201
|
Dhawan AG. Memory Reactivation and Its Effect on Exercise Performance and Heart Rate. Front Sports Act Living 2020; 2:20. [PMID: 33345014 PMCID: PMC7739786 DOI: 10.3389/fspor.2020.00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/25/2020] [Indexed: 12/02/2022] Open
Abstract
Neuronal ensemble and brain plasticity both play an important role in memory consolidation and subsequently memory reactivation. To date, many studies have been designed to study the effect of exercise, heart-rate variability, and other factors on brain plasticity and memory. Here, we present a case study in which we have demonstrated the effect of neuronal ensemble and memory formed during High-intensity aerobic training (VO2 max) and Target Heart-Rate (THR) training and the effect of reactivation of same memory on THR and performance. Of note is the fact that the reactivation and recreation of memory stimulus learned and formed during High-intensity training, such as place, time, odor, and other conditions, can elevate the THR to the same previous peak zone even at low intensity. This demonstrates that reactivation of previously acquired memory or using the stimulation from the neuronal ensemble of consolidated memory during the specific event of training may exert similar physiological effects on exercise or the body to those that are learned during the memory acquisition phase. Hence, as exercise has an effect on memory, the memories may have an effect on exercise performances.
Collapse
|
202
|
Asfestani MA, Brechtmann V, Santiago J, Peter A, Born J, Feld GB. Consolidation of Reward Memory during Sleep Does Not Require Dopaminergic Activation. J Cogn Neurosci 2020; 32:1688-1703. [PMID: 32459129 DOI: 10.1162/jocn_a_01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Sleep enhances memories, especially if they are related to future rewards. Although dopamine has been shown to be a key determinant during reward learning, the role of dopaminergic neurotransmission for amplifying reward-related memories during sleep remains unclear. In this study, we scrutinize the idea that dopamine is needed for the preferential consolidation of rewarded information. We impaired dopaminergic neurotransmission, thereby aiming to wipe out preferential sleep-dependent consolidation of high- over low-rewarded memories during sleep. Following a double-blind, balanced, crossover design, 17 young healthy men received the dopamine d2-like receptor blocker sulpiride (800 mg) or placebo, after learning a motivated learning task. The task required participants to memorize 80 highly and 80 lowly rewarded pictures. Half of them were presented for a short (750 msec) and a long (1500 msec) duration, respectively, which permitted dissociation of the effects of reward on sleep-associated consolidation from those of mere encoding depth. Retrieval was tested after a retention interval of approximately 22 hr that included 8 hr of nocturnal sleep. As expected, at retrieval, highly rewarded memories were remembered better than lowly rewarded memories, under placebo. However, there was no evidence for an effect of reducing dopaminergic neurotransmission with sulpiride during sleep on this differential retention of rewarded information. This result indicates that dopaminergic activation likely is not required for the preferential consolidation of reward-associated memory. Rather, it appears that dopaminergic activation only tags such memories at encoding for intensified reprocessing during sleep.
Collapse
Affiliation(s)
| | | | - João Santiago
- University of Tübingen.,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Andreas Peter
- German Center for Diabetes Research (DZD), Tübingen, Germany.,University Hospital of Tübingen
| | - Jan Born
- University of Tübingen.,German Center for Diabetes Research (DZD), Tübingen, Germany
| | | |
Collapse
|
203
|
Peyrache A, Seibt J. A mechanism for learning with sleep spindles. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190230. [PMID: 32248788 PMCID: PMC7209910 DOI: 10.1098/rstb.2019.0230] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Spindles are ubiquitous oscillations during non-rapid eye movement (NREM) sleep. A growing body of evidence points to a possible link with learning and memory, and the underlying mechanisms are now starting to be unveiled. Specifically, spindles are associated with increased dendritic activity and high intracellular calcium levels, a situation favourable to plasticity, as well as with control of spiking output by feed-forward inhibition. During spindles, thalamocortical networks become unresponsive to inputs, thus potentially preventing interference between memory-related internal information processing and extrinsic signals. At the system level, spindles are co-modulated with other major NREM oscillations, including hippocampal sharp wave-ripples (SWRs) and neocortical slow waves, both previously shown to be associated with learning and memory. The sequential occurrence of reactivation at the time of SWRs followed by neuronal plasticity-promoting spindles is a possible mechanism to explain NREM sleep-dependent consolidation of memories. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Adrien Peyrache
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 1A1
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| |
Collapse
|
204
|
Eichenlaub JB, Biswal S, Peled N, Rivilis N, Golby AJ, Lee JW, Westover MB, Halgren E, Cash SS. Reactivation of Motor-Related Gamma Activity in Human NREM Sleep. Front Neurosci 2020; 14:449. [PMID: 32477056 PMCID: PMC7235414 DOI: 10.3389/fnins.2020.00449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Models of memory consolidation posit a central role for reactivation of brain activity patterns during sleep, especially in non-Rapid Eye Movement (NREM) sleep. While such "replay" of recent waking experiences has been well-demonstrated in rodents, electrophysiological evidence of reactivation in human sleep is still largely lacking. In this intracranial study in patients with epilepsy (N = 9) we explored the spontaneous electroencephalographic reactivation during sleep of spatial patterns of brain activity evoked by motor learning. We first extracted the gamma-band (60-140 Hz) patterns underlying finger movements during a tapping task and underlying no-movement during a short rest period just prior to the task, and trained a binary classifier to discriminate between motor movements vs. rest. We then used the trained model on NREM sleep data immediately after the task and on NREM sleep during a control sleep period preceding the task. Compared with the control sleep period, we found, at the subject level, an increase in the detection rate of motor-related patterns during sleep following the task, but without association with performance changes. These data provide electrophysiological support for the reoccurrence in NREM sleep of the neural activity related to previous waking experience, i.e. that a basic tenet of the reactivation theory does occur in human sleep.
Collapse
Affiliation(s)
- Jean-Baptiste Eichenlaub
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Siddharth Biswal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Noam Peled
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicole Rivilis
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexandra J. Golby
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - M. Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric Halgren
- Departments of Radiology and Neuroscience, Kavli Institute for Brain and Mind, University of California, San Diego, San Diego, CA, United States
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
205
|
Timing matters: The interplay of the retrieval frequency and temporal distance between retrieving a prior list and encoding a new list in vocabulary retention. LEARNING AND MOTIVATION 2020. [DOI: 10.1016/j.lmot.2020.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
206
|
Gudziol H, Quaas T, Guntinas-Lichius O, Lehnich H, Bitter T. Schwefelwasserstoffreize verkürzen im Schlaf- wie im Wachzustand die Ausatmung. Laryngorhinootologie 2020; 99:620-627. [DOI: 10.1055/a-1157-9314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Zusammenfassung
Hintergrund Im aufmerksamen Wachzustand verlängern angenehme Gerüche häufig die Einatmung, während unangenehme Gerüche häufig die Ausatmung verkürzen. Es soll überprüft werden, ob dieses induzierte Atemmuster auch im Schlaf erhalten bleibt.
Methodik 23 gesunde normosmische Erwachsene wurden für 1 Nacht polysomnografisch untersucht und dabei entweder mit H2S, Phenylethylalkohol (PEA) oder CO2 über ein Fluss-Olfaktometer randomisiert impulsartig gereizt. Anhand der standardmäßig erfassten Polysomnografie-Kurven erfolgte die Bestimmung der Schlafstadien (REM, NREM, pWach), der Dauer der Inspiration (DIN) und der Dauer der Exspiration (DEX). DIN und DEX wurden von 6 prästimulatorischen Atemzügen und vom Reizatemzug (RAZ) bestimmt. Daraus wurde der Reaktionsindex (RI) berechnet, der angibt, ob eine bedeutsame Änderung von DIN und/oder DEX vorliegt. Die verschiedenen RI wurden um die spontanen RI korrigiert und entsprechend der Reizart und den Schlafstadien analysiert.
Ergebnis Reaktionsindizes mit Verkürzungen von DEX waren bei einer H2S-Reizung größer als spontane RI und RI bei einer PEA-Reizung. Bei einer CO2-Reizung waren RI mit Verkürzungen von DIN und DEX größer als bei olfaktorischer Reizung. Alle RI waren in ihrer Ausprägung zwischen den Schlafstadien gleich. Im REM war der Unterschied der olfaktorischen RI mit verkürzten DEX zwischen einer H2S- und PEA-Reizung am größten.
Schlussfolgerung Bei Reizung mit einem unangenehmen Geruch im Schlaf bleibt das respiratorische Reaktionsmuster aus dem Wachzustand erhalten. RI mit verkürzten DEX können als unvollkommene Arousals angesehen werden.
Collapse
Affiliation(s)
- Hilmar Gudziol
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Jena University Hospital, Jena, Germany
| | - Tina Quaas
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Jena University Hospital, Jena, Germany
| | | | - Holger Lehnich
- Medizinische Fakultät ZMG, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Thomas Bitter
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Jena University Hospital, Jena, Germany
| |
Collapse
|
207
|
Rasch B. Sleep and Plasticity: Do We Consolidate Memories Separately in Each Hemisphere? Curr Biol 2020; 30:R349-R351. [PMID: 32315633 DOI: 10.1016/j.cub.2020.02.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
During sleep, our memories are spontaneously reactivated and consolidated. Now it seems that we can influence these reactivations in specific locations of our brain, for example, by sniffing memory-related odors with only one nostril.
