201
|
Bill RM, Henderson PJF, Iwata S, Kunji ERS, Michel H, Neutze R, Newstead S, Poolman B, Tate CG, Vogel H. Overcoming barriers to membrane protein structure determination. Nat Biotechnol 2011; 29:335-40. [PMID: 21478852 DOI: 10.1038/nbt.1833] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
After decades of slow progress, the pace of research on membrane protein structures is beginning to quicken thanks to various improvements in technology, including protein engineering and microfocus X-ray diffraction. Here we review these developments and, where possible, highlight generic new approaches to solving membrane protein structures based on recent technological advances. Rational approaches to overcoming the bottlenecks in the field are urgently required as membrane proteins, which typically comprise ~30% of the proteomes of organisms, are dramatically under-represented in the structural database of the Protein Data Bank.
Collapse
Affiliation(s)
- Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Tsai CJ, Khafizov K, Hakulinen J, Forrest LR, Krämer R, Kühlbrandt W, Ziegler C. Structural Asymmetry in a Trimeric Na+/Betaine Symporter, BetP, from Corynebacterium glutamicum. J Mol Biol 2011; 407:368-81. [DOI: 10.1016/j.jmb.2011.01.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 12/10/2010] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
|
203
|
Lu F, Li S, Jiang Y, Jiang J, Fan H, Lu G, Deng D, Dang S, Zhang X, Wang J, Yan N. Structure and mechanism of the uracil transporter UraA. Nature 2011; 472:243-6. [PMID: 21423164 DOI: 10.1038/nature09885] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/27/2011] [Indexed: 11/09/2022]
Abstract
The nucleobase/ascorbate transporter (NAT) proteins, also known as nucleobase/cation symporter 2 (NCS2) proteins, are responsible for the uptake of nucleobases in all kingdoms of life and for the transport of vitamin C in mammals. Despite functional characterization of the NAT family members in bacteria, fungi and mammals, detailed structural information remains unavailable. Here we report the crystal structure of a representative NAT protein, the Escherichia coli uracil/H(+) symporter UraA, in complex with uracil at a resolution of 2.8 Å. UraA has a novel structural fold, with 14 transmembrane segments (TMs) divided into two inverted repeats. A pair of antiparallel β-strands is located between TM3 and TM10 and has an important role in structural organization and substrate recognition. The structure is spatially arranged into a core domain and a gate domain. Uracil, located at the interface between the two domains, is coordinated mainly by residues from the core domain. Structural analysis suggests that alternating access of the substrate may be achieved through conformational changes of the gate domain.
Collapse
Affiliation(s)
- Feiran Lu
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 2011; 35:68-86. [PMID: 20584082 DOI: 10.1111/j.1574-6976.2010.00236.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The tripartite ATP-independent periplasmic (TRAP) transporters are the best-studied family of substrate-binding protein (SBP)-dependent secondary transporters and are ubiquitous in prokaryotes, but absent from eukaryotes. They are comprised of an SBP of the DctP or TAXI families and two integral membrane proteins of unequal sizes that form the DctQ and DctM protein families, respectively. The SBP component has a structure comprised of two domains connected by a hinge that closes upon substrate binding. In DctP-TRAP transporters, substrate binding is mediated through a conserved and specific arginine/carboxylate interaction in the SBP. While the SBP component has now been relatively well characterized, the membrane components of TRAP transporters are still poorly understood both in terms of their structure and function. We review the expanding repertoire of substrates and physiological roles for experimentally characterized TRAP transporters in bacteria and discuss mechanistic aspects of these transporters using data primarily from the sialic acid-specific TRAP transporter SiaPQM from Haemophilus influenzae, which suggest that TRAP transporters are high-affinity, Na(+)-dependent unidirectional secondary transporters.
Collapse
|
205
|
Substrate specificity and ion coupling in the Na+/betaine symporter BetP. EMBO J 2011; 30:1221-9. [PMID: 21364531 DOI: 10.1038/emboj.2011.46] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 01/31/2011] [Indexed: 11/09/2022] Open
Abstract
BetP is an Na(+)-coupled betaine-specific transporter of the betaine-choline-carnitine (BCC) transporter family involved in the response to hyperosmotic stress. The crystal structure of BetP revealed an overall fold of two inverted structurally related repeats (LeuT-fold) that BetP shares with other sequence-unrelated Na(+)-coupled symporters. Numerous structures of LeuT-fold transporters in distinct conformational states have contributed substantially to our understanding of the alternating access mechanism of transport. Nevertheless, coupling of substrate and co-transported ion fluxes has not been structurally corroborated to the same extent. We converted BetP by a single-point mutation--glycine to aspartate--into an H(+)-coupled choline-specific transporter and solved the crystal structure of this mutant in complex with choline. The structure of BetP-G153D demonstrates a new inward-facing open conformation for BetP. Choline binding to a location close to the second, low-affinity sodium-binding site (Na2) of LeuT-fold transporters is facilitated by the introduced aspartate. Our data confirm the importance of a cation-binding site in BetP, playing a key role in a proposed molecular mechanism of Na(+) and H(+) coupling in BCC transporters.
Collapse
|
206
|
Xiao S, Wang C, Li J, Li F. Folding and assembly of TMD 6-related segments of DMT 1 in trifluoroethanol aqueous solution. J Pept Sci 2011; 17:505-11. [PMID: 21674702 DOI: 10.1002/psc.1356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 12/14/2010] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
Divalent metal-ion transporter 1 (DMT1) belongs to a large class of metal-ion transporters that drive the translocation of a wide range of divalent metal substrates across membranes toward the cytosol with couple of protons. Two highly conserved histidines in the sixth transmembrane domain (TMD6) are essential for metal transport activity in DMT1. In the present study, we determine the high-resolution structures of three 25-residue peptides, corresponding to TMD6 of the wildtype DMT1 (the segment 255-279) and its H267A and H272A mutants, in 30% TFE-d(2) aqueous solution by the combined use of circular dichroism (CD) and NMR spectroscopies. The wildtype peptide forms an 'α-helix-extended segment-α-helix' structure with two helices spanning over Gly258-Ala262 and Met265-Lys277 linked by a hinge at residues Val263-Ile264. The H267A mutation reduces the hinge to one residue (Ile264), while the H272A mutation extends the flexible region of the central part from Val263 to His267. Diffusion-ordered spectroscopy (DOSY) study demonstrates that all the peptides are self-assembly as trimer in 30% TFE-d(2) aqueous solution. The H272A substitution decreases the intermolecular interaction whereas the H267A substitution may enhance the intermolecular interaction. The specific structure of the discontinuous helix and the self-assembly feature of DMT1-TMD6 may be crucial for its biological function. The changes in conformation and intermolecular interaction induced by histidine substitution may be correlated with the deficiency of DMT1 in metal-ion permeation.
