201
|
Cellular Mechanisms of Oxidative Stress and Action in Melanoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:481782. [PMID: 26064422 PMCID: PMC4438193 DOI: 10.1155/2015/481782] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/21/2015] [Indexed: 12/14/2022]
Abstract
Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment.
Collapse
|
202
|
Hu SQ, Cui W, Mak SH, Choi CL, Hu YJ, Li G, Tsim KWK, Pang YP, Han YF. Robust Neuritogenesis-Promoting Activity by Bis(heptyl)-Cognitin Through the Activation of alpha7-Nicotinic Acetylcholine Receptor/ERK Pathway. CNS Neurosci Ther 2015; 21:520-9. [PMID: 25917415 DOI: 10.1111/cns.12401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Neurodegenerative disorders are caused by progressive neuronal loss in the brain, and hence, compounds that could promote neuritogenesis may have therapeutic values. In this study, the effects of bis(heptyl)-cognitin (B7C), a multifunctional dimer, on neurite outgrowth were investigated in both PC12 cells and primary cortical neurons. METHODS Immunocytochemical staining was used to evaluate the proneuritogenesis effects, and Western blot and short hairpin RNA assays were applied to explore the underlying mechanisms. RESULTS B7C (0.1-0.5 μM) induced robust neurite outgrowth in PC12 cells, as evidenced by the neurite-bearing morphology and upregulation of growth-associated protein-43 expression. In addition, B7C markedly promoted neurite outgrowth in primary cortical neurons as shown by the increase in the length of β-III-tubulin-positive neurites. Furthermore, B7C rapidly increased ERK phosphorylation. Specific inhibitors of alpha7-nicotinic acetylcholine receptor (α7-nAChR) and MEK, but not those of p38 or JNK, blocked the neurite outgrowth as well as ERK phosphorylation induced by B7C. Most importantly, genetic depletion of α7-nAChR significantly abolished B7C-induced neurite outgrowth in PC12 cells. CONCLUSION B7C promoted neurite outgrowth through the activation of α7-nAChR/ERK pathway, which offers novel insight into the potential application of B7C in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sheng-Quan Hu
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangdong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Wei Cui
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Shing-Hung Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Chung-Lit Choi
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Karl Wah-Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuan-Ping Pang
- Mayo Cancer Center, Department of Pharmacology, Mayo Clinic, Rochester, MN, USA
| | - Yi-Fan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
203
|
Baburina YL, Gordeeva AE, Moshkov DA, Krestinina OV, Azarashvili AA, Odinokova IV, Azarashvili TS. Interaction of myelin basic protein and 2',3'-cyclic nucleotide phosphodiesterase with mitochondria. BIOCHEMISTRY (MOSCOW) 2015; 79:555-65. [PMID: 25100014 DOI: 10.1134/s0006297914060091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The content and distribution of myelin basic protein (MBP) isoforms (17 and 21.5 kDa) as well as 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) were determined in mitochondrial fractions (myelin fraction, synaptic and nonsynaptic mitochondria) obtained after separation of brain mitochondria by Percoll density gradient. All the fractions could accumulate calcium, maintain membrane potential, and initiate the opening of the permeability transition pore (mPTP) in response to calcium overloading. Native mitochondria and structural contacts between membranes of myelin and mitochondria were found in the myelin fraction associated with brain mitochondria. Using Western blot, it was shown that addition of myelin fraction associated with brain mitochondria to the suspension of liver mitochondria can lead to binding of CNPase and MBP, present in the fraction with liver mitochondria under the conditions of both closed and opened mPTP. However, induction of mPTP opening in liver mitochondria was prevented in the presence of myelin fraction associated with brain mitochondria (Ca2+ release rate was decreased 1.5-fold, calcium retention time was doubled, and swelling amplitude was 2.8-fold reduced). These results indicate possible protective properties of MBP and CNPase.
Collapse
Affiliation(s)
- Yu L Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | | | | | |
Collapse
|
204
|
Inestrosa NC, Ríos JA, Cisternas P, Tapia-Rojas C, Rivera DS, Braidy N, Zolezzi JM, Godoy JA, Carvajal FJ, Ardiles AO, Bozinovic F, Palacios AG, Sachdev PS. Age Progression of Neuropathological Markers in the Brain of the Chilean Rodent Octodon degus, a Natural Model of Alzheimer's Disease. Brain Pathol 2015; 25:679-91. [PMID: 25351914 DOI: 10.1111/bpa.12226] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and the leading cause of age-related dementia worldwide. Several models for AD have been developed to provide information regarding the initial changes that lead to degeneration. Transgenic mouse models recapitulate many, but not all, of the features of AD, most likely because of the high complexity of the pathology. In this context, the validation of a wild-type animal model of AD that mimics the neuropathological and behavioral abnormalities is necessary. In previous studies, we have reported that the Chilean rodent Octodon degus could represent a natural model for AD. In the present work, we further describe the age-related neurodegeneration observed in the O. degus brain. We report some histopathological markers associated with the onset progression of AD, such as glial activation, increase in oxidative stress markers, neuronal apoptosis and the expression of the peroxisome proliferative-activated receptor γ coactivator-1α (PGC-1α). With these results, we suggest that the O. degus could represent a new model for AD research and a powerful tool in the search for therapeutic strategies against AD.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro UC Síndrome de Down, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Juvenal A Ríos
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela S Rivera
- Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Juan M Zolezzi
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco J Carvajal
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Francisco Bozinovic
- Centro UC Síndrome de Down, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Adrián G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Neurosychiatric Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
205
|
Meehan TL, Yalonetskaya A, Joudi TF, McCall K. Detection of Cell Death and Phagocytosis in the Drosophila Ovary. Methods Mol Biol 2015; 1328:191-206. [PMID: 26324439 DOI: 10.1007/978-1-4939-2851-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Billions of cells die and are cleared throughout the development and homeostasis of an organism. Either improper death or clearance can lead to serious illnesses. In the adult Drosophila ovary, germline cells can die by programmed cell death (PCD) at three distinct stages; here we focus on cell death that occurs in mid- and late oogenesis. In mid-oogenesis, the germline of egg chambers can undergo apoptosis in response to nutrient deprivation. In late oogenesis, the nurse cells are eliminated through a developmentally regulated, non-apoptotic cell death. In this chapter, we describe several methods to detect cell death and phagocytosis in the Drosophila ovary. DAPI stains the chromatin of all cells and can be used to detect morphological changes in cells that die by different mechanisms. TUNEL labels fragmented DNA, which can occur in both apoptotic and non-apoptotic death. LysoTracker, an acidophilic dye, marks acidic vesicles and some dying cells; therefore, it can be used to study both death and phagocytosis. We also describe several antibodies that can be used to investigate cell death and/or phagocytosis: active caspase Dcp-1, membrane markers, and lamins. Many of these antibodies can be used in combination with GFP fusion transgenes for further analysis; we show Rab5-GFP and Rab7-GFP, which can be used to study phagocytosis in further detail.
