201
|
Clarke RBC, Söderpalm B, Lotfi A, Ericson M, Adermark L. Involvement of Inhibitory Receptors in Modulating Dopamine Signaling and Synaptic Activity Following Acute Ethanol Exposure in Striatal Subregions. Alcohol Clin Exp Res 2015; 39:2364-74. [DOI: 10.1111/acer.12895] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/01/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Rhona B. C. Clarke
- Addiction Biology Unit; Institute of Neuroscience and Physiology; Department of Psychiatry and Neurochemistry; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Bo Söderpalm
- Addiction Biology Unit; Institute of Neuroscience and Physiology; Department of Psychiatry and Neurochemistry; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
- Beroendekliniken; Sahlgrenska University Hospital; Gothenburg Sweden
| | - Amir Lotfi
- Addiction Biology Unit; Institute of Neuroscience and Physiology; Department of Psychiatry and Neurochemistry; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Mia Ericson
- Addiction Biology Unit; Institute of Neuroscience and Physiology; Department of Psychiatry and Neurochemistry; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Louise Adermark
- Addiction Biology Unit; Institute of Neuroscience and Physiology; Department of Psychiatry and Neurochemistry; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
202
|
Blacktop JM, Vranjkovic O, Mayer M, Van Hoof M, Baker DA, Mantsch JR. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats. Neuropharmacology 2015; 102:197-206. [PMID: 26596556 DOI: 10.1016/j.neuropharm.2015.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/23/2015] [Accepted: 11/12/2015] [Indexed: 12/25/2022]
Abstract
Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5" duration, average every 40 s; range 10-70 s) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts.
Collapse
Affiliation(s)
- Jordan M Blacktop
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Oliver Vranjkovic
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Matthieu Mayer
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Matthew Van Hoof
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| |
Collapse
|
203
|
Merrill CB, Friend LN, Newton ST, Hopkins ZH, Edwards JG. Ventral tegmental area dopamine and GABA neurons: Physiological properties and expression of mRNA for endocannabinoid biosynthetic elements. Sci Rep 2015; 5:16176. [PMID: 26553597 PMCID: PMC4639757 DOI: 10.1038/srep16176] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/08/2015] [Indexed: 11/12/2022] Open
Abstract
The ventral tegmental area (VTA) is involved in adaptive reward and motivation processing and is composed of dopamine (DA) and GABA neurons. Defining the elements regulating activity and synaptic plasticity of these cells is critical to understanding mechanisms of reward and addiction. While endocannabinoids (eCBs) that potentially contribute to addiction are known to be involved in synaptic plasticity mechanisms in the VTA, where they are produced is poorly understood. In this study, DA and GABAergic cells were identified using electrophysiology, cellular markers, and a transgenic mouse model that specifically labels GABA cells. Using single-cell RT-qPCR and immunohistochemistry, we investigated mRNA and proteins involved in eCB signaling such as diacylglycerol lipase α, N-acyl-phosphatidylethanolamine-specific phospholipase D, and 12-lipoxygenase, as well as type I metabotropic glutamate receptors (mGluRs). Our results demonstrate the first molecular evidence of colocalization of eCB biosynthetic enzyme and type I mGluR mRNA in VTA neurons. Further, these data reveal higher expression of mGluR1 in DA neurons, suggesting potential differences in eCB synthesis between DA and GABA neurons. These data collectively suggest that VTA GABAergic and DAergic cells have the potential to produce various eCBs implicated in altering neuronal activity or plasticity in adaptive motivational reward or addiction.
Collapse
Affiliation(s)
- Collin B Merrill
- Brigham Young University Department of Physiology and Developmental Biology Provo, UT 84602 USA
| | - Lindsey N Friend
- Brigham Young University Neuroscience Center Provo, UT 84602 USA
| | - Scott T Newton
- Brigham Young University Neuroscience Center Provo, UT 84602 USA
| | | | - Jeffrey G Edwards
- Brigham Young University Department of Physiology and Developmental Biology Provo, UT 84602 USA.,Brigham Young University Neuroscience Center Provo, UT 84602 USA
| |
Collapse
|
204
|
Venkiteswaran K, Alexander DN, Puhl MD, Rao A, Piquet AL, Nyland JE, Subramanian MP, Iyer P, Boisvert MM, Handly E, Subramanian T, Grigson PS. Transplantation of human retinal pigment epithelial cells in the nucleus accumbens of cocaine self-administering rats provides protection from seeking. Brain Res Bull 2015; 123:53-60. [PMID: 26562520 DOI: 10.1016/j.brainresbull.2015.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/05/2023]
Abstract
Chronic exposure to drugs and alcohol leads to damage to dopaminergic neurons and their projections in the 'reward pathway' that originate in the ventral tegmental area (VTA) and terminate in the nucleus accumbens (NAc). This damage is thought to contribute to the signature symptom of addiction: chronic relapse. In this study we show that bilateral transplants of human retinal pigment epithelial cells (RPECs), a cell mediated dopaminergic and trophic neuromodulator, into the medial shell of the NAc, rescue rats with a history of high rates of cocaine self-administration from drug-seeking when returned, after 2 weeks of abstinence, to the drug-associated chamber under extinction conditions (i.e., with no drug available). Excellent survival was noted for the transplant of RPECs in the shell and/or the core of the NAc bilaterally in all rats that showed behavioral recovery from cocaine seeking. Design based unbiased stereology of tyrosine hydroxylase (TH) positive cell bodies in the VTA showed better preservation (p<0.035) in transplanted animals compared to control animals. This experiment shows that the RPEC graft provides beneficial effects to prevent drug seeking in drug addiction via its effects directly on the NAc and its neural network with the VTA.