Collapse
Affiliation(s)
- Shuyan Xiao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | | | | | | |
Collapse
|
207
|
Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc Natl Acad Sci U S A 2011; 108:3935-40. [PMID: 21368142 DOI: 10.1073/pnas.1018081108] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transporters of the amino acid, polyamine and organocation (APC) superfamily play essential roles in cell redox balance, cancer, and aminoacidurias. The bacterial L-arginine/agmatine antiporter, AdiC, is the main APC structural paradigm and shares the "5 + 5 inverted repeat" fold found in other families like the Na(+)-coupled neurotransmitter transporters. The available AdiC crystal structures capture two states of its transport cycle: the open-to-out apo and the outward-facing Arg(+)-bound occluded. However, the role of Arg(+) during the transition between these two states remains unknown. Here, we report the crystal structure at 3.0 Å resolution of an Arg(+)-bound AdiC mutant (N101A) in the open-to-out conformation, completing the picture of the major conformational states during the transport cycle of the 5 + 5 inverted repeat fold-transporters. The N101A structure is an intermediate state between the previous known AdiC conformations. The Arg(+)-guanidinium group in the current structure presents high mobility and delocalization, hampering substrate occlusion and resulting in a low translocation rate. Further analysis supports that proper coordination of this group with residues Asn101 and Trp293 is required to transit to the occluded state, providing the first clues on the molecular mechanism of substrate-induced fit in a 5 + 5 inverted repeat fold-transporter. The pseudosymmetry found between repeats in AdiC, and in all fold-related transporters, restraints the conformational changes, in particular the transmembrane helices rearrangements, which occur during the transport cycle. In AdiC these movements take place away from the dimer interface, explaining the independent functioning of each subunit.
Collapse
|
208
|
Zhao C, Noskov SY. The Role of Local Hydration and Hydrogen-Bonding Dynamics in Ion and Solute Release from Ion-Coupled Secondary Transporters. Biochemistry 2011; 50:1848-56. [DOI: 10.1021/bi101454f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chunfeng Zhao
- Institute for Biocomplexity and Informatics and Department of Biological Sciences, University of Calgary, 2500 University Drive, BI558, Calgary, Alberta, Canada T2N 1N4
| | - Sergei Yu. Noskov
- Institute for Biocomplexity and Informatics and Department of Biological Sciences, University of Calgary, 2500 University Drive, BI558, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
209
|
Ziegler C, Bremer E, Krämer R. The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol 2011; 78:13-34. [PMID: 20923416 DOI: 10.1111/j.1365-2958.2010.07332.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increases in the environmental osmolarity are key determinants for the growth of microorganisms. To ensure a physiologically acceptable level of cellular hydration and turgor at high osmolarity, many bacteria accumulate compatible solutes. Osmotically controlled uptake systems allow the scavenging of these compounds from scarce environmental sources as effective osmoprotectants. A number of these systems belong to the BCCT family (betaine-choline-carnitine-transporter), sodium- or proton-coupled transporters (e.g. BetP and BetT respectively) that are ubiquitous in microorganisms. The BCCT family also contains CaiT, an L-carnitine/γ-butyrobetaine antiporter that is not involved in osmotic stress responses. The glycine betaine transporter BetP from Corynebacterium glutamicum is a representative for osmoregulated symporters of the BCCT family and functions both as an osmosensor and osmoregulator. The crystal structure of BetP in an occluded conformation in complex with its substrate glycine betaine and two crystal structures of CaiT in an inward-facing open conformation in complex with L-carnitine and γ-butyrobetaine were reported recently. These structures and the wealth of biochemical data on the activity control of BetP in response to osmotic stress enable a correlation between the sensing of osmotic stress by a transporter protein with the ensuing regulation of transport activity. Molecular determinants governing the high-affinity binding of the compatible solutes by BetP and CaiT, the coupling in symporters and antiporters, and the osmoregulatory properties are discussed in detail for BetP and various BCCT carriers.
Collapse
Affiliation(s)
- Christine Ziegler
- Max-Planck Institute for Biophysics, Max-von-Laue Street 3, D-60438 Frankfurt, Germany
| | | | | |
Collapse
|
210
|
Sonoda Y, Newstead S, Hu NJ, Alguel Y, Nji E, Beis K, Yashiro S, Lee C, Leung J, Cameron AD, Byrne B, Iwata S, Drew D. Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure 2011; 19:17-25. [PMID: 21220112 PMCID: PMC3111809 DOI: 10.1016/j.str.2010.12.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 12/31/2022]
Abstract
Obtaining well-ordered crystals is a major hurdle to X-ray structure determination of membrane proteins. To facilitate crystal optimization, we investigated the detergent stability of 24 eukaryotic and prokaryotic membrane proteins, predominantly transporters, using a fluorescent-based unfolding assay. We have benchmarked the stability required for crystallization in small micelle detergents, as they are statistically more likely to lead to high-resolution structures. Using this information, we have been able to obtain well-diffracting crystals for a number of sodium and proton-dependent transporters. By including in the analysis seven membrane proteins for which structures are already known, AmtB, GlpG, Mhp1, GlpT, EmrD, NhaA, and LacY, it was further possible to demonstrate an overall trend between protein stability and structural resolution. We suggest that by monitoring membrane protein stability with reference to the benchmarks described here, greater efforts can be placed on constructs and conditions more likely to yield high-resolution structures.
Collapse
Affiliation(s)
- Yo Sonoda
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 ODE, UK
| | - Simon Newstead
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
| | - Nien-Jen Hu
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 ODE, UK
| | - Yilmaz Alguel
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 ODE, UK
- Japan Science and Technology Agency, ERATO, Human Receptor Crystallography Project, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Emmanuel Nji
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
| | - Konstantinos Beis
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 ODE, UK
| | - Shoko Yashiro
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 ODE, UK
- Japan Science and Technology Agency, ERATO, Human Receptor Crystallography Project, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chiara Lee
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
| | - James Leung
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
| | - Alexander D. Cameron
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 ODE, UK
- Japan Science and Technology Agency, ERATO, Human Receptor Crystallography Project, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Bernadette Byrne
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
| | - So Iwata
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, Oxfordshire OX11 ODE, UK
- Japan Science and Technology Agency, ERATO, Human Receptor Crystallography Project, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - David Drew
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
211
|
Weyand S, Shimamura T, Beckstein O, Sansom MSP, Iwata S, Henderson PJF, Cameron AD. The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:20-3. [PMID: 21169684 PMCID: PMC3004247 DOI: 10.1107/s0909049510032449] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/01/2010] [Indexed: 05/21/2023]
Abstract
Secondary active transporters move molecules across cell membranes by coupling this process to the energetically favourable downhill movement of ions or protons along an electrochemical gradient. They function by the alternating access model of transport in which, through conformational changes, the substrate binding site alternately faces either side of the membrane. Owing to the difficulties in obtaining the crystal structure of a single transporter in different conformational states, relatively little structural information is known to explain how this process occurs. Here, the structure of the sodium-benzylhydantoin transporter, Mhp1, from Microbacterium liquefaciens, has been determined in three conformational states; from this a mechanism is proposed for switching from the outward-facing open conformation through an occluded structure to the inward-facing open state.