Collapse
Affiliation(s)
- Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
208
|
Pöhlchen D, Pawlizki A, Gais S, Schönauer M. Evidence against a large effect of sleep in protecting verbal memories from interference. J Sleep Res 2020; 30:e13042. [PMID: 32311167 DOI: 10.1111/jsr.13042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/08/2020] [Accepted: 03/17/2020] [Indexed: 01/02/2023]
Abstract
The human brain has evolved to acquire novel information rapidly while serving the need to store long-term memories in a stable and lasting form. Presenting interfering information directly after learning can lead to forgetting of the original material. It has been suggested that sleep aids the stabilization of new memories and protects them from interference. Here, we aim to replicate in two separate experiments the claim that sleep protects memories from retroactive interference (Current Biology, 16, 2006 and 1290; PLoS ONE, 4, 2009 and e4117). We let participants study wordlists before letting them sleep for an afternoon nap or for a full night. In a control condition, subjects stayed awake for the same amount of time. After the consolidation interval, participants learnt an interfering wordlist and were tested on memory of the original wordlist. Sleep did not stabilize memory for the original wordlist in either study. We discuss our findings in the light of recent advances in computational neuroscience, and conclude that the stabilizing effect of sleep against interference has been overestimated.
Collapse
Affiliation(s)
- Dorothee Pöhlchen
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tubingen, Germany.,International Max Planck Research School - Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany
| | - Annedore Pawlizki
- Department of Psychology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Steffen Gais
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tubingen, Germany
| | - Monika Schönauer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tubingen, Germany.,Department of Psychology, Princeton University, Princeton, NJ, USA.,Institute of Neuropsychology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
209
|
Sensorimotor performance is improved by targeted memory reactivation during a daytime nap in healthy older adults. Neurosci Lett 2020; 731:134973. [PMID: 32305379 DOI: 10.1016/j.neulet.2020.134973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022]
Abstract
Sensorimotor consolidation occurs during sleep. However, the benefit of sleep-based consolidation decreases with age due to decreased sleep quality and quantity. This study aimed to enhance sensorimotor performance through repetitive delivery of task-based auditory cues during sleep, known as targeted memory reactivation (TMR). Healthy older adults performed a non-dominant arm throwing task before and after a 1 h nap. While napping, half of participants received TMR throughout the hour. Participants who received TMR during sleep demonstrated a greater overall change in throwing accuracy from the start of the first to the end of the second throwing task session. However, there was no generalization of throwing accuracy to variants of the task or to a novel dart throwing task. Findings support the use of TMR during sleep to enhance task-specific sensorimotor performance in healthy older adults despite age-related decreases in sleep quality and quantity. Future research is needed to evaluate the effects of TMR on rehabilitation protocols.
Collapse
|
210
|
EEG microstates are correlated with brain functional networks during slow-wave sleep. Neuroimage 2020; 215:116786. [PMID: 32276057 DOI: 10.1016/j.neuroimage.2020.116786] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022] Open
Abstract
Electroencephalography (EEG) microstates have been extensively studied in wakefulness and have been described as the "atoms of thought". Previous studies of EEG have found four microstates, i.e., microstates A, B, C and D, that are consistent among participants across the lifespan during the resting state. Studies using simultaneous EEG and functional magnetic resonance imaging (fMRI) have provided evidence for correlations between EEG microstates and fMRI networks during the resting state. Microstates have also been found during non-rapid eye movement (NREM) sleep. Slow-wave sleep (SWS) is considered the most restorative sleep stage and has been associated with the maintenance of sleep. However, the relationship between EEG microstates and brain functional networks during SWS has not yet been investigated. In this study, simultaneous EEG-fMRI data were collected during SWS to test the correspondence between EEG microstates and fMRI networks. EEG microstate-informed fMRI analysis revealed that three out of the four microstates showed significant correlations with fMRI data: 1) fMRI fluctuations in the insula and posterior temporal gyrus positively correlated with microstate B, 2) fMRI signals in the middle temporal gyrus and fusiform gyrus negatively correlated with microstate C, and 3) fMRI fluctuations in the occipital lobe negatively correlated with microstate D, while fMRI signals in the anterior cingulate and cingulate gyrus positively correlated with this microstate. Functional brain networks were then assessed using group independent component analysis based on the fMRI data. The group-level spatial correlation analysis showed that the fMRI auditory network overlapped the fMRI activation map of microstate B, the executive control network overlapped the fMRI deactivation of microstate C, and the visual and salience networks overlapped the fMRI deactivation and activation maps of microstate D. In addition, the subject-level spatial correlations between the general linear model (GLM) beta map of each microstate and the individual maps of each component yielded by dual regression also showed that EEG microstates were closely associated with brain functional networks measured using fMRI during SWS. Overall, the results showed that EEG microstates were closely related to brain functional networks during SWS, which suggested that EEG microstates provide an important electrophysiological basis underlying brain functional networks.
Collapse
|
211
|
Schreiner T, Staudigl T. Electrophysiological signatures of memory reactivation in humans. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190293. [PMID: 32248789 PMCID: PMC7209925 DOI: 10.1098/rstb.2019.0293] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The reactivation of neural activity that was present during the encoding of an event is assumed to be essential for human episodic memory retrieval and the consolidation of memories during sleep. Pioneering animal work has already established a crucial role of memory reactivation to prepare and guide behaviour. Research in humans is now delineating the neural processes involved in memory reactivation during both wakefulness and sleep as well as their functional significance. Focusing on the electrophysiological signatures of memory reactivation in humans during both memory retrieval and sleep-related consolidation, this review provides an overview of the state of the art in the field. We outline recent advances, methodological developments and open questions and specifically highlight commonalities and differences in the neuronal signatures of memory reactivation during the states of wakefulness and sleep. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
Collapse
Affiliation(s)
- Thomas Schreiner
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
212
|
Boutin A, Doyon J. A sleep spindle framework for motor memory consolidation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190232. [PMID: 32248783 DOI: 10.1098/rstb.2019.0232] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sleep spindle activity has repeatedly been found to contribute to brain plasticity and consolidation of both declarative and procedural memories. Here we propose a framework for motor memory consolidation that outlines the essential contribution of the hierarchical and multi-scale periodicity of spindle activity, as well as of the synchronization and interaction of brain oscillations during this sleep-dependent process. We posit that the clustering of sleep spindles in 'trains', together with the temporally organized alternation between spindles and associated refractory periods, is critical for efficient reprocessing and consolidation of motor memories. We further argue that the long-term retention of procedural memories relies on the synchronized (functional connectivity) local reprocessing of new information across segregated, but inter-connected brain regions that are involved in the initial learning process. Finally, we propose that oscillatory synchrony in the spindle frequency band may reflect the cross-structural reactivation, reorganization and consolidation of motor, and potentially declarative, memory traces within broader subcortical-cortical networks during sleep. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Arnaud Boutin
- Université Paris-Saclay, CIAMS, 91405, Orsay, France.,Université d'Orléans, CIAMS, 45067, Orléans, France
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
213
|
Eckert MJ, McNaughton BL, Tatsuno M. Neural ensemble reactivation in rapid eye movement and slow-wave sleep coordinate with muscle activity to promote rapid motor skill learning. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190655. [PMID: 32248776 DOI: 10.1098/rstb.2019.0655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neural activity patterns of recent experiences are reactivated during sleep in structures critical for memory storage, including hippocampus and neocortex. This reactivation process is thought to aid memory consolidation. Although synaptic rearrangement dynamics following learning involve an interplay between slow-wave sleep (SWS) and rapid eye movement (REM) sleep, most physiological evidence implicates SWS directly following experience as a preferred window for reactivation. Here, we show that reactivation occurs in both REM and SWS and that coordination of REM and SWS activation on the same day is associated with rapid learning of a motor skill. We performed 6 h recordings from cells in rats' motor cortex as they were trained daily on a skilled reaching task. In addition to SWS following training, reactivation occurred in REM, primarily during the pre-task rest period, and REM and SWS reactivation occurred on the same day in rats that acquired the skill rapidly. Both pre-task REM and post-task SWS activation were coordinated with muscle activity during sleep, suggesting a functional role for reactivation in skill learning. Our results provide the first demonstration that reactivation in REM sleep occurs during motor skill learning and that coordinated reactivation in both sleep states on the same day, although at different times, is beneficial for skill learning. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- M J Eckert
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - B L McNaughton
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4.,Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - M Tatsuno
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
214
|
Local Targeted Memory Reactivation in Human Sleep. Curr Biol 2020; 30:1435-1446.e5. [DOI: 10.1016/j.cub.2020.01.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/23/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022]
|
215
|
Sela Y, Krom AJ, Bergman L, Regev N, Nir Y. Sleep Differentially Affects Early and Late Neuronal Responses to Sounds in Auditory and Perirhinal Cortices. J Neurosci 2020; 40:2895-2905. [PMID: 32071140 PMCID: PMC7117904 DOI: 10.1523/jneurosci.1186-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
A fundamental feature of sleep is reduced behavioral responsiveness to external events, but the extent of processing along sensory pathways remains poorly understood. While responses are comparable across wakefulness and sleep in auditory cortex (AC), neuronal activity in downstream regions remains unknown. Here we recorded spiking activity in 435 neuronal clusters evoked by acoustic stimuli in the perirhinal cortex (PRC) and in AC of freely behaving male rats across wakefulness and sleep. Neuronal responses in AC showed modest (∼10%) differences in response gain across vigilance states, replicating previous studies. By contrast, PRC neuronal responses were robustly attenuated by 47% and 36% during NREM sleep and REM sleep, respectively. Beyond the separation according to cortical region, response latency in each neuronal cluster was correlated with the degree of NREM sleep attenuation, such that late (>40 ms) responses in all monitored regions diminished during NREM sleep. The robust attenuation of late responses prevalent in PRC represents a novel neural correlate of sensory disconnection during sleep, opening new avenues for investigating the mediating mechanisms.SIGNIFICANCE STATEMENT Reduced behavioral responsiveness to sensory stimulation is at the core of sleep's definition, but it is still unclear how the sleeping brain responds differently to sensory stimuli. In the current study, we recorded neuronal spiking responses to sounds along the cortical processing hierarchy of rats during wakefulness and natural sleep. Responses in auditory cortex only showed modest changes during sleep, whereas sleep robustly attenuated the responses of neurons in high-level perirhinal cortex. We also found that, during NREM sleep, the response latency predicts the degree of sleep attenuation in individual neurons above and beyond their anatomical location. These results provide anatomical and temporal signatures of sensory disconnection during sleep and pave the way to understanding the underlying mechanisms.