Collapse
Affiliation(s)
- Tracy L Meehan
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | | | | | | |
Collapse
|
206
|
Bosoi CR, Rose CF. Elevated cerebral lactate: Implications in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 2014; 29:919-25. [PMID: 24916505 DOI: 10.1007/s11011-014-9573-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/28/2014] [Indexed: 01/31/2023]
Abstract
Hepatic encephalopathy (HE), a complex neuropsychiatric syndrome, is a frequent complication of liver failure/disease. Increased concentrations of lactate are commonly observed in HE patients, in the systemic circulation, but also in the brain. Traditionally, increased cerebral lactate is considered a marker of energy failure/impairment however alterations in lactate homeostasis may also lead to a rise in brain lactate and result in neuronal dysfunction. The latter may involve the development of brain edema. This review will target the significance of increased cerebral lactate in the pathogenesis of HE.
Collapse
Affiliation(s)
- Cristina R Bosoi
- Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis - Tour Viger R08.422, Québec, H2X 0A9, Canada,
| | | |
Collapse
|
207
|
Abstract
Progressive neurodegenerative diseases are among the most frequently occurring aging-associated human pathologies. In a screen for Caenorhabditis elegans mutant animals that lack their normal complement of dopaminergic neurons, we identified two strains with progressive loss of dopaminergic neurons during postembryonic life. Through whole-genome sequencing we show that both strains harbor dominant (d), gain-of-function mutations in the Transient Receptor Potential (TRP) mechanosensory channel trp-4, a member of the invertebrate and vertebrate TRPN-type of the TRP family channels. Gain-of-function mutations in TRP channels have not been previously implicated in dopaminergic neuronal degeneration. We show that trp-4(d) induces cell death in dopamine neurons through a defined, calcium-related downstream pathway.
Collapse
|
208
|
CHO YOUNGSIK. Perspectives on the therapeutic modulation of an alternative cell death, programmed necrosis (Review). Int J Mol Med 2014; 33:1401-6. [DOI: 10.3892/ijmm.2014.1716] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/21/2014] [Indexed: 11/05/2022] Open
|
209
|
Jain A, Migdalska- A, Jain A. Endothelin-1-Induced Endoplasmic Reticulum Stress in Parkinson's Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.5567/pharmacologia.2014.84.90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
210
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Intraneuronal neurofibrillary tangles, extracellular Aβ amyloid deposits in the form of amyloid plaques and cerebral amyloid angiopathy, and synaptic and neuronal loss co-exist in the brain parenchyma, with the limbic areas being the most severely affected. The classic clinical findings are personality changes, progressive cognitive dysfunction, and loss of ability to perform activities of daily living. Visual impairment is common and appears related to disease severity, suggesting that visual testing may provide a method of screening and tracking AD changes. Although still not fully understood, research and clinical findings point to a possible common causal relationship between AD and glaucoma. These two chronic neurodegenerative disorders share biological and mechanistic features, among them (1) a strong age-related incidence, (2) retinal ganglion cell degeneration, and (3) extracellular fibrillar deposits in exfoliation syndrome, the most common recognizable cause of glaucoma, suggesting that both diseases may originate from similar misfolding mechanisms. A presentation of common pathogenetic pathways associated with these disorders, including cell death mechanisms, reactive oxygen species (ROS) production, mitochondrial dysfunction and vascular abnormalities, will serve as an initiation point for further exploration.
Collapse
|
211
|
Pieper I, Wehe CA, Bornhorst J, Ebert F, Leffers L, Holtkamp M, Höseler P, Weber T, Mangerich A, Bürkle A, Karst U, Schwerdtle T. Mechanisms of Hg species induced toxicity in cultured human astrocytes: genotoxicity and DNA-damage response. Metallomics 2014; 6:662-71. [PMID: 24549367 DOI: 10.1039/c3mt00337j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co-genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl)ation contributes to organic Hg induced neurotoxicity.
Collapse
Affiliation(s)
- Imke Pieper
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
|
213
|
Disease Influence on BBB Transport in Neurodegenerative Disorders. DRUG DELIVERY TO THE BRAIN 2014. [DOI: 10.1007/978-1-4614-9105-7_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
214
|
Erickson JD, Bazan NG. The nucleolus fine-tunes the orchestration of an early neuroprotection response in neurodegeneration. Cell Death Differ 2013; 20:1435-7. [PMID: 24096930 PMCID: PMC3792429 DOI: 10.1038/cdd.2013.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- J D Erickson
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - N G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
215
|
Pera M, Camps P, Muñoz-Torrero D, Perez B, Badia A, Clos Guillen MV. Undifferentiated and differentiated PC12 cells protected by huprines against injury induced by hydrogen peroxide. PLoS One 2013; 8:e74344. [PMID: 24086337 PMCID: PMC3781080 DOI: 10.1371/journal.pone.0074344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress is implicated in the pathogenesis of neurodegenerative disorders and hydrogen peroxide (H2O2) plays a central role in the stress. Huprines, a group of potent acetylcholinesterase inhibitors (AChEIs), have shown a broad cholinergic pharmacological profile. Recently, it has been observed that huprine X (HX) improves cognition in non transgenic middle aged mice and shows a neuroprotective activity (increased synaptophysin expression) in 3xTg-AD mice. Consequently, in the present experiments the potential neuroprotective effect of huprines (HX, HY, HZ) has been analyzed in two different in vitro conditions: undifferentiated and NGF-differentiated PC12 cells. Cells were subjected to oxidative insult (H2O2, 200 µM) and the protective effects of HX, HY and HZ (0.01 µM–1 µM) were analyzed after a pre-incubation period of 24 and 48 hours. All huprines showed protective effects in both undifferentiated and NGF-differentiated cells, however only in differentiated cells the effect was dependent on cholinergic receptors as atropine (muscarinic antagonist, 0.1 µM) and mecamylamine (nicotinic antagonist, 100 µM) reverted the neuroprotection action of huprines. The decrease in SOD activity observed after oxidative insult was overcome in the presence of huprines and this effect was not mediated by muscarinic or nicotinic receptors. In conclusion, huprines displayed neuroprotective properties as previously observed in in vivo studies. In addition, these effects were mediated by cholinergic receptors only in differentiated cells. However, a non-cholinergic mechanism, probably through an increase in SOD activity, seems to be also involved in the neuroprotective effects of huprines.
Collapse
Affiliation(s)
- Marta Pera
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
216
|
Deegan S, Saveljeva S, Gorman AM, Samali A. Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell Mol Life Sci 2013; 70:2425-41. [PMID: 23052213 PMCID: PMC11113399 DOI: 10.1007/s00018-012-1173-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 12/26/2022]
Abstract
Macroautophagy (autophagy) is a cellular catabolic process which can be described as a self-cannibalism. It serves as an essential protective response during conditions of endoplasmic reticulum (ER) stress through the bulk removal and degradation of unfolded proteins and damaged organelles; in particular, mitochondria (mitophagy) and ER (reticulophagy). Autophagy is genetically regulated and the autophagic machinery facilitates removal of damaged cell components and proteins; however, if the cell stress is acute or irreversible, cell death ensues. Despite these advances in the field, very little is known about how autophagy is initiated and how the autophagy machinery is transcriptionally regulated in response to ER stress. Some three dozen autophagy genes have been shown to be required for the correct assembly and function of the autophagic machinery; however; very little is known about how these genes are regulated by cellular stress. Here, we will review current knowledge regarding how ER stress and the unfolded protein response (UPR) induce autophagy, including description of the different autophagy-related genes which are regulated by the UPR.
