201
|
Rabin J, Poole E, Price W, Kaur G, Hall K, Sailors V, Andrews B, Somphruek R. A new method to quantify the human visual threshold from melanopsin sensitive ganglion cells. Front Cell Neurosci 2023; 17:1132230. [PMID: 37032840 PMCID: PMC10078961 DOI: 10.3389/fncel.2023.1132230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Traditional photoreceptors utilize the chromophore retinal to absorb light coupled with a unique opsin protein to specify receptor spectral sensitivity. Light absorption triggers a cascade of events transducing light energy to neural signals beginning with graded potentials in receptors (rods and cones) and bipolar cells in outer and middle retina eventuating in action potentials at the inner retinal amacrine and ganglion cell levels. Unlike traditional photoreceptors, ganglion cells in the inner retina (intrinsically photosensitive retinal ganglion cells, ipRGCs) absorb short wavelength, blue light utilizing their photopigment melanopsin. Assessment across multiple species show that the ipRGCs mediate myriad visual and non-visual functions including photo-entrainment and circadian rhythms, the pupillary light reflex, sleep, alertness, cognition, mood, and even conscious visual perception. Some ipRGC functions can persist despite blindness in animal models and humans exemplifying their multidisciplinary control of visual and non-visual functions. In previous research we used selective chromatic adaptation (blue stimulus on a bright amber field) to suppress input from rods, red and green sensitive cones to identify retinal and cortical responses from ipRGCs. Herein we used a similar approach, coupled with a filter to block input from blue sensitive cones, to develop a clinically expedient method to measure the full-field, putative visual threshold from human ipRGCs. This metric may expand our ability to detect, diagnose and monitor ocular and neurologic disease and provide a global retinal metric of ipRGCs as a potential outcome measure for studies using gene therapy to arrest and/or improve vision in hereditary retinal diseases.
Collapse
Affiliation(s)
- Jeff Rabin
- Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX, United States
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Antemie RG, Samoilă OC, Clichici SV. Blue Light-Ocular and Systemic Damaging Effects: A Narrative Review. Int J Mol Sci 2023; 24:ijms24065998. [PMID: 36983068 PMCID: PMC10052719 DOI: 10.3390/ijms24065998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Light is a fundamental aspect of our lives, being involved in the regulation of numerous processes in our body. While blue light has always existed in nature, with the ever-growing number of electronic devices that make use of short wavelength (blue) light, the human retina has seen increased exposure to it. Because it is at the high-energy end of the visible spectrum, many authors have investigated the theoretical harmful effects that it poses to the human retina and, more recently, the human body, given the discovery and characterization of the intrinsically photosensitive retinal ganglion cells. Many approaches have been explored, with the focus shifting throughout the years from examining classic ophthalmological parameters, such as visual acuity, and contrast sensitivity to more complex ones seen on electrophysiological assays and optical coherence tomographies. The current study aims to gather the most recent relevant data, reveal encountered pitfalls, and suggest future directions for studies regarding local and/or systemic effects of blue light retinal exposures.
Collapse
Affiliation(s)
- Răzvan-Geo Antemie
- Department of Physiology, Faculty of Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ovidiu Ciprian Samoilă
- Department of Ophthalmology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Simona Valeria Clichici
- Department of Physiology, Faculty of Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
203
|
Wang G, Liu YF, Yang Z, Yu CX, Tong Q, Tang YL, Shao YQ, Wang LQ, Xu X, Cao H, Zhang YQ, Zhong YM, Weng SJ, Yang XL. Short-term acute bright light exposure induces a prolonged anxiogenic effect in mice via a retinal ipRGC-CeA circuit. SCIENCE ADVANCES 2023; 9:eadf4651. [PMID: 36947616 PMCID: PMC10032603 DOI: 10.1126/sciadv.adf4651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Light modulates mood through various retina-brain pathways. We showed that mice treated with short-term acute bright light exposure displayed anxiety-related phenotypes in a prolonged manner even after the termination of the exposure. Such a postexposure anxiogenic effect depended upon melanopsin-based intrinsically photosensitive retinal ganglion cell (ipRGC) activities rather than rod/cone photoreceptor inputs. Chemogenetic manipulation of specific central nuclei demonstrated that the ipRGC-central amygdala (CeA) visual circuit played a key role in this effect. The corticosterone system was likely to be involved in this effect, as evidenced by enhanced expression of the glucocorticoid receptor (GR) protein in the CeA and the bed nucleus of the stria terminalis and by the absence of this effect in animals treated with the GR antagonist. Together, our findings reveal a non-image forming visual circuit specifically designed for "the delayed" extinction of anxiety against potential threats, thus conferring a survival advantage.
Collapse
Affiliation(s)
- Ge Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yun-Feng Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chen-Xi Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiuping Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qi Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li-Qin Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Mei Zhong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
204
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
205
|
Berry MH, Moldavan M, Garrett T, Meadows M, Cravetchi O, White E, Leffler J, von Gersdorff H, Wright KM, Allen CN, Sivyer B. A melanopsin ganglion cell subtype forms a dorsal retinal mosaic projecting to the supraoptic nucleus. Nat Commun 2023; 14:1492. [PMID: 36932080 PMCID: PMC10023714 DOI: 10.1038/s41467-023-36955-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Visual input to the hypothalamus from intrinsically photosensitive retinal ganglion cells (ipRGCs) influences several functions including circadian entrainment, body temperature, and sleep. ipRGCs also project to nuclei such as the supraoptic nucleus (SON), which is involved in systemic fluid homeostasis, maternal behavior, social behaviors, and appetite. However, little is known about the SON-projecting ipRGCs or their relationship to well-characterized ipRGC subtypes. Using a GlyT2Cre mouse line, we show a subtype of ipRGCs restricted to the dorsal retina that selectively projects to the SON. These ipRGCs tile a dorsal region of the retina, forming a substrate for encoding ground luminance. Optogenetic activation of their axons demonstrates they release the neurotransmitter glutamate in multiple regions, including the suprachiasmatic nucleus (SCN) and SON. Our results challenge the idea that ipRGC dendrites overlap to optimize photon capture and suggests non-image forming vision operates to sample local regions of the visual field to influence diverse behaviors.
Collapse
Affiliation(s)
- Michael H Berry
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR, USA
| | - Michael Moldavan
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Tavita Garrett
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Neuroscience Graduate program, Oregon Health & Science University, Portland, OR, USA
| | - Marc Meadows
- Neuroscience Graduate program, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Olga Cravetchi
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joseph Leffler
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Henrique von Gersdorff
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
206
|
Mouland JW, Watson AJ, Martial FP, Lucas RJ, Brown TM. Colour and melanopsin mediated responses in the murine retina. Front Cell Neurosci 2023; 17:1114634. [PMID: 36993934 PMCID: PMC10040579 DOI: 10.3389/fncel.2023.1114634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction: Intrinsically photosensitive retinal ganglion cells (ipRGCs) integrate melanopsin and rod/cone-mediated inputs to signal to the brain. Whilst originally identified as a cell type specialised for encoding ambient illumination, several lines of evidence indicate a strong association between colour discrimination and ipRGC-driven responses. Thus, cone-mediated colour opponent responses have been widely found across ipRGC target regions in the mouse brain and influence a key ipRGC-dependent function, circadian photoentrainment. Although ipRGCs exhibiting spectrally opponent responses have also been identified, the prevalence of such properties have not been systematically evaluated across the mouse retina or yet been found in ipRGC subtypes known to influence the circadian system. Indeed, there is still uncertainty around the overall prevalence of cone-dependent colour opponency across the mouse retina, given the strong retinal gradient in S and M-cone opsin (co)-expression and overlapping spectral sensitivities of most mouse opsins.Methods: To address this, we use photoreceptor isolating stimuli in multielectrode recordings from human red cone opsin knock-in mouse (Opn1mwR) retinas to systematically survey cone mediated responses and the occurrence of colour opponency across ganglion cell layer (GCL) neurons and identify ipRGCs based on spectral comparisons and/or the persistence of light responses under synaptic blockade.Results: Despite detecting robust cone-mediated responses across the retina, we find cone opponency is rare, especially outside of the central retina (overall ~3% of GCL neurons). In keeping with previous suggestions we also see some evidence of rod-cone opponency (albeit even more rare under our experimental conditions), but find no evidence for any enrichment of cone (or rod) opponent responses among functionally identified ipRGCs.Conclusion: In summary, these data suggest the widespread appearance of cone-opponency across the mouse early visual system and ipRGC-related responses may be an emergent feature of central visual processing mechanisms.
Collapse
Affiliation(s)
- Joshua W. Mouland
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- *Correspondence: Joshua W. Mouland
| | - Alex J. Watson
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Timothy M. Brown
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
207
|
Yang CC, Tsujimura SI, Yeh SL. Blue-light background impairs visual exogenous attention shift. Sci Rep 2023; 13:3794. [PMID: 36882407 PMCID: PMC9992692 DOI: 10.1038/s41598-022-24862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/22/2022] [Indexed: 03/09/2023] Open
Abstract
Previous research into the effects of blue light on visual-spatial attention has yielded mixed results due to a lack of properly controlling critical factors like S-cone stimulation, ipRGCs stimulation, and color. We adopted the clock paradigm and systematically manipulated these factors to see how blue light impacts the speed of exogenous and endogenous attention shifts. Experiments 1 and 2 revealed that, relative to the control light, exposure to the blue-light background decreased the speed of exogenous (but not endogenous) attention shift to external stimuli. To further clarify the contribution(s) of blue-light sensitive photoreceptors (i.e., S-cone and ipRGCs), we used a multi-primary system that could manipulate the stimulation of a single type of photoreceptor without changing the stimulation of other photoreceptors (i.e., the silent substitution method). Experiments 3 and 4 revealed that stimulation of S-cones and ipRGCs did not contribute to the impairment of exogenous attention shift. Our findings suggest that associations with blue colors, such as the concept of blue light hazard, cause exogenous attention shift impairment. Some of the previously documented blue-light effects on cognitive performances need to be reevaluated and reconsidered in light of our findings.