Collapse
Affiliation(s)
- Yaniv Sela
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel, 69978
| | - Aaron Joseph Krom
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel, 91120, and
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, 69978
| | - Lottem Bergman
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, 69978
| | - Noa Regev
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, 69978
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel, 69978,
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, 69978
| |
Collapse
|
216
|
Muehlroth BE, Sander MC, Fandakova Y, Grandy TH, Rasch B, Lee Shing Y, Werkle-Bergner M. Memory quality modulates the effect of aging on memory consolidation during sleep: Reduced maintenance but intact gain. Neuroimage 2020; 209:116490. [PMID: 31883456 PMCID: PMC7068706 DOI: 10.1016/j.neuroimage.2019.116490] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 12/10/2019] [Accepted: 12/21/2019] [Indexed: 01/29/2023] Open
Abstract
Successful consolidation of associative memories relies on the coordinated interplay of slow oscillations and sleep spindles during non-rapid eye movement (NREM) sleep. This enables the transfer of labile information from the hippocampus to permanent memory stores in the neocortex. During senescence, the decline of the structural and functional integrity of the hippocampus and neocortical regions is paralleled by changes of the physiological events that stabilize and enhance associative memories during NREM sleep. However, the currently available evidence is inconclusive as to whether and under which circumstances memory consolidation is impacted during aging. To approach this question, 30 younger adults (19-28 years) and 36 older adults (63-74 years) completed a memory task based on scene-word associations. By tracing the encoding quality of participants' individual memory associations, we demonstrate that previous learning determines the extent of age-related impairments in memory consolidation. Specifically, the detrimental effects of aging on memory maintenance were greatest for mnemonic contents of intermediate encoding quality, whereas memory gain of poorly encoded memories did not differ by age. Ambulatory polysomnography (PSG) and structural magnetic resonance imaging (MRI) data were acquired to extract potential predictors of memory consolidation from each participant's NREM sleep physiology and brain structure. Partial Least Squares Correlation was used to identify profiles of interdependent alterations in sleep physiology and brain structure that are characteristic for increasing age. Across age groups, both the 'aged' sleep profile, defined by decreased slow-wave activity (0.5-4.5 Hz), and a reduced presence of slow oscillations (0.5-1 Hz), slow, and fast spindles (9-12.5 Hz; 12.5-16 Hz), as well as the 'aged' brain structure profile, characterized by gray matter reductions in the medial prefrontal cortex, thalamus, entorhinal cortex, and hippocampus, were associated with reduced memory maintenance. However, inter-individual differences in neither sleep nor structural brain integrity alone qualified as the driving force behind age differences in sleep-dependent consolidation in the present study. Our results underscore the need for novel and age-fair analytic tools to provide a mechanistic understanding of age differences in memory consolidation.
Collapse
Affiliation(s)
- Beate E Muehlroth
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Thomas H Grandy
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Rue P.-A.-de-Faucigny 2, 1701, Fribourg, Switzerland
| | - Yee Lee Shing
- Department of Developmental Psychology, Goethe University Frankfurt, Theodor-W.-Adorno-Platz 6, 60629, Frankfurt Am Main, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| |
Collapse
|
217
|
Canales-Johnson A, Merlo E, Bekinschtein TA, Arzi A. Neural Dynamics of Associative Learning during Human Sleep. Cereb Cortex 2020; 30:1708-1715. [PMID: 31690927 PMCID: PMC7132910 DOI: 10.1093/cercor/bhz197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/13/2022] Open
Abstract
Recent evidence indicates that humans can learn entirely new information during sleep. To elucidate the neural dynamics underlying sleep-learning, we investigated brain activity during auditory–olfactory discriminatory associative learning in human sleep. We found that learning-related delta and sigma neural changes are involved in early acquisition stages, when new associations are being formed. In contrast, learning-related theta activity emerged in later stages of the learning process, after tone–odor associations were already established. These findings suggest that learning new associations during sleep is signaled by a dynamic interplay between slow-waves, sigma, and theta activity.
Collapse
Affiliation(s)
- Andrés Canales-Johnson
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.,Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibanez 9170022, Santiago, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), Universidad Católica del Maule 3460000, Talca, Chile
| | - Emiliano Merlo
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.,IFIBIO-Houssay, Facultad de Medicina, Universidad de Buenos Aires-CONICET 1121, Buenos Aires, Argentina.,School of Psychology, University of Sussex, Brighton BN1 9RH, UK
| | | | - Anat Arzi
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
218
|
Friedrich M, Mölle M, Friederici AD, Born J. Sleep-dependent memory consolidation in infants protects new episodic memories from existing semantic memories. Nat Commun 2020; 11:1298. [PMID: 32157080 PMCID: PMC7064567 DOI: 10.1038/s41467-020-14850-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/03/2020] [Indexed: 01/22/2023] Open
Abstract
Any experienced event may be encoded and retained in detail as part of our episodic memory, and may also refer and contribute to our generalized knowledge stored in semantic memory. The beginnings of this declarative memory formation are only poorly understood. Even less is known about the interrelation between episodic and semantic memory during the earliest developmental stages. Here, we show that the formation of episodic memories in 14- to 17-month-old infants depends on sleep, subsequent to exposure to novel events. Infant brain responses reveal that, after sleep-dependent consolidation, the newly stored events are not processed semantically, although appropriate lexical-semantic memories are present and accessible by similar events that were not experienced before the nap. We propose that temporarily disabled semantic processing protects precise episodic memories from interference with generalized semantic memories. Selectively restricted semantic access could also trigger semantic refinement, and thus, might even improve semantic memory.
Collapse
Affiliation(s)
- Manuela Friedrich
- Department of Psychology, Humboldt-University of Berlin, Rudower Chaussee 18, D-12489, Berlin, Germany. .,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany.
| | - Matthias Mölle
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Marie-Curie-Straße, D-23562, Lübeck, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, D-72076, Tübingen, Germany
| |
Collapse
|
219
|
Gao C, Fillmore P, Scullin MK. Classical music, educational learning, and slow wave sleep: A targeted memory reactivation experiment. Neurobiol Learn Mem 2020; 171:107206. [PMID: 32145407 DOI: 10.1016/j.nlm.2020.107206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022]
Abstract
Poor sleep in college students compromises the memory consolidation processes necessary to retain course materials. A solution may lie in targeting reactivation of memories during sleep (TMR). Fifty undergraduate students completed a college-level microeconomics lecture (mathematics-based) while listening to distinctive classical music (Chopin, Beethoven, and Vivaldi). After they fell asleep, we re-played the classical music songs (TMR) or a control noise during slow wave sleep. Relative to the control condition, the TMR condition showed an 18% improvement for knowledge transfer items that measured concept integration (d = 0.63), increasing the probability of "passing" the test with a grade of 70 or above (OR = 4.68, 95%CI: 1.21, 18.04). The benefits of TMR did not extend to a 9-month follow-up test when performance dropped to floor levels, demonstrating that long-term-forgetting curves are largely resistant to experimentally-consolidated memories. Spectral analyses revealed greater frontal theta activity during slow wave sleep in the TMR condition than the control condition (d = 0.87), and greater frontal theta activity across conditions was associated with protection against long-term-forgetting at the next-day and 9-month follow-up tests (rs = 0.42), at least in female students. Thus, students can leverage instrumental music-which they already commonly pair with studying-to help prepare for academic tests, an approach that may promote course success and persistence.