Collapse
Affiliation(s)
- Shane Deegan
- Apoptosis Research Centre, NUI Galway, Galway, Ireland
- School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Svetlana Saveljeva
- Apoptosis Research Centre, NUI Galway, Galway, Ireland
- School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Adrienne M. Gorman
- Apoptosis Research Centre, NUI Galway, Galway, Ireland
- School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, NUI Galway, Galway, Ireland
- School of Natural Sciences, NUI Galway, Galway, Ireland
| |
Collapse
|
217
|
Tenreiro S, Munder MC, Alberti S, Outeiro TF. Harnessing the power of yeast to unravel the molecular basis of neurodegeneration. J Neurochem 2013; 127:438-52. [DOI: 10.1111/jnc.12271] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Sandra Tenreiro
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
| | - Matthias C. Munder
- Max Planck Institute of Molecular Cell Biology and Genetics; Dresden Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics; Dresden Germany
| | - Tiago F. Outeiro
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Instituto de Fisiologia; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Department of NeuroDegeneration and Restorative Research; University Medizin Göttingen; Göttingen Germany
| |
Collapse
|
218
|
|
219
|
Cohen RM, Rezai-Zadeh K, Weitz TM, Rentsendorj A, Gate D, Spivak I, Bholat Y, Vasilevko V, Glabe CG, Breunig JJ, Rakic P, Davtyan H, Agadjanyan MG, Kepe V, Barrio JR, Bannykh S, Szekely CA, Pechnick RN, Town T. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. J Neurosci 2013; 33:6245-56. [PMID: 23575824 PMCID: PMC3720142 DOI: 10.1523/jneurosci.3672-12.2013] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/31/2013] [Accepted: 02/08/2013] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is hallmarked by amyloid plaques, neurofibrillary tangles, and widespread cortical neuronal loss (Selkoe, 2001). The "amyloid cascade hypothesis" posits that cerebral amyloid sets neurotoxic events into motion that precipitate Alzheimer dementia (Hardy and Allsop, 1991). Yet, faithful recapitulation of all AD features in widely used transgenic (Tg) mice engineered to overproduce Aβ peptides has been elusive. We have developed a Tg rat model (line TgF344-AD) expressing mutant human amyloid precursor protein (APPsw) and presenilin 1 (PS1ΔE9) genes, each independent causes of early-onset familial AD. TgF344-AD rats manifest age-dependent cerebral amyloidosis that precedes tauopathy, gliosis, apoptotic loss of neurons in the cerebral cortex and hippocampus, and cognitive disturbance. These results demonstrate progressive neurodegeneration of the Alzheimer type in these animals. The TgF344-AD rat fills a critical need for a next-generation animal model to enable basic and translational AD research.
Collapse
Affiliation(s)
- Robert M. Cohen
- Departments of Psychiatry and Behavioral Neurosciences
- S. Mark Taper Imaging Center
- Medicine, David Geffen School of Medicine, and
| | - Kavon Rezai-Zadeh
- Regenerative Medicine Institute, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Tara M. Weitz
- Regenerative Medicine Institute, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Altan Rentsendorj
- Regenerative Medicine Institute, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - David Gate
- Regenerative Medicine Institute, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Inna Spivak
- Departments of Psychiatry and Behavioral Neurosciences
| | - Yasmin Bholat
- Departments of Psychiatry and Behavioral Neurosciences
| | - Vitaly Vasilevko
- Departments of Neurology and
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | - Charles G. Glabe
- Molecular Biology and Biochemistry, and
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
| | | | - Pasko Rakic
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, California 92647
| | - Michael G. Agadjanyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697
- Department of Molecular Immunology, The Institute for Molecular Medicine, Huntington Beach, California 92647
| | | | | | - Serguei Bannykh
- Departments of Pathology and
- Medicine, David Geffen School of Medicine, and
| | - Christine A. Szekely
- Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Robert N. Pechnick
- Departments of Psychiatry and Behavioral Neurosciences
- Departments of Psychiatry and Biobehavioral Sciences
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90048
| | - Terrence Town
- Regenerative Medicine Institute, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Medicine, David Geffen School of Medicine, and
| |
Collapse
|
220
|
Thomsen S, Pearce JA, Giustini A, Hoopes PJ. Nanoparticles in Medicine: Selected Observations and Experimental Caveats. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8584:858402. [PMID: 25301992 PMCID: PMC4187215 DOI: 10.1117/12.2008900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Medically useful nanoparticles measure 1-100 nm in at least one dimension and are engineered and manufactured for specific diagnostic and treatment applications. Most nanoparticles used currently used in medicine are engineered and manufactured for specific purposes. Medically significant nanoparticles are composed of a 1) central core that is usually the medically active component, 2) one or more layers of organic or inorganic materials that forms a capsule (corona) covering the core and 3) an outer surface layer that interacts with the environment and/or targeted cells and tissues. Effective nanoparticle function in the living, intact animal or human requires electrochemical stability necessary to bypass the reticuloendothelial system (RES) and avoid filtration through the renal glomerulus into the urine. Nanoparticles are present in "natural" as well as the manufacturing and clinical environments thus could pose as significant toxins because of their small sizes, their chemical and drug content and potential effect of causing long term disease including allergies, chronic inflammation and cancer. Currently published studies have focused on the effects of nanoparticles on cells in the extremely artificial environments of cell cultures. More clinical and preclinical studies documenting the short term and long term effects nanoparticle in the intact experimental animal and human are needed.
Collapse
Affiliation(s)
- Sharon Thomsen
- Consultant, Pathology for Physicists and Engineers, 500 Discovery View Drive, Sequim, WA USA 98382
| | | | | | | |
Collapse
|
221
|
Mullin S, Schapira A. α-Synuclein and mitochondrial dysfunction in Parkinson's disease. Mol Neurobiol 2013; 47:587-97. [PMID: 23361255 DOI: 10.1007/s12035-013-8394-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/02/2013] [Indexed: 12/21/2022]
Abstract
α-Synuclein (SNCA) is a substantive component of Lewy bodies, the pathological hallmark of Parkinson's disease (PD). The discovery and subsequent derivation of its role in PD has led to a suprising but fruitful convergence of the fields of biochemistry and molecular genetics. In particular, the manipulation of the cell lines of a number of forms of familial PD has implicated SNCA in distinct and diverse biochemical pathways related to its pathogenesis. This current and rapidly evolving concept indicates PD is a disease in which interacting pathways of oxidative stress, mitochondrial dysfunction and impaired regulation of protein turnover interact to cause dopaminergic cell dysfunction and death. SNCA has a central role in these processes and manipulation of its expression, degradation and aggregation appear to be promising neuroprotective therapeutic targets.