Collapse
Affiliation(s)
- Simone Weyand
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Human Receptor Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Tatsuro Shimamura
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Human Receptor Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Oliver Beckstein
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - So Iwata
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Human Receptor Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-Ku, Kyoto 606-8501, Japan
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Peter J. F. Henderson
- Astbury Centre for Structural Molecular Biology, Institute for Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander D. Cameron
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Japan Science and Technology Agency, Exploratory Research for Advanced Technology, Human Receptor Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| |
Collapse
|
212
|
Piscitelli CL, Krishnamurthy H, Gouaux E. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature 2010; 468:1129-32. [PMID: 21179170 PMCID: PMC3079577 DOI: 10.1038/nature09581] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022]
Abstract
Neurotransmitter/sodium symporters (NSSs) couple the uptake of neurotransmitter with one or more sodium ions, removing neurotransmitter from the synaptic cleft. NSSs are essential to the function of chemical synapses, are associated with multiple neurological diseases and disorders, and are the targets of therapeutic and illicit drugs. LeuT, a prokaryotic orthologue of the NSS family, is a model transporter for understanding the relationships between molecular mechanism and atomic structure in a broad range of sodium-dependent and sodium-independent secondary transporters. At present there is a controversy over whether there are one or two high-affinity substrate binding sites in LeuT. The first-reported crystal structure of LeuT, together with subsequent functional and structural studies, provided direct evidence for a single, high-affinity, centrally located substrate-binding site, defined as the S1 site. Recent binding, flux and molecular simulation studies, however, have been interpreted in terms of a model where there are two high-affinity binding sites: the central, S1, site and a second, the S2 site, located within the extracellular vestibule. Furthermore, it was proposed that the S1 and S2 sites are allosterically coupled such that occupancy of the S2 site is required for the cytoplasmic release of substrate from the S1 site. Here we address this controversy by performing direct measurement of substrate binding to wild-type LeuT and to S2 site mutants using isothermal titration calorimetry, equilibrium dialysis and scintillation proximity assays. In addition, we perform uptake experiments to determine whether the proposed allosteric coupling between the putative S2 site and the S1 site manifests itself in the kinetics of substrate flux. We conclude that LeuT harbours a single, centrally located, high-affinity substrate-binding site and that transport is well described by a simple, single-substrate kinetic mechanism.
Collapse
Affiliation(s)
- Chayne L Piscitelli
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
213
|
The mechanism of sodium and substrate release from the binding pocket of vSGLT. Nature 2010; 468:988-91. [PMID: 21131949 DOI: 10.1038/nature09580] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 10/12/2010] [Indexed: 12/13/2022]
Abstract
Membrane co-transport proteins that use a five-helix inverted repeat motif have recently emerged as one of the largest structural classes of secondary active transporters. However, despite many structural advances there is no clear evidence of how ion and substrate transport are coupled. Here we report a comprehensive study of the sodium/galactose transporter from Vibrio parahaemolyticus (vSGLT), consisting of molecular dynamics simulations, biochemical characterization and a new crystal structure of the inward-open conformation at a resolution of 2.7 Å. Our data show that sodium exit causes a reorientation of transmembrane helix 1 that opens an inner gate required for substrate exit, and also triggers minor rigid-body movements in two sets of transmembrane helical bundles. This cascade of events, initiated by sodium release, ensures proper timing of ion and substrate release. Once set in motion, these molecular changes weaken substrate binding to the transporter and allow galactose readily to enter the intracellular space. Additionally, we identify an allosteric pathway between the sodium-binding sites, the unwound portion of transmembrane helix 1 and the substrate-binding site that is essential in the coupling of co-transport.
Collapse
|
214
|
Olkhova E, Raba M, Bracher S, Hilger D, Jung H. Homology model of the Na+/proline transporter PutP of Escherichia coli and its functional implications. J Mol Biol 2010; 406:59-74. [PMID: 21130773 DOI: 10.1016/j.jmb.2010.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 01/08/2023]
Abstract
Na(+)/solute symporters are essential membrane integrated proteins that couple the flow of Na(+) ions driven by electrochemical Na(+) gradients to the transport of solutes across biological membranes. Here, we used a combination of molecular modeling techniques and evolutionary conservation analysis to construct and validate a first model of the Na(+)/proline symporter PutP of Escherichia coli based on the crystal structure of the bacterial Na(+)/galactose symporter vSGLT. Ligand docking experiments were employed to gain information about residues involved in proline binding. The proposed model is consistent with the available experimental data and was further validated by amino acid substitutions and kinetic and protein chemical analyses. Combination of the results of molecular modeling and functional studies predicts the location and organization of the Na(+) and proline binding sites. Remarkably, as proposed computationally and discovered here experimentally, residues Y140, W244, and Y248 of transmembrane segments 4 and 7 are found to be particularly important for PutP function and suggested to participate in proline binding and/or gating.
Collapse
Affiliation(s)
- Elena Olkhova
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, D-60438 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
215
|
Khafizov K, Staritzbichler R, Stamm M, Forrest LR. A Study of the Evolution of Inverted-Topology Repeats from LeuT-Fold Transporters Using AlignMe. Biochemistry 2010; 49:10702-13. [PMID: 21073167 DOI: 10.1021/bi101256x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kamil Khafizov
- Computational Structural Biology Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - René Staritzbichler
- Computational Structural Biology Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Marcus Stamm
- Computational Structural Biology Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Lucy R. Forrest
- Computational Structural Biology Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
216
|
Forrest LR, Krämer R, Ziegler C. The structural basis of secondary active transport mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:167-88. [PMID: 21029721 DOI: 10.1016/j.bbabio.2010.10.014] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 12/22/2022]
Abstract
Secondary active transporters couple the free energy of the electrochemical potential of one solute to the transmembrane movement of another. As a basic mechanistic explanation for their transport function the model of alternating access was put forward more than 40 years ago, and has been supported by numerous kinetic, biochemical and biophysical studies. According to this model, the transporter exposes its substrate binding site(s) to one side of the membrane or the other during transport catalysis, requiring a substantial conformational change of the carrier protein. In the light of recent structural data for a number of secondary transport proteins, we analyze the model of alternating access in more detail, and correlate it with specific structural and chemical properties of the transporters, such as their assignment to different functional states in the catalytic cycle of the respective transporter, the definition of substrate binding sites, the type of movement of the central part of the carrier harboring the substrate binding site, as well as the impact of symmetry on fold-specific conformational changes. Besides mediating the transmembrane movement of solutes, the mechanism of secondary carriers inherently involves a mechanistic coupling of substrate flux to the electrochemical potential of co-substrate ions or solutes. Mainly because of limitations in resolution of available transporter structures, this important aspect of secondary transport cannot yet be substantiated by structural data to the same extent as the conformational change aspect. We summarize the concepts of coupling in secondary transport and discuss them in the context of the available evidence for ion binding to specific sites and the impact of the ions on the conformational state of the carrier protein, which together lead to mechanistic models for coupling.
Collapse
Affiliation(s)
- Lucy R Forrest
- Structural Biology Department, Max Planck Institute for Biophysics, Frankfurt, Germany
| | | | | |
Collapse
|
217
|
Ghosal A, Said HM. Structure-function activity of the human sodium-dependent multivitamin transporter: role of His¹¹⁵ and His²⁵⁴. Am J Physiol Cell Physiol 2010; 300:C97-104. [PMID: 20962270 DOI: 10.1152/ajpcell.00398.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal absorption of biotin occurs via a Na(+)-dependent carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT; product of the Slc5a6 gene). The SMVT system is exclusively expressed at the apical membrane domain of the polarized intestinal epithelial cells. Whereas previous studies from our laboratory and others have characterized different physiological and biological aspects of SMVT, little is currently known about its structure-function activity relationship. Using site-directed mutagenesis approach, we examined the role of the positively charged histidine (His) residues of the human SMVT (hSMVT) in transporting the negatively charged biotin. Of the seven conserved (across species) His residues in the hSMVT polypeptide, only His¹¹⁵ and His²⁵⁴ were found to be important for the function of hSMVT as their mutation led to a significant reduction in carrier-mediated biotin uptake. This inhibition was mediated via a significant reduction in the maximal velocity (V(max)), but not the apparent Michaelis constant (K(m)), of the biotin uptake process and was not related to the charge of the His residue. The inhibition was also not due to changes in transcriptional or translational efficiency of the mutated hSMVT compared with wild-type carrier. However, surface biotinylation assay showed a significant reduction in the level of expression of the mutated hSMVT at the cell surface, a finding that was further confirmed by confocal imaging. Our results show important role for His¹¹⁵ and His²⁵⁴ residues in hSMVT function, which is most probably mediated via an effect on level of hSMVT expression at the cell membrane.