Collapse
Affiliation(s)
- Chenlu Gao
- Baylor University, Department of Psychology and Neuroscience, Waco, TX, United States
| | - Paul Fillmore
- Baylor University, Department of Communication Sciences and Disorders, Waco, TX, United States
| | - Michael K Scullin
- Baylor University, Department of Psychology and Neuroscience, Waco, TX, United States.
| |
Collapse
|
220
|
No effect of targeted memory reactivation during sleep on retention of vocabulary in adolescents. Sci Rep 2020; 10:4255. [PMID: 32144326 PMCID: PMC7060261 DOI: 10.1038/s41598-020-61183-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/23/2020] [Indexed: 11/08/2022] Open
Abstract
Re-exposure of newly acquired vocabulary during sleep improves later memory recall in healthy adults. The success of targeted memory reactivation (TMR) during sleep presumably depends on the presence of slow oscillations (i.e., EEG activity at a frequency of about 0.75 Hz). As slow oscillating activity is at its maximum during adolescence, we hypothesized that TMR is even more beneficial at this developmental stage. In the present study, adolescents aged 11 to 13 learnt Dutch vocabulary in the evening and were tested on recall performance the next morning. Half of the words were presented via loudspeakers during post-learning periods of NREM (Non Rapid Eye Movement) sleep in order to stimulate memory reactivation. Unexpectedly, TMR during sleep did not improve memory on the behavioral level in adolescents. On the oscillatory level, successful reactivation during sleep resulted in the characteristic increase in theta power over frontal brain regions, as reported in adults. However, we observed no increase in spindle power during successful reactivation. Possible factors that may explain the lacking effect of TMR in adolescents in this study such as differences in learning abilities and pre-sleep performance levels are discussed.
Collapse
|
221
|
Hu X, Cheng LY, Chiu MH, Paller KA. Promoting memory consolidation during sleep: A meta-analysis of targeted memory reactivation. Psychol Bull 2020; 146:218-244. [PMID: 32027149 PMCID: PMC7144680 DOI: 10.1037/bul0000223] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeted memory reactivation (TMR) is a methodology employed to manipulate memory processing during sleep. TMR studies have great potential to advance understanding of sleep-based memory consolidation and corresponding neural mechanisms. Research making use of TMR has developed rapidly, with over 70 articles published in the last decade, yet no quantitative analysis exists to evaluate the overall effects. Here we present the first meta-analysis of sleep TMR, compiled from 91 experiments with 212 effect sizes (N = 2,004). Based on multilevel modeling, overall sleep TMR was highly effective (Hedges' g = 0.29, 95% CI [0.21, 0.38]), with a significant effect for two stages of non-rapid-eye-movement (NREM) sleep (Stage NREM 2: Hedges' g = 0.32, 95% CI [0.04, 0.60]; and slow-wave sleep: Hedges' g = 0.27, 95% CI [0.20, 0.35]). In contrast, TMR was not effective during REM sleep nor during wakefulness in the present analyses. Several analysis strategies were used to address the potential relevance of publication bias. Additional analyses showed that TMR improved memory across multiple domains, including declarative memory and skill acquisition. Given that TMR can reinforce many types of memory, it could be useful for various educational and clinical applications. Overall, the present meta-analysis provides substantial support for the notion that TMR can influence memory storage during NREM sleep, and that this method can be useful for understanding neurocognitive mechanisms of memory consolidation. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Xiaoqing Hu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Larry Y. Cheng
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Man Hey Chiu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Ken A. Paller
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA
| |
Collapse
|
222
|
Yao H, Zhang Y, Xie B, Shang Y, Yuan S, Zhang J. Sleep-restriction Inhibits Neurogenesis Through Decreasing the Infiltration of CD169 + Macrophages to Ischemic Brain After Stroke. Neuroscience 2020; 431:222-236. [PMID: 32081723 DOI: 10.1016/j.neuroscience.2020.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Chronic sleep-restriction (SR) is shown to be correlated with neurodevelopmental disorders. However, the effects of SR during stroke recovery on neurorepair remain unclear. In this study, mice were subjected to 60 min of cerebral ischemia followed by reperfusion. The SR protocol was accomplished by depriving mice of sleep for 20 h/day for 14 days starting at 14 days post-ischemia. We found that SR increased CD169+ macrophages infiltration into the ischemic brain parenchyma and inhibited neurogenesis and functional recovery. SR decreased CD169+ macrophages infiltration into the choroid plexus (CP) and cerebrospinal fluid (CSF), accompanied by increased expression of Chemokine C-X3-C-Motif Ligand 1 (CX3CL1) and intercellular adhesion molecule (ICAM-1) via IFN-γ/IFN-γR signaling in the CP. When splenic CD169+ macrophages sorted from Kaede transgenic mice were administered into CSF of C57BL/6 mice, they homed to the ischemic brain parenchyma. Moreover, blockade of IFN-γ/IFN-γR signaling, CX3CL1 or ICAM-1 decreased CD169+ macrophages infiltration into the CP, CSF and ischemic brain parenchyma, as well as decreasing neurogenesis and functional recovery after SR. The promoting roles of infiltrated CD169+ macrophages in post-stroke neurogenesis were due to increasing regulatory T cells (Tregs) in the ischemic brain parenchyma. Furthermore, dexmedetomidine treatment during SR increased CD169+ macrophages infiltration into the CP, CSF and ischemic brain parenchyma, and promoted neurogenesis and functional recovery. Taken together, our results showed that SR during stroke recovery decreased Tregs in the ischemic brain parenchyma by decreasing CD169+ macrophages infiltration to the ischemic brain parenchyma across the CP, which inhibited neurogenesis and functional recovery.
Collapse
Affiliation(s)
- Hua Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
223
|
Schechtman E, Witkowski S, Lampe A, Wilson BJ, Paller KA. Targeted memory reactivation during sleep boosts intentional forgetting of spatial locations. Sci Rep 2020; 10:2327. [PMID: 32047183 PMCID: PMC7012837 DOI: 10.1038/s41598-020-59019-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
Although we experience thousands of distinct events on a daily basis, relatively few are committed to memory. The human capacity to intentionally control which events will be remembered has been demonstrated using learning procedures with instructions to purposely avoid committing specific items to memory. In this study, we used a variant of the item-based directed-forgetting procedure and instructed participants to memorize the location of some images but not others on a grid. These instructions were conveyed using a set of auditory cues. Then, during an afternoon nap, we unobtrusively presented a cue that was used to instruct participant to avoid committing the locations of some images to memory. After sleep, memory was worse for to-be-forgotten image locations associated with the presented sound relative to those associated with a sound that was not presented during sleep. We conclude that memory processing during sleep can serve not only to secure memory storage but also to weaken it. Given that intentional suppression may be used to weaken unpleasant memories, such sleep-based strategies may help accelerate treatments for memory-related disorders such as post-traumatic stress disorder.
Collapse
Affiliation(s)
- Eitan Schechtman
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA.
| | - Sarah Witkowski
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Anna Lampe
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Brianna J Wilson
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
224
|
He AX, Huang S, Waxman S, Arunachalam S. Two-year-olds consolidate verb meanings during a nap. Cognition 2020; 198:104205. [PMID: 32018123 DOI: 10.1016/j.cognition.2020.104205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/20/2019] [Accepted: 01/26/2020] [Indexed: 11/15/2022]
Abstract
Successful word learning requires establishing an initial representation that is sufficiently robust to be retained in memory. Sleep has profound advantages for memory consolidation, but evidence concerning the effects of sleep in young children's word learning is slim and focuses almost exclusively on learning nouns. Verbs are representationally more complex and are often learned from non-concurrent linguistic and observational information (e.g., hearing "let's pour your milk" before the pouring event takes place). What remains unknown is whether initial representations built this way are robust enough to sustain a delay, and how these representations are affected by sleep. We presented two-year-olds with non-concurrent linguistic and observational information about novel verbs and immediately tested their knowledge of the verbs' meanings by evaluating their eye gaze as they looked at potential referents. Then, after a 4-hour delay during which half of the children napped and half remained awake, we retested them to see if they remembered the verbs' meanings. The results demonstrate differences in two-year-olds' representations of a novel verb before and after the delay; specifically, their verb representations withstood the 4-hour delay if they had napped, but decayed if they had remained awake.
Collapse
Affiliation(s)
- Angela Xiaoxue He
- Chinese University of Hong Kong, Brain and Mind Institute, Hong Kong, China; University of Southern California, Department of Philosophy & Linguistics, United States of America.
| | - Shirley Huang
- University of Colorado Boulder, Department of Speech, Language, and Hearing Sciences, United States of America
| | - Sandra Waxman
- Northwestern University, Department of Psychology, United States of America
| | - Sudha Arunachalam
- New York University, Department of Communicative Sciences & Disorders, United States of America
| |
Collapse
|
225
|
Johnson EG, Prabhakar J, Mooney LN, Ghetti S. Neuroimaging the sleeping brain: Insight on memory functioning in infants and toddlers. Infant Behav Dev 2020; 58:101427. [PMID: 32085988 PMCID: PMC7089830 DOI: 10.1016/j.infbeh.2020.101427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Episodic memory, or the ability to remember past events with specific detail, is central to the human experience and is related to learning and adaptive functioning in a variety of domains. In typically developing children, episodic memory emerges during infancy and improves during early childhood and beyond. Developmental processes within the hippocampus are hypothesized to be primarily responsible for both the early emergence and persistence of episodic memory in late infancy and early childhood. However, these hypotheses are based on non-human models. In-vivo investigations in early human development of hippocampal processes have been significantly limited by methodological challenges in acquiring neuroimaging data, particularly task-related functional neuroimaging data, from infants and toddlers. Recent studies in adults have shown neural activity in the brain regions supporting episodic memory during slow-wave sleep using functional magnetic resonance imaging (fMRI), and fMRI has been increasingly utilized in infancy and early childhood to address other research questions. We review initial evidence and present preliminary data showing the promise of this approach for examining hippocampal contribution to how infants and toddlers remember individual events, and their association with information about the context in which the event occurred. Overall, our review, integrated with the presentation of some preliminary data provides insight on leveraging sleep to gain new perspectives on early memory functioning.