Collapse
Affiliation(s)
- Kala Venkiteswaran
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Danielle N Alexander
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Matthew D Puhl
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Anand Rao
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Amanda L Piquet
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Jennifer E Nyland
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Megha P Subramanian
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Puja Iyer
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Matthew M Boisvert
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Erin Handly
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Thyagarajan Subramanian
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Patricia Sue Grigson
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
205
|
O’Connor E, Kremer Y, Lefort S, Harada M, Pascoli V, Rohner C, Lüscher C. Accumbal D1R Neurons Projecting to Lateral Hypothalamus Authorize Feeding. Neuron 2015; 88:553-64. [DOI: 10.1016/j.neuron.2015.09.038] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/01/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023]
|
206
|
Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT, Zalocusky KA, Crow AK, Malenka RC, Luo L, Tomer R, Deisseroth K. Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. Cell 2015; 162:635-47. [PMID: 26232229 PMCID: PMC4790813 DOI: 10.1016/j.cell.2015.07.014] [Citation(s) in RCA: 528] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/26/2015] [Accepted: 07/08/2015] [Indexed: 11/19/2022]
Abstract
Recent progress in understanding the diversity of midbrain dopamine neurons has highlighted the importance--and the challenges--of defining mammalian neuronal cell types. Although neurons may be best categorized using inclusive criteria spanning biophysical properties, wiring of inputs, wiring of outputs, and activity during behavior, linking all of these measurements to cell types within the intact brains of living mammals has been difficult. Here, using an array of intact-brain circuit interrogation tools, including CLARITY, COLM, optogenetics, viral tracing, and fiber photometry, we explore the diversity of dopamine neurons within the substantia nigra pars compacta (SNc). We identify two parallel nigrostriatal dopamine neuron subpopulations differing in biophysical properties, input wiring, output wiring to dorsomedial striatum (DMS) versus dorsolateral striatum (DLS), and natural activity patterns during free behavior. Our results reveal independently operating nigrostriatal information streams, with implications for understanding the logic of dopaminergic feedback circuits and the diversity of mammalian neuronal cell types.
Collapse
Affiliation(s)
- Talia N Lerner
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Carrie Shilyansky
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Thomas J Davidson
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Kathryn E Evans
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kevin T Beier
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Nancy Pritzker Laboratory, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kelly A Zalocusky
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Ailey K Crow
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Robert C Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Nancy Pritzker Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Raju Tomer
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
207
|
Kai N, Nishizawa K, Tsutsui Y, Ueda S, Kobayashi K. Differential roles of dopamine D1 and D2 receptor-containing neurons of the nucleus accumbens shell in behavioral sensitization. J Neurochem 2015; 135:1232-41. [PMID: 26442961 DOI: 10.1111/jnc.13380] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/02/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
Abstract
The nucleus accumbens (Nac) mediates the reinforcing and motor stimulating properties of psychostimulants. It receives dopaminergic afferents from the ventral midbrain and is divided into two distinct subregions: shell and core. Each of these contains two subtypes of medium spiny neurons, which express either dopamine D1 (D1R) or D2 (D2R) receptors. However, functional dissociation between the two subtypes in psychostimulant response remains to be elucidated. We performed selective ablation of each subtype in the Nac shell in mice, using immunotoxin-mediated cell targeting, and examined the behavioral sensitization evoked by repeated administration of methamphetamine. The D1R cell-ablated mice exhibited delayed induction of sensitized locomotion compared to control mice, whereas the D2R cell-ablated mice showed a mildly enhanced rate of induction of sensitization. In vivo microdialysis revealed a marked blockade of the increase in extracellular dopamine in the Nac of the D1R cell-ablated animals in response to methamphetamine, indicating that the observed delay in behavioral sensitization in these mice involves an impairment in accumbal dopamine release. Our results reveal differential roles of D1R- and D2R-containing accumbal shell neurons in the development of behavioral sensitization to psychostimulants. Behavioral sensitization, enhanced motility by repetitive psychostimulant administration, is a model of drug addiction. Here, we show that the nucleus accumbens (Nac) shell neurons containing dopamine D1 receptor (D1R) or D2 receptor (D2R) play distinct roles in behavioral sensitization triggered by methamphetamine, and that D1R-containing neurons enhance the induction of behavioral sensitization at the early phase, whereas D2R-containing neurons act to suppress the rate of development of the behavior.