Collapse
Affiliation(s)
- Chien-Chun Yang
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Sei-Ichi Tsujimura
- Faculty of Design and Architecture, Nagoya City University, Nagoya, Japan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
208
|
Kazakou P, Nicolaides NC, Chrousos GP. Basic Concepts and Hormonal Regulators of the Stress System. Horm Res Paediatr 2023; 96:8-16. [PMID: 35272295 DOI: 10.1159/000523975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human organisms have to cope with a large number of external or internal stressful stimuli that threaten - or are perceived as threatening - their internal dynamic balance or homeostasis. To face these disturbing forces, or stressors, organisms have developed a complex neuroendocrine system, the stress system, which consists of the hypothalamic-pituitary-adrenal axis and the locus caeruleus/norepinephrine-autonomic nervous system. SUMMARY Upon exposure to stressors beyond a certain threshold, the activation of the stress system leads to a series of physiological and behavioral adaptations that help achieve homeostasis and increase the chances of survival. When, however, the stress response to stressors is inadequate, excessive, or prolonged, the resultant maladaptation may lead to the development of several stress-related pathologic conditions. Adverse environmental events, especially during critical periods of life, such as prenatal life, childhood, and puberty/adolescence, in combination with the underlying genetic background, may leave deep, long-term epigenetic imprints in the human expressed genome. KEY MESSAGES In this review, we describe the components of the stress system and its functional interactions with other homeostatic systems of the organism; we present the hormonal regulators of the stress response, and we discuss the development of stress-related pathologies.
Collapse
Affiliation(s)
- Paraskevi Kazakou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
209
|
Figueiro MG, Pedler D. Cardiovascular disease and lifestyle choices: Spotlight on circadian rhythms and sleep. Prog Cardiovasc Dis 2023; 77:70-77. [PMID: 36841493 PMCID: PMC10225333 DOI: 10.1016/j.pcad.2023.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
The advent of electric lighting in the built environment has radically transformed the human experience of light and darkness, which is often insufficient to stimulate and synchronize the circadian system to the day-night cycle. The lack of circadian system entrainment leads to poor sleep and could be an important biophysical mechanism underlying increased incidence of certain types of diseases, including cardiovascular (CV) disease (CVD). This contribution proposes to carve out a niche for including daily exposures to light and darkness among lifestyle factors for reducing the risk and progression of CVD. The fundamental workings of the human circadian system and its primary outputs are described. The discussion then progresses to light's effects on the circadian system and its outputs, and how threats to circadian health pose risks for CV health. The contribution concludes with simple recommendations for incorporating regular, robust daily exposures in lifestyle adjustments to combat CVD risks and progression.
Collapse
Affiliation(s)
- Mariana G Figueiro
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, United States of America.
| | - David Pedler
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, United States of America
| |
Collapse
|
210
|
Banasiak M, Wilkerson A, Safranek S. Evaluating Occupant Light Exposure and Usage Patterns in an Inpatient Behavioral Health Unit. HERD-HEALTH ENVIRONMENTS RESEARCH & DESIGN JOURNAL 2023; 16:89-108. [PMID: 36855952 PMCID: PMC10133784 DOI: 10.1177/19375867221150226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To (1) evaluate the use case for tunable lighting in inpatient behavioral health, (2) describe differences in staff lighting exposures between static and tunable lighting conditions using wearable sensors, and (3) document occupant lighting control usage patterns. BACKGROUND Tunable lighting fixtures can vary the amount of light and spectral content, so have been offered as a way to address light and health considerations. Before we can understand potential health benefits of tunable lighting, it is helpful to understand how occupant exposures under tunable lighting differ from those under more traditional lighting systems. METHODS Tunable lighting benefits and challenges for inpatient behavioral health were carefully detailed during design. Light exposure measurements were recorded at an old site with static fluorescent lighting and a new site with tunable light-emitting diode (LED) lighting. Behavioral health inpatient unit staff participants voluntarily wore a light measurement device to estimate light exposure. At the new site, controls usage data were recorded each time a button was pressed on a lighting control station. RESULTS While general observations can be made about the data between sites, there is notable variation at both sites depending on the day and hour. Button press data revealed that occupants used the full capability of the tunable lighting system to support different activities and needs. CONCLUSION Understanding the relationship between occupant well-being and light requires a holistic research approach including thoughtful design accounting for real-world constraints, detailed measurement of light exposure, and understanding how occupants interact and make use of new technology.
Collapse
Affiliation(s)
| | | | - Sarah Safranek
- Pacific Northwest National Laboratory, Portland, OR, USA
| |
Collapse
|
211
|
Ahmad F, Sachdeva P, Sarkar J, Izhaar R. Circadian dysfunction and Alzheimer's disease - An updated review. Aging Med (Milton) 2023; 6:71-81. [PMID: 36911088 PMCID: PMC10000289 DOI: 10.1002/agm2.12221] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is considered to be the most typical form of dementia that provokes irreversible cognitive impairment. Along with cognitive impairment, circadian rhythm dysfunction is a fundamental factor in aggravating AD. A link among circadian rhythms, sleep, and AD has been well-documented. The etiopathogenesis of circadian system disruptions and AD serves some general characteristics that also open up the possibility of viewing them as a mutually reliant path. In this review, we have focused on different factors that are related to circadian rhythm dysfunction. The various pathogenic factors, such as amyloid-beta, neurofibrillary tangles, oxidative stress, neuroinflammation, and circadian rhythm dysfunction may all contribute to AD. In this review, we also tried to focus on melatonin which is produced from the pineal gland and can be used to treat circadian dysfunction in AD. Aside from amyloid beta, tau pathology may have a notable influence on sleep. Conclusively, the center of this review is primarily based on the principal mechanistic complexities associated with circadian rhythm disruption, sleep deprivation, and AD, and it also emphasizes the potential therapeutic strategies to treat and prevent the progression of AD.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | - Jasmine Sarkar
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | | |
Collapse
|
212
|
Mishra SK, Gaddameedhi S. A new role of TRPM8 in circadian rhythm and molecular clock. Acta Physiol (Oxf) 2023; 237:e13934. [PMID: 36636860 DOI: 10.1111/apha.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Affiliation(s)
- Santosh K Mishra
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, North Carolina, Raleigh, USA
| | - Shobhan Gaddameedhi
- Department of Biological Sciences and Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
213
|
Reimúndez A, Fernández-Peña C, Ordás P, Hernández-Ortego P, Gallego R, Morenilla-Palao C, Navarro J, Martín-Cora F, Pardo-Vázquez JL, Schwarz LA, Arce V, Viana F, Señarís R. The cold-sensing ion channel TRPM8 regulates central and peripheral clockwork and the circadian oscillations of body temperature. Acta Physiol (Oxf) 2023; 237:e13896. [PMID: 36251565 DOI: 10.1111/apha.13896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
AIM Physiological functions in mammals show circadian oscillations, synchronized by daily cycles of light and temperature. Central and peripheral clocks participate in this regulation. Since the ion channel TRPM8 is a critical cold sensor, we investigated its role in circadian function. METHODS We used TRPM8 reporter mouse lines and TRPM8-deficient mice. mRNA levels were determined by in situ hybridization or RT-qPCR and protein levels by immunofluorescence. A telemetry system was used to measure core body temperature (Tc). RESULTS TRPM8 is expressed in the retina, specifically in cholinergic amacrine interneurons and in a subset of melanopsin-positive ganglion cells which project to the central pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. TRPM8-positive fibres were also found innervating choroid and ciliary body vasculature, with a putative function in intraocular temperature, as shown in TRPM8-deficient mice. Interestingly, Trpm8-/- animals displayed increased expression of the clock gene Per2 and vasopressin (AVP) in the SCN, suggesting a regulatory role of TRPM8 on the central oscillator. Since SCN AVP neurons control body temperature, we studied Tc in driven and free-running conditions. TRPM8-deficiency increased the amplitude of Tc oscillations and, under dim constant light, induced a greater phase delay and instability of Tc rhythmicity. Finally, TRPM8-positive fibres innervate peripheral organs, like liver and white adipose tissue. Notably, Trpm8-/- mice displayed a dysregulated expression of Per2 mRNA in these metabolic tissues. CONCLUSION Our findings support a function of TRPM8 as a temperature sensor involved in the regulation of central and peripheral clocks and the circadian control of Tc.
Collapse
Affiliation(s)
- Alfonso Reimúndez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Fernández-Peña
- Institute of Neuroscience. UMH-CSIC, Alicante, Spain.,St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | - Rosalía Gallego
- Department of Morphological Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Juan Navarro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Martín-Cora
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Luís Pardo-Vázquez
- Department Physiotherapy, Medicine and Biomedical Sciences, CICA, University of A Coruña, A Coruña, Spain
| | | | - Victor Arce
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Félix Viana
- Institute of Neuroscience. UMH-CSIC, Alicante, Spain
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
214
|
Chamorro R, Jouffe C, Oster H, Uhlenhaut NH, Meyhöfer SM. When should I eat: A circadian view on food intake and metabolic regulation. Acta Physiol (Oxf) 2023; 237:e13936. [PMID: 36645134 DOI: 10.1111/apha.13936] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023]
Abstract
The circadian clock is a hierarchical timing system regulating most physiological and behavioral functions with a period of approximately 24 h in humans and other mammalian species. The circadian clock drives daily eating rhythms that, in turn, reinforce the circadian clock network itself to anticipate and orchestrate metabolic responses to food intake. Eating is tightly interconnected with the circadian clock and recent evidence shows that the timing of meals is crucial for the control of appetite and metabolic regulation. Obesity results from combined long-term dysregulation in food intake (homeostatic and hedonic circuits), energy expenditure, and energy storage. Increasing evidence supports that the loss of synchrony of daily rhythms significantly impairs metabolic homeostasis and is associated with obesity. This review presents an overview of mechanisms regulating food intake (homeostatic/hedonic) and focuses on the crucial role of the circadian clock on the metabolic response to eating, thus providing a fundamental research axis to maintain a healthy eating behavior.