Collapse
Affiliation(s)
- Elliott Gray Johnson
- Center for Mind and Brain, University of California, Davis, United States; Human Development Graduate Group, University of California, Davis, United States.
| | - Janani Prabhakar
- Center for Mind and Brain, University of California, Davis, United States
| | - Lindsey N Mooney
- Center for Mind and Brain, University of California, Davis, United States; Department of Psychology, University of California, Davis, United States
| | - Simona Ghetti
- Center for Mind and Brain, University of California, Davis, United States; Department of Psychology, University of California, Davis, United States; Human Development Graduate Group, University of California, Davis, United States
| |
Collapse
|
226
|
How odor cues help to optimize learning during sleep in a real life-setting. Sci Rep 2020; 10:1227. [PMID: 31988352 PMCID: PMC6985213 DOI: 10.1038/s41598-020-57613-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022] Open
Abstract
Effortless learning during sleep is everybody’s dream. Several studies found that presenting odor cues during learning and selectively during slow wave sleep increases learning success. The current study extends previous research in three aspects to test for optimization and practical applicability of this cueing effect: We (1) performed a field study of vocabulary-learning in a regular school setting, (2) stimulated with odor cues during the whole night without sleep monitoring, and (3) applied the odor additionally as retrieval cue in a subsequent test. We found an odor cueing effect with comparable effect sizes (d between 0.6 and 1.2) as studies with sleep monitoring and selective cueing. Further, we observed some (non-significant) indication for a further performance benefit with additional cueing during the recall test. Our results replicate previous findings and provide important extensions: First, the odor effect also works outside the lab. Second, continuous cueing at night produces similar effect sizes as a study with selective cueing in specific sleep stages. Whether odor cueing during memory recall further increases memory performance hast to be shown in future studies. Overall, our results extend the knowledge on odor cueing effects and provide a realistic practical perspective on it.
Collapse
|
227
|
Okabe S, Hayashi M, Abe T, Fukuda K. Presentation of familiar odor induces negative dream emotions during rapid eye movement (REM) sleep in healthy adolescents. Sleep Med 2020; 66:227-232. [PMID: 31978867 DOI: 10.1016/j.sleep.2019.11.1260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/25/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Odor presentation is a crucial tool in the experimental investigation of dreaming since odors rarely cause arousal, and are processed in the brain during sleep. Our previous study demonstrated that the presentation of a preferred odor during rapid eye movement (REM) sleep-induced negative dream emotions. However, preference and familiarity of an odor are known to be strongly related to each other in olfactory perception. Consequently, the above result might have been due to the confounding effects of familiarity. Therefore, the present study was designed to clarify the effects of an individual's degree of familiarity with an odor on negative emotions experienced when dreaming. METHODS The airflow with phenylethyl alcohol (PEA: rose-like smell) was presented as a stimulus of experimental condition, and odorless airflow was presented as the control. Participants who were familiar (n = 7) and unfamiliar (n = 7) with the odor of PEA experienced both conditions during REM sleep in the second and later sleep cycle. Then, they were awakened, and they rated the characteristics of their dream using a questionnaire. RESULTS AND CONCLUSIONS Participants who were familiar with the odor of PEA rated their dreams more negatively in the experimental condition relative to the control condition. It is concluded based on these results that a familiar odor may induce negative emotion in dreams, possibly because familiar odors tend to be perceived more strongly, and the olfactory pathway has direct connections to the amygdala, which is primarily involved in processing negative emotions.
Collapse
Affiliation(s)
- Satomi Okabe
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan.
| | - Mitsuo Hayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Takashi Abe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Kazuhiko Fukuda
- College of Sociology, Edogawa University, 474 Komagi, Nagareyama, Chiba 270-0198, Japan
| |
Collapse
|
228
|
Wei Y, Krishnan GP, Marshall L, Martinetz T, Bazhenov M. Stimulation Augments Spike Sequence Replay and Memory Consolidation during Slow-Wave Sleep. J Neurosci 2020; 40:811-824. [PMID: 31792151 PMCID: PMC6975295 DOI: 10.1523/jneurosci.1427-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/14/2019] [Accepted: 11/03/2019] [Indexed: 11/21/2022] Open
Abstract
Newly acquired memory traces are spontaneously reactivated during slow-wave sleep (SWS), leading to the consolidation of recent memories. Empirical studies found that sensory stimulation during SWS can selectively enhance memory consolidation with the effect depending on the phase of stimulation. In this new study, we aimed to understand the mechanisms behind the role of sensory stimulation on memory consolidation using computational models implementing effects of neuromodulators to simulate transitions between awake and SWS sleep, and synaptic plasticity to allow the change of synaptic connections due to the training in awake or replay during sleep. We found that when closed-loop stimulation was applied during the Down states of sleep slow oscillation, particularly right before the transition from Down to Up state, it significantly affected the spatiotemporal pattern of the slow waves and maximized memory replay. In contrast, when the stimulation was presented during the Up states, it did not have a significant impact on the slow waves or memory performance after sleep. For multiple memories trained in awake, presenting stimulation cues associated with specific memory trace could selectively augment replay and enhance consolidation of that memory and interfere with consolidation of the others (particularly weak) memories. Our study proposes a synaptic-level mechanism of how memory consolidation is affected by sensory stimulation during sleep.SIGNIFICANCE STATEMENT Stimulation, such as training-associated cues or auditory stimulation, during sleep can augment consolidation of the newly encoded memories. In this study, we used a computational model of the thalamocortical system to describe the mechanisms behind the role of stimulation in memory consolidation during slow-wave sleep. Our study suggests that stimulation preferentially strengthens memory traces when delivered at a specific phase of the slow oscillation, just before the Down to Up state transition when it makes the largest impact on the spatiotemporal pattern of sleep slow waves. In the presence of multiple memories, presenting sensory cues during sleep could selectively strengthen selected memories. Our study proposes a synaptic-level mechanism of how memory consolidation is affected by sensory stimulation during sleep.
Collapse
Affiliation(s)
- Yina Wei
- Department of Medicine, University of California, San Diego, La Jolla California 92093
| | - Giri P Krishnan
- Department of Medicine, University of California, San Diego, La Jolla California 92093
| | - Lisa Marshall
- Institute for Experimental and Clinical Pharmacology and Toxicology
- Center for Brain, Behavior and Metabolism, and
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, University of Lübeck, 23562 Lübeck, Germany
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla California 92093,
| |
Collapse
|
229
|
Sharma R, Sahota P, Thakkar MM. Sleep Loss Immediately After Fear Memory Reactivation Attenuates Fear Memory Reconsolidation. Neuroscience 2020; 428:70-75. [PMID: 31917354 DOI: 10.1016/j.neuroscience.2019.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022]
Abstract
Permanently stored memories become labile through a process called reactivation. Once reactivated, these memories need reconsolidation to become permanent. Sleep is critical for memory consolidation. Is sleep necessary for memory reconsolidation? We hypothesized that sleep loss immediately after fear reactivation (FR) will prevent memory reconsolidation. To test our hypothesis, two experiments were performed in adult male C57BL/6J mice exposed to contextual fear conditioning paradigm with inescapable foot shock as unconditional stimulus (US) and contextual cage as conditional stimulus (CS). Sleep loss was achieved either by 5 h of sleep deprivation (SD; Experiment 1) or by systemic infusion of modafinil (200 mg/Kg, ip), an FDA approved wake-promoting agent (Experiment 2). One hour after light-onset, fear memory acquisition (FMA) was performed on Day 1. Mice were allowed to explore CS for 5 min followed by presentation of US (7 foot-shocks; 0.5 mA, 2.0 s duration) at pseudorandom intervals. Controls were exposed to similar CS but no shocks were delivered. On Day 2, mice were exposed to CS for 2 min (without US; for FR) followed by either sleep loss or no sleep loss. On Day 3, fear memory recall (FMR) was performed by exposing mice to CS (without US) for 12 min. Percent time spent in freezing was monitored during FC, FR and FMR. Our results suggested that as compared to sleeping controls, mice with sleep loss immediately after FR displayed a significant reduction in percent time freezing during FMR. These results suggest that sleep loss may prevent memory reconsolidation.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, MO 65201, United States
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, MO 65201, United States
| | - Mahesh M Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, MO 65201, United States.
