inoculation during the two-year experiment. Also, when M. separata was fed with Bt maize, a significant prolongation of larval life and significant decreases in the pupal weight, fecundity and adult longevity of M. separata were observed when inoculated with GC. However, it was just the opposite for larvae fed with non-Bt maize that was inoculated with GC. The increased percentage of larval life-span, the decreased percentages of the food utilization, and the other indexes of reproduction, growth, and development of M. separata fed on Bt maize relative to non-Bt maize were all visibly lower when under GC inoculation in contrast to the CK. DISCUSSION It is presumed that Bt maize has a marked adverse impact on M. separata development, reproduction and feeding, especially when in combination with the GC inoculation. Additionally, GC inoculation favors the effectiveness of Bt maize against M. separata larvae by reducing their food utilization ability, which negatively affects the development and reproduction of the armyworm. Thus, Bt maize inoculated with AMF (here, GC) can reduce the severe threats arising of armyworms, and hence the AMF inoculation may play an important ecological functions in the field of Bt maize ecosystem, with potentially high control efficiency for the target lepidopteran pests.
Collapse
Affiliation(s)
- Long Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | | | - Fajun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
227
|
The role of midgut nonspecific esterase in the susceptibility of Galleria mellonella larvae to Bacillus thuringiensis. J Invertebr Pathol 2019; 166:107208. [DOI: 10.1016/j.jip.2019.107208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/20/2022]
|
228
|
Yang X, Chen W, Song X, Ma X, Cotto-Rivera RO, Kain W, Chu H, Chen YR, Fei Z, Wang P. Mutation of ABC transporter ABCA2 confers resistance to Bt toxin Cry2Ab in Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103209. [PMID: 31422154 DOI: 10.1016/j.ibmb.2019.103209] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 05/29/2023]
Abstract
Insecticidal proteins from Bacillus thuringiensis (Bt) are the primary recombinant proteins expressed in transgenic crops (Bt-crops) to confer insect resistance. Development of resistance to Bt toxins in insect populations threatens the sustainable application of Bt-crops in agriculture. The Bt toxin Cry2Ab is a major insecticidal protein used in current Bt-crops, and resistance to Cry2Ab has been selected in several insects, including the cabbage looper, Trichoplusia ni. In this study, the Cry2Ab resistance gene in T. ni was mapped to Chromosome 17 by genetic linkage analyses using a whole genome resequencing approach, and was then finely mapped using RNA-seq-based bulked segregant analysis (BSA) and amplicon sequencing (AmpSeq)-based fine linkage mapping to a locus containing two genes, ABCA1 and ABCA2. Mutations in ABCA1 and ABCA2 in Cry2Ab resistant T. ni were identified by both genomic DNA and cDNA sequencing. Analysis of the expression of ABCA1 and ABCA2 in T. ni larvae indicated that ABCA2 is abundantly expressed in the larval midgut, but ABCA1 is not a midgut-expressed gene. The mutation in ABCA2 in Cry2Ab resistant T. ni was identified to be an insertion of a transposon Tntransib in ABCA2. For confirmation of ABCA2 as the Cry2Ab-resistance gene, T. ni mutants with frameshift mutations in ABCA1 and ABCA2 were generated by CRISPR/Cas9 mutagenesis. Bioassays of the T. ni mutants with Cry2Ab verified that the mutations of ABCA1 did not change larval susceptibility to Cry2Ab, but the ABCA2 mutants were highly resistant to Cry2Ab. Genetic complementation test of the ABCA2 allele in Cry2Ab resistant T. ni with an ABCA2 mutant generated by CRISPR/Cas9 confirmed that the ABCA2 mutation in the Cry2Ab resistant strain confers the resistance. The results from this study confirmed that ABCA2 is essential for the toxicity of Cry2Ab in T. ni and mutation of ABCA2 confers the resistance to Cry2Ab in the resistant T. ni strain derived from a Bt resistant greenhouse population.
Collapse
Affiliation(s)
- Xiaowei Yang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Wenbo Chen
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Xiaozhao Song
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Xiaoli Ma
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Rey O Cotto-Rivera
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Wendy Kain
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Hannah Chu
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA; Department of Science, John Jay College of Criminal Justice-City University of New York, New York, NY, 10019, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA; USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.
| |
Collapse
|
229
|
Synthesis and Characterization of Cry2Ab-AVM Bioconjugate: Enhanced Affinity to Binding Proteins and Insecticidal Activity. Toxins (Basel) 2019; 11:toxins11090497. [PMID: 31461921 PMCID: PMC6783867 DOI: 10.3390/toxins11090497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022] Open
Abstract
Bacillus thuringiensis insecticidal proteins (Bt toxins) have been widely used in crops for agricultural pest management and to reduce the use of chemical insecticides. Here, we have engineered Bt toxin Cry2Ab30 and bioconjugated it with 4"-O-succinyl avermectin (AVM) to synthesize Cry2Ab-AVM bioconjugate. It was found that Cry2Ab-AVM showed higher insecticidal activity against Plutella xylostella, up to 154.4 times compared to Cry2Ab30. The binding results showed that Cry2Ab-AVM binds to the cadherin-like binding protein fragments, the 10th and 11th cadherin repeat domains in the P. xylostella cadherin (PxCR10-11), with a much higher affinity (dissociation equilibrium constant KD = 3.44 nM) than Cry2Ab30 (KD = 28.7 nM). Molecular docking suggested that the macrolide lactone group of Cry2Ab-AVM ligand docking into the PxCR10-11 is a potential mechanism to enhance the binding affinity of Cry2Ab-AVM to PxCR10-11. These findings offer scope for the engineering of Bt toxins by bioconjugation for improved pest management.