Collapse
Affiliation(s)
- Nobuyuki Kai
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Histology & Neurobiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuji Tsutsui
- Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Japan
| | - Shuichi Ueda
- Department of Histology & Neurobiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
208
|
Morello F, Partanen J. Diversity and development of local inhibitory and excitatory neurons associated with dopaminergic nuclei. FEBS Lett 2015; 589:3693-701. [PMID: 26453835 DOI: 10.1016/j.febslet.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022]
Abstract
For regulation of voluntary movement and motivation the midbrain dopaminergic system receives input from a variety of brain regions. Often this input is mediated by local non-dopaminergic neurons within or closely associated with the dopaminergic nuclei. In addition to the dopaminergic neurons, some of these non-dopaminergic neurons also send functionally important output from the ventral midbrain to forebrain targets. The aim of this review is to introduce subtypes of GABAergic and glutamatergic neurons, which are located in the dopaminergic nuclei or the adjacent brainstem and are important for the regulation of the dopaminergic pathways. In addition, we discuss recent studies beginning to reveal mechanisms for their development, which may hold the key to understanding the diversity of these neurons.
Collapse
Affiliation(s)
- Francesca Morello
- Department of Biosciences, Division of Genetics, P.O. Box 56, Viikinkaari 9, 00014 University of Helsinki, Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, Division of Genetics, P.O. Box 56, Viikinkaari 9, 00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
209
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
210
|
Pignatelli M, Bonci A. Role of Dopamine Neurons in Reward and Aversion: A Synaptic Plasticity Perspective. Neuron 2015; 86:1145-57. [PMID: 26050034 DOI: 10.1016/j.neuron.2015.04.015] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The brain is wired to predict future outcomes. Experience-dependent plasticity at excitatory synapses within dopamine neurons of the ventral tegmental area, a key region for a broad range of motivated behaviors, is thought to be a fundamental cellular mechanism that enables adaptation to a dynamic environment. Thus, depending on the circumstances, dopamine neurons are capable of processing both positive and negative reinforcement learning strategies. In this review, we will discuss how changes in synaptic plasticity of dopamine neurons may affect dopamine release, as well as behavioral adaptations to different environmental conditions falling at opposite ends of a saliency spectrum ranging from reward to aversion.
Collapse
Affiliation(s)
- Marco Pignatelli
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Antonello Bonci
- Intramural Research Program, Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD 21224, USA; Solomon H. Snyder Neuroscience Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
211
|
Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci 2015. [PMID: 26214370 PMCID: PMC4551610 DOI: 10.1038/nn.4068] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is widely accepted that D1 dopamine receptor-expressing striatal neurons convey their information directly to the output nuclei of the basal ganglia while D2-expressing neurons do so indirectly via pallidal neurons. Combining optogenetics and electrophysiology we show that this architecture does not apply to mouse nucleus accumbens projections to the ventral pallidum. Thus, current thinking attributing D1/D2 selectivity to accumbens projections akin to dorsal striatal pathways needs to be reconsidered.
Collapse
Affiliation(s)
- Yonatan M Kupchik
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Robyn M Brown
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Jasper A Heinsbroek
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Danielle J Schwartz
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Peter W Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
212
|
GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner. J Neurosci 2015; 35:7131-42. [PMID: 25948263 DOI: 10.1523/jneurosci.5051-14.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-protein-gated inwardly rectifying K(+) (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential.
Collapse
|
213
|
Jiao D, Liu Y, Li X, Liu J, Zhao M. The role of the GABA system in amphetamine-type stimulant use disorders. Front Cell Neurosci 2015; 9:162. [PMID: 25999814 PMCID: PMC4419710 DOI: 10.3389/fncel.2015.00162] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/13/2015] [Indexed: 11/22/2022] Open
Abstract
Abuse of amphetamine-type stimulants (ATS) has become a global public health problem. ATS causes severe neurotoxicity, which could lead to addiction and could induce psychotic disorders or cognitive dysfunctions. However, until now, there has been a lack of effective medicines for treating ATS-related problems. Findings from recent studies indicate that in addition to the traditional dopamine-ergic system, the GABA (gamma-aminobutyric acid)-ergic system plays an important role in ATS abuse. However, the exact mechanisms of the GABA-ergic system in amphetamine-type stimulant use disorders are not fully understood. This review discusses the role of the GABA-ergic system in ATS use disorders, including ATS induced psychotic disorders and cognitive dysfunctions. We conclude that the GABA-ergic system are importantly involved in the development of ATS use disorders through multiple pathways, and that therapies or medicines that target specific members of the GABA-ergic system may be novel effective interventions for the treatment of ATS use disorders.