Collapse
Affiliation(s)
- Abhisek Ghosal
- Department of Medicine, University of California, Irvine, USA
| | | |
Collapse
|
218
|
Boudker O, Verdon G. Structural perspectives on secondary active transporters. Trends Pharmacol Sci 2010; 31:418-26. [PMID: 20655602 PMCID: PMC2933288 DOI: 10.1016/j.tips.2010.06.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/15/2010] [Accepted: 06/18/2010] [Indexed: 01/04/2023]
Abstract
Secondary active transporters catalyze the concentrative transport of substrates across lipid membranes by harnessing the energy of electrochemical ion gradients. These transporters bind their ligands on one side of the membrane, and undergo a global conformational change to release them on the other side of the membrane. Over the last few years, crystal structures have captured several bacterial secondary transporters in different states along their transport cycle, providing insight into possible molecular mechanisms. In this review, we summarize recent findings focusing on the emerging structural and mechanistic similarities between evolutionary diverse transporters. We also discuss the structural basis of substrate binding, ion coupling and inhibition viewed from the perspective of these similarities.
Collapse
Affiliation(s)
- Olga Boudker
- Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA.
| | | |
Collapse
|
219
|
Schulze S, Köster S, Geldmacher U, Terwisscha van Scheltinga AC, Kühlbrandt W. Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT. Nature 2010; 467:233-6. [DOI: 10.1038/nature09310] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 06/24/2010] [Indexed: 11/09/2022]
|
220
|
Shaikh SA, Tajkhorshid E. Modeling and dynamics of the inward-facing state of a Na+/Cl- dependent neurotransmitter transporter homologue. PLoS Comput Biol 2010; 6. [PMID: 20865057 PMCID: PMC2928745 DOI: 10.1371/journal.pcbi.1000905] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/26/2010] [Indexed: 10/30/2022] Open
Abstract
The leucine transporter (LeuT) has recently commanded exceptional attention due mainly to two distinctions; it provides the only crystal structures available for a protein homologous to the pharmacologically relevant neurotransmitter: sodium symporters (NSS), and, it exhibits a hallmark 5-TM inverted repeat ("LeuT-fold"), a fold recently discovered to also exist in several secondary transporter families, underscoring its general role in transporter function. Constructing the transport cycle of "LeuT-fold" transporters requires detailed structural and dynamic descriptions of the outward-facing (OF) and inward-facing (IF) states, as well as the intermediate states. To this end, we have modeled the structurally unknown IF state of LeuT, based on the known crystal structures of the OF state of LeuT and the IF state of vSGLT, a "LeuT-fold" transporter. The detailed methodology developed for the study combines structure-based alignment, threading, targeted MD and equilibrium MD, and can be applied to other proteins. The resulting IF-state models maintain the secondary structural features of LeuT. Water penetration and solvent accessibility calculations show that TM1, TM3, TM6 and TM8 line the substrate binding/unbinding pathway with TM10 and its pseudosymmetric partner, TM5, participating in the extracellular and intracellular halves of the lumen, respectively. We report conformational hotspots where notable changes in interactions occur between the IF and OF states. We observe Na2 exiting the LeuT-substrate- complex in the IF state, mainly due to TM1 bending. Inducing a transition in only one of the two pseudosymmetric domains, while allowing the second to respond dynamically, is found to be sufficient to induce the formation of the IF state. We also propose that TM2 and TM7 may be facilitators of TM1 and TM6 motion. Thus, this study not only presents a novel modeling methodology applied to obtain the IF state of LeuT, but also describes structural elements involved in a possibly general transport mechanism in transporters adopting the "LeuT-fold".
Collapse
Affiliation(s)
- Saher Afshan Shaikh
- Department of Biochemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Emad Tajkhorshid
- Department of Biochemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- College of Medicine and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
221
|
Balkrishna S, Bröer A, Kingsland A, Bröer S. Rapid downregulation of the rat glutamine transporter SNAT3 by a caveolin-dependent trafficking mechanism in Xenopus laevis oocytes. Am J Physiol Cell Physiol 2010; 299:C1047-57. [PMID: 20739622 DOI: 10.1152/ajpcell.00209.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glutamine transporter SNAT3 is involved in the uptake and release of glutamine in the brain, liver, and kidney. Substrate transport is accompanied by Na(+) cotransport and H(+) antiport. In this study, treatment of Xenopus laevis oocytes expressing rat SNAT3 with the phorbol ester PMA resulted in a rapid downregulation of glutamine uptake in less than 20 min. PMA treatment of oocytes coexpressing SNAT3 and the monocarboxylate transporter MCT1 reduced SNAT3 activity only, demonstrating the specificity of the regulatory mechanism. Single or combined mutations of seven putative phosphorylation sites in the SNAT3 sequence did not affect the regulation of SNAT3 by PMA. Expression of an EGFP-SNAT3 fusion protein in oocytes established that the downregulation was caused by the retrieval of the transporter from the plasma membrane. Coexpression of SNAT3 with dominant-negative mutants of dynamin or caveolin revealed that SNAT3 trafficking occurs in a dynamin-independent manner and is influenced by caveolin. Although system N activity was not affected by PMA in cultured astrocytes, a downregulation was observed in HepG2 cells.
Collapse
Affiliation(s)
- Sarojini Balkrishna
- Research School of Biology, Australian National Univ., Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
222
|
In and out of the cation pumps: P-type ATPase structure revisited. Curr Opin Struct Biol 2010; 20:431-9. [PMID: 20634056 DOI: 10.1016/j.sbi.2010.06.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 06/08/2010] [Accepted: 06/15/2010] [Indexed: 12/12/2022]
Abstract
Active transport across membranes is a crucial requirement for life. P-type ATPases build up electrochemical gradients at the expense of ATP by forming and splitting a covalent phosphoenzyme intermediate, coupled to conformational changes in the transmembrane section where the ions are translocated. The marked increment during the last three years in the number of crystal structures of P-type ATPases has greatly improved our understanding of the similarities and differences of pumps with different ion specificities, since the structures of the Ca2+-ATPase, the Na+,K+-ATPase and the H+-ATPase can now be compared directly. Mechanisms for ion gating, charge neutralization and backflow prevention are starting to emerge from comparative structural analysis; and in combination with functional studies of mutated pumps this provides a framework for speculating on how the ions are bound and released as well as on how specificity is achieved.
Collapse
|
223
|
Tsai CJ, Ziegler C. Coupling electron cryomicroscopy and X-ray crystallography to understand secondary active transport. Curr Opin Struct Biol 2010; 20:448-55. [PMID: 20620041 DOI: 10.1016/j.sbi.2010.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/07/2010] [Accepted: 06/08/2010] [Indexed: 11/28/2022]
Abstract
In the past few years we have seen an amazing increase in the number of high-resolution structures for secondary transporters determined by X-ray crystallography, while 3D data obtained by electron cryomicroscopy (cryo-EM) from two-dimensional (2D) crystals are only available at medium resolutions of about 6-10A. Despite their superior resolution, it turned out that the description of a molecular mechanism of secondary transport could not solely rely on high-resolution X-ray structures and have to be supplemented with biochemical and spectroscopic data. Moreover, the comparison of X-ray structures and 3D EM maps has proved to be an important tool for validating native conformations of several membrane proteins, especially when functional data contradicted predictions based on a crystal structure. In addition, 3D EM maps are better suited to investigate transporter activation because of the lipidic environment.