Collapse
|
230
|
Wang Y, Quan Y, Yang J, Shu C, Wang Z, Zhang J, Gatehouse AMR, Tabashnik BE, He K. Evolution of Asian Corn Borer Resistance to Bt Toxins Used Singly or in Pairs. Toxins (Basel) 2019; 11:E461. [PMID: 31390820 PMCID: PMC6723947 DOI: 10.3390/toxins11080461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022] Open
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized pest control, but the benefits of this approach have been reduced by the evolution of resistance in pests. The widely adopted 'pyramid strategy' for delaying resistance entails transgenic crops producing two or more distinct toxins that kill the same pest. The limited experimental evidence supporting this strategy comes primarily from a model system under ideal conditions. Here we tested the pyramid strategy under nearly worst-case conditions, including some cross-resistance between the toxins in the pyramid. In a laboratory selection experiment with an artificial diet, we used Bt toxins Cry1Ab, Cry1F, and Cry1Ie singly or in pairs against Ostrinia furnacalis, one of the most destructive pests of corn in Asia. Under the conditions evaluated, pairs of toxins did not consistently delay the evolution of resistance relative to single toxins.
Collapse
Affiliation(s)
- Yueqin Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yudong Quan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changlong Shu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenying Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Kanglai He
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
231
|
Ghosh E, Venkatesan R. Plant Volatiles Modulate Immune Responses of Spodoptera litura. J Chem Ecol 2019; 45:715-724. [DOI: 10.1007/s10886-019-01091-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
|
232
|
Calles-Torrez V, Knodel JJ, Boetel MA, French BW, Fuller BW, Ransom JK. Field-Evolved Resistance of Northern and Western Corn Rootworm (Coleoptera: Chrysomelidae) Populations to Corn Hybrids Expressing Single and Pyramided Cry3Bb1 and Cry34/35Ab1 Bt Proteins in North Dakota. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1875-1886. [PMID: 31114868 DOI: 10.1093/jee/toz111] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Northern, Diabrotica barberi Smith & Lawrence, and western, D. virgifera virgifera LeConte, corn rootworms (Coleoptera: Chrysomelidae) are major economic pests of corn, Zea mays L., in North America. Corn hybrids expressing Bacillus thuringiensis Berliner (Bt) toxins are commonly used by growers to manage these pests. Several cases of field-evolved resistance to insecticidal proteins expressed by Bt corn hybrids have been documented in many corn-producing areas of North America, but only for D. v. virgifera. In 2016, beetles of both species were collected from five eastern North Dakota corn fields and reared in a growth chamber. In 2017, larvae reared from those populations were subjected to single-plant bioassays to screen for potential resistance to Cry3Bb1, Cry34/35Ab1, and pyramided Cry3Bb1 + Cry34/35Ab1 Bt toxins. Our results provide the first documented report of field-evolved resistance in D. barberi to corn hybrids expressing Cry3Bb1 (Arthur problem population) and Cry34/35Ab1 (Arthur and Page problem populations, and the Ransom and Sargent populations) proteins in North America. Resistance to Cry3Bb1 was also observed in the Ransom population of D. v. virgifera. Increased larval survival on the pyramided Cry3Bb1 + Cry34/35Ab1 hybrid was observed in both species. No cross-resistance was evident between Cry3Bb1 and Cry34/35Ab1 in any of the D. barberi populations tested. Our experiments identified field-evolved resistance to Bt toxins in some North Dakota populations of D. barberi and D. v. virgifera. Thus, more effective control tools and improved resistance management strategies are needed to prolong the durability of this technology for managing these important pests.