Collapse
Affiliation(s)
- Dongliang Jiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yao Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Xiaohong Li
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities New York, NY, USA
| | - Jinggen Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| |
Collapse
|
214
|
Han H, Dong Z, Jia Y, Mao R, Zhou Q, Yang Y, Wang L, Xu L, Cao J. Opioid addiction and withdrawal differentially drive long-term depression of inhibitory synaptic transmission in the hippocampus. Sci Rep 2015; 5:9666. [PMID: 25942289 PMCID: PMC5386187 DOI: 10.1038/srep09666] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/13/2015] [Indexed: 01/01/2023] Open
Abstract
Addictive behavior is increasingly accepted as a drug-associated pathological memory in which the hippocampus is profoundly engaged. It has been well documented that adaptations of synaptic plasticity of excitatory transmission in the hippocampus may contribute to opioid addiction. However, it remains unknown whether and how adaptive changes of synaptic plasticity of inhibitory transmission in the hippocampus occurs during opioid abuse. Here, we reported that a single in vivo morphine exposure (SM) did not affect inhibitory long-term depression (I-LTD) in the hippocampus, compared with saline control; while repeated morphine exposure (RM) abolished this I-LTD. Interestingly, opioid withdrawal for 3-5 days after repeated (RMW), but not a single morphine exposure (SMW), largely enhanced I-LTD. More importantly, the I-LTD in single morphine treatment is dependent on presynaptic mechanism since it can be blocked by AM251, a selective cannabinoid receptor 1 antagonist. While the large I-LTD in RMW group is dependent on combinatorial presynaptic and postsynaptic mechanisms since it can be blocked by co-application of AM251 and L-type calcium channel blocker LaCl3. Thus, these results demonstrate that opioid use and withdrawal drive the dynamics of presynaptic and postsynaptic I-LTD expression in the hippocampus that may contribute to the persistent behavioral changes during opioid abuse.
Collapse
Affiliation(s)
- Huili Han
- 1] Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China [2] Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China [3] Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zhifang Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yunfang Jia
- 1] Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China [2] Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongrong Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qixin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuexiong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Liping Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jun Cao
- Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
215
|
Thompson SM, Kallarackal AJ, Kvarta MD, Van Dyke AM, LeGates TA, Cai X. An excitatory synapse hypothesis of depression. Trends Neurosci 2015; 38:279-94. [PMID: 25887240 DOI: 10.1016/j.tins.2015.03.003] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/23/2015] [Accepted: 03/17/2015] [Indexed: 12/14/2022]
Abstract
Depression is a common cause of mortality and morbidity, but the biological bases of the deficits in emotional and cognitive processing remain incompletely understood. Current antidepressant therapies are effective in only some patients and act slowly. Here, we propose an excitatory synapse hypothesis of depression in which chronic stress and genetic susceptibility cause changes in the strength of subsets of glutamatergic synapses at multiple locations, including the prefrontal cortex (PFC), hippocampus, and nucleus accumbens (NAc), leading to a dysfunction of corticomesolimbic reward circuitry that underlies many of the symptoms of depression. This hypothesis accounts for current depression treatments and suggests an updated framework for the development of better therapeutic compounds.
Collapse
Affiliation(s)
- Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA; Programs in Neuroscience and Membrane Biology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Angy J Kallarackal
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA; Programs in Neuroscience and Membrane Biology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Mark D Kvarta
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA; Programs in Neuroscience and Membrane Biology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA; Medical Scientist Training Program, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Adam M Van Dyke
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA; Programs in Neuroscience and Membrane Biology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Tara A LeGates
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Xiang Cai
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA; Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
216
|
Marinho EAV, Oliveira-Lima AJ, Santos R, Hollais AW, Baldaia MA, Wuo-Silva R, Yokoyama TS, Takatsu-Coleman AL, Patti CL, Longo BM, Berro LF, Frussa-Filho R. Effects of rimonabant on the development of single dose-induced behavioral sensitization to ethanol, morphine and cocaine in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 58:22-31. [PMID: 25496830 DOI: 10.1016/j.pnpbp.2014.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/01/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022]
Abstract
RATIONALE The endocannabinoid system has been implicated in the neurobiological mechanism underlying drug addiction, especially the primary rewarding dopamine-dependent processes. Therefore, endocannabinoid receptor antagonists, such as the CB1 cannabinoid antagonist rimonabant, have been proposed as candidates for preventive addiction therapies. OBJECTIVES Investigate the possible involvement of CB1 receptors in the development of behavioral sensitization to ethanol, morphine and cocaine in mice. METHODS We compared the effects of different doses of rimonabant (0.3, 1, 3 and 10mg/kg) on spontaneous locomotor activity in the open-field, hyperlocomotion induced by acute administration of ethanol (1.8g/kg), morphine (20mg/kg) or cocaine (10mg/kg) and on subsequent drug-induced locomotor sensitization using a two-injection protocol in mice. We also investigated a possible depressive-like effect of an acute rimonabant challenge at the highest dose and its potential anxiogenic property. RESULTS At the highest dose, rimonabant abolished ethanol- and cocaine-induced hyperlocomotion and behavioral sensitization without modifying spontaneous and central locomotor activity or inducing depressive-like behavior on the forced swim test in mice. The other doses of rimonabant also selectively blocked acute ethanol-induced central hyperlocomotion. Although rimonabant at 0.3 and 1mg/kg potentiated the central hyperlocomotion induced by acute morphine injection, it was effective in attenuating morphine-induced behavioral sensitization at all doses. CONCLUSIONS Because the neural basis of behavioral sensitization has been proposed to correspond to some components of addiction, our findings indicate that the endocannabinoid system might be involved in ethanol, cocaine and morphine abuse.