Collapse
Affiliation(s)
- Stephen Mullin
- Department of Clinical Neurosciences, UCL, Institute of Neurology, Royal Free Campus, Pond Street, London NW3 2QG, UK.
| | | |
Collapse
|
222
|
Liu Y, Hu Y, Guo Y, Ma H, Li J, Jiang C. Targeted imaging of activated caspase-3 in the central nervous system by a dual functional nano-device. J Control Release 2012; 163:203-10. [DOI: 10.1016/j.jconrel.2012.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/20/2012] [Accepted: 09/02/2012] [Indexed: 12/21/2022]
|
223
|
Cabeza-Arvelaiz Y, Schiestl RH. Transcriptome analysis of a rotenone model of parkinsonism reveals complex I-tied and -untied toxicity mechanisms common to neurodegenerative diseases. PLoS One 2012; 7:e44700. [PMID: 22970289 PMCID: PMC3436760 DOI: 10.1371/journal.pone.0044700] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/09/2012] [Indexed: 12/21/2022] Open
Abstract
The pesticide rotenone, a neurotoxin that inhibits the mitochondrial complex I, and destabilizes microtubules (MT) has been linked to Parkinson disease (PD) etiology and is often used to model this neurodegenerative disease (ND). Many of the mechanisms of action of rotenone are posited mechanisms of neurodegeneration; however, they are not fully understood. Therefore, the study of rotenone-affected functional pathways is pertinent to the understanding of NDs pathogenesis. This report describes the transcriptome analysis of a neuroblastoma (NB) cell line chronically exposed to marginally toxic and moderately toxic doses of rotenone. The results revealed a complex pleiotropic response to rotenone that impacts a variety of cellular events, including cell cycle, DNA damage response, proliferation, differentiation, senescence and cell death, which could lead to survival or neurodegeneration depending on the dose and time of exposure and cell phenotype. The response encompasses an array of physiological pathways, modulated by transcriptional and epigenetic regulatory networks, likely activated by homeostatic alterations. Pathways that incorporate the contribution of MT destabilization to rotenone toxicity are suggested to explain complex I-independent rotenone-induced alterations of metabolism and redox homeostasis. The postulated mechanisms involve the blockage of mitochondrial voltage-dependent anions channels (VDACs) by tubulin, which coupled with other rotenone-induced organelle dysfunctions may underlie many presumed neurodegeneration mechanisms associated with pathophysiological aspects of various NDs including PD, AD and their variant forms. Thus, further investigation of such pathways may help identify novel therapeutic paths for these NDs.
Collapse
Affiliation(s)
- Yofre Cabeza-Arvelaiz
- Department of Pathology and Environmental Health Sciences, David Geffen School of Medicine and School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America.
| | | |
Collapse
|
224
|
Watkins S, Sontheimer H. Unique biology of gliomas: challenges and opportunities. Trends Neurosci 2012; 35:546-56. [PMID: 22683220 DOI: 10.1016/j.tins.2012.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 01/04/2023]
Abstract
Gliomas are terrifying primary brain tumors for which patient outlook remains bleak. Recent research provides novel insights into the unique biology of gliomas. For example, these tumors exhibit an unexpected pluripotency that enables them to grow their own vasculature. They have an unusual ability to navigate tortuous extracellular pathways as they invade, and they use neurotransmitters to inflict damage and create room for growth. Here, we review studies that illustrate the importance of considering interactions of gliomas with their native brain environment. Such studies suggest that gliomas constitute a neurodegenerative disease caused by the malignant growth of brain support cells. The chosen examples illustrate how targeted research into the biology of gliomas is yielding new and much needed therapeutic approaches to this challenging nervous system disease.
Collapse
Affiliation(s)
- Stacey Watkins
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
225
|
Tasdemir N, Kilic S, Lortlar N, Yuksel B, Goker U, Ozaksit G. Time dependent influence of etonogestrel on the caspase-3 immunoreactivity and apoptotic indexes of rat uterus and ovaries. Gynecol Endocrinol 2012; 28:463-7. [PMID: 22578029 DOI: 10.3109/09513590.2011.633652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apoptosis is necessary for the balance between cell proliferation and loss. Thirty-six Wistar-Albino rats were subjected to investigate apoptotic effect of widely used implantable progestins on ovarian and uterine tissues. Rats were divided into 6 groups. In the first five groups, we applied etonogestrel (IMP) subcutaneous implants (n = 30). The rats in groups were sacrificed sequentially every 10 days after application. The rats in the last group (n = 6) were accepted as controls. Apoptotic index (AI) values and Caspase-3 immunoreactivities of ovaries and uterus were recorded. In IMP groups, AI and Hscore values in stroma and glandular epithelium of uterus, granulosa and teca-lutein cells of the ovary increased with the longer progesterone exposure. Increase in AI and Hscore values were more prominent after 30 days of exposure for teca-lutein cells of ovary. Progestins increased apoptosis in ovaries and uterus by the longer exposure. Apoptosis increased in ovaries by chronic progesterone exposure. The apoptotic effect of progestin on endometrium is clear but long-term systemic application may lead to alterations in ovarian physiology. We evaluated time dependent apoptotic effect of etonogestrel on reproductive physiology and discussed progestins effect from another point of view in this study.
Collapse
Affiliation(s)
- Nicel Tasdemir
- Obstetrics and Gynecology, Namik Kemal University, Faculty of Medicine, Tekirdag, Turkey.
| | | | | | | | | | | |
Collapse
|
226
|
Bayram-Weston Z, Jones L, Dunnett SB, Brooks SP. Light and electron microscopic characterization of the evolution of cellular pathology in the R6/1 Huntington's disease transgenic mice. Brain Res Bull 2012; 88:104-12. [DOI: 10.1016/j.brainresbull.2011.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/19/2011] [Accepted: 07/12/2011] [Indexed: 12/20/2022]
|
227
|
Turner MR, Barnwell J, Al-Chalabi A, Eisen A. Young-onset amyotrophic lateral sclerosis: historical and other observations. Brain 2012; 135:2883-91. [PMID: 22661746 DOI: 10.1093/brain/aws144] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a wide range of age at initial symptom onset in amyotrophic lateral sclerosis despite a mean age of 65 years in population-based studies. 'Young-onset' amyotrophic lateral sclerosis typically refers to patients younger than ∼45 years and accounts for about 10% of cases in contemporary series. A review of published cases of amyotrophic lateral sclerosis from 1850 to 1950 revealed a far higher proportion of cases with young onset (>50%), with a steady decline to the contemporary figure. It is possible that this is not solely explained by increases in life expectancy. While there is still a rich variation in phenotypes among cases of young-onset amyotrophic lateral sclerosis, bulbar onset was found to be significantly under-represented in analysis of a large patient database, with implications for age-related vulnerabilities pertaining to focality of symptom onset. The timing of initiating pathological processes in relation to the emergence of symptoms is discussed, including the potential role of very early development and the interaction of epigenetic and environmental factors.