Collapse
Affiliation(s)
- Ching-Ju Tsai
- Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | |
Collapse
|
224
|
Bartoccioni P, Del Rio C, Ratera M, Kowalczyk L, Baldwin JM, Zorzano A, Quick M, Baldwin SA, Vázquez-Ibar JL, Palacín M. Role of transmembrane domain 8 in substrate selectivity and translocation of SteT, a member of the L-amino acid transporter (LAT) family. J Biol Chem 2010; 285:28764-76. [PMID: 20610400 DOI: 10.1074/jbc.m110.116632] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
System l-amino acid transporters (LAT) belong to the amino acid, polyamine, and organic cation superfamily of transporters and include the light subunits of heteromeric amino acid transporters and prokaryotic homologues. Cysteine reactivity of SteT (serine/threonine antiporter) has been used here to study the substrate-binding site of LAT transporters. Residue Cys-291, in transmembrane domain 8 (TM8), is inactivated by thiol reagents in a substrate protectable manner. Surprisingly, DTT activated the transporter by reducing residue Cys-291. Cysteine-scanning mutagenesis of TM8 showed DTT activation in the single-cysteine mutants S287C, G294C, and S298C, lining the same alpha-helical face. S-Thiolation in Escherichia coli cells resulted in complete inactivation of the single-cysteine mutant G294C. l-Serine blocked DTT activation with an EC(50) similar to the apparent K(M) of this mutant. Thus, S-thiolation abolished substrate translocation but not substrate binding. Mutation of Lys-295, to Cys (K295C) broadened the profile of inhibitors and the spectrum of substrates with the exception of imino acids. A structural model of SteT based on the structural homologue AdiC (arginine/agmatine antiporter) positions residues Cys-291 and Lys-295 in the putative substrate binding pocket. All this suggests that Lys-295 is a main determinant in the recognition of the side chain of SteT substrates. In contrast, Gly-294 is not facing the surface, suggesting conformational changes involving TM8 during the transport cycle. Our results suggest that TM8 sculpts the substrate-binding site and undergoes conformational changes during the transport cycle of SteT.
Collapse
|
225
|
Facey SJ, Kuhn A. Biogenesis of bacterial inner-membrane proteins. Cell Mol Life Sci 2010; 67:2343-62. [PMID: 20204450 PMCID: PMC11115511 DOI: 10.1007/s00018-010-0303-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/26/2022]
Abstract
All cells must traffic proteins into and across their membranes. In bacteria, several pathways have evolved to enable protein transfer across the inner membrane, the periplasm, and the outer membrane. The major route of protein translocation in and across the cytoplasmic membrane is the general secretion pathway (Sec-pathway). The biogenesis of membrane proteins not only requires protein translocation but also coordinated targeting to the membrane beforehand and folding and assembly into their protein complexes afterwards to function properly in the cell. All these processes are responsible for the biogenesis of membrane proteins that mediate essential functions of the cell such as selective transport, energy conversion, cell division, extracellular signal sensing, and motility. This review will highlight the most recent developments on the structure and function of bacterial membrane proteins, focusing on the journey that integral membrane proteins take to find their final destination in the inner membrane.
Collapse
Affiliation(s)
- Sandra J. Facey
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
226
|
Claxton DP, Quick M, Shi L, de Carvalho FD, Weinstein H, Javitch JA, Mchaourab HS. Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters. Nat Struct Mol Biol 2010; 17:822-9. [PMID: 20562855 PMCID: PMC3245867 DOI: 10.1038/nsmb.1854] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 04/16/2010] [Indexed: 11/08/2022]
Abstract
Crystallographic, computational and functional analyses of LeuT have revealed details of the molecular architecture of Na(+)-coupled transporters and the mechanistic nature of ion/substrate coupling, but the conformational changes that support a functional transport cycle have yet to be described fully. We have used site-directed spin labeling and electron paramagnetic resonance (EPR) analysis to capture the dynamics of LeuT in the region of the extracellular vestibule associated with the binding of Na(+) and leucine. The results outline the Na(+)-dependent formation of a dynamic outward-facing intermediate that exposes the primary substrate binding site and the conformational changes that occlude this binding site upon subsequent binding of the leucine substrate. Furthermore, the binding of the transport inhibitors tryptophan, clomipramine and octyl-glucoside is shown to induce structural changes that distinguish the resulting inhibited conformation from the Na(+)/leucine-bound state.
Collapse
Affiliation(s)
- Derek P. Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, Tennessee 37232
| | - Matthias Quick
- Center for Molecular Recognition, Columbia University College of Physicians and Surgeons, 630 West 168 Street, New York, NY 10032
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, 630 West 168 Street, New York, NY 10032
- New York State Psychiatric Institute, Division of Molecular Therapeutics; 1051 Riverside Drive, New York, New York 10032
| | - Lei Shi
- Department of Physiology and Biophysics and the HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, 1300 York Ave, New York, New York 10065
| | - Fernanda Delmondes de Carvalho
- Center for Molecular Recognition, Columbia University College of Physicians and Surgeons, 630 West 168 Street, New York, NY 10032
| | - Harel Weinstein
- Department of Physiology and Biophysics and the HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, 1300 York Ave, New York, New York 10065
| | - Jonathan A. Javitch
- Center for Molecular Recognition, Columbia University College of Physicians and Surgeons, 630 West 168 Street, New York, NY 10032
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, 630 West 168 Street, New York, NY 10032
- New York State Psychiatric Institute, Division of Molecular Therapeutics; 1051 Riverside Drive, New York, New York 10032
- Department of Pharmacology, Columbia University, 630 West 168 Street, New York, NY 10032
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, Tennessee 37232
| |
Collapse
|
227
|
Sonoda Y, Cameron A, Newstead S, Omote H, Moriyama Y, Kasahara M, Iwata S, Drew D. Tricks of the trade used to accelerate high-resolution structure determination of membrane proteins. FEBS Lett 2010; 584:2539-47. [PMID: 20394746 DOI: 10.1016/j.febslet.2010.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/01/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
Abstract
The rate at which X-ray structures of membrane proteins are solved is on a par with that of soluble proteins in the late 1970s. There are still many obstacles facing the membrane protein structural community. Recently, there have been several technical achievements in the field that have started to dramatically accelerate structural studies. Here, we summarize these so-called 'tricks-of-the-trade' and include case studies of several mammalian transporters.
Collapse
Affiliation(s)
- Yo Sonoda
- Division of Molecular Biosciences, Imperial College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
228
|
|
229
|
Zomot E, Bahar I. The sodium/galactose symporter crystal structure is a dynamic, not so occluded state. MOLECULAR BIOSYSTEMS 2010; 6:1040-6. [PMID: 20358053 PMCID: PMC2938171 DOI: 10.1039/b927492h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The recent elucidation of the sodium/galactose symporter structure from the Vibrio parahaemolyticus bacterium, vSGLT, has revealed a similarity in the core architecture with transporters from different gene families, including the leucine transporter (LeuT). Even though several transporters sharing this core have been structurally determined over the past few years, vSGLT is the only one crystallized in the substrate-bound inward-facing conformation so far. In this study, we report the first insight into the dynamics and coordination of the galactose (Gal) and proposed Na+ ion in vSGLT using a series of molecular dynamics simulations with a total time of about 0.1 micros. Our study reveals new residues, not observed in the crystal structure, which closely interact with the Na(+) ion or the substrate for extended times, and shows that in the crystallized conformation, a Na+ ion placed at the site equivalent to Na2 in LeuT can escape into the intracellular (IC) space in the absence of external forces. We have identified the highly conserved Asp189 as a likely binding residue on the pathway of Na(+) into the IC cavity. The release of Gal, on the other hand, requires the rotation of the side chain of the inner hydrophobic gate, Tyr263, without a significant change in vSGLT backbone conformation. Our simulations further show that the crystal structure represents but one accessible binding pose of Gal and Na+ among an ensemble of microstates, and that the Gal undergoes versatile alternate interactions at the binding pocket.