Collapse
Affiliation(s)
- Eduardo A V Marinho
- Departamento de Ciências da Saúde, Universidade Estadual de Santa Cruz - UESC, Ilhéus, BA, Brazil.
| | | | - Renan Santos
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - André W Hollais
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Marilia A Baldaia
- Departamento de Farmacologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Raphael Wuo-Silva
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Thais S Yokoyama
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - André L Takatsu-Coleman
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Camilla L Patti
- Departamento de Farmacologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Beatriz M Longo
- Departamento de Fisiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil; Departamento de Farmacologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| | - Laís F Berro
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil.
| | - Roberto Frussa-Filho
- Departamento de Farmacologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brazil
| |
Collapse
|
217
|
Taylor SR, Badurek S, Dileone RJ, Nashmi R, Minichiello L, Picciotto MR. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J Comp Neurol 2015; 522:3308-34. [PMID: 24715505 DOI: 10.1002/cne.23603] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
The role of dopaminergic (DA) projections from the ventral tegmental area (VTA) in appetitive and rewarding behavior has been widely studied, but the VTA also has documented DA-independent functions. Several drugs of abuse, act on VTA GABAergic neurons, and most studies have focused on local inhibitory connections. Relatively little is known about VTA GABA projection neurons and their connections to brain sites outside the VTA. This study employed viral-vector-mediated cell-type-specific anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize VTA GABA efferents throughout the brain. We found that VTA GABA neurons project widely to forebrain and brainstem targets, including the ventral pallidum, lateral and magnocellular preoptic nuclei, lateral hypothalamus, and lateral habenula. Minor projections also go to central amygdala, mediodorsal thalamus, dorsal raphe, and deep mesencephalic nuclei, and sparse projections go to prefrontal cortical regions and to nucleus accumbens shell and core. These projections differ from the major VTA DA target regions. Retrograde tracing studies confirmed results from the anterograde experiments and differences in projections from VTA subnuclei. Retrogradely labeled GABA neurons were not numerous, and most non-tyrosine hydroxylase/retrogradely labeled cells lacked GABAergic markers. Many non-TH/retrogradely labeled cells projecting to several areas expressed VGluT2. VTA GABA and glutamate neurons project throughout the brain, most prominently to regions with reciprocal connections to the VTA. These data indicate that VTA GABA and glutamate neurons may have more DA-independent functions than previously recognized.
Collapse
Affiliation(s)
- Seth R Taylor
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06519
| | | | | | | | | | | |
Collapse
|
218
|
Understanding opioid reward. Trends Neurosci 2015; 38:217-25. [PMID: 25637939 DOI: 10.1016/j.tins.2015.01.002] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/22/2014] [Accepted: 01/01/2015] [Indexed: 11/21/2022]
Abstract
Opioids are the most potent analgesics in clinical use; however, their powerful rewarding properties can lead to addiction. The scientific challenge is to retain analgesic potency while limiting the development of tolerance, dependence, and addiction. Both rewarding and analgesic actions of opioids depend upon actions at the mu opioid (MOP) receptor. Systemic opioid reward requires MOP receptor function in the midbrain ventral tegmental area (VTA) which contains dopaminergic neurons. VTA dopaminergic neurons are implicated in various aspects of reward including reward prediction error, working memory, and incentive salience. It is now clear that subsets of VTA neurons have different pharmacological properties and participate in separate circuits. The degree to which MOP receptor agonists act on different VTA circuits depends upon the behavioral state of the animal, which can be altered by manipulations such as food deprivation or prior exposure to MOP receptor agonists.
Collapse
|
219
|
van Huijstee AN, Mansvelder HD. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction. Front Cell Neurosci 2015; 8:466. [PMID: 25653591 PMCID: PMC4299443 DOI: 10.3389/fncel.2014.00466] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/21/2014] [Indexed: 01/12/2023] Open
Abstract
Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behavior, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA). This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC), with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioral symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodeling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction.
Collapse
Affiliation(s)
- Aile N van Huijstee
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam Amsterdam, Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
220
|
Sagheddu C, Muntoni AL, Pistis M, Melis M. Endocannabinoid Signaling in Motivation, Reward, and Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:257-302. [DOI: 10.1016/bs.irn.2015.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
221
|
Polter AM, Kauer JA. Stress and VTA synapses: implications for addiction and depression. Eur J Neurosci 2014; 39:1179-88. [PMID: 24712997 DOI: 10.1111/ejn.12490] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 02/06/2023]
Abstract
While stressful experiences are a part of everyone's life, they can also exact a major toll on health. Stressful life experiences are associated with increased substance abuse, and there exists significant co-morbidity between mental illness and substance use disorders [N.D. Volkow & T.K. Li (2004) Nat. Rev. Neurosci., 5, 963-970; G. Koob & M.J. Kreek (2007) Am. J. Psych., 164, 1149-1159; R. Sinha (2008) Annals N.Y. Acad. Sci., 1141, 105-130]. The risk for development of mood or anxiety disorders after stress is positively associated with the risk for substance use disorders [R. Sinha (2008) Annals N.Y. Acad. Sci., 1141, 105-130], suggesting that there are common substrates for vulnerability to addictive and affective disorders. Understanding the molecular and physiological substrates of stress may lead to improved therapeutic interventions for the treatment of substance use disorders and mental illnesses.