Collapse
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
228
|
Keeney JTR, Swomley AM, Harris JL, Fiorini A, Mitov MI, Perluigi M, Sultana R, Butterfield DA. Cell cycle proteins in brain in mild cognitive impairment: insights into progression to Alzheimer disease. Neurotox Res 2011; 22:220-30. [PMID: 22083458 DOI: 10.1007/s12640-011-9287-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 01/24/2023]
Abstract
Recent studies have demonstrated the re-emergence of cell cycle proteins in brain as patients progress from the early stages of mild cognitive impairment (MCI) into Alzheimer's disease (AD). Oxidative stress markers present in AD have also been shown to be present in MCI brain suggesting that these events occur in early stages of the disease. The levels of key cell cycle proteins, such as CDK2, CDK5, cyclin G1, and BRAC1 have all been found to be elevated in MCI brain compared to age-matched control. Further, peptidyl prolyl cis-trans isomerase (Pin1), a protein that plays an important role in regulating the activity of key proteins, such as CDK5, GSK3-β, and PP2A that are involved in both the phosphorylation state of Tau and in the cell cycle, has been found to be oxidatively modified and downregulated in both AD and MCI brain. Hyperphosphorylation of Tau then results in synapse loss and the characteristic Tau aggregation as neurofibrillary tangles, an AD hallmark. In this review, we summarized the role of cell cycle dysregulation in the progression of disease from MCI to AD. Based on the current literature, it is tempting to speculate that a combination of oxidative stress and cell cycle dysfunction conceivably leads to neurodegeneration.
Collapse
Affiliation(s)
- Jeriel T R Keeney
- Department of Chemistry, Center for Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Doyle KM, Kennedy D, Gorman AM, Gupta S, Healy SJM, Samali A. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med 2011; 15:2025-39. [PMID: 21722302 PMCID: PMC4394214 DOI: 10.1111/j.1582-4934.2011.01374.x] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/16/2011] [Indexed: 12/11/2022] Open
Abstract
The stimuli for neuronal cell death in neurodegenerative disorders are multi-factorial and may include genetic predisposition, environmental factors, cellular stressors such as oxidative stress and free radical production, bioenergy failure, glutamate-induced excitotoxicity, neuroinflammation, disruption of Ca(2+) -regulating systems, mitochondrial dysfunction and misfolded protein accumulation. Cellular stress disrupts functioning of the endoplasmic reticulum (ER), a critical organelle for protein quality control, leading to induction of the unfolded protein response (UPR). ER stress may contribute to neurodegeneration in a range of neurodegenerative disorders. This review summarizes the molecular events occurring during ER stress and the unfolded protein response and it specifically evaluates the evidence suggesting the ER stress response plays a role in neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Donna Kennedy
- School of Natural Sciences, NUI GalwayGalway, Ireland
- Apoptosis Research Center, NUI GalwayGalway, Ireland
| | - Adrienne M Gorman
- School of Natural Sciences, NUI GalwayGalway, Ireland
- Apoptosis Research Center, NUI GalwayGalway, Ireland
| | - Sanjeev Gupta
- School of Medicine, NUI GalwayGalway, Ireland
- Apoptosis Research Center, NUI GalwayGalway, Ireland
| | - Sandra J M Healy
- School of Natural Sciences, NUI GalwayGalway, Ireland
- Apoptosis Research Center, NUI GalwayGalway, Ireland
| | - Afshin Samali
- School of Medicine, NUI GalwayGalway, Ireland
- School of Natural Sciences, NUI GalwayGalway, Ireland
| |
Collapse
|
230
|
Hartman AL. Neuroprotection in metabolism-based therapy. Epilepsy Res 2011; 100:286-94. [PMID: 21872441 DOI: 10.1016/j.eplepsyres.2011.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 12/21/2022]
Abstract
Metabolism-based therapy has been used successfully in the treatment of seizures but study of its use in other neurodegenerative disorders is growing. Data demonstrating the use of different forms of metabolism-based therapy in human trials of Alzheimer disease and Parkinson disease are discussed. Animal and in vitro studies have shed light on metabolism-based therapy's mechanisms in these diseases, as well as ALS, aging, ischemia, trauma and mitochondrial cytopathies. Additional insights may be obtained by considering the role of metabolism-based therapy in cell disability and death (specifically apoptosis, excitotoxicity, and autophagy).
Collapse
Affiliation(s)
- Adam L Hartman
- Johns Hopkins University, Neurology, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA.
| |
Collapse
|
231
|
Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neurosignals 2011; 19:163-74. [PMID: 21778691 PMCID: PMC3699815 DOI: 10.1159/000328516] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/18/2011] [Indexed: 12/20/2022] Open
Abstract
Excessive misfolded proteins and/or dysfunctional mitochondria, which may cause energy deficiency, have been implicated in the etiopathogenesis of Parkinson's disease (PD). Enhanced clearance of misfolded proteins or injured mitochondria via autophagy has been reported to have neuroprotective roles in PD models. The fact that resveratrol is a known compound with multiple beneficial effects similar to those associated with energy metabolism led us to explore whether neuroprotective effects of resveratrol are related to its role in autophagy regulation. We tested whether modulation of mammalian silent information regulator 2 (SIRT1) and/or metabolic energy sensor AMP-activated protein kinase (AMPK) are involved in autophagy induction by resveratrol, leading to neuronal survival. Our results showed that resveratrol protected against rotenone-induced apoptosis in SH-SY5Y cells and enhanced degradation of α-synucleins in α-synuclein-expressing PC12 cell lines via autophagy induction. We found that suppression of AMPK and/or SIRT1 caused decrease of protein level of LC3-II, indicating that AMPK and/or SIRT1 are required in resveratrol-mediated autophagy induction. Moreover, suppression of AMPK caused inhibition of SIRT1 activity and attenuated protective effects of resveratrol on rotenone-induced apoptosis, further suggesting that AMPK-SIRT1-autophagy pathway plays an important role in the neuroprotection by resveratrol on PD cellular models.
Collapse
Affiliation(s)
- Yuncheng Wu
- Department of Neurology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Abstract
The ubiquitin/proteasome pathway is the major proteolytic quality control system in cells. In this review we discuss the impact of a deregulation of this pathway on neuronal function and its causal relationship to the intracellular deposition of ubiquitin protein conjugates in pathological inclusion bodies in all the major chronic neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases as well as amyotrophic lateral sclerosis. We describe the intricate nature of the ubiquitin/proteasome pathway and discuss the paradox of protein aggregation, i.e. its potential toxic/protective effect in neurodegeneration. The relations between some of the dysfunctional components of the pathway and neurodegeneration are presented. We highlight possible ubiquitin/proteasome pathway-targeting therapeutic approaches, such as activating the proteasome, enhancing ubiquitination and promoting SUMOylation that might be important to slow/treat the progression of neurodegeneration. Finally, a model time line is presented for neurodegeneration starting at the initial injurious events up to protein aggregation and cell death, with potential time points for therapeutic intervention.