Collapse
Affiliation(s)
| | - Janet J Knodel
- Department of Plant Pathology, North Dakota State University, Dept., Fargo, ND
| | - Mark A Boetel
- Department of Entomology, North Dakota State University, Dept., Fargo, ND
| | - B Wade French
- USDA-ARS North Central Agricultural Research Laboratory, Brookings, SD
| | - Billy W Fuller
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD
| | - Joel K Ransom
- Department of Plant Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
233
|
Qiu L, Sun Y, Jiang Z, Yang P, Liu H, Zhou H, Wang X, Zhang W, Lin Y, Ma W. The midgut V-ATPase subunit A gene is associated with toxicity to crystal 2Aa and crystal 1Ca-expressing transgenic rice in Chilo suppressalis. INSECT MOLECULAR BIOLOGY 2019; 28:520-527. [PMID: 30719783 DOI: 10.1111/imb.12570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insecticidal crystal (Cry) proteins produced by the bacterium Bacillus thuringiensis (Bt) are toxic to a diverse range of insects. Transgenic rice expressing Cry1A, Cry2A and Cry1C toxins have been developed that are lethal to Chilo suppressalis, a devastating insect pest of rice in China. Identifying the mechanisms underlying the interactions of Cry toxins with susceptible hosts will improve both our understanding of Cry protein toxicology and long-term efficacy of Bt crops. In this study, we tested the hypothesis that V-ATPase subunit A contributes to the action of Cry1Ab/1Ac, Cry2Aa and Cry1Ca toxins in C. suppressalis. The full-length V-ATPase subunit A transcript was initially cloned from the C. suppressalis larval midgut and then used to generate double-stranded RNA (dsRNA)-producing bacteria. Toxicity assays using transgenic rice lines TT51 (Cry1Ab and Cry1Ac fusion genes), T2A-1 (Cry2Aa), and T1C-19 (Cry1Ca) in conjunction with V-ATPase subunit A dsRNA-treated C. suppressalis larvae revealed significantly reduced larval susceptibility to T2A-1 and T1C-19 transgenic rice, but not to TT51 rice. These results suggest that the V-ATPase subunit A plays a crucial role in mediating Cry2Aa and Cry1Ca toxicity in C. suppressalis. These findings will have significant implications on the development of future resistance management tools.
Collapse
Affiliation(s)
- L Qiu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Y Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Z Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - P Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - H Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - H Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - X Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - W Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
| | - Y Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
| | - W Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
234
|
Caccia S, Casartelli M, Tettamanti G. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res 2019; 377:505-525. [DOI: 10.1007/s00441-019-03076-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
|
235
|
Li S, Hussain F, Unnithan GC, Dong S, UlAbdin Z, Gu S, Mathew LG, Fabrick JA, Ni X, Carrière Y, Tabashnik BE, Li X. A long non-coding RNA regulates cadherin transcription and susceptibility to Bt toxin Cry1Ac in pink bollworm, Pectinophora gossypiella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:54-60. [PMID: 31378361 DOI: 10.1016/j.pestbp.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 05/29/2023]
Abstract
Extensive planting of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) has spurred increasingly rapid evolution of resistance in pests. In the pink bollworm, Pectinophora gossypiella, a devastating global pest, resistance to Bt toxin Cry1Ac produced by transgenic cotton is linked with mutations in a gene (PgCad1) encoding a cadherin protein that binds Cry1Ac in the larval midgut. We previously reported a long non-coding RNA (lncRNA) in intron 20 of cadherin alleles associated with both resistance and susceptibility to Cry1Ac. Here we tested the hypothesis that reducing expression of this lncRNA decreases transcription of PgCad1 and susceptibility to Cry1Ac. Quantitative RT-PCR showed that feeding susceptible neonates small interfering RNAs (siRNAs) targeting this lncRNA but not PgCad1 decreased the abundance of transcripts of both the lncRNA and PgCad1. Moreover, neonates fed the siRNAs had lower susceptibility to Cry1Ac. The results imply that the lncRNA increases transcription of PgCad1 and susceptibility of pink bollworm to Cry1Ac. The results suggest that disruption of lncRNA expression could be a novel mechanism of pest resistance to Bt toxins.
Collapse
Affiliation(s)
- Shengyun Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Fiaz Hussain
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; Insect Molecular Biology Lab, Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Shuanglin Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zain UlAbdin
- Insect Molecular Biology Lab, Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lolita G Mathew
- USDA, ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Jeffrey A Fabrick
- USDA, ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Xinzhi Ni
- USDA, ARS Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
236
|
Pore-Forming Proteins from Cnidarians and Arachnids as Potential Biotechnological Tools. Toxins (Basel) 2019; 11:toxins11060370. [PMID: 31242582 PMCID: PMC6628452 DOI: 10.3390/toxins11060370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Animal venoms are complex mixtures of highly specialized toxic molecules. Cnidarians and arachnids produce pore-forming proteins (PFPs) directed against the plasma membrane of their target cells. Among PFPs from cnidarians, actinoporins stand out for their small size and molecular simplicity. While native actinoporins require only sphingomyelin for membrane binding, engineered chimeras containing a recognition antibody-derived domain fused to an actinoporin isoform can nonetheless serve as highly specific immunotoxins. Examples of such constructs targeted against malignant cells have been already reported. However, PFPs from arachnid venoms are less well-studied from a structural and functional point of view. Spiders from the Latrodectus genus are professional insect hunters that, as part of their toxic arsenal, produce large PFPs known as latrotoxins. Interestingly, some latrotoxins have been identified as potent and highly-specific insecticides. Given the proteinaceous nature of these toxins, their promising future use as efficient bioinsecticides is discussed throughout this Perspective. Protein engineering and large-scale recombinant production are critical steps for the use of these PFPs as tools to control agriculturally important insect pests. In summary, both families of PFPs, from Cnidaria and Arachnida, appear to be molecules with promising biotechnological applications.