Collapse
Affiliation(s)
- Abigail M Polter
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | | |
Collapse
|
222
|
Song SS, Kang BJ, Wen L, Lee HJ, Sim HR, Kim TH, Yoon S, Yoon BJ, Augustine GJ, Baik JH. Optogenetics reveals a role for accumbal medium spiny neurons expressing dopamine D2 receptors in cocaine-induced behavioral sensitization. Front Behav Neurosci 2014; 8:336. [PMID: 25352792 PMCID: PMC4195370 DOI: 10.3389/fnbeh.2014.00336] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022] Open
Abstract
Long-lasting, drug-induced adaptations within the nucleus accumbens (NAc) have been proposed to contribute to drug-mediated addictive behaviors. Here we have used an optogenetic approach to examine the role of NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2Rs) in cocaine-induced behavioral sensitization. Adeno-associated viral vectors encoding channelrhodopsin-2 (ChR2) were delivered into the NAc of D2R-Cre transgenic mice. This allowed us to selectively photostimulate D2R-MSNs in NAc. D2R-MSNs form local inhibitory circuits, because photostimulation of D2R-MSN evoked inhibitory postsynaptic currents (IPSCs) in neighboring MSNs. Photostimulation of NAc D2R-MSN in vivo affected neither the initiation nor the expression of cocaine-induced behavioral sensitization. However, photostimulation during the drug withdrawal period attenuated expression of cocaine-induced behavioral sensitization. These results show that D2R-MSNs of NAc play a key role in withdrawal-induced plasticity and may contribute to relapse after cessation of drug abuse.
Collapse
Affiliation(s)
- Shelly Sooyun Song
- Department of Life Sciences, Molecular Neurobiology Laboratory, School of Life Sciences and Biotechnology Korea University, Seoul, South Korea
| | - Byeong Jun Kang
- Department of Life Sciences, Molecular Neurobiology Laboratory, School of Life Sciences and Biotechnology Korea University, Seoul, South Korea
| | - Lei Wen
- Center for Functional Connectomics (CFC) KIST, Seoul, South Korea ; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore ; Institute of Molecular and Cell Biology Singapore, Singapore
| | - Hyo Jin Lee
- Department of Life Sciences, Molecular Neurobiology Laboratory, School of Life Sciences and Biotechnology Korea University, Seoul, South Korea
| | - Hye-Ri Sim
- Department of Life Sciences, Molecular Neurobiology Laboratory, School of Life Sciences and Biotechnology Korea University, Seoul, South Korea
| | - Tae Hyong Kim
- Department of Life Sciences, Molecular Neurobiology Laboratory, School of Life Sciences and Biotechnology Korea University, Seoul, South Korea
| | - Sehyoun Yoon
- Department of Life Sciences, Molecular Neurobiology Laboratory, School of Life Sciences and Biotechnology Korea University, Seoul, South Korea
| | - Bong-June Yoon
- Department of Life Sciences, Molecular Neurobiology Laboratory, School of Life Sciences and Biotechnology Korea University, Seoul, South Korea
| | - George J Augustine
- Center for Functional Connectomics (CFC) KIST, Seoul, South Korea ; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore ; Institute of Molecular and Cell Biology Singapore, Singapore
| | - Ja-Hyun Baik
- Department of Life Sciences, Molecular Neurobiology Laboratory, School of Life Sciences and Biotechnology Korea University, Seoul, South Korea
| |
Collapse
|
223
|
Velásquez-Martínez MC, Vázquez-Torres R, Rojas LV, Sanabria P, Jiménez-Rivera CA. Alpha-1 adrenoreceptors modulate GABA release onto ventral tegmental area dopamine neurons. Neuropharmacology 2014; 88:110-21. [PMID: 25261018 DOI: 10.1016/j.neuropharm.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 01/08/2023]
Abstract
The ventral tegmental area (VTA) plays an important role in reward and motivational processes involved in drug addiction. Previous studies have shown that alpha1-adrenoreceptors (α1-AR) are primarily found pre-synaptically at this area. We hypothesized that GABA released onto VTA-dopamine (DA) cells is modulated by pre-synaptic α1-AR. Recordings were obtained from putative VTA-DA cells of male Sprague-Dawley rats (28-50 days postnatal) using whole-cell voltage clamp technique. Phenylephrine (10 μM; α1-AR agonist) decreased the amplitude of GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) evoked by electrical stimulation of afferent fibers (n = 7; p < 0.05). Prazosin (1 μM, α1-AR antagonist), blocked this effect. Paired-pulse ratios were increased by phenylephrine application (n = 13; p < 0.05) indicating a presynaptic site of action. Spontaneous IPSCs frequency but not amplitude, were decreased in the presence of phenylephrine (n = 7; p < 0.05). However, frequency or amplitude of miniature IPSCs were not changed (n = 9; p > 0.05). Phenylephrine in low Ca(2+) (1 mM) medium decreased IPSC amplitude (n = 7; p < 0.05). Chelerythrine (a protein kinase C inhibitor) blocked the α1-AR action on IPSC amplitude (n = 6; p < 0.05). Phenylephrine failed to decrease IPSCs amplitude in the presence of paxilline, a BK channel blocker (n = 7; p < 0.05). Taken together, these results demonstrate that α1-ARs at presynaptic terminals can modulate GABA release onto VTA-DA cells. Drug-induced changes in α1-AR could contribute to the modifications occurring in the VTA during the addiction process.