Collapse
Affiliation(s)
- Rodrigo Chamorro
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany.,Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Céline Jouffe
- Institute for Diabetes and Endocrinology, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.,Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Endocrinology, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.,Chair for Metabolic Programming, TUM School of Life Sciences Weihenstephan, & ZIEL-Institute for Food & Health, Freising, Germany
| | - Sebastian M Meyhöfer
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
215
|
At the root of the mammalian mind: The sensory organs, brain and behavior of pre-mammalian synapsids. PROGRESS IN BRAIN RESEARCH 2023; 275:25-72. [PMID: 36841570 DOI: 10.1016/bs.pbr.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All modern mammals are descendants of the paraphyletic non-mammaliaform Synapsida, colloquially referred to as the "mammal-like reptiles." It has long been assumed that these mammalian ancestors were essentially reptile-like in their morphology, biology, and behavior, i.e., they had a small brain, displayed simple behavior, and their sensory organs were unrefined compared to those of modern mammals. Recent works have, however, revealed that neurological, sensory, and behavioral traits previously considered typically mammalian, such as whiskers, enhanced olfaction, nocturnality, parental care, and complex social interactions evolved before the origin of Mammaliaformes, among the early-diverging "mammal-like reptiles." In contrast, an enlarged brain did not evolve immediately after the origin of mammaliaforms. As such, in terms of paleoneurology, the last "mammal-like reptiles" were not significantly different from the earliest mammaliaforms. The abundant data and literature published in the last 10 years no longer supports the "three pulses" scenario of synapsid brain evolution proposed by Rowe and colleagues in 2011, but supports the new "outside-in" model of Rodrigues and colleagues proposed in 2018, instead. As Mesozoic reptiles were becoming the dominant taxa within terrestrial ecosystems, synapsids gradually adapted to smaller body sizes and nocturnality. This resulted in a sensory revolution in synapsids as olfaction, audition, and somatosensation compensated for the loss of visual cues. This altered sensory input is aligned with changes in the brain, the most significant of which was an increase in relative brain size.
Collapse
|
216
|
Abstract
Despite sleep's fundamental role in maintaining and improving physical and mental health, many people get less than the recommended amount of sleep or suffer from sleeping disorders. This review highlights sleep's instrumental biological functions, various sleep problems, and sleep hygiene and lifestyle interventions that can help improve sleep quality. Quality sleep allows for improved cardiovascular health, mental health, cognition, memory consolidation, immunity, reproductive health, and hormone regulation. Sleep disorders, such as insomnia, sleep apnea, and circadian-rhythm-disorders, or disrupted sleep from lifestyle choices, environmental conditions, or other medical issues can lead to significant morbidity and can contribute to or exacerbate medical and psychiatric conditions. The best treatment for long-term sleep improvement is proper sleep hygiene through behavior and sleep habit modification. Recommendations to improve sleep include achieving 7 to 9 h of sleep, maintaining a consistent sleep/wake schedule, a regular bedtime routine, engaging in regular exercise, and adopting a contemplative practice. In addition, avoiding many substances late in the day can help improve sleep. Caffeine, alcohol, heavy meals, and light exposure later in the day are associated with fragmented poor-quality sleep. These sleep hygiene practices can promote better quality and duration of sleep, with corresponding health benefits.
Collapse
|
217
|
Cheng X, Yan Y, Hu T, Lv Y, Zeng Y. A review of the effect of the light environment of the VDT workspace on the "learning to learn" effect of video game training. Front Neurosci 2023; 17:1093602. [PMID: 36908803 PMCID: PMC9998512 DOI: 10.3389/fnins.2023.1093602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, the role of video games in enhancing brain plasticity and learning ability has been verified, and this learning transfer is known as the "learning to learn" effect of video game training. At the same time, against the background of healthy lighting, the influence of non-visual effects of light environment on the human rhythmic system has been gradually confirmed. As a special operation form of Visual Display Terminal (VDT) operation, video game training has a high dependence on VDT equipment and the VDT screen, and the background usually has a huge difference in brightness. Compared with the light environment of ordinary operation space, the light environment of VDT operation space is more complex. This complex light environment's non-visual effects cause human emotions, alertness, fatigue, cognitive ability, and other changes, which may affect the efficiency of the "learning to learn" effect of video game training. This article focuses on the impact of the light environment in the VDT workspace on the "learning to learn" effect of video game training. It first traces the factors that trigger the "learning to learn" effect of video game training, that is, the improvement of people's attention, perception, and cognitive ability. Then, the influencing mechanism and the evaluation method of the VDT workspace space light environment on the human rhythm system are discussed based on the basic theory of photobiological effect. In addition, the VDT display lighting light time pattern, photophysical properties, regulation, and protection mechanism on the human rhythm system are studied to demonstrate the VDT workspace light environment's special characteristics. Finally, combined with the progress of artificial lighting technology and the research results of health lighting, given the "learning to learn" effect of video game training, some thoughts on the design of the light environment of the workplace and future research directions are presented.
Collapse
Affiliation(s)
- Xiang Cheng
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Yonghong Yan
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Tao Hu
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Yinghui Lv
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| | - Yue Zeng
- Faculty of Architecture and Urban Planning, Chongqing University, Chongqing, China
- Key Laboratory of the Ministry of Education of Mountainous City and Towns Construction and New Technology, Chongqing University, Chongqing, China
| |
Collapse
|
218
|
Randjelović P, Stojanović N, Ilić I, Vučković D. The effect of reducing blue light from smartphone screen on subjective quality of sleep among students. Chronobiol Int 2023; 40:335-342. [PMID: 36744480 DOI: 10.1080/07420528.2023.2173606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exposure of humans to artificial light at night (ALAN) with predominant blue part of the visible spectrum is strongly influencing circadian rhythm and sleep through melanopsin-containing retinal ganglion cells (RGC). We hypothesized that reducing the amount of emitted blue light from screens of mobile phones during the night will increase sleep quality in our student population. The aim of the work was to investigate the effect of reducing blue light from smartphone screen during the night on subjective quality of sleep among students of medicine. The target population was students of medicine aged 20 to 22 years old of both sexes. The primary outcome of the study was subjective sleep quality, assessed by the Serbian version of the Pittsburgh Sleep Quality Index (PSQI). The mean total PSQI score before intervention was 6.83 ± 2.73 (bad), while after the intervention the same score was statistically significant reduced to 3.93 ± 1.68 (good) with large effect size. The study has shown that a reduction of blue light emission from LED backlight screens of mobile phones during the night leads to improved subjective quality of sleep in students, as well as improvement in daytime functioning and going to sleep.
Collapse
Affiliation(s)
- Pavle Randjelović
- Faculty of Medicine, Department of Physiology, University of Niš, Niš, Serbia
| | - Nikola Stojanović
- Faculty of Medicine, Department of Physiology, University of Niš, Niš, Serbia
| | - Ivan Ilić
- Faculty of Medicine, Institute of Pathology, University of Niš, Niš, Serbia
| | - Dragan Vučković
- Faculty of Electronic Engineering, Department of Power Engineering, University of Niš, Niš, Serbia
| |
Collapse
|
219
|
Martin PR. Neurons share an intense load. Science 2023; 379:335-336. [PMID: 36701467 DOI: 10.1126/science.adf9350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Time-of-day-detecting cells in the eye give customized responses to light intensity.
Collapse
Affiliation(s)
- Paul R Martin
- The University of Sydney Save Sight Institute, Sydney, Australia
| |
Collapse
|
220
|
Liu LP, Li MH, Zheng YW. Hair Follicles as a Critical Model for Monitoring the Circadian Clock. Int J Mol Sci 2023; 24:2407. [PMID: 36768730 PMCID: PMC9916850 DOI: 10.3390/ijms24032407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/30/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Clock (circadian) genes are heterogeneously expressed in hair follicles (HFs). The genes can be modulated by both the central circadian system and some extrinsic factors, such as light and thyroid hormones. These circadian genes participate in the regulation of several physiological processes of HFs, including hair growth and pigmentation. On the other hand, because peripheral circadian genes are synchronized with the central clock, HFs could provide a noninvasive and practical method for monitoring and evaluating multiple circadian-rhythm-related conditions and disorders among humans, including day and night shifts, sleep-wake disorders, physical activities, energy metabolism, and aging. However, due to the complexity of circadian biology, understanding how intrinsic oscillation operates using peripheral tissues only may be insufficient. Combining HF sampling with multidimensional assays such as detection of body temperature, blood samples, or certain validated questionnaires may be helpful in improving HF applications. Thus, HFs can serve as a critical model for monitoring the circadian clock and can help provide an understanding of the potential mechanisms of circadian-rhythm-related conditions; furthermore, chronotherapy could support personalized treatment scheduling based on the gene expression profile expressed in HFs.
Collapse
Affiliation(s)
- Li-Ping Liu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
| | - Meng-Huan Li
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Jiangsu University, Zhenjiang 212001, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Yokohama 234-0006, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
221
|
Meng JJ, Shen JW, Li G, Ouyang CJ, Hu JX, Li ZS, Zhao H, Shi YM, Zhang M, Liu R, Chen JT, Ma YQ, Zhao H, Xue T. Light modulates glucose metabolism by a retina-hypothalamus-brown adipose tissue axis. Cell 2023; 186:398-412.e17. [PMID: 36669474 DOI: 10.1016/j.cell.2022.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023]
Abstract
Public health studies indicate that artificial light is a high-risk factor for metabolic disorders. However, the neural mechanism underlying metabolic modulation by light remains elusive. Here, we found that light can acutely decrease glucose tolerance (GT) in mice by activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) innervating the hypothalamic supraoptic nucleus (SON). Vasopressin neurons in the SON project to the paraventricular nucleus, then to the GABAergic neurons in the solitary tract nucleus, and eventually to brown adipose tissue (BAT). Light activation of this neural circuit directly blocks adaptive thermogenesis in BAT, thereby decreasing GT. In humans, light also modulates GT at the temperature where BAT is active. Thus, our work unveils a retina-SON-BAT axis that mediates the effect of light on glucose metabolism, which may explain the connection between artificial light and metabolic dysregulation, suggesting a potential prevention and treatment strategy for managing glucose metabolic disorders.