Collapse
|
237
|
Wang Y, Zhang X, Xie Y, Wu A, Zai X, Liu X. High-affinity phage-displayed peptide as a recognition probe for the detection of Cry2Ad2-3. Int J Biol Macromol 2019; 137:562-567. [PMID: 31238073 DOI: 10.1016/j.ijbiomac.2019.06.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 11/25/2022]
Abstract
Cry2A is widely used in transgenic crops in combination with Cry1A toxins. The sensitive and robust detection of Cry2A toxin in food and the environment is necessary to monitor the safety of biopesticides. Here, we describe an approach that involves the use of phage-displayed peptide for the detection of Cry2Ad2-3-the main area of Cry2Ad2 insecticidal activity. After four rounds of panning, six positive monoclonal phage particles were obtained. Pep5 with a sequence of ACSYNHNSKCGGG displayed low cross-reactivity with other Cry toxins. The working range of detection for Cry2Ad2-3 toxin standards in the brush border membrane vesicle (BBMV)-peptide sandwich ELISA was 10-50.625 ng mL-1 and the detection limit (LOD) was 8 ng mL-1. Molecular insight into the interaction of pep5 with Cry2Ad2-3 was gleaned using homology modeling and docking. Molecular docking results showed that high-affinity peptide tended to dock in the groove between the two domains of Cry2Ad2-3. The interactions within the toxin-pep5 complex were due to hydrogen bond and hydrophobic interaction. Pep5 also lead us to trap the binding region. Therefore, peptides may be a cost-efficient alternative for detecting Cry toxins and studying their mechanisms.
Collapse
Affiliation(s)
- Yun Wang
- College of Horticulture, Jinling Institute of Technology, 210038 Nanjing, PR China
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Yajing Xie
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Aihua Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Xueming Zai
- College of Horticulture, Jinling Institute of Technology, 210038 Nanjing, PR China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China.
| |
Collapse
|
238
|
Du L, Chen G, Han L, Peng Y. Cadherin CsCad plays differential functional roles in Cry1Ab and Cry1C intoxication in Chilo suppressalis. Sci Rep 2019; 9:8507. [PMID: 31186483 PMCID: PMC6559963 DOI: 10.1038/s41598-019-44451-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
Transgenic rice lines expressing Bacillus thuringiensis (Bt) toxins have been successfully developed for the control of Chilo suppressalis. However, the evolution of insect resistance is a major threat to Bt rice durability. Bt toxins function by binding specific receptors in the midgut of target insects; specifically, cadherin proteins have been identified as Cry toxin receptors in diverse lepidopteran species. Here, we report the functional roles of cadherin CsCad in the midgut of C. suppressalis in Cry1Ab and Cry1C toxicity. We expressed a recombinant truncated CsCad peptide (CsCad-CR11-MPED) in Escherichia coli that included the eleventh cadherin repeat and MPED region. Based on ligand blotting and ELISA binding assays, the CsCad-CR11-MPED peptide specifically bound Cry1Ab with high affinity but weakly bound Cry1C. The CsCad-CR11-MPED peptide significantly enhanced the susceptibility of C. suppressalis larvae to Cry1Ab but not Cry1C. Furthermore, the knockdown of endogenous CsCad with Stealth siRNA reduced C. suppressalis larval susceptibility to Cry1Ab but not Cry1C, suggesting that CsCad plays differential functional roles in Cry1Ab and Cry1C intoxication in C. suppressalis. This information directly enhances our understanding of the potential resistance mechanisms of C. suppressalis against Bt toxins and may assist in the development of effective strategies for delaying insect resistance.
Collapse
Affiliation(s)
- Lixiao Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Geng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| |
Collapse
|
239
|
Wu C, Chakrabarty S, Jin M, Liu K, Xiao Y. Insect ATP-Binding Cassette (ABC) Transporters: Roles in Xenobiotic Detoxification and Bt Insecticidal Activity. Int J Mol Sci 2019; 20:ijms20112829. [PMID: 31185645 PMCID: PMC6600440 DOI: 10.3390/ijms20112829] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
ATP-binding cassette (ABC) transporters, a large class of transmembrane proteins, are widely found in organisms and play an important role in the transport of xenobiotics. Insect ABC transporters are involved in insecticide detoxification and Bacillus thuringiensis (Bt) toxin perforation. The complete ABC transporter is composed of two hydrophobic transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). Conformational changes that are needed for their action are mediated by ATP hydrolysis. According to the similarity among their sequences and organization of conserved ATP-binding cassette domains, insect ABC transporters have been divided into eight subfamilies (ABCA–ABCH). This review describes the functions and mechanisms of ABC transporters in insecticide detoxification, plant toxic secondary metabolites transport and insecticidal activity of Bt toxin. With improved understanding of the role and mechanisms of ABC transporter in resistance to insecticides and Bt toxins, we can identify valuable target sites for developing new strategies to control pests and manage resistance and achieve green pest control.