| |
Collapse
|
230
|
De Zeeuw CI, Canto CB. Sleep deprivation directly following eyeblink-conditioning impairs memory consolidation. Neurobiol Learn Mem 2020; 170:107165. [PMID: 31953233 PMCID: PMC7184677 DOI: 10.1016/j.nlm.2020.107165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/05/2019] [Accepted: 01/12/2020] [Indexed: 10/31/2022]
Abstract
The relation between sleep and different forms of memory formation continues to be a relevant topic in our daily life. Sleep has been found to affect cerebellum-dependent procedural memory formation, but it remains to be elucidated to what extent the level of sleep deprivation directly after motor training also influences our ability to store and retrieve memories. Here, we studied the effect of disturbed sleep in mice during two different time-windows, one covering the first four hours following eyeblink conditioning (EBC) and another window following the next period of four hours. Compared to control mice with sleep ad libitum, the percentage of conditioned responses and their amplitude were impaired when mice were deprived of sleep directly after conditioning. This impairment was still significant when the learned EBC responses were extinguished and later reacquired. However, consolidation of eyeblink responses was not affected when mice were deprived later than four hours after acquisition, not even when tested during a different day-night cycle for control. Moreover, mice that slept longer directly following EBC showed a tendency for more conditioned responses. Our data indicate that consolidation of motor memories can benefit from sleep directly following memory formation.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Netherlands Institute for Neuroscience, KNAW, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Cathrin B Canto
- Netherlands Institute for Neuroscience, KNAW, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
231
|
Amores J, Dotan M, Maes P. An Exploration of Form Factors for Sleep-Olfactory Interfaces. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:1456-1460. [PMID: 31946168 DOI: 10.1109/embc.2019.8856805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Releasing scent during sleep has been shown to influence the emotional valence of dreams, reduce cigarette smoking behavior, strengthen memories as well as enhance restorative slow-wave activity. Nevertheless, current scent technologies used in sleep laboratories are not portable and require the use of nasal masks and large olfactometers. In this paper we investigated the preferred form factor and acceptance of a set of biometric wearables that can release scent based on the user's physiological state. We conducted an online survey with 163 participants and evaluated 8 different form factors. The results showed that 73.5% of the subjects preferred the designs that are not wearable during the night but that can be worn during the day. We provide insights to take into account for the design of next generation sleep-olfactory technologies. We provide a literature review of sleep and scent studies and discuss the opportunities for well-being and memory applications.
Collapse
|
232
|
Pilly PK, Skorheim SW, Hubbard RJ, Ketz NA, Roach SM, Lerner I, Jones AP, Robert B, Bryant NB, Hartholt A, Mullins TS, Choe J, Clark VP, Howard MD. One-Shot Tagging During Wake and Cueing During Sleep With Spatiotemporal Patterns of Transcranial Electrical Stimulation Can Boost Long-Term Metamemory of Individual Episodes in Humans. Front Neurosci 2020; 13:1416. [PMID: 31998067 PMCID: PMC6967741 DOI: 10.3389/fnins.2019.01416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/16/2019] [Indexed: 12/01/2022] Open
Abstract
Targeted memory reactivation (TMR) during slow-wave oscillations (SWOs) in sleep has been demonstrated with sensory cues to achieve about 5-12% improvement in post-nap memory performance on simple laboratory tasks. But prior work has not yet addressed the one-shot aspect of episodic memory acquisition, or dealt with the presence of interference from ambient environmental cues in real-world settings. Further, TMR with sensory cues may not be scalable to the multitude of experiences over one's lifetime. We designed a novel non-invasive non-sensory paradigm that tags one-shot experiences of minute-long naturalistic episodes in immersive virtual reality (VR) with unique spatiotemporal amplitude-modulated patterns (STAMPs) of transcranial electrical stimulation (tES). In particular, we demonstrated that these STAMPs can be re-applied as brief pulses during SWOs in sleep to achieve about 10-20% improvement in the metamemory of targeted episodes compared to the control episodes at 48 hours after initial viewing. We found that STAMPs can not only facilitate but also impair metamemory for the targeted episodes based on an interaction between pre-sleep metamemory and the number of STAMP applications during sleep. Overnight metamemory improvements were mediated by spectral power increases following the offset of STAMPs in the slow-spindle band (8-12 Hz) for left temporal areas in the scalp electroencephalography (EEG) during sleep. These results prescribe an optimal strategy to leverage STAMPs for boosting metamemory and suggest that real-world episodic memories can be modulated in a targeted manner even with coarser, non-invasive spatiotemporal stimulation.
Collapse
Affiliation(s)
- Praveen K. Pilly
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Steven W. Skorheim
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Ryan J. Hubbard
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Nicholas A. Ketz
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Shane M. Roach
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Itamar Lerner
- Center of Molecular and Behavior Neuroscience, Rutgers University Newark, Newark, NJ, United States
- Department of Psychology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Aaron P. Jones
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Bradley Robert
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Natalie B. Bryant
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Arno Hartholt
- Institute for Creative Technologies, University of Southern California, Los Angeles, CA, United States
| | - Teagan S. Mullins
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jaehoon Choe
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Vincent P. Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Michael D. Howard
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| |
Collapse
|
233
|
Abstract
Given the critical role of sleep, particularly sleep slow oscillations, sleep spindles, and hippocampal sharp wave ripples, in memory consolidation, sleep enhancement represents a key opportunity to improve cognitive performance. Techniques such as transcranial electrical and magnetic stimulation and acoustic stimulation can enhance slow oscillations and sleep spindles and potentially improve memory. Targeted memory reactivation in sleep may enhance or stabilize memory consolidation. Each technique has technical considerations that may limit its broader clinical application. Therefore, neurostimulation to enhance sleep quality, in particular sleep slow oscillations, has the potential for improving sleep-related memory consolidation in healthy and clinical populations.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine. 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine. 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
234
|
Feld GB, Born J. Neurochemical mechanisms for memory processing during sleep: basic findings in humans and neuropsychiatric implications. Neuropsychopharmacology 2020; 45:31-44. [PMID: 31443105 PMCID: PMC6879745 DOI: 10.1038/s41386-019-0490-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Sleep is essential for memory formation. Active systems consolidation maintains that memory traces that are initially stored in a transient store such as the hippocampus are gradually redistributed towards more permanent storage sites such as the cortex during sleep replay. The complementary synaptic homeostasis theory posits that weak memory traces are erased during sleep through a competitive down-selection mechanism, ensuring the brain's capability to learn new information. We discuss evidence from neuropharmacological experiments in humans to show how major neurotransmitters and neuromodulators are implicated in these memory processes. As to the major excitatory neurotransmitter glutamate that plays a prominent role in inducing synaptic consolidation, we show that these processes, while strengthening cortical memory traces during sleep, are insufficient to explain the consolidation of hippocampus-dependent declarative memories. In the inhibitory GABAergic system, we will offer insights how drugs may alter the intricate interplay of sleep oscillations that have been identified to be crucial for strengthening memories during sleep. Regarding the dopaminergic reward system, we will show how it is engaged during sleep replay, but that dopaminergic neuromodulation likely plays a side role for enhancing relevant memories during sleep. Also, we briefly go into basic evidence on acetylcholine and cortisol whose low tone during slow wave sleep (SWS) is crucial in supporting hippocampal-to-neocortical memory transmission. Finally, we will outline how these insights can be used to improve treatment of neuropsychiatric disorders focusing mainly on anxiety disorders, depression, and addiction that are strongly related to memory processing.
Collapse
Affiliation(s)
- Gordon B Feld
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
235
|
Marshall L, Cross N, Binder S, Dang-Vu TT. Brain Rhythms During Sleep and Memory Consolidation: Neurobiological Insights. Physiology (Bethesda) 2020; 35:4-15. [DOI: 10.1152/physiol.00004.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sleep can benefit memory consolidation. The characterization of brain regions underlying memory consolidation during sleep, as well as their temporal interplay, reflected by specific patterns of brain electric activity, is surfacing. Here, we provide an overview of recent concepts and results on the mechanisms of sleep-related memory consolidation. The latest studies strongly impacting future directions of research in this field are highlighted.
Collapse
Affiliation(s)
- Lisa Marshall
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Nathan Cross
- Perform Center, Center for Studies in Behavioral Neurobiology, and Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l’Ile-de-Montréal, Montreal, Quebec, Canada
| | - Sonja Binder
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Thien Thanh Dang-Vu
- Perform Center, Center for Studies in Behavioral Neurobiology, and Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l’Ile-de-Montréal, Montreal, Quebec, Canada
| |
Collapse
|
236
|
Reward does not facilitate visual perceptual learning until sleep occurs. Proc Natl Acad Sci U S A 2019; 117:959-968. [PMID: 31892542 DOI: 10.1073/pnas.1913079117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A growing body of evidence indicates that visual perceptual learning (VPL) is enhanced by reward provided during training. Another line of studies has shown that sleep following training also plays a role in facilitating VPL, an effect known as the offline performance gain of VPL. However, whether the effects of reward and sleep interact on VPL remains unclear. Here, we show that reward interacts with sleep to facilitate offline performance gains of VPL. First, we demonstrated a significantly larger offline performance gain over a 12-h interval including sleep in a reward group than that in a no-reward group. However, the offline performance gains over the 12-h interval without sleep were not significantly different with or without reward during training, indicating a crucial interaction between reward and sleep in VPL. Next, we tested whether neural activations during posttraining sleep were modulated after reward was provided during training. Reward provided during training enhanced rapid eye movement (REM) sleep time, increased oscillatory activities for reward processing in the prefrontal region during REM sleep, and inhibited neural activation in the untrained region in early visual areas in non-rapid eye movement (NREM) and REM sleep. The offline performance gains were significantly correlated with oscillatory activities of visual processing during NREM sleep and reward processing during REM sleep in the reward group but not in the no-reward group. These results suggest that reward provided during training becomes effective during sleep, with excited reward processing sending inhibitory signals to suppress noise in visual processing, resulting in larger offline performance gains over sleep.