Collapse
Affiliation(s)
- Jian-Jun Meng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Wei Shen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Guang Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Jie Ouyang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Xi Hu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Shuo Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Ming Shi
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Rong Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Ju-Tao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Qian Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Huan Zhao
- College of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
222
|
Schiano di Cola F, Ceccardi G, Bolchini M, Caratozzolo S, Liberini P, Padovani A, Rao R. Photophobia and migraine outcome during treatment with galcanezumab. Front Neurol 2023; 13:1088036. [PMID: 36742057 PMCID: PMC9889984 DOI: 10.3389/fneur.2022.1088036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Background Calcitonin gene-related peptide (CGRP) plays a pivotal role in migraine physiology, not only regarding migraine pain but also associated symptoms such as photophobia. The aim of the present study was to assess monoclonal antibodies targeting CGRP efficacy not only in terms of headache and migraine frequency and disability but also in reducing ictal photophobia. Material and methods This is a retrospective observational study, conducted at the Headache Center-ASST Spedali Civili Brescia. All patients in monthly treatment with galcanezumab with at least a 6-month follow-up in September 2022 with reported severe photophobia during migraine attacks were included. Data regarding headache frequency, analgesics consumption, and migraine disability were collected quarterly. Moreover, patients were asked the following information regarding photophobia: (1) whether they noticed an improvement in photophobia during migraine attacks since galcanezumab introduction; (2) the degree of photophobia improvement (low, moderate, and high); and (3) timing photophobia improvement. Results Forty-seven patients were enrolled in the present study as they met the inclusion criteria. Seventeen patients had a diagnosis of high-frequency episodic migraine and 30 of chronic migraine. From baseline to T3 and T6, a significant improvement in terms of headache days (19.2 ± 7.6 vs. 8.6 ± 6.8 vs. 7.7 ± 5.7; p < 0.0001), migraine days (10.4 ± 6.7 vs. 2.9 ± 4.3 vs. 3.6 ± 2.8; p < 0.0001), analgesics consumption (25.1 ± 28.2 vs. 7.6 ± 7.5 vs. 7.6 ± 8.1; p < 0.0001), MIDAS score (82.1 ± 48.4 vs. 21.6 ± 17.6 vs. 18.1 ± 20.5; p < 0.0001), and HIT-6 score (66.2 ± 6.2 vs. 57.2 ± 8.6 vs. 56.6 ± 7.6; p < 0.0001) was found. Thirty-two patients (68.1%) reported a significant improvement in ictal photophobia, with over half of the patients reporting it within the first month of treatment. Photophobia improvement was more frequent in patients with episodic migraine (p = 0.02) and triptans responders (p = 0.03). Conclusions The present study confirms previous reports regarding galcanezumab efficacy beyond migraine frequency. In particular, over 60% of patients, in our cohort, documented a significant improvement also in reducing ictal photophobia. This improvement was, in most patients, moderate to high, and within the first 6 months of treatment, regardless of the clinical response on migraine frequency.
Collapse
|
223
|
Raja S, Milosavljevic N, Allen AE, Cameron MA. Burning the candle at both ends: Intraretinal signaling of intrinsically photosensitive retinal ganglion cells. Front Cell Neurosci 2023; 16:1095787. [PMID: 36687522 PMCID: PMC9853061 DOI: 10.3389/fncel.2022.1095787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are photoreceptors located in the ganglion cell layer. They project to brain regions involved in predominately non-image-forming functions including entrainment of circadian rhythms, control of the pupil light reflex, and modulation of mood and behavior. In addition to possessing intrinsic photosensitivity via the photopigment melanopsin, these cells receive inputs originating in rods and cones. While most research in the last two decades has focused on the downstream influence of ipRGC signaling, recent studies have shown that ipRGCs also act retrogradely within the retina itself as intraretinal signaling neurons. In this article, we review studies examining intraretinal and, in addition, intraocular signaling pathways of ipRGCs. Through these pathways, ipRGCs regulate inner and outer retinal circuitry through both chemical and electrical synapses, modulate the outputs of ganglion cells (both ipRGCs and non-ipRGCs), and influence arrangement of the correct retinal circuitry and vasculature during development. These data suggest that ipRGC function plays a significant role in the processing of image-forming vision at its earliest stage, positioning these photoreceptors to exert a vital role in perceptual vision. This research will have important implications for lighting design to optimize the best chromatic lighting environments for humans, both in adults and potentially even during fetal and postnatal development. Further studies into these unique ipRGC signaling pathways could also lead to a better understanding of the development of ocular dysfunctions such as myopia.
Collapse
Affiliation(s)
- Sushmitha Raja
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Nina Milosavljevic
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Division of Neuroscience, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Morven A. Cameron
- School of Medicine, Western Sydney University, Sydney, NSW, Australia,*Correspondence: Morven A. Cameron,
| |
Collapse
|
224
|
Portengen BL, Porro GL, Imhof SM, Naber M. The Trade-Off Between Luminance and Color Contrast Assessed With Pupil Responses. Transl Vis Sci Technol 2023; 12:15. [PMID: 36622687 PMCID: PMC9838585 DOI: 10.1167/tvst.12.1.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/06/2022] [Indexed: 01/10/2023] Open
Abstract
Purpose A scene consisting of a white stimulus on a black background incorporates strong luminance contrast. When both stimulus and background receive different colors, luminance contrast decreases but color contrast increases. Here, we sought to characterize the pattern of stimulus salience across varying trade-offs of color and luminance contrasts by using the pupil light response. Methods Three experiments were conducted with 17, 16, and 17 healthy adults. For all experiments, a flickering stimulus (2 Hz; alternating color to black) was presented superimposed on a background with a complementary color to the stimulus (i.e., opponency colors in human color perception: blue and yellow for Experiment 1, red and green for Experiment 2, and equiluminant red and green for Experiment 3). Background luminance varied between 0% and 45% to trade off luminance and color contrast with the stimulus. By comparing the locus of the optimal trade-off between color and luminance across different color axes, we explored the generality of the trade-off. Results The strongest pupil responses were found when a substantial amount of color contrast was present (at the expense of luminance contrast). Pupil response amplitudes increased by 15% to 30% after the addition of color contrast. An optimal pupillary responsiveness was reached at a background luminance setting of 20% to 35% color contrast across several color axes. Conclusions These findings suggest that a substantial component of pupil light responses incorporates color processing. More sensitive pupil responses and more salient stimulus designs can be achieved by adding subtle levels of color contrast between stimulus and background. Translational Relevance More robust pupil responses will enhance tests of the visual field with pupil perimetry.
Collapse
Affiliation(s)
- Brendan L. Portengen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Giorgio L. Porro
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saskia M. Imhof
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marnix Naber
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
225
|
Marchese NA, Ríos MN, Guido ME. Müller glial cell photosensitivity: a novel function bringing higher complexity to vertebrate retinal physiology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
226
|
Dauchy RT, Blask DE. Vivarium Lighting as an Important Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:3-25. [PMID: 36755210 PMCID: PMC9936857 DOI: 10.30802/aalas-jaalas-23-000003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/22/2023]
Abstract
Light is an extrinsic factor that exerts widespread influence on the regulation of circadian, physiologic, hormonal, metabolic, and behavioral systems of all animals, including those used in research. These wide-ranging biologic effects of light are mediated by distinct photoreceptors, the melanopsin-containing intrinsically photosensitive retinal ganglion cells of the nonvisual system, which interact with the rods and cones of the conventional visual system. Here, we review the nature of light and circadian rhythms, current industry practices and standards, and our present understanding of the neurophysiology of the visual and nonvisual systems. We also consider the implications of this extrinsic factor for vivarium measurement, production, and technological application of light, and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and wellbeing and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- lan, light at night
- led, light-emitting diode
- plr, pupillary light reflex
- scn, suprachiasmatic nuclei
- spd, spectral power distribution
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
227
|
Arévalo-López C, Gleitze S, Madariaga S, Plaza-Rosales I. Pupillary response to chromatic light stimuli as a possible biomarker at the early stage of glaucoma: a review. Int Ophthalmol 2023; 43:343-356. [PMID: 35781599 DOI: 10.1007/s10792-022-02381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
Glaucoma is a multifactorial neurodegenerative disease of the optic nerve currently considered a severe health problem because of its high prevalence, being the primary cause of irreversible blindness worldwide. The most common type corresponds to Primary Open-Angle Glaucoma. Glaucoma produces, among other alterations, a progressive loss of retinal ganglion cells (RGC) and its axons which are the key contributors to generate action potentials that reach the visual cortex to create the visual image. Glaucoma is characterized by Visual Field loss whose main feature is to be painless and therefore makes early detection difficult, causing a late diagnosis and a delayed treatment indication that slows down its progression. Intrinsically photosensitive retinal ganglion cells, which represent a subgroup of RGCs are characterized by their response to short-wave light stimulation close to 480 nm, their non-visual function, and their role in the generation of the pupillary reflex. Currently, the sensitivity of clinical examinations correlates to RGC damage; however, the need for an early damage biomarker is still relevant. It is an urgent task to create new diagnostic approaches to detect an early stage of glaucoma in a prompt, quick, and economical manner. We summarize the pathology of glaucoma and its current clinical detection methods, and we suggest evaluating the pupillary response to chromatic light as a potential biomarker of disease, due to its diagnostic benefit and its cost-effectiveness in clinical practice in order to reduce irreversible damage caused by glaucoma.
Collapse
Affiliation(s)
- Carla Arévalo-López
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Samuel Madariaga
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Laboratorio de Neurosistemas, Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Ecological Cognitive Neuroscience Group, Santiago, Chile
| | - Iván Plaza-Rosales
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile. .,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile. .,Laboratorio de Neurosistemas, Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile. .,Ecological Cognitive Neuroscience Group, Santiago, Chile.
| |
Collapse
|
228
|
Stowe TA, McClung CA. How Does Chronobiology Contribute to the Development of Diseases in Later Life. Clin Interv Aging 2023; 18:655-666. [PMID: 37101656 PMCID: PMC10124625 DOI: 10.2147/cia.s380436] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
An increasingly older population is one of the major social and medical challenges we currently face. Between 2010 and 2050, it is estimated that the proportion of adults over 65 years of age will double from 8% to 16% of the global population. A major concern associated with aging is the changes in health that can lead to various diseases such as cancer and neurogenerative diseases, which are major burdens on individuals and societies. Thus, it is imperative to better understand changes in sleep and circadian rhythms that accompany aging to improve the health of an older population and target diseases associated with aging. Circadian rhythms play a role in most physiological processes and can contribute to age-related diseases. Interestingly, there is a relationship between circadian rhythms and aging. For example, many older adults have a shift in chronotype, which is an individual's natural inclination to sleep certain times of the day. As adults age, most people tend to go to sleep earlier while also waking up earlier. Numerous studies also suggest that disrupted circadian rhythms may be indicative of developing age-related diseases, like neurodegenerative disorders and cancer. Better understanding the relationship between circadian rhythms and aging may allow us to improve current treatments or develop novel ones that target diseases commonly associated with aging.