Collapse
Affiliation(s)
- Elia Zomot
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3064 BST3, 3501 Fifth Ave, Pittsburgh, PA 15213, USA; Fax: +1 412 648 3163; Tel: +1 412 648 7785
| | - Ivet Bahar
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3064 BST3, 3501 Fifth Ave, Pittsburgh, PA 15213, USA; Fax: +1 412 648 3163; Tel: +1 412 648 3332
| |
Collapse
|
230
|
Schlessinger A, Matsson P, Shima JE, Pieper U, Yee SW, Kelly L, Apeltsin L, Stroud RM, Ferrin TE, Giacomini KM, Sali A. Comparison of human solute carriers. Protein Sci 2010; 19:412-28. [PMID: 20052679 DOI: 10.1002/pro.320] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Solute carriers are eukaryotic membrane proteins that control the uptake and efflux of solutes, including essential cellular compounds, environmental toxins, and therapeutic drugs. Solute carriers can share similar structural features despite weak sequence similarities. Identification of sequence relationships among solute carriers is needed to enhance our ability to model individual carriers and to elucidate the molecular mechanisms of their substrate specificity and transport. Here, we describe a comprehensive comparison of solute carriers. We link the proteins using sensitive profile-profile alignments and two classification approaches, including similarity networks. The clusters are analyzed in view of substrate type, transport mode, organism conservation, and tissue specificity. Solute carrier families with similar substrates generally cluster together, despite exhibiting relatively weak sequence similarities. In contrast, some families cluster together with no apparent reason, revealing unexplored relationships. We demonstrate computationally and experimentally the functional overlap between representative members of these families. Finally, we identify four putative solute carriers in the human genome. The solute carriers include a biomedically important group of membrane proteins that is diverse in sequence and structure. The proposed classification of solute carriers, combined with experiment, reveals new relationships among the individual families and identifies new solute carriers. The classification scheme will inform future attempts directed at modeling the structures of the solute carriers, a prerequisite for describing the substrate specificities of the individual families.
Collapse
Affiliation(s)
- Avner Schlessinger
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, California.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Shimamura T, Weyand S, Beckstein O, Rutherford NG, Hadden JM, Sharples D, Sansom MS, Iwata S, Henderson PJF, Cameron AD. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 2010; 328:470-3. [PMID: 20413494 PMCID: PMC2885435 DOI: 10.1126/science.1186303] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The structure of the sodium-benzylhydantoin transport protein Mhp1 from Microbacterium liquefaciens comprises a five-helix inverted repeat, which is widespread among secondary transporters. Here, we report the crystal structure of an inward-facing conformation of Mhp1 at 3.8 angstroms resolution, complementing its previously described structures in outward-facing and occluded states. From analyses of the three structures and molecular dynamics simulations, we propose a mechanism for the transport cycle in Mhp1. Switching from the outward- to the inward-facing state, to effect the inward release of sodium and benzylhydantoin, is primarily achieved by a rigid body movement of transmembrane helices 3, 4, 8, and 9 relative to the rest of the protein. This forms the basis of an alternating access mechanism applicable to many transporters of this emerging superfamily.
Collapse
Affiliation(s)
- Tatsuro Shimamura
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Simone Weyand
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Oliver Beckstein
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Nicholas G. Rutherford
- Astbury Centre for Structural Molecular Biology, Institute for Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jonathan M. Hadden
- Astbury Centre for Structural Molecular Biology, Institute for Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David Sharples
- Astbury Centre for Structural Molecular Biology, Institute for Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - So Iwata
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-Ku, Kyoto 606-8501, Japan
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045 Japan
| | - Peter J. F. Henderson
- Astbury Centre for Structural Molecular Biology, Institute for Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander D. Cameron
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| |
Collapse
|
232
|
Field JR, Henry LK, Blakely RD. Transmembrane domain 6 of the human serotonin transporter contributes to an aqueously accessible binding pocket for serotonin and the psychostimulant 3,4-methylene dioxymethamphetamine. J Biol Chem 2010; 285:11270-80. [PMID: 20159976 PMCID: PMC2857005 DOI: 10.1074/jbc.m109.093658] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/04/2010] [Indexed: 01/07/2023] Open
Abstract
The plasma membrane serotonin (5-HT) transporter (SERT, SLC6A4) clears 5-HT after release at nerve termini and is targeted by both antidepressant medications and psychostimulants (e.g. MDMA, cocaine). Homology modeling of human SERT (hSERT), based on high resolution structures of the microbial SLC6 family member LeuT(Aa), along with biochemical studies of wild type and mutant transporters, predicts transmembrane (TM) domains 1, 3, 6, and 8 comprise the 5-HT-binding pocket. We utilized the substituted cysteine accessibility method along with surface and site-specific biotinylation to probe TM6 for aqueous accessibility and differential interactions with 5-HT and psychostimulants. Our results are consistent with TM6 being composed of an aqueous-accessible, alpha-helical extracellular domain (TM6a) that is separated by a central, unwound section from a cytoplasmically localized domain (TM6b) with limited aqueous accessibility. The substitution G338C appears to lock hSERT in an outward-facing conformation that, although accessible to aminoethylmethanethiosulfonate-biotin, 5-HT, and citalopram, is incapable of inward 5-HT transport. Transport of 5-HT by G338C can be partially restored by the TM1 mutation Y95F. With regard to methanethiosulfonate (MTS) inactivation of uptake, TM6a Cys mutants demonstrate Na(+)-dependent [2-(trimethylammonium)ethyl]-MTS sensitivity. Studies with the centrally located substitution S336C reveal features of a common binding pocket for 5-HT and 3,4-methylenedioxymethamphetamine (MDMA). Interestingly, the substitution I333C reveals an MDMA-induced conformation not observed with 5-HT. In the context of prior studies on TM1, our findings document shared and unique features of TM6 contributing to hSERT aqueous accessibility, ligand recognition, and conformational dynamics.