Collapse
Affiliation(s)
- Chao Wu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Swapan Chakrabarty
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
240
|
Dhania NK, Chauhan VK, Chaitanya R, Dutta-Gupta A. Midgut de novo transcriptome analysis and gene expression profiling of Achaea janata larvae exposed with Bacillus thuringiensis (Bt)-based biopesticide formulation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:81-90. [DOI: 10.1016/j.cbd.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/19/2018] [Accepted: 02/14/2019] [Indexed: 11/24/2022]
|
241
|
Mir DA, Balamurugan K. Global Proteomic Response of Caenorhabditis elegans Against PemK Sa Toxin. Front Cell Infect Microbiol 2019; 9:172. [PMID: 31214513 PMCID: PMC6555269 DOI: 10.3389/fcimb.2019.00172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Bacterial exotoxins are major causative agents that infect by promoting cell and tissue damages through disabling the invading host immune system. However, the mode of action by which toxins modulate host immune system and lead cell death is still not completely understood. The nematode, Caenorhabditis elegans has been used as an attractive model host for toxicological studies. In this regard, the present study was undertaken to assess the impact of Staphylococcus aureus toxin (PemK) on the host C. elegans through global proteomics approach. Our proteomic data obtained through LC-MS/MS, subsequent bioinformatics and biochemical analyses revealed that in response to PemKSa a total of 601 proteins of C. elegans were differentially regulated in response to PemKSa. The identified proteins were found to mainly participate in ATP generation, protein synthesis, lipid synthesis, cytoskeleton, heat shock proteins, innate immune defense, stress response, neuron degeneration, and muscle assembly. Current findings suggested that involvement of several regulatory proteins that appear to play a role in various molecular functions in combating PemKSa toxin-mediated microbial pathogenicity and/or host C. elegans immunity modulation. The results provided a preliminary view of the physiological and molecular response of a host toward a toxin and provided insight into highly complex host-toxin interactions.
Collapse
|
242
|
Wang L, Wang J, Ma Y, Wan P, Liu K, Cong S, Xiao Y, Xu D, Wu K, Fabrick JA, Li X, Tabashnik BE. Transposon insertion causes cadherin mis-splicing and confers resistance to Bt cotton in pink bollworm from China. Sci Rep 2019; 9:7479. [PMID: 31097777 PMCID: PMC6522560 DOI: 10.1038/s41598-019-43889-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/02/2019] [Indexed: 01/09/2023] Open
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) are cultivated extensively, but rapid evolution of resistance by pests reduces their efficacy. We report a 3,370-bp insertion in a cadherin gene associated with resistance to Bt toxin Cry1Ac in the pink bollworm (Pectinophora gossypiella), a devastating global cotton pest. We found the allele (r15) harboring this insertion in a field population from China. The insertion is a miniature inverted repeat transposable element (MITE) that contains two additional transposons and produces two mis-spliced transcript variants (r15A and r15B). A strain homozygous for r15 had 290-fold resistance to Cry1Ac, little or no cross-resistance to Cry2Ab, and completed its life cycle on Bt cotton producing Cry1Ac. Inheritance of resistance was recessive and tightly linked with r15. For transformed insect cells, susceptibility to Cry1Ac was greater for cells producing the wild-type cadherin than for cells producing the r15 mutant proteins. Recombinant cadherin protein occurred on the cell surface in cells transformed with the wild-type or r15A sequences, but not in cells transformed with the r15B sequence. The similar resistance of pink bollworm to Cry1Ac in laboratory- and field-selected insects from China, India and the U.S. provides a basis for developing international resistance management practices.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Integrated Pest Management On Crops in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jintao Wang
- Key Laboratory of Integrated Pest Management On Crops in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.,Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuemin Ma
- School of Life Science, Central China Normal University, Wuhan, 430079, China
| | - Peng Wan
- Key Laboratory of Integrated Pest Management On Crops in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Kaiyu Liu
- School of Life Science, Central China Normal University, Wuhan, 430079, China
| | - Shengbo Cong
- Key Laboratory of Integrated Pest Management On Crops in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dong Xu
- Key Laboratory of Integrated Pest Management On Crops in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jeffrey A Fabrick
- USDA, ARS, U.S. Arid Land Agricultural Research Center, Maricopa, Arizona, 85138, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
243
|
Guo Z, Sun D, Kang S, Zhou J, Gong L, Qin J, Guo L, Zhu L, Bai Y, Luo L, Zhang Y. CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 107:31-38. [PMID: 30710623 DOI: 10.1016/j.ibmb.2019.01.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/18/2018] [Accepted: 01/29/2019] [Indexed: 05/20/2023]
Abstract
Rapid evolution of resistance by insect pests severely jeopardizes the sustainable utilization of biopesticides and transgenic crops that produce insecticidal crystal proteins derived from the entomopathogenic bacterium Bacillus thuringiensis (Bt). Recently, high levels of resistance to Bt Cry1 toxins have been reported to be genetically linked to the mutation or down-regulation of ABC transporter subfamily C genes ABCC2 and ABCC3 in seven lepidopteran insects, including Plutella xylostella (L.). To further determine the causal relationship between alterations in the PxABCC2 and PxABCC3 genes and Cry1Ac resistance in P. xylostella, the novel CRISPR/Cas9 genome engineering system was utilized to successfully construct two knockout strains: the ABCC2KO strain is homozygous for a 4-bp deletion in exon 3 of the PxABCC2 gene, and the ABCC3KO strain is homozygous for a 5-bp deletion in exon 3 of the PxABCC3 gene, both of which can produce only truncated ABCC proteins. Bioassay results indicated