Collapse
Affiliation(s)
- Taylor A Stowe
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Correspondence: Colleen A McClung, Email
| |
Collapse
|
229
|
Chakraborty R, Collins MJ, Kricancic H, Davis B, Alonso-Caneiro D, Yi F, Baskaran K. The effect of intrinsically photosensitive retinal ganglion cell (ipRGC) stimulation on axial length changes to imposed optical defocus in young adults. JOURNAL OF OPTOMETRY 2023; 16:53-63. [PMID: 35589503 PMCID: PMC9811374 DOI: 10.1016/j.optom.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE The intrinsically photosensitive retinal ganglion cells (ipRGCs) regulate pupil size and circadian rhythms. Stimulation of the ipRGCs using short-wavelength blue light causes a sustained pupil constriction known as the post-illumination pupil response (PIPR). Here we examined the effects of ipRGC stimulation on axial length changes to imposed optical defocus in young adults. MATERIALS AND METHODS Nearly emmetropic young participants were given either myopic (+3 D, n = 16) or hyperopic (-3 D, n = 17) defocus in their right eye for 2 h. Before and after defocus, a series of axial length measurements for up to 180 s were performed in the right eye using the IOL Master following exposure to 5 s red (625 nm, 3.74 × 1014 photons/cm2/s) and blue (470 nm, 3.29 × 1014 photons/cm2/s) stimuli. The pupil measurements were collected from the left eye to track the ipRGC activity. The 6 s and 30 s PIPR, early and late area under the curve (AUC), and time to return to baseline were calculated. RESULTS The PIPR with blue light was significantly stronger after 2 h of hyperopic defocus as indicated by a lower 6 and 30 s PIPR and a larger early and late AUC (all p<0.05). Short-wavelength ipRGC stimulation also significantly exaggerated the ocular response to hyperopic defocus, causing a significantly greater increase in axial length than that resulting from the hyperopic defocus alone (p = 0.017). Neither wavelength had any effect on axial length with myopic defocus. CONCLUSIONS These findings suggest an interaction between myopiagenic hyperopic defocus and ipRGC signaling.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- Caring Futures Institute, Flinders University, Bedford Park, SA 5042, Australia; College of Nursing and Health Sciences, Optometry and Vision Science, Sturt North, Flinders University, Bedford Park, SA 5042, Australia.
| | - Michael J Collins
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | - Henry Kricancic
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | - Brett Davis
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | - Fan Yi
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia
| | | |
Collapse
|
230
|
Rozhkova G, Belokopytov A, Gracheva M, Ershov E, Nikolaev P. A simple method for comparing peripheral and central color vision by means of two smartphones. Behav Res Methods 2023; 55:38-57. [PMID: 35260965 DOI: 10.3758/s13428-021-01783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2021] [Indexed: 11/08/2022]
Abstract
Information on peripheral color perception is far from sufficient, since it has predominantly been obtained using small stimuli, limited ranges of eccentricities, and sophisticated experimental conditions. Our goal was to consider the possibility of facilitating technical realization of the classical method of asymmetric color matching (ACM) developed by Moreland and Cruz (1959) for assessing appearance of color stimuli in the peripheral visual field (VF). We adopted the ACM method by employing two smartphones to implement matching procedure at various eccentricities. Although smartphones were successfully employed in vision studies, we are aware that some photometric parameters of smartphone displays are not sufficiently precise to ensure accurate color matching in foveal vision; moreover, certain technical characteristics of commercially available devices are variable. In the present study we provided evidence that, despite these shortages, smartphones can be applied for general and wide investigations of the peripheral vision. In our experiments, the smartphones were mounted on a mechanical perimeter to simultaneously present colored stimuli foveally and peripherally. Trying to reduce essential discomfort and fatigue experienced by most observers in peripheral vision studies, we did not apply bite bars, pupil dilatation, and Maxwellian view. The ACM measurements were performed without prior training of observers and in a wide range of eccentricities, varying between 0 and 95°. The results were presented in the HSV (hue, saturation, value) color space coordinates as a function of eccentricity and stimulus luminance. We demonstrated that our easy-to-conduct method provided a convenient means to investigate color appearance in the peripheral vision and to assess inter-individual differences.
Collapse
Affiliation(s)
- Galina Rozhkova
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia.
| | - Alexander Belokopytov
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| | - Maria Gracheva
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| | - Egor Ershov
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| | - Petr Nikolaev
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| |
Collapse
|
231
|
Fong KNK, Ge X, Ting KH, Wei M, Cheung H. The Effects of Light Therapy on Sleep, Agitation and Depression in People With Dementia: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am J Alzheimers Dis Other Demen 2023; 38:15333175231160682. [PMID: 36924042 PMCID: PMC10578524 DOI: 10.1177/15333175231160682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
OBJECTIVE To evaluate the effects of light therapy on the alleviation of sleep disturbances, agitation and depression in people with dementia. METHODS A search was performed in PubMed, Medline, SCOPUS, Web of Science, EMBASE, CINAHL, Cochrane Library, for studies published between 2000 and 2021. RESULTS A total of 4315 articles were screened. Sixteen articles were eligible for this review and 11 randomized controlled studies were included in the meta-analysis. Light therapy had a significant effect on reducing the number of awakenings in sleep (n = 4; 95% CI = -.56, -.05; I2 = 0%; SMD = -.31) but was not significant in reducing the wake after sleep onset (n = 3; 95% CI = -.14, .59; I2 = 0%; SMD = .23), agitation (n = 4; 95% CI = -1.02, .45; I2 = 87%; SMD = -.28) and depression (n = 6; 95% CI = -.80, .40, I2 = 85%; SMD = -.20). CONCLUSION Light therapy appeared to be more effective in terms of alleviating sleep disturbances, rather than reducing agitation and depression, but its long-term effects remain unclear.
Collapse
Affiliation(s)
- Kenneth NK Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Xiangyang Ge
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - KH Ting
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Minchen Wei
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Hilda Cheung
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| |
Collapse
|
232
|
Morioka E, Miyamoto T, Tamogami S, Koketsu T, Kim J, Yoshikawa T, Mochizuki T, Ikeda M. Action potential firing rhythms in the suprachiasmatic nucleus of the diurnal grass rat, Arvicanthis niloticus. Neurosci Lett 2023; 792:136954. [PMID: 36347340 DOI: 10.1016/j.neulet.2022.136954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
In mammals, daily physiological activities are regulated by a central circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Recently, an increasing number of studies have used diurnal grass rats to analyze neuronal mechanisms regulating diurnal behavior. However, spontaneous action potential firing rhythms in SCN neurons have not been demonstrated clearly in diurnal grass rats. Therefore, the present study examined extracellular single-unit recordings from SCN neurons in acute hypothalamic slices of Arvicanthis niloticus (Nile grass rats). The results of this study found that circadian firing rhythms with the highest frequency occurred at dusk (6.4 Hz at zeitgeber time (ZT)10-12), while the secondary peak occurred at dawn (5.6 Hz at ZT0-2), and the lowest frequency took place in the middle of the night (3.6 Hz at ZT14-16). Locomotor activity recordings from a separate group of animals demonstrated that the Nile grass rats of the laboratory colony used in this study displayed diurnal behaviors that coincided with large crepuscular peaks under 12:12 h light-dark cycles and bimodal rhythms under constant dim red light. Thus, a positive correlation between SCN firing frequencies and locomotor activity levels was observed in the Nile grass rats. Previously, behavioral coupling of action potential firings in SCN neurons has been suggested by in vivo recordings while the present study demonstrates that the sustenance of bimodal firing rhythms in grass rat SCN neurons can last at least one day in vitro.
Collapse
Affiliation(s)
- Eri Morioka
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Tsubasa Miyamoto
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Sakura Tamogami
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Takahiro Koketsu
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Juhyon Kim
- Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Tomoko Yoshikawa
- Organization for International Education and Exchange, University of Toyama, Toyama 930-8555, Japan.
| | - Takatoshi Mochizuki
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.
| | - Masayuki Ikeda
- Graduate School of Innovative Life Science, University of Toyama, Gofuku, Toyama 930-8555, Japan; Organization for International Education and Exchange, University of Toyama, Toyama 930-8555, Japan.
| |
Collapse
|
233
|
Flood MD, Veloz HLB, Hattar S, Carvalho-de-Souza JL. Robust visual cortex evoked potentials (VEP) in Gnat1 and Gnat2 knockout mice. Front Cell Neurosci 2022; 16:1090037. [PMID: 36605613 PMCID: PMC9807669 DOI: 10.3389/fncel.2022.1090037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin, imparting to themselves the ability to respond to light in the absence of input from rod or cone photoreceptors. Since their discovery ipRGCs have been found to play a significant role in non-image-forming aspects of vision, including circadian photoentrainment, neuroendocrine regulation, and pupillary control. In the past decade it has become increasingly clear that some ipRGCs also contribute directly to pattern-forming vision, the ability to discriminate shapes and objects. However, the degree to which melanopsin-mediated phototransduction, versus that of rods and cones, contributes to this function is still largely unknown. Earlier attempts to quantify this contribution have relied on genetic knockout models that target key phototransductive proteins in rod and cone photoreceptors, ideally to isolate melanopsin-mediated responses. In this study we used the Gnat1-/-; Gnat2cpfl3/cpfl3 mouse model, which have global knockouts for the rod and cone α-transducin proteins. These genetic modifications completely abolish rod and cone photoresponses under light-adapted conditions, locking these cells into a "dark" state. We recorded visually evoked potentials in these animals and found that they still showed robust light responses, albeit with reduced light sensitivity, with similar magnitudes to control mice. These responses had characteristics that were in line with a melanopsin-mediated signal, including delayed kinetics and increased saturability. Additionally, we recorded electroretinograms in a sub-sample of these mice and were unable to find any characteristic waveform related the activation of photoreceptors or second-order retinal neurons, suggesting ipRGCs as the origin of light responses. Our results show a profound ability for melanopsin phototransduction to directly contribute to the primary pattern-forming visual pathway.