Collapse
Affiliation(s)
| | - L. Keith Henry
- the Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - Randy D. Blakely
- From the Departments of Pharmacology and
- Psychiatry and
- Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548 and
| |
Collapse
|
233
|
Kosti V, Papageorgiou I, Diallinas G. Dynamic Elements at Both Cytoplasmically and Extracellularly Facing Sides of the UapA Transporter Selectively Control the Accessibility of Substrates to Their Translocation Pathway. J Mol Biol 2010; 397:1132-43. [DOI: 10.1016/j.jmb.2010.02.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/17/2010] [Accepted: 02/19/2010] [Indexed: 02/06/2023]
|
234
|
Tang L, Bai L, Wang WH, Jiang T. Crystal structure of the carnitine transporter and insights into the antiport mechanism. Nat Struct Mol Biol 2010; 17:492-6. [DOI: 10.1038/nsmb.1788] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 02/17/2010] [Indexed: 11/09/2022]
|
235
|
Indarte M, Liu Y, Madura JD, Surratt CK. Receptor-Based Discovery of a Plasmalemmal Monoamine Transporter Inhibitor via High Throughput Docking and Pharmacophore Modeling. ACS Chem Neurosci 2010; 1:223-233. [PMID: 20352074 PMCID: PMC2843925 DOI: 10.1021/cn900032u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 12/17/2009] [Indexed: 11/28/2022] Open
Abstract
Recognition of psychostimulants such as cocaine and the amphetamines by the dopamine transporter (DAT) protein is principally responsible for the euphoria and addiction associated with these drugs. Using as a template the crystal structure of a distantly related bacterial leucine transporter, 3-D DAT computer molecular models have been generated. Ligand docking to such models has revealed potential substrate and inhibitor binding pockets, subsequently confirmed by in vitro pharmacology. An inhibitor pocket defined by the DAT model to be within the "extracellular vestibule", just to the extracellular side of the external gate of the primary substrate pocket, was used for virtual screening of a structural library of compounds. High-throughput docking and application of pharmacophore constraints within this vestibular inhibitor pocket identified a compound structurally dissimilar to the classic monoamine (dopamine, norepinephrine and serotonin) transporter (MAT) inhibitors. The compound displaced binding of radiolabeled cocaine analogs at all three MATs, usually with nanomolar K(i) values and within two fold of cocaine's affinity at the norepinephrine transporter. Although a very weak dopamine uptake inhibitor itself, this compound reduced by three fold the potency of cocaine in inhibiting DAT-mediated cellular uptake of dopamine. To our knowledge, the present findings are the first to successfully employ "receptor-based" computer modeling to identify moderate-to-high affinity MAT ligands. In silico ligand screening using MAT models provides a rapid, low cost discovery process that should accelerate identification of novel ligand scaffolds and provide lead compounds in combating psychostimulant addiction and in treating other monoamine-related CNS diseases.
Collapse
Affiliation(s)
- Martín Indarte
- Mailing address (M.I.): School of Health Information Sciences, University of Texas Health Science Center at Houston, 7000 Fannin Street 880B, Houston, TX 77030. E-mail: . Mailing address (J.D.M.): Departments of Chemistry and Biochemistry, Duquesne University, 312 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA 15282. E-mail: . Mailing address (C.K.S.): Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 411 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA 15282. E-mail:
| | | | - Jeffry D. Madura
- Mailing address (M.I.): School of Health Information Sciences, University of Texas Health Science Center at Houston, 7000 Fannin Street 880B, Houston, TX 77030. E-mail: . Mailing address (J.D.M.): Departments of Chemistry and Biochemistry, Duquesne University, 312 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA 15282. E-mail: . Mailing address (C.K.S.): Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 411 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA 15282. E-mail:
| | - Christopher K. Surratt
- Mailing address (M.I.): School of Health Information Sciences, University of Texas Health Science Center at Houston, 7000 Fannin Street 880B, Houston, TX 77030. E-mail: . Mailing address (J.D.M.): Departments of Chemistry and Biochemistry, Duquesne University, 312 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA 15282. E-mail: . Mailing address (C.K.S.): Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 411 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA 15282. E-mail:
| |
Collapse
|
236
|
Naftalin RJ. Reassessment of Models of Facilitated Transport and Cotransport. J Membr Biol 2010; 234:75-112. [DOI: 10.1007/s00232-010-9228-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/08/2010] [Indexed: 11/29/2022]
|
237
|
Stanczak P, Horst R, Serrano P, Wüthrich K. NMR characterization of membrane protein-detergent micelle solutions by use of microcoil equipment. J Am Chem Soc 2010; 131:18450-6. [PMID: 19950959 DOI: 10.1021/ja907842u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using microcoil NMR technology, the uniformly (2)H,(15)N-labeled integral membrane protein OmpX, and the phosphocholine derivative detergent Fos-10 (n-decylphosphocholine), we investigated solutions of mixed protein-detergent micelles to determine the influence of the detergent concentration on the NMR spectra of the protein. In a first step, we identified key parameters that influence the composition of the micelle solutions, which resulted in a new protocol for the preparation of well-defined concentrated protein solutions. This led to the observation that high-quality 2D [(15)N,(1)H]-transverse relaxation-optimized spectroscopy (TROSY) spectra of OmpX reconstituted in mixed micelles with Fos-10 were obtained only in a limited range of detergent concentrations. Outside of this range from about 90-180 mM, we observed a significant decrease of the average peak intensity. Relaxation-optimized NMR measurements of the rotational and translational diffusion coefficients of the OmpX/Fos-10 mixed micelles, D(r) and D(t), respectively, then showed that the stoichiometry and the effective hydrodynamic radius of the protein-containing micelles are not significantly affected by high Fos-10 concentrations and that the deterioration of NMR spectra is due to the increased viscosity at high detergent concentrations. The paper thus provides a basis for refined guidelines on the preparation of integral membrane proteins for structural studies.
Collapse
Affiliation(s)
- Pawel Stanczak
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
238
|
Foley DW, Rajamanickam J, Bailey PD, Meredith D. Bioavailability through PepT1: the role of computer modelling in intelligent drug design. Curr Comput Aided Drug Des 2010; 6:68-78. [PMID: 20370696 PMCID: PMC3351990 DOI: 10.2174/157340910790980133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to being responsible for the majority of absorption of dietary nitrogen, the mammalian proton-coupled di- and tri-peptide transporter PepT1 is also recognised as a major route of drug delivery for several important classes of compound, including beta-lactam antibiotics and angiotensin-converting enzyme inhibitors. Thus there is considerable interest in the PepT1 protein and especially its substrate binding site. In the absence of a crystal structure, computer modelling has been used to try to understand the relationship between PepT1 3D structure and function. Two basic approaches have been taken: modelling the transporter protein, and modelling the substrate. For the former, computer modelling has evolved from early interpretations of the twelve transmembrane domain structure to more recent homology modelling based on recently crystallised bacterial members of the major facilitator superfamily (MFS). Substrate modelling has involved the proposal of a substrate binding template, to which all substrates must conform and from which the affinity of a substrate can be estimated relatively accurately, and identification of points of potential interaction of the substrate with the protein by developing a pharmacophore model of the substrates. Most recently, these two approaches have moved closer together, with the attempted docking of a substrate library onto a homology model of the human PepT1 protein. This article will review these two approaches in which computers have been applied to peptide transport and suggest how such computer modelling could affect drug design and delivery through PepT1.
Collapse
Affiliation(s)
- David W Foley
- Faculty of Natural Sciences, Keele University, Keele, Staffs ST5 5BG, UK &
| | | | - Patrick D Bailey
- Faculty of Natural Sciences, Keele University, Keele, Staffs ST5 5BG, UK &
| | | |
Collapse
|
239
|
Forrest LR, Rudnick G. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda) 2010; 24:377-86. [PMID: 19996368 DOI: 10.1152/physiol.00030.2009] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Crystal structures of the bacterial amino acid transporter LeuT have provided the basis for understanding the conformational changes associated with substrate translocation by a multitude of transport proteins with the same fold. Biochemical and modeling studies led to a "rocking bundle" mechanism for LeuT that was validated by subsequent transporter structures. These advances suggest how coupled solute transport might be defined by the internal symmetry of proteins containing inverted structural repeats.