Collapse
Affiliation(s)
- Maria C Velásquez-Martínez
- Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA; Laboratorio de Neurociencias y Comportamiento, Departamento de Ciencias Básicas, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Rafael Vázquez-Torres
- Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Legier V Rojas
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR, USA
| | - Priscila Sanabria
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR, USA
| | - Carlos A Jiménez-Rivera
- Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA.
| |
Collapse
|
224
|
Petrini EM, Barberis A. Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity. Front Cell Neurosci 2014; 8:300. [PMID: 25294987 PMCID: PMC4171989 DOI: 10.3389/fncel.2014.00300] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/24/2022] Open
Abstract
The plasticity of inhibitory transmission is expected to play a key role in the modulation of neuronal excitability and network function. Over the last two decades, the investigation of the determinants of inhibitory synaptic plasticity has allowed distinguishing presynaptic and postsynaptic mechanisms. While there has been a remarkable progress in the characterization of presynaptically-expressed plasticity of inhibition, the postsynaptic mechanisms of inhibitory long-term synaptic plasticity only begin to be unraveled. At postsynaptic level, the expression of inhibitory synaptic plasticity involves the rearrangement of the postsynaptic molecular components of the GABAergic synapse, including GABAA receptors, scaffold proteins and structural molecules. This implies a dynamic modulation of receptor intracellular trafficking and receptor surface lateral diffusion, along with regulation of the availability and distribution of scaffold proteins. This Review will focus on the mechanisms of the multifaceted molecular reorganization of the inhibitory synapse during postsynaptic plasticity, with special emphasis on the key role of protein dynamics to ensure prompt and reliable activity-dependent adjustments of synaptic strength.
Collapse
Affiliation(s)
- Enrica Maria Petrini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| | - Andrea Barberis
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
225
|
Pildervasser JVN, Abrahao KP, Souza-Formigoni MLO. Distinct behavioral phenotypes in ethanol-induced place preference are associated with different extinction and reinstatement but not behavioral sensitization responses. Front Behav Neurosci 2014; 8:267. [PMID: 25152719 PMCID: PMC4126182 DOI: 10.3389/fnbeh.2014.00267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/20/2014] [Indexed: 01/12/2023] Open
Abstract
Conditioned place preference (CPP) is a model to study the role of drug conditioning properties. In outbred strains, individual variability may affect some behavioral measures. However, there are few studies focusing on understanding how different phenotypes of ethanol conditioned behavior may influence its extinction, reinstatement, and behavioral adaptation measures. We used male Swiss Webster mice to study different phenotypes related to ethanol conditioning strength, reinstatement and behavioral sensitization. Mice went through a CPP procedure with ethanol (2.2 g/kg, i.p.). After that, one group of mice was submitted to repeated extinction sessions, while another group remained in their home cages without any drug treatment. Mice went through environmental and ethanol priming (1.0 g/kg, i.p.) reinstatement tests. Ethanol priming test reinstated the conditioned behavior only in the animals kept in the home-cage during the abstinence period. Besides, the ethanol conditioned behavior strength was positively correlated with the time required to be extinguished. In the second set of experiments, some mice went through a CPP protocol followed by behavioral sensitization (five i.p. administrations of ethanol 2.2 g/kg or saline per week, for 3 weeks) and another group of mice went through sensitization followed by CPP. No positive correlation was observed between ethanol CPP strength and the intensity of behavioral sensitization. Considering that different phenotypes observed in CPP strength predicted the variability in other CPP measures, we developed a statistics-based method to classify mice according to CPP strength to be used in the evaluation of ethanol conditioning properties.