Collapse
|
233
|
Bernstein HG, Johnson M, Perry RH, LeBeau FE, Dobrowolny H, Bogerts B, Perry EK. Partial loss of parvalbumin-containing hippocampal interneurons in dementia with Lewy bodies. Neuropathology 2011; 31:1-10. [DOI: 10.1111/j.1440-1789.2010.01117.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
234
|
Chung H, Chung HY, Bae CW, Kim CJ, Park S. Ghrelin suppresses tunicamycin- or thapsigargin-triggered endoplasmic reticulum stress-mediated apoptosis in primary cultured rat cortical neuronal cells. Endocr J 2011; 58:409-20. [PMID: 21490406 DOI: 10.1507/endocrj.k10e-396] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ghrelin functions as a neuroprotective agent and rescues neurons from various insults. However, the molecular mechanisms underlying ghrelin neuroprotection remains to be elucidated. An accumulation of unfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and then induces ER stress-mediated cell death. Here, we report that acylated ghrelin inhibited tunicamycin- or thapsigargin-triggered ER stress-induced apoptotic cell death in primary rat cortical neurons. An analysis using a specific inhibitor of phosphatidylinositol-3-kinase (PI3K), LY294002, showed that ghrelin prevented apoptosis via the activation of PI3K signaling pathway. Ghrelin suppressed tunicamycin- or thapsigargin-induced upregulation and nuclear translocation of C/EBP homologous protein (CHOP). Ghrelin also inhibited tunicamycin or thapsigargin induction of PRK-like ER kinase (PERK), eukaryotic translation initiation factor-2α (eIF2α) and activating transcription factor (ATF) 4. Exposure of cells to tunicamycin or thapsigargin resulted in nuclear translocation of forkhead box protein O1 (Foxo1), which was reduced by pretreatment with ghrelin. The protective effect of ghrelin was accompanied by an increased phosphorylation of Akt and glycogen synthase kinase (GSK)-3β. Furthermore, ghrelin phosphorylated and inactivated pro-apoptotic BAD and Foxo1. In addition, phospho-Akt was translocated to the nucleus in response to ghrelin and PI3K inhibition by LY294002 prevented ghrelin-induced effect on phospho-Akt localization. Our study suggests that suppression of CHOP activation via the inhibition of PERK/eIF2α/ATF4 pathway and prevention of Foxo1 activation and nuclear translocation may contribute to ghrelin-mediated neuroprotection during ER stress responses. Our data also suggest that PI3K/Akt-mediated inactivation of GSK-3β, BAD and Foxo1 may be associated with the anti-apoptotic effect of ghrelin.
Collapse
Affiliation(s)
- Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, The East-West Neo Medical Center, School of Medicine, Kyung Hee University, Gangdong-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
235
|
Increased BrdU incorporation reflecting DNA repair, neuronal de-differentiation or possible neurogenesis in the adult cochlear nucleus following bilateral cochlear lesions in the rat. Exp Brain Res 2010; 210:477-87. [DOI: 10.1007/s00221-010-2491-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/03/2010] [Indexed: 02/06/2023]
|
236
|
Neuronal cell death during metamorphosis of Hydractina echinata (Cnidaria, Hydrozoa). INVERTEBRATE NEUROSCIENCE 2010; 10:77-91. [DOI: 10.1007/s10158-010-0109-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
|
237
|
Abstract
High levels of reactive oxygen species (ROS) are associated with deficits in learning and memory with age as well as in Alzheimer's disease. Using DNA microarray, we demonstrated the overexpression of quinone reductase 2 (QR2) in the hippocampus in two models of learning deficits, namely the aged memory impaired rats and the scopolamine-induced amnesia model. QR2 is a cytosolic flavoprotein that catalyzes the reduction of its substrate and enhances the production of damaging activated quinone and ROS. QR2-like immunostaining is enriched in cerebral structures associated with learning behaviors, such as the hippocampal formation and the temporofrontal cortex of rat, mouse, and human brains. In cultured rat embryonic hippocampal neurons, selective inhibitors of QR2, namely S26695 and S29434, protected against menadione-induced cell death by reversing its proapoptotic action. S26695 (8 mg/kg) also significantly inhibited scopolamine-induced amnesia. Interestingly, adult QR2 knock-out mice demonstrated enhanced learning abilities in various tasks, including Morris water maze, object recognition, and rotarod performance test. Other behaviors related to anxiety (elevated plus maze), depression (forced swim), and schizophrenia (prepulse inhibition) were not affected in QR2-deficient mice. Together, these data suggest a role for QR2 in cognitive behaviors with QR2 inhibitors possibly representing a novel therapeutic strategy toward the treatment of learning deficits especially observed in the aged brain.
Collapse
|
238
|
Gan BQ, Tang BL. Sirt1’s beneficial roles in neurodegenerative diseases - a chaperonin containing TCP-1 (CCT) connection? Aging Cell 2010; 9:924-9. [PMID: 20569238 DOI: 10.1111/j.1474-9726.2010.00597.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Sir2 ⁄ Sirt1 and its orthologues are known lifespan extension factors in several aging models from yeast to invertebrates. Sirt1 activation is also known to be beneficial and protective in both invertebrate and mammalian models of neurodegenerative disease. Sirt1’s lifespan extension effect, as well as the beneficial outcome of its activation in models of aging-associated diseases, is often attributed to its ability to instill a gene expression profile that is pro-survival and antiaging. A recent report from Nyström and colleagues showed that the yeast Sir2p affects the function of the polarisome in segregation and retrograde transport of damaged and aggregated proteins from the bud to the mother cell, thereby ensuring the generation of a 'rejuvenated' daughter cell. Interestingly, the role of Sir2p in this case involves deacetylation and activation of cytoplasmic chaperonin containing TCP-1 (CCT, or TriC), thereby enhancing actin folding and polymerization. In view of a previously documented role of CCT in modulating polyglutamine-containing protein aggregation and toxicity, we hypothesized that CCT deacetylation may also underlie Sirt1’s beneficial effects in several neurodegenerative diseases precipitated by toxic aggregates. Other than alterations in gene expression profile, another major way whereby Sirt1 activation may counter neural aging could be to promote neuronal survival via prevention of toxic aggregate formation through CCT.