Collapse
|
237
|
Dash MB. Infraslow coordination of slow wave activity through altered neuronal synchrony. Sleep 2019; 42:5540154. [PMID: 31353415 DOI: 10.1093/sleep/zsz170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Indexed: 11/14/2022] Open
Abstract
Slow wave activity (SWA; the EEG power between 0.5 and 4 Hz during non-rapid eye movement sleep [NREM]) is the best electrophysiological marker of sleep need; SWA dissipates across the night and increases following sleep deprivation. In addition to these well-documented homeostatic SWA trends, SWA exhibits extensive variability across shorter timescales (seconds to minutes) and between local cortical regions. The physiological underpinnings of SWA variability, however, remain poorly characterized. In male Sprague-Dawley rats, we observed that SWA exhibits pronounced infraslow fluctuations (~40- to 120-s periods) that are coordinated across disparate cortical locations. Peaks in SWA across infraslow cycles were associated with increased slope, amplitude, and duration of individual slow waves and a reduction in the total number of waves and proportion of multipeak waves. Using a freely available data set comprised of extracellular unit recordings during consolidated NREM episodes in male Long-Evans rats, we further show that infraslow SWA does not appear to arise as a consequence of firing rate modulation of putative excitatory or inhibitory neurons. Instead, infraslow SWA was associated with alterations in neuronal synchrony surrounding "On"/"Off" periods and changes in the number and duration of "Off" periods. Collectively, these data provide a mechanism by which SWA can be coordinated across disparate cortical locations and thereby connect local and global expression of this patterned neuronal activity. In doing so, infraslow SWA may contribute to the regulation of cortical circuits during sleep and thereby play a critical role in sleep function.
Collapse
Affiliation(s)
- Michael B Dash
- Department of Psychology, Middlebury College, Middlebury, VT
- Program in Neuroscience, Middlebury College, Middlebury, VT
| |
Collapse
|
238
|
Abstract
Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.
Collapse
Affiliation(s)
- Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
239
|
Morgan DP, Tamminen J, Seale-Carlisle TM, Mickes L. The impact of sleep on eyewitness identifications. ROYAL SOCIETY OPEN SCIENCE 2019; 6:170501. [PMID: 31903193 PMCID: PMC6936295 DOI: 10.1098/rsos.170501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Sleep aids the consolidation of recently acquired memories. Evidence strongly indicates that sleep yields substantial improvements on recognition memory tasks relative to an equivalent period of wake. Despite the known benefits that sleep has on memory, researchers have not yet investigated the impact of sleep on eyewitness identifications. Eyewitnesses to crimes are often presented with a line-up (which is a type of recognition memory test) that contains the suspect (who is innocent or guilty) and fillers (who are known to be innocent). Sleep may enhance the ability to identify the guilty suspect and not identify the innocent suspect (i.e. discriminability). Sleep may also impact reliability (i.e. the likelihood that the identified suspect is guilty). In the current study, we manipulated the presence or the absence of sleep in a forensically relevant memory task. Participants witnessed a video of a mock crime, made an identification or rejected the line-up, and rated their confidence. Critically, some participants slept between witnessing the crime and making a line-up decision, while others remained awake. The prediction that participants in the sleep condition would have greater discriminability compared to participants in the wake condition was not supported. There were also no differences in reliability.
Collapse
Affiliation(s)
- D. P. Morgan
- Department of Clinical Psychology, University of Heidelberg, Mannheim, Germany
- Department of Addiction Behavior and Addiction Medicine, University of Heidelberg, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - J. Tamminen
- Department of Psychology, Royal Holloway, University of London, Egham, UK
| | | | - L. Mickes
- Department of Psychology, University of Bristol, Bristol, UK
- Department of Psychology, University of California, San Diego, CA, USA
| |
Collapse
|
240
|
Bryant NB, Nadel L, Gómez RL. Associations between sleep and episodic memory updating. Hippocampus 2019; 30:794-805. [PMID: 31743543 DOI: 10.1002/hipo.23178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 10/02/2019] [Accepted: 10/28/2019] [Indexed: 11/06/2022]
Abstract
Prior research shows that contextual reminders can reactivate hippocampal links to previously consolidated memories, rendering them susceptible to being updated with new information which then is reconsolidated. Studies implicate sleep in the reconsolidation of reactivated memories, but it is unknown what role sleep plays in updating of a previously consolidated trace with new information. We tracked participants' sleep during an episodic reconsolidation paradigm, first with actigraphy (Experiment 1) then with polysomnography (Experiment 2). Our paradigm involved two learning sessions and a retrieval session, each separated by 48 hr. We reminded participants of the first learning experience immediately prior to the second, which led them to update the earlier memory with elements of the later experience. In Experiment 1, less sleep after Session 1 and more sleep after Session 2 are associated with increased updating. In Experiment 2, N2 sleep spindles (SSs) after the reminder and new learning are associated with more updating, but primarily when spindle activity after Session 1 is low. Thus, total sleep time and N2 SSs contribute to sleep-dependent updating of episodic memory. This outcome is consistent with other work connecting SS activity to the integration of novel information into existing knowledge structures, extended here with the study of how variations in sleep over successive nights contribute to this process. We discuss some possible roles of spindles in the decontextualization of hippocampal memory over time. Although much work addresses the role of sleep in the consolidation of new memories, this work uniquely addresses the contribution of sleep to the updating of a previously consolidated trace with new information.
Collapse
Affiliation(s)
- Natalie B Bryant
- Department of Psychology, University of Arizona, Tucson, Arizona
| | - Lynn Nadel
- Department of Psychology and Program in Cognitive science, University of Arizona, Tucson, Arizona
| | - Rebecca L Gómez
- Department of Psychology, University of Arizona, Tucson, Arizona
| |
Collapse
|
241
|
Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory Performance. eNeuro 2019; 6:ENEURO.0306-19.2019. [PMID: 31604814 PMCID: PMC6831893 DOI: 10.1523/eneuro.0306-19.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
Slow oscillations and spindle activity during non-rapid eye movement sleep have been implicated in memory consolidation. Closed-loop acoustic stimulation has previously been shown to enhance slow oscillations and spindle activity during sleep and improve verbal associative memory. We assessed the effect of closed-loop acoustic stimulation during a daytime nap on a virtual reality spatial navigation task in 12 healthy human subjects in a randomized within-subject crossover design. We show robust enhancement of slow oscillation and spindle activity during sleep. However, no effects on behavioral performance were observed when comparing real versus sham stimulation. To explore whether memory enhancement effects were task specific and dependent on nocturnal sleep, in a second experiment with 19 healthy subjects, we aimed to replicate a previous study that used closed-loop acoustic stimulation to enhance memory for word pairs. The methods used were as close as possible to those used in the original study, except that we used a double-blind protocol, in which both subject and experimenter were unaware of the test condition. Again, we successfully enhanced slow oscillation and spindle power, but again did not strengthen associative memory performance with stimulation. We conclude that enhancement of sleep oscillations may be insufficient to enhance memory performance in spatial navigation or verbal association tasks, and provide possible explanations for lack of behavioral replication.
Collapse
|
242
|
Sanders KEG, Osburn S, Paller KA, Beeman M. Targeted Memory Reactivation During Sleep Improves Next-Day Problem Solving. Psychol Sci 2019; 30:1616-1624. [PMID: 31603738 PMCID: PMC6843748 DOI: 10.1177/0956797619873344] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/09/2019] [Indexed: 01/20/2023] Open
Abstract
Many people have claimed that sleep has helped them solve a difficult problem, but empirical support for this assertion remains tentative. The current experiment tested whether manipulating information processing during sleep impacts problem incubation and solving. In memory studies, delivering learning-associated sound cues during sleep can reactivate memories. We therefore predicted that reactivating previously unsolved problems could help people solve them. In the evening, we presented 57 participants with puzzles, each arbitrarily associated with a different sound. While participants slept overnight, half of the sounds associated with the puzzles they had not solved were surreptitiously presented. The next morning, participants solved 31.7% of cued puzzles, compared with 20.5% of uncued puzzles (a 55% improvement). Moreover, cued-puzzle solving correlated with cued-puzzle memory. Overall, these results demonstrate that cuing puzzle information during sleep can facilitate solving, thus supporting sleep's role in problem incubation and establishing a new technique to advance understanding of problem solving and sleep cognition.