Collapse
Affiliation(s)
- Michael D. Flood
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Hannah L. B. Veloz
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, MD, United States
| | - Joao L. Carvalho-de-Souza
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ, United States,Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ, United States,Department of Ophthalmology and Vision Science, College of Medicine, The University of Arizona, Tucson, AZ, United States,BIO5 Institute, The University of Arizona, Tucson, AZ, United States,*Correspondence: Joao L. Carvalho-de-Souza,
| |
Collapse
|
234
|
Optimizing Light Flash Sequence Duration to Shift Human Circadian Phase. BIOLOGY 2022; 11:biology11121807. [PMID: 36552316 PMCID: PMC9775356 DOI: 10.3390/biology11121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Unlike light input for forming images, non-image-forming retinal pathways are optimized to convey information about the total light environment, integrating this information over time and space. In a variety of species, discontinuous light sequences (flashes) can be effective stimuli, notably impacting circadian entrainment. In this study, we examined the extent to which this temporal integration can occur. A group of healthy, young (n = 20) individuals took part in a series of 16-day protocols in which we examined the impact of different lengths of light flash sequences on circadian timing. We find a significant phase change of -0.70 h in response to flashes that did not differ by duration; a 15-min sequence could engender as much change in circadian timing as 3.5-h sequences. Acute suppression of melatonin was also observed during short (15-min) exposures, but not in exposures over one hour in length. Our data are consistent with the theory that responses to light flashes are mediated by the extrinsic, rod/cone pathway, and saturate the response of this pathway within 15 min. Further excitation leads to no greater change in circadian timing and an inability to acutely suppress melatonin, indicating that this pathway may be in a refractory state following this brief light stimulation.
Collapse
|
235
|
Tang YL, Liu AL, Lv SS, Zhou ZR, Cao H, Weng SJ, Zhang YQ. Green light analgesia in mice is mediated by visual activation of enkephalinergic neurons in the ventrolateral geniculate nucleus. Sci Transl Med 2022; 14:eabq6474. [PMID: 36475906 DOI: 10.1126/scitranslmed.abq6474] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Green light exposure has been shown to reduce pain in animal models. Here, we report a vision-associated enkephalinergic neural circuit responsible for green light-mediated analgesia. Full-field green light exposure at an intensity of 10 lux produced analgesic effects in healthy mice and in a model of arthrosis. Ablation of cone photoreceptors completely inhibited the analgesic effect, whereas rod ablation only partially reduced pain relief. The analgesic effect was not modulated by the ablation of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are atypical photoreceptors that control various nonvisual effects of light. Inhibition of the retino-ventrolateral geniculate nucleus (vLGN) pathway completely abolished the analgesic effects. Activation of this pathway reduced nociceptive behavioral responses; such activation was blocked by the inhibition of proenkephalin (Penk)-positive neurons in the vLGN (vLGNPenk). Moreover, green light analgesia was prevented by knockdown of Penk in the vLGN or by ablation of vLGNPenk neurons. In addition, activation of the projections from vLGNPenk neurons to the dorsal raphe nucleus (DRN) was sufficient to suppress nociceptive behaviors, whereas its inhibition abolished the green light analgesia. Our findings indicate that cone-dominated retinal inputs mediated green light analgesia through the vLGNPenk-DRN pathway and suggest that this signaling pathway could be exploited for reducing pain.
Collapse
Affiliation(s)
- Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ai-Lin Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Su-Su Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zi-Rui Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
236
|
Nakaya M, Wakamatsu M, Motegi H, Tanaka A, Sutherland K, Ishikawa M, Ozaki M, Shirato H, Hamada K, Hamada T. A real-time measurement system for gene expression rhythms from deep tissues of freely moving mice under light-dark conditions. Biochem Biophys Rep 2022; 32:101344. [PMID: 36160030 PMCID: PMC9489493 DOI: 10.1016/j.bbrep.2022.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/24/2022] Open
|
237
|
Boertien TM, Van Someren EJW, Coumou AD, van den Broek AK, Klunder JH, Wong WY, van der Hoeven AE, Drent ML, Romijn JA, Fliers E, Bisschop PH. Compression of the optic chiasm is associated with reduced photoentrainment of the central biological clock. Eur J Endocrinol 2022; 187:809-821. [PMID: 36201161 DOI: 10.1530/eje-22-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Pituitary tumours that compress the optic chiasm are associated with long-term alterations in sleep-wake rhythm. This may result from damage to intrinsically photosensitive retinal ganglion cells (ipRGCs) projecting from the retina to the hypothalamic suprachiasmatic nucleus via the optic chiasm to ensure photoentrainment (i.e. synchronisation to the 24-h solar cycle through light). To test this hypothesis, we compared the post-illumination pupil response (PIPR), a direct indicator of ipRGC function, between hypopituitarism patients with and without a history of optic chiasm compression. DESIGN Observational study, comparing two predefined groups. METHODS We studied 49 patients with adequately substituted hypopituitarism: 25 patients with previous optic chiasm compression causing visual disturbances (CC+ group) and 24 patients without (CC- group). The PIPR was assessed by chromatic pupillometry and expressed as the relative change between baseline and post-blue-light stimulus pupil diameter. Objective and subjective sleep parameters were obtained using polysomnography, actigraphy, and questionnaires. RESULTS Post-blue-light stimulus pupillary constriction was less sustained in CC+ patients compared with CC- patients, resulting in a significantly smaller extended PIPR (mean difference: 8.1%, 95% CI: 2.2-13.9%, P = 0.008, Cohen's d = 0.78). Sleep-wake timing was consistently later in CC+ patients, without differences in sleep duration, efficiency, or other rest-activity rhythm features. Subjective sleep did not differ between groups. CONCLUSION Previous optic chiasm compression due to a pituitary tumour in patients with hypopituitarism is associated with an attenuated PIPR and delayed sleep timing. Together, these data suggest that ipRGC function and consequently photoentrainment of the central biological clock is impaired in patients with a history of optic chiasm compression.
Collapse
Affiliation(s)
- Tessel M Boertien
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
| | - Eus J W Van Someren
- Netherlands Institute for Neuroscience (NIN), Sleep and Cognition, Amsterdam, The Netherlands
- Amsterdam UMC location VU University, Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress & Sleep, Amsterdam, The Netherlands
- VU University, Centre for Neurogenomics and Cognitive Research, Integrative Neurophysiology, Amsterdam, The Netherlands
| | - Adriaan D Coumou
- Amsterdam UMC location University of Amsterdam, Ophthalmology, Amsterdam, The Netherlands
| | - Annemieke K van den Broek
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Jet H Klunder
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Wing-Yi Wong
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Adrienne E van der Hoeven
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Madeleine L Drent
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
- Amsterdam UMC location VU University, Internal Medicine, Section of Endocrinology, Amsterdam, The Netherlands
| | - Johannes A Romijn
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Amsterdam, The Netherlands
| | - Eric Fliers
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
| | - Peter H Bisschop
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
| |
Collapse
|
238
|
Reitz CJ, Rasouli M, Alibhai FJ, Khatua TN, Pyle WG, Martino TA. A brief morning rest period benefits cardiac repair in pressure overload hypertrophy and postmyocardial infarction. JCI Insight 2022; 7:164700. [PMID: 36256456 DOI: 10.1172/jci.insight.164700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
Rest has long been considered beneficial to patient healing; however, remarkably, there are no evidence-based experimental models determining how it benefits disease outcomes. Here, we created an experimental rest model in mice that briefly extends the morning rest period. We found in 2 major cardiovascular disease conditions (cardiac hypertrophy, myocardial infarction) that imposing a short, extended period of morning rest each day limited cardiac remodeling compared with controls. Mechanistically, rest mitigates autonomic-mediated hemodynamic stress on the cardiovascular system, relaxes myofilament contractility, and attenuates cardiac remodeling genes, consistent with the benefits on cardiac structure and function. These same rest-responsive gene pathways underlie the pathophysiology of many major human cardiovascular conditions, as demonstrated by interrogating open-source transcriptomic data; thus, patients with other conditions may also benefit from a morning rest period in a similar manner. Our findings implicate rest as a key driver of physiology, creating a potentially new field - as broad and important as diet, sleep, or exercise - and provide a strong rationale for investigation of rest-based therapy for major clinical diseases.
Collapse
|
239
|
Guo X, Wang H, Xu J, Hua H. Impacts of vitamin A deficiency on biological rhythms: Insights from the literature. Front Nutr 2022; 9:886244. [PMID: 36466383 PMCID: PMC9718491 DOI: 10.3389/fnut.2022.886244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/02/2022] [Indexed: 03/21/2024] Open
Abstract
Vitamin A is essential for brain function, in addition to its important roles in vision, immunity, and reproduction. Previous studies have shown that retinoic acid (RA), the bioactive form of vitamin A, is involved in the regulation of various intracellular responses related to biological rhythms. RA is reported to affect the circadian rhythm by binding to RA receptors, such as receptors in the circadian feedback loops in the mammalian suprachiasmatic nucleus. However, evidence of the impacts of vitamin A deficiency (VAD) on biological rhythms is limited, and most of the related studies were conducted on animals. In this review, we described the physiological functions of biological rhythms and physiological pathways/molecular mechanisms regulating the biological rhythms. We then discussed the current understanding of the associations of VAD with biological rhythm disorders/diseases (sleep disorders, impairments in learning/memory, emotional disorders, and other immune or metabolism diseases) and summarized the currently proposed mechanisms (mainly by retinoid nuclear receptors and related proteins) for the associations. This review may help recognize the role of VAD in biological rhythm disorders and stimulate clinical or epidemiological studies to confirm the findings of related animal studies.
Collapse
Affiliation(s)
- Xiangrong Guo
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Xu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Hua
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
240
|
Blume C, Niedernhuber M, Spitschan M, Slawik HC, Meyer MP, Bekinschtein TA, Cajochen C. Melatonin suppression does not automatically alter sleepiness, vigilance, sensory processing, or sleep. Sleep 2022; 45:zsac199. [PMID: 35998110 PMCID: PMC9644120 DOI: 10.1093/sleep/zsac199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Indexed: 09/19/2023] Open
Abstract
Presleep exposure to short-wavelength light suppresses melatonin and decreases sleepiness with activating effects extending to sleep. This has mainly been attributed to melanopic effects, but mechanistic insights are missing. Thus, we investigated whether two light conditions only differing in the melanopic effects (123 vs. 59 lx melanopic EDI) differentially affect sleep besides melatonin. Additionally, we studied whether the light differentially modulates sensory processing during wakefulness and sleep. Twenty-nine healthy volunteers (18-30 years, 15 women) were exposed to two metameric light conditions (high- vs. low-melanopic, ≈60 photopic lx) for 1 h ending 50 min prior to habitual bed time. This was followed by an 8-h sleep opportunity with polysomnography. Objective sleep measurements were complemented by self-report. Salivary melatonin, subjective sleepiness, and behavioral vigilance were sampled at regular intervals. Sensory processing was evaluated during light exposure and sleep on the basis of neural responses related to violations of expectations in an oddball paradigm. We observed suppression of melatonin by ≈14% in the high- compared to the low-melanopic condition. However, conditions did not differentially affect sleep, sleep quality, sleepiness, or vigilance. A neural mismatch response was evident during all sleep stages, but not differentially modulated by light. Suppression of melatonin by light targeting the melanopic system does not automatically translate to acutely altered levels of vigilance or sleepiness or to changes in sleep, sleep quality, or basic sensory processing. Given contradicting earlier findings and the retinal anatomy, this may suggest that an interaction between melanopsin and cone-rod signals needs to be considered. Clinical Trial Registry: German Clinical Trials Register, DRKS00023602, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00023602.