that high levels of resistance to the Cry1Ac protoxin were observed in both the ABCC2KO (724-fold) and ABCC3KO (413-fold) strains compared to the original susceptible DBM1Ac-S strain. Subsequently, dominance degree and genetic complementation tests demonstrated that Cry1Ac resistance in both the knockout strains was incompletely recessive, and Cry1Ac resistance alleles were located in the classic BtR-1 resistance locus that harbored the PxABCC2 and PxABCC3 genes, similar to the near-isogenic resistant NIL-R strain. Moreover, qualitative toxin binding assays revealed that the binding of the Cry1Ac toxin to midgut brush border membrane vesicles (BBMVs) in both knockout strains was dramatically reduced compared to that in the susceptible DBM1Ac-S strain. In summary, our CRISPR/Cas9-mediated genome editing study presents, for the first time, in vivo reverse genetics evidence for both the ABCC2 and ABCC3 proteins as midgut functional receptors for Bt Cry1 toxins in insects, which provides new insight into the pivotal roles of both the ABCC2 and ABCC3 proteins in the complex molecular mechanism of insect resistance to Bt Cry1 toxins.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Junlei Zhou
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lijun Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Le Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Liuhong Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yang Bai
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Liang Luo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
244
|
Zhang M, Wei J, Ni X, Zhang J, Jurat-Fuentes JL, Fabrick JA, Carrière Y, Tabashnik BE, Li X. Decreased Cry1Ac activation by midgut proteases associated with Cry1Ac resistance in Helicoverpa zea. PEST MANAGEMENT SCIENCE 2019; 75:1099-1106. [PMID: 30264537 DOI: 10.1002/ps.5224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Field-evolved resistance of Helicoverpa zea to Bacillus thuringiensis (Bt) toxin Cry1Ac was first reported more than a decade ago, yet the underlying mechanisms remain elusive. Towards understanding the mechanisms of resistance to Cry1Ac, we analyzed a susceptible (LAB-S) and two resistant (GA and GA-R) strains of H. zea. The GA strain was derived from Georgia and exposed to Bt toxins only in the field. The GA-R strain was derived from the GA strain and selected for increased resistance to Cry1Ac in the laboratory. RESULTS Resistance to MVPII, a liquid formulation containing a hybrid protoxin similar to Cry1Ac, was 110-fold for GA-R and 7.8-fold for GA relative to LAB-S. In midgut brush border membrane vesicles, activity of alkaline phosphatase and aminopeptidase N did not vary significantly among strains. The activity of total proteases, trypsin-like proteases and chymotrypsin-like proteases was significantly lower for GA-R and GA than LAB-S, but did not differ between GA-R and GA. When H. zea midgut cells were exposed to Cry1Ac protoxin that had been digested with midgut extracts, toxicity was significantly lower for extracts from GA-R and GA relative to extracts from LAB-S, but did not differ between GA-R and GA. Transcriptional analysis showed that none of the five protease genes examined was associated with the decline in Cry1Ac activation in GA-R and GA relative to LAB-S. CONCLUSION The results suggest that decreased Cry1Ac activation is a contributing field-selected mechanism of resistance that helps explain the reduced susceptibility of the GA-R and GA strains. Relative to the LAB-S strain, the two Cry1Ac-resistant strains had lower total protease, trypsin and chymotrypsin activities, a lower Cry1Ac activation rate, and Cry1Ac protoxin incubated with their midgut extracts was less toxic to H. zea midgut cells. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Department of Entomology, University of Arizona, Tucson, AZ
| | - Jizhen Wei
- Department of Entomology, University of Arizona, Tucson, AZ
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA, USA
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Jeffrey A Fabrick
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | | | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
245
|
Li S, Xu X, Zheng Z, Zheng J, Shakeel M, Jin F. MicroRNA expression profiling of Plutella xylostella after challenge with B. thuringiensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:115-124. [PMID: 30582949 DOI: 10.1016/j.dci.2018.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
The diamondback moth, Plutella xylostella, the main pest of brassica crops, has developed resistance to almost all major classes of insecticides as the farmers rely on insecticides to control this pest. An extensive use of broad-spectrum insecticides against P. xylostella promotes the selection of insecticide resistance, destroy natural enemies, and pollute the environment. In this scenario, it is imperative to use genetic methods such as gene silencing technology as an alternate approach against this pest. Evidence shows that microRNAs play pivotal roles in the regulation of target genes at the post-transcription level and show differential expression under various biological processes. However, the knowledge of their role in insect immunity is still in its infancy. In the present study, we aimed at exploring the response of P. xylostella miRNAs against B. thuringiensis at different time courses (6, 12, 18, 24, and 36 h) by using small RNA sequencing. After data filtration, a combined set of 149 miRNAs was identified from all the libraries. Interestingly, a couple of conserved miRNAs such as miR-1, Let-7, miR-275, miR-184, and miR-10 were listed as abundantly expressed miRNAs after exposure to B. thuringiensis. It is worth mentioning that the differential expression analysis revealed that miR-2, a conserved miRNA, was up-regulated following infection. Furthermore, we experimentally validated the involvement of miR-2b-3p in the regulation of corresponding target trypsin. Our luciferase assay results revealed that miR-2b-3p mimic significantly down-regulated the target gene trypsin indicating that it might play a crucial role in the defense mechanism of P. xylostella against B. thuringiensis infection. On the whole, our findings provide insights into the possible regulatory role of miRNAs in insect immunity in response to microorganisms.