Collapse
Affiliation(s)
| | | | | | - Mark Beeman
- Department of Psychology, Northwestern University
| |
Collapse
|
243
|
Ferreira C, Charest I, Wimber M. Retrieval aids the creation of a generalised memory trace and strengthens episode-unique information. Neuroimage 2019; 201:115996. [DOI: 10.1016/j.neuroimage.2019.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022] Open
|
244
|
Incorporation of fragmented visuo-olfactory episodic memory into dreams and its association with memory performance. Sci Rep 2019; 9:15687. [PMID: 31666536 PMCID: PMC6821835 DOI: 10.1038/s41598-019-51497-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
The question of a possible link between dream content and memory consolidation remains open. After a comprehensive review of the literature, we present novel findings from an experiment testing whether the incorporation of recently learned stimuli into dream reports is associated with improved post-sleep memory performance. Thirty-two high dream recallers freely explored new visuo-olfactory episodes for 3 consecutive days. During the nights following each non-explicit encoding, participants wore a wrist actimeter, and woke up at 5am and their usual waking time to record their dreams (intensity of all oneiric sensory perception was assessed using scales). A total of 120 dreams were reported and elements related to the encoding phase were identified in 37 of them, either learning-related (mainly visual- and rarely olfactory-related elements), or experiment-related (lab- or experimenters-related elements). On the 4th day, we found that participants with learning-related (n = 16) and participants with learning-related and/or experiment-related dreams (n = 21) had similar odor recognition and odor-evoked episodic memory with the other participants. However, they had significantly better visuo-spatial memory of the episodes in comparison to the other participants. Our results support the hypothesis that the learning phase is loosely incorporated into dreams and that this incorporation is associated with sleep related memory consolidation.
Collapse
|
245
|
Sleep Deprivation Disrupts Acquisition of Contextual Fear Extinction by Affecting Circadian Oscillation of Hippocampal-Infralimbic proBDNF. eNeuro 2019; 6:ENEURO.0165-19.2019. [PMID: 31585927 PMCID: PMC6800296 DOI: 10.1523/eneuro.0165-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Extensive evidence showed that mature brain-derived neurotrophic factor (mBDNF) levels displayed a circadian pattern. Circadian disruption, for example, sleep deprivation (SD), induced functional and behavioral deficits. However, compared with that of mature form, the biological role of the pro-peptide, proBDNF, was poorly understood. Here, we found that proBDNF was expressed under circadian rhythm in the ventral hippocampus (vHPC). SD rats exhibited deficits in acquisition of conditioned extinction and damped rhythmicity in vHPC proBDNF activity that were accompanied by SD between zeitgeber time (ZT)0 and ZT4, but not the late stage of sleep period. Furthermore, SD affected fear extinction through vHPC-IL proBDNF signaling, which was associated with NR2B subunits of NMDA receptors. More importantly, infusion of proBDNF could mitigate SD-induced abnormal neural activity, by suppressing the enhanced basal firing rate of IL-RS and elevating the depressed neural response that evoked by acquisition of conditioned extinction. Therefore, this finding provided the first evidence that circadian oscillation of vHPC proBDNF activity contributed to the effects of SD on acquisition of conditioned fear extinction, and suggested a new therapeutic target to reverse the cognitive deficits in sleep-related mental disorder, such as post-traumatic stress disorder (PTSD).
Collapse
|
246
|
Salfi F, Tempesta D, De Gennaro L, Ferrara M. Cued Memory Reactivation during Motor Imagery Practice Influences Early Improvement of Procedural Skill Learning. Neuroscience 2019; 418:244-253. [PMID: 31491503 DOI: 10.1016/j.neuroscience.2019.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 02/05/2023]
Abstract
Reactivation processes are fundamental for procedural memory improvement. Targeted memory reactivation (TMR) influences memory consolidation through the re-exposure to certain perceptual components present in a previous phase of associative learning. On the other hand, motor imagery (MI) affects procedural skills through a repeated mental simulation of a pre-learned movement without physically moving. Both for TMR and MI, performance improvement has proven to be associated with an induction of reactivation processes. The positive effect of TMR is widely acknowledged in sleep. Here, we measured its impact on procedural learning during waking, in particular during MI practice, in line with the hypothesis that the exogenously induced involuntary reactivations through TMR could add up to the endogenous and voluntary reactivations induced by MI. Therefore, we assessed the influence on performance on a sequential finger tapping task of an auditory TMR during MI practice. It was compared to four conditions: (i) MI alone, (ii) MI during an incompatible sound stimulation, (iii) a mere video viewing and (iv) an auditory TMR during a video viewing. Results showed that the TMR + MI condition determined the largest early performance improvement as indexed by the combined measure of speed and accuracy (number of correct sequences typed in the task). We propose that TMR may enhance the effectiveness of MI protocols, and that MI could represent an optimal time window during wakefulness to take advantage of the effects of TMR.
Collapse
Affiliation(s)
- Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daniela Tempesta
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza, University of Rome, Rome, Italy
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
247
|
Kam K, Pettibone WD, Shim K, Chen RK, Varga AW. Dynamics of sleep spindles and coupling to slow oscillations following motor learning in adult mice. Neurobiol Learn Mem 2019; 166:107100. [PMID: 31622665 DOI: 10.1016/j.nlm.2019.107100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/18/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
Abstract
Sleep spindles have been implicated in motor learning in human subjects, but their occurrence, timing in relation to cortical slow oscillations, and relationship to offline gains in motor learning have not been examined in animal models. In this study, we recorded EEG over bilateral primary motor cortex in conjunction with EMG for 24 h following a period of either baseline handling or following rotarod motor learning to monitor sleep. We measured several biophysical properties of sleep spindles and their temporal coupling with cortical slow oscillations (SO, <1 Hz) and cortical delta waves (1-4 Hz). Following motor learning, we found an increase in spindles during an early period of NREM sleep (1-4 h) without changes to biophysical properties such as spindle power, peak frequency and coherence. In this same period of early NREM sleep, both SO and delta power increased after motor learning. Notably, a vast majority of spindles were associated with minimal SO power, but in the subset that were associated with significant SO power (>1 z-score above the population mean), spindle-associated SO power was greater in spindles following motor learning compared to baseline sleep. Also, we did not observe a group-level preferred phase in spindle-SO or spindle-delta coupling. While SO power alone was not predictive of motor performance in early NREM sleep, both spindle density and the difference in the magnitude of the mean resultant vector length of the phase angle for SO-associated spindles, a measure of its coupling precision, were positively correlated with offline change in motor performance. These findings support a role for sleep spindles and their coupling to slow oscillations in motor learning and establish a model in which spindle timing and the brain circuits that support offline plasticity can be mechanistically explored.
Collapse
Affiliation(s)
- Korey Kam
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ward D Pettibone
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaitlyn Shim
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca K Chen
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew W Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
248
|
Olcese U, Bos JJ, Vinck M, Pennartz CMA. Functional determinants of enhanced and depressed interareal information flow in nonrapid eye movement sleep between neuronal ensembles in rat cortex and hippocampus. Sleep 2019; 41:5078618. [PMID: 30423179 DOI: 10.1093/sleep/zsy167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 11/12/2022] Open
Abstract
Compared with wakefulness, neuronal activity during nonrapid eye movement (NREM) sleep is characterized by a decreased ability to integrate information, but also by the reemergence of task-related information patterns. To investigate the mechanisms underlying these seemingly opposing phenomena, we measured directed information flow by computing transfer entropy between neuronal spiking activity in three cortical regions and the hippocampus of rats across brain states. State-dependent information flow was jointly determined by the anatomical distance between neurons and by their functional specialization. We distinguished two regimes, operating at short and long time scales, respectively. From wakefulness to NREM sleep, transfer entropy at short time scales increased for interareal connections between neurons showing behavioral task correlates. Conversely, transfer entropy at long time scales became stronger between nontask modulated neurons and weaker between task-modulated neurons. These results may explain how, during NREM sleep, a global interareal disconnection is compatible with highly specific task-related information transfer.
Collapse
Affiliation(s)
- Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen J Bos
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin Vinck
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Ernst Strungmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
249
|
Brodt S, Pöhlchen D, Täumer E, Gais S, Schönauer M. Incubation, not sleep, aids problem-solving. Sleep 2019; 41:5065174. [PMID: 30113673 DOI: 10.1093/sleep/zsy155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 01/16/2023] Open
Abstract
Solving a novel problem and finding innovative solutions requires a flexible and creative recombination of prior knowledge. It is thought that setting a problem aside before giving it another try aids problem-solving. The underlying mechanisms of such an incubation period could include unconscious processing that fosters spreading activation along associated networks and the restructuring of problem representations. Recently, it has been suggested that sleep may also support problem-solving by supporting the transformation and restructuring of memory elements. Since the effect of sleep on problem-solving has been mainly tested using the Remote Associates Test, we chose three different tasks-classical riddles, visual change detection, and anagrams-to examine various aspects of problem-solving and to pinpoint task-specific prerequisites for effects of sleep or incubation to emerge. Sixty-two participants were given two attempts to solve the problems. Both attempts either occurred consecutively or were spaced apart by a 3-hour incubation interval that was spent awake or asleep. We found that a period of incubation positively affected solutions rates in classical riddles, but not in visual change detection or anagram solving. Contrary to our hypothesis, spending the incubation period asleep, did not yield any additional benefit. Our study thus supports the notion that a period of letting a problem rest is beneficial for its solution and confines the role of sleep to memory transformations that do not directly impact on problem-solving ability.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Dorothee Pöhlchen
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Esther Täumer
- Department of Psychology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Steffen Gais
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Monika Schönauer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
250
|
Abstract
It has long been known that sleep supports memory consolidation. Two recent studies now shed light on how sleep spindles, characteristic 11-16 Hz activity bursts, contribute critically to memory processing during the night.
Collapse
|