Collapse
Affiliation(s)
- Christine Blume
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland (institution, where the work was performed)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Maria Niedernhuber
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Manuel Spitschan
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland (institution, where the work was performed)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Translational Sensory and Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
| | - Helen C Slawik
- Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Martin P Meyer
- Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Tristan A Bekinschtein
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland (institution, where the work was performed)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
241
|
Birch JN, Vanderheyden WM. The Molecular Relationship between Stress and Insomnia. Adv Biol (Weinh) 2022; 6:e2101203. [PMID: 35822937 DOI: 10.1002/adbi.202101203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/15/2022] [Indexed: 01/28/2023]
Abstract
The bi-directional relationship between sleep and stress has been actively researched as sleep disturbances and stress have become increasingly common in society. Interestingly, the brain and underlying neural circuits important for sleep regulation may respond uniquely to stress that leads to post-traumatic stress disorder (PTSD) and stress that does not. In stress that does not lead to PTSD, the hypothalamic-pituitary-adrenal axis (HPA) pathway is activated normally that results in sympathetic nervous system activation that allows the brain and body to return to baseline functioning. However, exposure to stress that leads to PTSD, causes enhanced negative feedback of this same pathway and results in long-term physiological and psychological changes. In this review, how stress regulates glucocorticoid signaling pathways in brain glial cells called astrocytes, and then mediates stress-induced insomnia are examined. Astrocytes are critical sleep regulatory cells and their connections to sleep and stress due to disturbed glucocorticoid signaling provide a novel mechanism to explain how stress leads to insomnia. This review will examine the interactions of stress neurobiology, astrocytes, sleep, and glucocorticoid signaling pathways and will examine the how stress that leads to PTSD and stress that does not impacts sleep-regulatory processes.
Collapse
Affiliation(s)
- Jasmine N Birch
- WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, 412 E. Spokane Falls Blvd, Spokane, WA, 99 202, USA
| | - William M Vanderheyden
- WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, Pharmaceutical and Biomedical Sciences Building, Room 213/Lab 230, 412 E. Spokane Falls Blvd, (Lab) 509-368-6809, Spokane, WA, 99 202, USA
| |
Collapse
|
242
|
Mood phenotypes in rodent models with circadian disturbances. Neurobiol Sleep Circadian Rhythms 2022; 13:100083. [PMID: 36345502 PMCID: PMC9636574 DOI: 10.1016/j.nbscr.2022.100083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Many physiological functions with approximately 24-h rhythmicity (circadian rhythms) are generated by an internal time-measuring system of the circadian clock. While sleep/wake cycles, feeding patterns, and body temperature are the most widely known physiological functions under the regulation of the circadian clock, physiological regulation by the circadian clock extends to higher brain functions. Accumulating evidence suggests strong associations between the circadian clock and mood disorders such as depression, but the underlying mechanisms of the functional relationship between them are obscure. This review overviews rodent models with disrupted circadian rhythms on depression-related responses. The animal models with circadian disturbances (by clock gene mutations and artifactual interventions) will help understand the causal link between the circadian clock and depression. The molecular mechanisms of the mammalian circadian rhythm are systematically overviewed. We overview how genetic and pharmacological manipulations of clock (related) genes are linked to mood phenotypes. We overview how artificial perturbations, such as SCN lesions and aberrant light, affect circadian rhythm and mood.
Collapse
|
243
|
Petrowski K, Schmalbach B, Linhardt M, Mekschrat L, Rohleder N. The inflammatory immune system after wake up in healthy male individuals: A highly standardized and controlled study. Brain Behav Immun Health 2022; 25:100504. [PMID: 36093437 PMCID: PMC9450065 DOI: 10.1016/j.bbih.2022.100504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
This study investigates the effects of two light conditions on innate proinflammatory IL-6 cytokines and the cortisol awakening response. The between-subject experiment was conducted with 55 healthy adult-males (aged M bright = 24.40, SD = 4.58; M dim = 25.47, SD = 4.96) in a standardized sleep laboratory setting with 60-min light exposure post-awakening. Cortisol significantly increased with bright light exposure as compared to dim light (significant interaction effect). As for IL-6, the main effects of time and light condition were significant, however, the interaction effect between light and time was insignificant. Results replicate stimulatory effects of bright light on cortisol. In general, IL-6 concentrations decreased in both light conditions; however, bright light graphically showed higher concentrations 45-90 min after exposure in comparison to dim light, thus bright light has a potential stimulatory effect on IL-6 production.
Collapse
Affiliation(s)
- Katja Petrowski
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Internal Medicine III, Dresden University of Technology, Dresden, Germany
| | - Bjarne Schmalbach
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Psychology, University of Muenster, Germany
| | - Mona Linhardt
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Liza Mekschrat
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nicolas Rohleder
- Chair of Health Psychology, Department of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
244
|
Procyk CA, Rodgers J, Zindy E, Lucas RJ, Milosavljevic N. Quantitative characterisation of ipRGCs in retinal degeneration using a computation platform for extracting and reconstructing single neurons in 3D from a multi-colour labeled population. Front Cell Neurosci 2022; 16:1009321. [PMID: 36385954 PMCID: PMC9664085 DOI: 10.3389/fncel.2022.1009321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Light has a profound impact on mammalian physiology and behavior. Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin, rendering them sensitive to light, and are involved in both image-forming vision and non-image forming responses to light such as circadian photo-entrainment and the pupillary light reflex. Following outer photoreceptor degeneration, the death of rod and cone photoreceptors results in global re-modeling of the remnant neural retina. Although ipRGCs can continue signaling light information to the brain even in advanced stages of degeneration, it is unknown if all six morphologically distinct subtypes survive, or how their dendritic architecture may be affected. To answer these questions, we generated a computational platform-BRIAN (Brainbow Analysis of individual Neurons) to analyze Brainbow labeled tissues by allowing objective identification of voxels clusters in Principal Component Space, and their subsequent extraction to produce 3D images of single neurons suitable for analysis with existing tracing technology. We show that BRIAN can efficiently recreate single neurons or individual axonal projections from densely labeled tissue with sufficient anatomical resolution for subtype quantitative classification. We apply this tool to generate quantitative morphological information about ipRGCs in the degenerate retina including soma size, dendritic field size, dendritic complexity, and stratification. Using this information, we were able to identify cells whose characteristics match those reported for all six defined subtypes of ipRGC in the wildtype mouse retina (M1-M6), including the rare and complex M3 and M6 subtypes. This indicates that ipRGCs survive outer retinal degeneration with broadly normal morphology. We additionally describe one cell in the degenerate retina which matches the description of the Gigantic M1 cell in Humans which has not been previously identified in rodent.
Collapse
Affiliation(s)
- Christopher A. Procyk
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Jessica Rodgers
- Faculty of Biology Medicine and Health, Centre for Biological Timing and Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| | - Egor Zindy
- Centre for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert J. Lucas
- Faculty of Biology Medicine and Health, Centre for Biological Timing and Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| | - Nina Milosavljevic
- Faculty of Biology Medicine and Health, Centre for Biological Timing and Division of Neuroscience, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
245
|
Tegegne YB, Hussen MS, Ayele FA, Mersha GA. Association of Glaucoma with Poor Quality of Sleep in an Ethiopian Glaucoma Population – A Comparative Cross-Sectional Study. Clin Ophthalmol 2022; 16:3701-3710. [PMID: 36389639 PMCID: PMC9661991 DOI: 10.2147/opth.s387623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Background Glaucoma is a group of ocular disorders characterized by progressive optic nerve damage resulting in irreversible visual field defects. Poor quality of sleep in glaucoma patients could be explained by the reduction of the light input to the circadian system as a result of damage to photosensitive retinal ganglion cells in the retina. Information is limited on the association of poor quality of sleep with glaucoma in general and the Ethiopian glaucoma population in particular. Objective The study aimed to explore the association between poor quality of sleep and glaucoma at a Tertiary Eye Care Center in Ethiopia. Methods An institutional-based comparative cross-sectional study was conducted among 200 glaucoma and 201 non-glaucoma participants recruited by systematic random sampling. Each group was administered with a Pittsburgh Sleep Quality Index (PSQI) questionnaire. Stata-14 was employed for data analysis; an independent t-test was used to show the statistical difference in the global mean PSQI score for the two groups. A binary logistic regression model was applied to identify factors associated with poor quality of sleep. Statistical significance was declared at a 95% confidence interval and a p-value of <0.05. Results The prevalence of poor quality of sleep was 82.5% among the glaucoma population, which statistically differed (p<0.001) from the non-glaucomatous population (55.7%). Poor quality of sleep in glaucoma was associated with older age (adjusted odds ratio (AOR)=4.4, 95% confidence interval (CI): 1.5–5.4), depression (AOR=2.9, 95% CI: 1.1–7.3), visual impairment (AOR=3.9, 95% CI: 1.3–12.3) and severe glaucoma (AOR=2.5, 95% CI: 1.1–5.9). Conclusion and Recommendation Poor quality of sleep was significantly higher in the glaucoma population compared to their non-glaucoma control. It was associated with older age, depression, visual impairment and advanced glaucoma. Incorporating psychiatric counseling into the existing glaucoma follow-up was recommended.