Collapse
Affiliation(s)
- Shuzhong Li
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China
| | - Xiaoxia Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China
| | - Zhihua Zheng
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China
| | - Jinlong Zheng
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China
| | - Muhammad Shakeel
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China.
| | - Fengliang Jin
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, PR China.
| |
Collapse
|
246
|
BenFarhat-Touzri D, Jemli S, Driss F, Tounsi S. Molecular and structural characterization of a novel Cry1D toxin from Bacillus thuringiensis with high toxicity to Spodoptera littoralis (Lepidoptera: Noctuidae). Int J Biol Macromol 2019; 126:969-976. [PMID: 30593807 DOI: 10.1016/j.ijbiomac.2018.12.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
The investigation of new Bacillus thuringiensis (Bt) insecticidal proteins (Cry) with specific toxicity is one of the alternative measures used for Lepidopteran pest control. In the present study, a new Cry toxin was identified from a promising Bt strain BLB250 which was previously selected for its high toxicity against Spodoptera littoralis. The corresponding gene, designated cry1D-250, was cloned. It showed an ORF of 3498bp, encoding a protein of 1165 amino acid residues with a putative molecular mass of 132kDa which was confirmed by SDS-PAGE and Western blot analyses. The corresponding toxin named Cry1D-250 showed a higher insecticidal activity towards S. littoralis than Cry1D-133 (LC50 of 224.4ngcm-2) with an LC50 of only 166ngcm-2. Besides to the 65kDa active toxin, proteolysis activation of Cry1D-133 protein with S. littoralis midgut juice generated an extra form of 56kDa, which was the result of a second cleavage. Via activation study and 3D structure analysis, novel substitutions found in the Cry1D-250 protein compared to Cry1D-133 toxin were shown to be involved in the protein stability and toxicity. Therefore, the Cry1D-250 toxin can be considered to be an effective alternative for the control of S. littoralis.
Collapse
Affiliation(s)
- Dalel BenFarhat-Touzri
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box. "1177", 3018 Sfax, Tunisia
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzyme Engineering, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box. "1177", 3018 Sfax, Tunisia
| | - Fatma Driss
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box. "1177", 3018 Sfax, Tunisia.
| | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box. "1177", 3018 Sfax, Tunisia
| |
Collapse
|
247
|
Li R, Yang S, Qiu X, Lu X, Hu Q, Ren X, Wu B, Qi L, Ding X, Xia L, Sun Y. The conserved cysteine residues in Bacillus thuringiensis Cry1Ac protoxin are not essential for the bipyramidal crystal formation. J Invertebr Pathol 2019; 163:82-85. [PMID: 30928458 DOI: 10.1016/j.jip.2019.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 11/19/2022]
Abstract
To evaluate the function of conserved cysteine residues in Cry1Ac protoxin, we constructed a series of Cry1Ac mutants in which single or multiple cysteine residues were replaced with serine. It was found that cysteine substitution had little effect on the protoxin expression and bipyramidal crystal formation. Bioassays using Plutella xylostella larvae showed that two mutants with fourteen cysteine residues in the C-terminal half and all sixteen residues replaced had similar toxicity as wildtype Cry1Ac protoxin. Our study suggests that the conserved cysteine resudues in the Cry1Ac protoxin are not essential for deposition into a bipyramidal crystal even though the C-terminal half was directly involved in crystal formation.