Collapse
Affiliation(s)
- Bin Qi Gan
- Department of Biochemistry, National University of Singapore, Singapore
| | | |
Collapse
|
239
|
Azarashvili T, Stricker R, Reiser G. The mitochondria permeability transition pore complex in the brain with interacting proteins - promising targets for protection in neurodegenerative diseases. Biol Chem 2010; 391:619-29. [PMID: 20370325 DOI: 10.1515/bc.2010.070] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mitochondria increasingly attract attention as control points within the mechanisms of neuronal death. Mitochondria play a central role in swinging the balance in favor of either survival or death of brain tissue. Cell death in vertebrates proceeds mostly via the mitochondrial pathway of apoptosis. Permeability transition pore (PTP) development in mitochondria is a decisive stage of apoptosis. Therefore, regulation of the permeability of both outer and inner mitochondrial membranes helps to induce neuroprotection. Through PTP control, mitochondria can to a large degree manage the intracellular calcium homeostasis, and thus control the potent death cascade initiated by excess calcium. Here we summarize the evidence for the role of mitochondria in brain cell death. We describe the involvement of the 18-kDa translocator protein (TSPO; previously called peripheral benzodiazepine receptor), and of two new mitochondrial proteins, that is, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and p42(IP4) (also designated centaurin alpha1; ADAP 1), in the control of the PTP. Furthermore, ligands of TSPO, as well as substrates of CNP, are possible modulators of PTP function. This scenario of control and regulation of PTP function might provide multiple important targets, which are suitable for developing protective strategies for neurons and non-neuronal brain cells in therapies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Tamara Azarashvili
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | | | | |
Collapse
|
240
|
Ravichandran KS. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 2010; 207:1807-17. [PMID: 20805564 PMCID: PMC2931173 DOI: 10.1084/jem.20101157] [Citation(s) in RCA: 422] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/12/2010] [Indexed: 01/17/2023] Open
Abstract
Everyday we turnover billions of cells. The quick, efficient, and immunologically silent disposal of the dying cells requires a coordinated orchestration of multiple steps, through which phagocytes selectively recognize and engulf apoptotic cells. Recent studies have suggested an important role for soluble mediators released by apoptotic cells that attract phagocytes ("find-me" signals). New information has also emerged on multiple receptors that can recognize phosphatidylserine, the key "eat-me" signal exposed on the surface of apoptotic cells. This perspective discusses recent exciting progress, gaps in our understanding, and the conflicting issues that arise from the newly acquired knowledge.
Collapse
Affiliation(s)
- Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
241
|
Zhang HP, Yuan LB, Zhao RN, Tong L, Ma R, Dong HL, Xiong L. Isoflurane Preconditioning Induces Neuroprotection by Attenuating Ubiquitin-Conjugated Protein Aggregation in a Mouse Model of Transient Global Cerebral Ischemia. Anesth Analg 2010; 111:506-14. [DOI: 10.1213/ane.0b013e3181e45519] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
242
|
Sloan CD, Shen L, West JD, Wishart HA, Flashman LA, Rabin LA, Santulli RB, Guerin SJ, Rhodes CH, Tsongalis GJ, McAllister TW, Ahles TA, Lee SL, Moore JH, Saykin AJ. Genetic pathway-based hierarchical clustering analysis of older adults with cognitive complaints and amnestic mild cognitive impairment using clinical and neuroimaging phenotypes. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1060-9. [PMID: 20468060 PMCID: PMC3021757 DOI: 10.1002/ajmg.b.31078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hierarchical clustering is frequently used for grouping results in expression or haplotype analyses. These methods can elucidate patterns between measures that can then be applied to discerning their validity in discriminating between experimental conditions. Here a hierarchical clustering method is used to analyze the results of an imaging genetics study using multiple brain morphology and cognitive testing endpoints for older adults with amnestic mild cognitive impairment (MCI) or cognitive complaints (CC) compared to healthy controls (HC). The single nucleotide polymorphisms (SNPs) are a subset of those included on a larger array that are found in a reported Alzheimer's disease (AD) and neurodegeneration pathway. The results indicate that genetic models within the endpoints cluster together, while there are 4 distinct sets of SNPs that differentiate between the endpoints, with most significant results associated with morphology endpoints rather than cognitive testing of patients' reported symptoms. The genes found in at least one cluster are ABCB1, APBA1, BACE1, BACE2, BCL2, BCL2L1, CASP7, CHAT, CST3, DRD3, DRD5, IL6, LRP1, NAT1, and PSEN2. The greater associations with morphology endpoints suggests that changes in brain structure can be influenced by an individual's genetic background in the absence of dementia and in some cases (Cognitive Complaints group) even without those effects necessarily being detectable on commonly used clinical tests of cognition. The results are consistent with polygenic influences on early neurodegenerative changes and demonstrate the effectiveness of hierarchical clustering in identifying genetic associations among multiple related phenotypic endpoints.
Collapse
Affiliation(s)
- Chantel D. Sloan
- Computational Genetics Laboratory, Departments of Genetics and Community and Family Medicine, Dartmouth Medical School, Lebanon, NH
| | - Li Shen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - John D. West
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Heather A. Wishart
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Laura A. Flashman
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Laura A. Rabin
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Robert B. Santulli
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Stephen J. Guerin
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - C. Harker Rhodes
- Department of Pathology and Laboratory Medicine, Dartmouth Medical School, Lebanon, NH
| | - Gregory J. Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth Medical School, Lebanon, NH
| | - Thomas W. McAllister
- Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH
| | - Tim A. Ahles
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Stephen L. Lee
- Department of Medicine (Neurology), Dartmouth Medical School, Lebanon, NH
| | - Jason H. Moore
- Computational Genetics Laboratory, Departments of Genetics and Community and Family Medicine, Dartmouth Medical School, Lebanon, NH,Department of Computer Science, University of New Hampshire, Durham, NH,Department of Computer Science, University of Vermont, Burlington, VT,Translational Genomics Research Institute, Phoenix, AZ
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN,Brain Imaging Laboratory, Department of Psychiatry, Dartmouth Medical School, Lebanon, NH,Departments of Medical and Molecular Genetics, Neurology and Psychiatry, Indiana University School of Medicine, Indianapolis, IN,Address for Correspondence: Dr. Andrew J. Saykin, Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 950 West Walnut St., R2, E124, Indianapolis, IN 46202, Phone: 317-278-6947, Fax: 317-274-1067,
| |
Collapse
|
243
|
Abstract
Continuous renewal of intracellular components is required to preserve cellular functionality. In fact, failure to timely turnover proteins and organelles leads often to cell death and disease. Different pathways contribute to the degradation of intracellular components in lysosomes or autophagy. In this review, we focus on chaperone-mediated autophagy (CMA), a selective form of autophagy that modulates the turnover of a specific pool of soluble cytosolic proteins. Selectivity in CMA is conferred by the presence of a targeting motif in the cytosolic substrates that, upon recognition by a cytosolic chaperone, determines delivery to the lysosomal surface. Substrate proteins undergo unfolding and translocation across the lysosomal membrane before reaching the lumen, where they are rapidly degraded. Better molecular characterization of the different components of this pathway in recent years, along with the development of transgenic models with modified CMA activity and the identification of CMA dysfunction in different severe human pathologies and in aging, are all behind the recent regained interest in this catabolic pathway.