Collapse
Affiliation(s)
- Yohannes Bizualem Tegegne
- Department of Optometry, School of Medicine, University of Gondar, Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Mohammed Seid Hussen
- Department of Optometry, School of Medicine, University of Gondar, Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Fisseha Admassu Ayele
- Department of Ophthalmology, School of Medicine, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Getasew Alemu Mersha
- Department of Optometry, School of Medicine, University of Gondar, Comprehensive Specialized Hospital, Gondar, Ethiopia
- Correspondence: Getasew Alemu Mersha, POB: 196, Tel +251932823935, Fax +251-058-114 1240, Email ;
| |
Collapse
|
246
|
Sun C, Yang H, Hu Y, Qu Y, Hu Y, Sun Y, Ying Z, Song H. Association of sleep behaviour and pattern with the risk of glaucoma: a prospective cohort study in the UK Biobank. BMJ Open 2022; 12:e063676. [PMID: 36319053 PMCID: PMC9644340 DOI: 10.1136/bmjopen-2022-063676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Given the role of intraocular pressure in glaucoma, the patient's sleeping pattern might contribute to the development and progression of glaucoma. We performed a study to understand the association between sleep behaviours and glaucoma. DESIGN Our study was a prospective cohort study. SETTING This was a prospective cohort study in the UK Biobank. Self-reported data on five sleep behaviours were collected using a questionnaire at baseline. We identified four sleep patterns based on a cluster analysis of the sleep behaviours. PARTICIPANTS In the UK Biobank, 409 053 participants were recruited between 2006 and 2010 and followed for a diagnosis of glaucoma. We identified glaucoma as any hospital admission with a diagnosis of glaucoma, based on UK Biobank inpatient hospital data. Individuals who withdrew from the UK Biobank, or were diagnosed with glaucoma before recruitment, or had self-reported surgery or laser treatment for glaucoma, or had no information on sleep behaviors were excluded. PRIMARY AND SECONDARY OUTCOME MEASURES We estimated hazard ratios (HRs) with 95% confidence intervals (CI) using Cox proportional hazards models to estimate the associations of different sleep behaviors, as well as identified sleep patterns, with the risk of glaucoma, adjusting for multiple confounders. RESULTS Compared with individuals who had a healthy sleep pattern, an excess risk of any glaucoma was observed among individuals with snoring and daytime sleepiness (HR 1.11, 95% CI 1.03 to 1.19) or insomnia and short/long sleep duration (HR 1.13, 95% CI 1.06 to 1.20), but not late chronotype sleep pattern (HR 0.98, 95% CI 0.93 to 1.03). CONCLUSION Snoring, daytime sleepiness, insomnia, and short/long duration, individually or jointly, were all associated with the risk of glaucoma. These findings underscore the need for sleep intervention for individuals at high risk of glaucoma as well as potential ophthalmologic screening among individuals with chronic sleep problems for glaucoma prevention.
Collapse
Affiliation(s)
- Cun Sun
- Beijing Huimin Hospital, Beijing, China
| | - Huazhen Yang
- West China Biomedical Big Data Center, West China Hospital,Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yihan Hu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuanyuan Qu
- West China Biomedical Big Data Center, West China Hospital,Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yao Hu
- West China Biomedical Big Data Center, West China Hospital,Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yajing Sun
- West China Biomedical Big Data Center, West China Hospital,Sichuan University, Chengdu, Sichuan, China
| | - Zhiye Ying
- West China Biomedical Big Data Center, West China Hospital,Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital,Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
247
|
Butler M, D'Angelo S, Lewis C, Miller D, Perrin A, Suls J, Chandereng T, Cheung YK, Davidson KW. Series of virtual light therapy interventions for fatigue: a feasibility pilot study protocol for a series of personalised (N-of-1) trials. BMJ Open 2022; 12:e055518. [PMID: 36283748 PMCID: PMC9608534 DOI: 10.1136/bmjopen-2021-055518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Fatigue is one of the most commonly recorded patient symptoms that can result in deficits in aspects of psychomotor functioning, cognition, work performance and mood. Research shows that bright light and dim light therapy may be an efficacious way to reduce symptoms of fatigue. Still, the feasibility, scalability, individual treatment effects and adverse event heterogeneity of these treatments are unknown. METHODS AND ANALYSIS The current study evaluates the feasibility, acceptability and effectiveness of a series of personalised (N-of-1) interventions for virtual delivery of bright light therapy and dim light therapy versus usual care treatment for fatigue in 60 participants. We hypothesise that this study will provide valuable information about implementing virtual, N-of-1 randomised controlled trials (RCTs) for fatigue. It will also offer results about determining participants' ratings of usability and satisfaction with the virtual, personalised intervention delivery system; evaluating participants' improvement of fatigue symptoms; and, in the long term, identify ways to integrate N-of-1 light therapy trials into patient care. ETHICS AND DISSEMINATION This trial was approved by the Northwell Health Institutional Review Board. The trial results will be published in a peer-reviewed journal. All publications resulting from this series of personalised trials will follow the Consolidated Standards of Reporting Trials extension for N-of-1 trials CENT 2015 reporting guidelines. REGISTRATION DETAILS This trial is registered in www. CLINICALTRIALS gov (number NCT04707846). TRIAL REGISTRATION NUMBER NCT04707846.
Collapse
Affiliation(s)
- Mark Butler
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Stefani D'Angelo
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Courtney Lewis
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Danielle Miller
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Alexandra Perrin
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Jerry Suls
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Thevaa Chandereng
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Ying Kuen Cheung
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Karina W Davidson
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
| |
Collapse
|
248
|
Analyses of circRNA Expression throughout the Light-Dark Cycle Reveal a Strong Regulation of Cdr1as, Associated with Light Entrainment in the SCN. Int J Mol Sci 2022; 23:ijms232012347. [PMID: 36293208 PMCID: PMC9604060 DOI: 10.3390/ijms232012347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Circular RNAs (circRNAs) are a large class of relatively stable RNA molecules that are highly expressed in animal brains. Many circRNAs have been associated with CNS disorders accompanied by an aberrant wake-sleep cycle. However, the regulation of circRNAs in brain homeostasis over daily light-dark (LD) cycles has not been characterized. Here, we aim to quantify the daily expression changes of circRNAs in physiological conditions in healthy adult animals. Using newly generated and public RNA-Seq data, we monitored circRNA expression throughout the 12:12 h LD cycle in various mouse brain regions. We identified that Cdr1as, a conserved circRNA that regulates synaptic transmission, is highly expressed in the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Despite its high stability, Cdr1as has a very dynamic expression in the SCN throughout the LD cycle, as well as a significant regulation in the hippocampus following the entry into the dark phase. Computational integration of different public datasets predicted that Cdr1as is important for regulating light entrainment in the SCN. We hypothesize that the expression changes of Cdr1as in the SCN, particularly during the dark phase, are associated with light-induced phase shifts. Importantly, our work revises the current beliefs about natural circRNA stability and suggests that the time component must be considered when studying circRNA regulation.
Collapse
|
249
|
Akansha EO, Bui BV, Ganeshrao SB, Bakthavatchalam P, Gopalakrishnan S, Mattam S, Poojary RR, Jathanna JS, Jose J, Theruveethi NN. Blue-Light-Blocking Lenses Ameliorate Structural Alterations in the Rodent Hippocampus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12922. [PMID: 36232222 PMCID: PMC9564388 DOI: 10.3390/ijerph191912922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Evidence suggests that prolonged blue-light exposure can impact vision; however, less is known about its impact on non-visual higher-order functions in the brain, such as learning and memory. Blue-light-blocking lenses (BBLs) claim to reduce these potential impacts. Hence, we assessed structural and functional hippocampal alterations following blue-light exposure and the protective efficacy of BBLs. Male Wistar rats were divided into (n = 6 in each group) normal control (NC), blue-light exposure (LE), and blue-light with BBLs (Crizal Prevencia, CP and DuraVision Blue, DB) groups. After 28 days of light exposure (12:12 light: dark cycle), rats were trained for the Morris water maze memory retention test, and brain tissues were sectioned for hippocampal neuronal analysis using Golgi and Cresyl violet stains. The memory retention test was significantly delayed (p < 0.05) in LE compared with DB groups on day 1 of training. Comparison of Golgi-stained neurons showed significant structural alterations, particularly in the basal dendrites of hippocampal neurons in the LE group, with BBLs significantly mitigating these structural changes (p < 0.05). Comparison of Cresyl-violet-stained neurons revealed significantly (p < 0.001) increased degenerated hippocampal neurons in LE rats, with fewer degenerated neurons in the CP lens group for CA1 neurons (p < 0.05), and for both CP and DB groups (p < 0.05) for CA3 neurons. Thus, in addition to documented effects on visual centers, high-level blue-light exposure also results in degeneration in hippocampal neurons with associated behavioral deficits. These changes can be partially ameliorated with blue-light-blocking lenses.
Collapse
Affiliation(s)
- Elizebeth O. Akansha
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Bang V. Bui
- Department of Optometry & Vision Sciences, School of Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shonraj B. Ganeshrao
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
- INSOFE Education, upGrad-INSOFE, Hyderabad 500034, India
| | - Pugazhandhi Bakthavatchalam
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal 576104, India
| | - Sivakumar Gopalakrishnan
- Department of Physiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Susmitha Mattam
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Radhika R. Poojary
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Judith S. Jathanna
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Judy Jose
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| | - Nagarajan N. Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
250
|
Otasowie CO, Tanner R, Ray DW, Austyn JM, Coventry BJ. Chronovaccination: Harnessing circadian rhythms to optimize immunisation strategies. Front Immunol 2022; 13:977525. [PMID: 36275731 PMCID: PMC9585312 DOI: 10.3389/fimmu.2022.977525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination, as a public health measure, offers effective protection of populations against infectious diseases. Optimising vaccination efficacy, particularly for higher-risk individuals, like the elderly whose immunocompromised state can prevent the development of robust vaccine responses, is vital. It is now clear that 24-hour circadian rhythms, which govern virtually all aspects of physiology, can generate oscillations in immunological responses. Consequently, vaccine efficacy may depend critically on the time of day of administration(s), including for Covid-19, current vaccines, and any future diseases or pandemics. Published clinical vaccine trials exploring diurnal immune variations suggest this approach could represent a powerful adjunct strategy for optimising immunisation, but important questions remain to be addressed. This review explores the latest insights into diurnal immune variation and the outcomes of circadian timing of vaccination or 'chronovaccination'.
Collapse
Affiliation(s)
| | - Rachel Tanner
- Wolfson College, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Human Sciences, University of Oxford, Oxford, United Kingdom
| | - David W. Ray
- Wolfson College, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Jonathan M. Austyn
- Wolfson College, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Brendon J. Coventry
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Surgery, University of Adelaide, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|