Collapse
Affiliation(s)
- Ran Li
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Sisi Yang
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xianfeng Qiu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xiuqing Lu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Quanfang Hu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xiaomeng Ren
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Binbin Wu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Lingling Qi
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Xuezhi Ding
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Liqiu Xia
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China
| | - Yunjun Sun
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
248
|
Pink Bollworm Resistance to Bt Toxin Cry1Ac Associated with an Insertion in Cadherin Exon 20. Toxins (Basel) 2019; 11:toxins11040186. [PMID: 30925748 PMCID: PMC6521048 DOI: 10.3390/toxins11040186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Insecticidal proteins from Bacillus thuringiensis (Bt) are widely used to control insect pests, but their efficacy is reduced when pests evolve resistance. We report on a novel allele (r16) of the cadherin gene (PgCad1) in pink bollworm (Pectinophora gossypiella) associated with resistance to Bt toxin Cry1Ac, which is produced by transgenic cotton. The r16 allele isolated from a field population in China has 1545 base pairs of a degenerate transposon inserted in exon 20 of PgCad1, which generates a mis-spliced transcript containing a premature stop codon. A strain homozygous for r16 had 300-fold resistance to Cry1Ac, 2.6-fold cross-resistance to Cry2Ab, and completed its life cycle on transgenic Bt cotton producing Cry1Ac. Inheritance of Cry1Ac resistance was recessive and tightly linked with r16. Compared with transfected insect cells expressing wild-type PgCad1, cells expressing r16 were less susceptible to Cry1Ac. Recombinant cadherin protein was transported to the cell membrane in cells transfected with the wild-type PgCad1 allele, but not in cells transfected with r16. Cadherin occurred on brush border membrane vesicles (BBMVs) in the midgut of susceptible larvae, but not resistant larvae. These results imply that the r16 allele mediates Cry1Ac resistance in pink bollworm by interfering with the localization of cadherin.
Collapse
|
249
|
Pinos D, Martínez-Solís M, Herrero S, Ferré J, Hernández-Martínez P. The Spodoptera exigua ABCC2 Acts as a Cry1A Receptor Independently of its Nucleotide Binding Domain II. Toxins (Basel) 2019; 11:toxins11030172. [PMID: 30909393 PMCID: PMC6468857 DOI: 10.3390/toxins11030172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/27/2022] Open
Abstract
ABC proteins are primary-active transporters that require the binding and hydrolysis of ATP to transport substrates across the membrane. Since the first report of an ABCC2 transporter as receptor of Cry1A toxins, the number of ABC transporters known to be involved in the mode of action of Cry toxins has increased. In Spodoptera exigua, a mutation in the SeABCC2 gene is described as genetically linked to resistance to the Bt-product XentariTM. This mutation affects an intracellular domain involved in ATP binding, but not the extracellular loops. We analyzed whether this mutation affects the role of the SeABCC2 as a functional receptor to Cry1A toxins. The results show that Sf21 cells expressing the truncated form of the transporter were susceptible to Cry1A toxins. Moreover, specific Cry1Ac binding was observed in those cells expressing the truncated SeABCC2. Additionally, no differences in the irreversible Cry1Ac binding component (associated with the toxin insertion into the membrane) were observed when tested in Sf21 cells expressing either the full-length or the truncated form of the SeABCC2 transporter. Therefore, our results point out that the partial lack of the nucleotide binding domain II in the truncated transporter does not affect its functionality as a Cry1A receptor.
Collapse
Affiliation(s)
- Daniel Pinos
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain.
| | - María Martínez-Solís
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain.
| | - Salvador Herrero
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain.
| | - Juan Ferré
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain.
| | - Patricia Hernández-Martínez
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
250
|
Rathinam M, Kesiraju K, Singh S, Thimmegowda V, Rai V, Pattanayak D, Sreevathsa R. Molecular Interaction-Based Exploration of the Broad Spectrum Efficacy of a Bacillus thuringiensis Insecticidal Chimeric Protein, Cry1AcF. Toxins (Basel) 2019; 11:toxins11030143. [PMID: 30832332 PMCID: PMC6468889 DOI: 10.3390/toxins11030143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis insecticidal proteins (Bt ICPs) are reliable and valuable options for pest management in crops. Protein engineering of Bt ICPs is a competitive alternative for resistance management in insects. The primary focus of the study was to reiterate the translational utility of a protein-engineered chimeric Cry toxin, Cry1AcF, for its broad spectrum insecticidal efficacy using molecular modeling and docking studies. In-depth bioinformatic analysis was undertaken for structure prediction of the Cry toxin as the ligand and aminopeptidase1 receptors (APN1) from Helicoverpa armigera (HaAPN1) and Spodoptera litura (SlAPN1) as receptors, followed by interaction studies using protein-protein docking tools. The study revealed feasible interactions between the toxin and the two receptors through H-bonding and hydrophobic interactions. Further, molecular dynamics simulations substantiated the stability of the interactions, proving the broad spectrum efficacy of Cry1AcF in controlling H. armigera and S. litura. These findings justify the utility of protein-engineered toxins in pest management.
Collapse
Affiliation(s)
- Maniraj Rathinam
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Karthik Kesiraju
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Shweta Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Vinutha Thimmegowda
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Vandna Rai
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Debasis Pattanayak
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Rohini Sreevathsa
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|