Collapse
|
244
|
Lukiw WJ, Bazan NG. Inflammatory, Apoptotic, and Survival Gene Signaling in Alzheimer’s Disease. Mol Neurobiol 2010; 42:10-6. [DOI: 10.1007/s12035-010-8126-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 01/13/2023]
|
245
|
Molecular pathogenesis of a novel mutation, G108D, in short-chain acyl-CoA dehydrogenase identified in subjects with short-chain acyl-CoA dehydrogenase deficiency. Hum Genet 2010; 127:619-28. [PMID: 20376488 DOI: 10.1007/s00439-010-0822-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
Abstract
Short-chain acyl-CoA dehydrogenase (SCAD) is a mitochondrial enzyme involved in the beta-oxidation of fatty acids. Genetic defect of SCAD was documented to cause clinical symptoms such as progressive psychomotor retardation, muscle hypotonia, and myopathy in early reports. However, clinical significance of SCAD deficiency (SCADD) has been getting ambiguous, for some variants in the ACADS gene, which encodes the SCAD protein, has turned out to be widely prevailed among general populations. Accordingly, the pathophysiology of SCADD has not been clarified thus far. The present report focuses on two suspected cases of SCADD detected through the screening of newborns by tandem mass spectrometry. In both subjects, compound heterozygous mutations in ACADS were detected. The mutated genes were expressed in a transient gene expression system, and the enzymatic activities of the obtained mutant SCAD proteins were measured. The activities of the mutant SCAD proteins were significantly lower than that of the wild-type enzyme, confirming the mechanism underlying the diagnosis of SCADD in both subjects. Moreover, the mutant SCAD proteins gave rise to mitochondrial fragmentation and autophagy, both of which were proportional to the decrease in SCAD activities. The association of autophagy with programmed cell death suggests that the mutant SCAD proteins are toxic to mitochondria and to the cells in which they are expressed. The expression of recombinant ACADS-encoded mutant proteins offers a technique to evaluate both the nature of the defective SCAD proteins and their toxicity. Moreover, our results provide insight into possible molecular pathophysiology of SCADD.
Collapse
|
246
|
Distribution of apoptosis-related proteins in sporadic Creutzfeldt–Jakob disease. Brain Res 2010; 1323:192-9. [DOI: 10.1016/j.brainres.2010.01.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 01/29/2010] [Accepted: 01/30/2010] [Indexed: 02/06/2023]
|
247
|
Jiang XS, Backlund PS, Wassif CA, Yergey AL, Porter FD. Quantitative proteomics analysis of inborn errors of cholesterol synthesis: identification of altered metabolic pathways in DHCR7 and SC5D deficiency. Mol Cell Proteomics 2010; 9:1461-75. [PMID: 20305089 DOI: 10.1074/mcp.m900548-mcp200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) and lathosterolosis are malformation syndromes with cognitive deficits caused by mutations of 7-dehydrocholesterol reductase (DHCR7) and lathosterol 5-desaturase (SC5D), respectively. DHCR7 encodes the last enzyme in the Kandutsch-Russel cholesterol biosynthetic pathway, and impaired DHCR7 activity leads to a deficiency of cholesterol and an accumulation of 7-dehydrocholesterol. SC5D catalyzes the synthesis of 7-dehydrocholesterol from lathosterol. Impaired SC5D activity leads to a similar deficiency of cholesterol but an accumulation of lathosterol. Although the genetic and biochemical causes underlying both syndromes are known, the pathophysiological processes leading to the developmental defects remain unclear. To study the pathophysiological mechanisms underlying SLOS and lathosterolosis neurological symptoms, we performed quantitative proteomics analysis of SLOS and lathosterolosis mouse brain tissue and identified multiple biological pathways affected in Dhcr7(Delta3-5/Delta3-5) and Sc5d(-/-) E18.5 embryos. These include alterations in mevalonate metabolism, apoptosis, glycolysis, oxidative stress, protein biosynthesis, intracellular trafficking, and cytoskeleton. Comparison of proteome alterations in both Dhcr7(Delta3-5/Delta3-5) and Sc5d(-/-) brain tissues helps elucidate whether perturbed protein expression was due to decreased cholesterol or a toxic effect of sterol precursors. Validation of the proteomics results confirmed increased expression of isoprenoid and cholesterol synthetic enzymes. This alteration of isoprenoid synthesis may underlie the altered posttranslational modification of Rab7, a small GTPase that is functionally dependent on prenylation with geranylgeranyl, that we identified and validated in this study. These data suggested that although cholesterol synthesis is impaired in both Dhcr7(Delta3-5/Delta3-5) and Sc5d(-/-) embryonic brain tissues the synthesis of nonsterol isoprenoids may be increased and thus contribute to SLOS and lathosterolosis pathology. This proteomics study has provided insight into the pathophysiological mechanisms of SLOS and lathosterolosis, and understanding these pathophysiological changes will help guide clinical therapy for SLOS and lathosterolosis.
Collapse
Affiliation(s)
- Xiao-Sheng Jiang
- NICHD, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
248
|
Yasuda T, Mochizuki H. The regulatory role of α-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson’s disease. Apoptosis 2010; 15:1312-21. [DOI: 10.1007/s10495-010-0486-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
249
|
Fujita KI, Srinivasula SM. Ubiquitination and TNFR1 signaling. Results Probl Cell Differ 2010; 49:87-114. [PMID: 19582409 DOI: 10.1007/400_2009_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Death receptors are a subset of the tumor necrosis factor receptor (TNFR) family of proteins and share a characteristic cytoplasmic motif called the "death domain". In addition to mediating cell death, these receptors regulate cell proliferation, inflammatory responses, and tumor progression. Receptor occupancy triggers the assembly of several cytoplasmic molecules into distinct complexes, each initiating separate signaling events leading to different biological responses. Post-translational modifications involving ubiquitin, a peptide of 76 amino acids, regulate events at nearly all stages of signaling. All ubiquitin chains function as docking platforms for molecules with specific recognition motifs that either propagate the signal or target the protein for proteasomal degradation. Moreover, enzymes with ubiquitin thioesterase activity (deubiquitinating enzymes, or DUBs) reverse modifications by removing the ubiquitin chains, allowing ubiquitin editing at the molecular level. Ubiquitin protein ligases (E3s), DUBs, and signaling molecules with ubiquitin recognition motifs control TNFR1 mediated cell death and activation of NF-kappaB and JNK. Here, we discuss the current understanding of how these proteins regulate TNFR1 signaling.
Collapse
Affiliation(s)
- Ken-ichi Fujita
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3016A, 9000 Rockville Pike, Bethesda, MD 20892-4256, USA.
| | | |
Collapse
|
250
|
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra and intracellular accumulation of misfolded proteins, the hallmarks of many neurodegenerative proteinopathies. Major basic processes include abnormal protein dynamics due to deficiency of the ubiquitin-proteosome-autophagy system, oxidative stress and free radical formation, mitochondrial dysfunction, impaired bioenergetics, dysfunction of neurotrophins, 'neuroinflammatory' processes and (secondary) disruptions of neuronal Golgi apparatus and axonal transport. These interrelated mechanisms lead to programmed cell death is a long run over many years. Neurodegenerative disorders are classified according to known genetic mechanisms or to major components of protein deposits, but recent studies showed both overlap and intraindividual diversities between different phenotypes. Synergistic mechanisms between pathological proteins suggest common pathogenic mechanisms. Animal models and other studies have provided insight into the basic neurodegeneration and cell death programs, offering new ways for future prevention/treatment strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse, Vienna, Austria.
| |
Collapse
|