Collapse
Affiliation(s)
- Lucy R Forrest
- Computational Structural Biology, Max Planck Institute for Biophysics, Frankfurt, Germany
| | | |
Collapse
|
240
|
Pedersen BP, Morth JP, Nissen P. Structure determination using poorly diffracting membrane-protein crystals: the H+-ATPase and Na+,K+-ATPase case history. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:309-13. [PMID: 20179343 DOI: 10.1107/s0907444909053244] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/10/2009] [Indexed: 11/10/2022]
Abstract
An approach is presented for the structure determination of membrane proteins on the basis of poorly diffracting crystals which exploits molecular replacement for heavy-atom site identification at 6-9 A maximum resolution and improvement of the heavy-atom-derived phases by multi-crystal averaging using quasi-isomorphous data sets. The multi-crystal averaging procedure allows real-space density averaging followed by phase combination between non-isomorphous native data sets to exploit crystal-to-crystal nonisomorphism despite the crystals belonging to the same space group. This approach has been used in the structure determination of H(+)-ATPase and Na(+),K(+)-ATPase using Ca(2+)-ATPase models and its successful application to the Mhp1 symporter using LeuT as a search model is demonstrated.
Collapse
Affiliation(s)
- Bjørn P Pedersen
- Centre for Membrane Pumps in Cells and Disease, Danish National Research Foundation, Aarhus University, Department of Molecular Biology, Gustav Wieds Vej 10C, DK 8000 Aarhus, Denmark
| | | | | |
Collapse
|
241
|
Li J, Tajkhorshid E. Ion-releasing state of a secondary membrane transporter. Biophys J 2010; 97:L29-31. [PMID: 19948113 DOI: 10.1016/j.bpj.2009.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 08/28/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of Na(+)-coupled galactose symporter (vSGLT) reports the transporter in its substrate-bound state, with a Na(+) ion modeled in a binding site corresponding to that of a homologous protein, leucine transporter (LeuT). In repeated molecular dynamics simulations, however, we find the Na(+) ion instable, invariably and spontaneously diffusing out of the transporter through a pathway lined by D189, which appears to facilitate the diffusion of the ion toward the cytoplasm. Further analysis of the trajectories and close structural examination, in particular, comparison of the Na(+)-binding sites of vSGLT and LeuT, strongly indicates that the crystal structure of vSGLT actually represents an ion-releasing state of the transporter. The observed dynamics of the Na(+) ion, in contrast to the substrate, also suggests that the cytoplasmic release of the Na(+) ion precedes that of the substrate, thus shedding light on a key step in the transport cycle of this secondary transporter.
Collapse
|
242
|
Abstract
In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class.
Collapse
|
243
|
Mechanism of substrate recognition and transport by an amino acid antiporter. Nature 2010; 463:828-32. [DOI: 10.1038/nature08741] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 12/10/2009] [Indexed: 11/09/2022]
|
244
|
Immune Recognition of Nucleic Acids and Their Metabolites. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2010. [DOI: 10.1007/978-3-642-12617-8_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
245
|
Patching SG. Efficient syntheses of 13C- and 14C-labelled 5-benzyl and 5-indolylmethyl L-hydantoins. J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.1827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
246
|
Lundbaek JA, Collingwood SA, Ingólfsson HI, Kapoor R, Andersen OS. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface 2009; 7:373-95. [PMID: 19940001 DOI: 10.1098/rsif.2009.0443] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Membrane protein function is regulated by the host lipid bilayer composition. This regulation may depend on specific chemical interactions between proteins and individual molecules in the bilayer, as well as on non-specific interactions between proteins and the bilayer behaving as a physical entity with collective physical properties (e.g. thickness, intrinsic monolayer curvature or elastic moduli). Studies in physico-chemical model systems have demonstrated that changes in bilayer physical properties can regulate membrane protein function by altering the energetic cost of the bilayer deformation associated with a protein conformational change. This type of regulation is well characterized, and its mechanistic elucidation is an interdisciplinary field bordering on physics, chemistry and biology. Changes in lipid composition that alter bilayer physical properties (including cholesterol, polyunsaturated fatty acids, other lipid metabolites and amphiphiles) regulate a wide range of membrane proteins in a seemingly non-specific manner. The commonality of the changes in protein function suggests an underlying physical mechanism, and recent studies show that at least some of the changes are caused by altered bilayer physical properties. This advance is because of the introduction of new tools for studying lipid bilayer regulation of protein function. The present review provides an introduction to the regulation of membrane protein function by the bilayer physical properties. We further describe the use of gramicidin channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli.
Collapse
Affiliation(s)
- Jens A Lundbaek
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
247
|
Ter Horst R, Lolkema JS. Rapid screening of membrane topology of secondary transport proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:672-80. [PMID: 19932679 DOI: 10.1016/j.bbamem.2009.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/06/2009] [Accepted: 11/13/2009] [Indexed: 11/25/2022]
Abstract
Limited experimental data may be very useful to discriminate between membrane topology models of membrane proteins derived from different methods. A membrane topology screening method is proposed by which the cellular disposition of three positions in a membrane protein are determined, the N- and the C-termini and a position in the middle of the protein. The method involves amplification of the encoding genes or gene fragments by PCR, rapid cloning in dedicated vectors by ligation independent cloning, and determination of the cellular disposition of the three sites using conventional techniques. The N-terminus was determined by labeling with a fluorescent probe, the central position and the C-terminus by the reporter fusion technique using alkaline phosphatase (PhoA) and green fluorescence protein (GFP) as reporters. The method was evaluated using 16 transporter proteins of known function from four different structural classes. For 13 proteins a complete set of three localizations was obtained. The experimental data was used to discriminate between membrane topology models predicted by TMHMM, a widely used predictor using the amino acid sequence as input and by MemGen that uses hydropathy profile alignment and known 3D structures or existing models. It follows that in those cases where the models from the two methods were similar, the models were consistent with the experimental data. In those cases where the models differed, the MemGen model agreed with the experimental data. Three more recent predictors, MEMSAT3, OCTOPUS and TOPCONS showed a significantly higher consistency with the experimental data than observed with TMHMM.
Collapse
Affiliation(s)
- Ramon Ter Horst
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
248
|
Simón-Vázquez R, Lazarova T, Perálvarez-Marín A, Bourdelande JL, Padrós E. Cross-Linking of Transmembrane Helices Reveals a Rigid-Body Mechanism in Bacteriorhodopsin Transport. Angew Chem Int Ed Engl 2009; 48:8523-5. [DOI: 10.1002/anie.200904031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
249
|
Simón-Vázquez R, Lazarova T, Perálvarez-Marín A, Bourdelande JL, Padrós E. Cross-Linking of Transmembrane Helices Reveals a Rigid-Body Mechanism in Bacteriorhodopsin Transport. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
250
|
Tao Z, Zhang YW, Agyiri A, Rudnick G. Ligand effects on cross-linking support a conformational mechanism for serotonin transport. J Biol Chem 2009; 284:33807-14. [PMID: 19837674 DOI: 10.1074/jbc.m109.071977] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serotonin transporter (SERT) is responsible for the re-uptake of 5-hydroxytryptamine (5-HT) from the synaptic cleft after release from serotonergic neurons. We show here that cysteine residues at positions in transmembranes 1 and 3 of SERT, like the corresponding positions in the gamma-aminobutyric acid transporter, can be cross-linked using copper(II)(1,10-phenanthroline)(3). The presence of a cross-link was detected by a novel methionine mutagenesis strategy. A change in mobility for an N-terminal cyanogen bromide fragment accompanied disulfide cross-linking of the two cysteine residues. Cross-linking also inhibited transport, and this process was blocked by cocaine, which is expected to stabilize SERT in conformations where the two positions are separated, but cocaine did not decrease accessibility of either of the two cysteines to modification by 2-aminoethyl methanethiosulfonate. Cysteine was required at both positions on the same molecule for efficient cross-linking, indicating that the reaction was intramolecular.
Collapse
Affiliation(s)
- Zhen Tao
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | | | | | |
Collapse
|