Collapse
Affiliation(s)
- João V N Pildervasser
- Unidade de Dependência de Drogas, Departament of Psicobiologia, Universidade Federal de Sao Paulo Sao Paulo, Brazil
| | - Karina P Abrahao
- Laboratory of Integrative Neuroscience, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health Rockville, MD, USA
| | - Maria L O Souza-Formigoni
- Unidade de Dependência de Drogas, Departament of Psicobiologia, Universidade Federal de Sao Paulo Sao Paulo, Brazil
| |
Collapse
|
226
|
Nakai T, Nagai T, Wang R, Yamada S, Kuroda K, Kaibuchi K, Yamada K. Alterations of GABAergic and dopaminergic systems in mutant mice with disruption of exons 2 and 3 of the Disc1 gene. Neurochem Int 2014; 74:74-83. [PMID: 24973713 DOI: 10.1016/j.neuint.2014.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/28/2014] [Accepted: 06/16/2014] [Indexed: 01/20/2023]
Abstract
Disrupted-in-schizophrenia-1 (DISC1) has been widely associated with several psychiatric disorders, including schizophrenia, mood disorders and autism. We previously reported that a deficiency of DISC1 may induce low anxiety and/or high impulsivity in mice with disruption of exons 2 and 3 of the Disc1 gene (Disc1(Δ2-3/Δ2-3)). It remains unclear, however, if deficiency of DISC1 leads to specific alterations in distinct neuronal systems. In the present study, to understand the role of DISC1 in γ-aminobutyric acid (GABA) interneurons and mesocorticolimbic dopaminergic (DAergic) neurons, we investigated the number of parvalbumin (PV)-positive interneurons, methamphetamine (METH)-induced DA release and the expression levels of GABAA, DA transporter (DAT) and DA receptors in wild-type (Disc1(+/+)) and Disc1(Δ2-3/Δ2-3) mice. Female Disc1(Δ2-3/Δ2-3) mice showed a significant reduction of PV-positive interneurons in the hippocampus, while no apparent changes were observed in mRNA expression levels of GABAA receptor subunits. METH-induced DA release was significantly potentiated in the nucleus accumbens (NAc) of female Disc1(Δ2-3/Δ2-3) mice, although there were no significant differences in the expression levels of DAT. Furthermore, the expression levels of DA receptor mRNA were upregulated in the NAc of female Disc1(Δ2-3/Δ2-3) mice. Male Disc1(Δ2-3/Δ2-3) mice showed no apparent differences in all experiments. DISC1 may play a critical role in gender-specific developmental alteration in GABAergic inhibitory interneurons and DAergic neurons.
Collapse
Affiliation(s)
- Tsuyoshi Nakai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Rui Wang
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Shinnosuke Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Keisuke Kuroda
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan.
| |
Collapse
|
227
|
Sorting nexin 27 regulation of G protein-gated inwardly rectifying K⁺ channels attenuates in vivo cocaine response. Neuron 2014; 82:659-69. [PMID: 24811384 DOI: 10.1016/j.neuron.2014.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2014] [Indexed: 12/12/2022]
Abstract
The subcellular pathways that regulate G protein-gated inwardly rectifying potassium (GIRK or Kir3) channels are important for controlling the excitability of neurons. Sorting nexin 27 (SNX27) is a PDZ-containing protein known to bind GIRK2c/GIRK3 channels, but its function in vivo is poorly understood. Here, we investigated the role of SNX27 in regulating GIRK currents in dopamine (DA) neurons of the ventral tegmental area (VTA). Mice lacking SNX27 in DA neurons exhibited reduced GABABR-activated GIRK currents but had normal Ih currents and DA D2R-activated GIRK currents. Expression of GIRK2a, an SNX27-insensitive splice variant, restored GABABR-activated GIRK currents in SNX27-deficient DA neurons. Remarkably, mice with significantly reduced GABABR-activated GIRK currents in only DA neurons were hypersensitive to cocaine and could be restored to a normal locomotor response with GIRK2a expression. These results identify a pathway for regulating excitability of VTA DA neurons, highlighting SNX27 as a promising target for treating addiction.
Collapse
|
228
|
Matsui A, Jarvie BC, Robinson BG, Hentges ST, Williams JT. Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron 2014; 82:1346-56. [PMID: 24857021 DOI: 10.1016/j.neuron.2014.04.030] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2014] [Indexed: 01/01/2023]
Abstract
GABA release from interneurons in VTA, projections from the nucleus accumbens (NAc), and rostromedial tegmental nucleus (RMTg) was selectively activated in rat brain slices. The inhibition induced by μ-opioid agonists was pathway dependent. Morphine induced a 46% inhibition of IPSCs evoked from the RMTg, 18% from NAc, and IPSCs evoked from VTA interneurons were almost insensitive (11% inhibition). In vivo morphine treatment resulted in tolerance to the inhibition of RMTg, but not local interneurons or NAc, inputs. One common sign of opioid withdrawal is an increase in adenosine-dependent inhibition. IPSCs evoked from the NAc were potently inhibited by activation of presynaptic adenosine receptors, whereas IPSCs evoked from RMTg were not changed. Blockade of adenosine receptors selectively increased IPSCs evoked from the NAc during morphine withdrawal. Thus, the acute action of opioids, the development of tolerance, and the expression of withdrawal are mediated by separate GABA afferents to dopamine neurons.
Collapse
Affiliation(s)
- Aya Matsui
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Brooke C Jarvie
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Brooks G Robinson
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
229
|
Abstract
Epigenetic regulation of cellular identity and function is at least partly achieved through changes in covalent modifications on DNA and histones. Much progress has been made in recent years to understand how these covalent modifications affect cell identity and function. Despite the advances, whether and how epigenetic factors contribute to memory formation is still poorly understood. In this review, we discuss recent progress in elucidating epigenetic mechanisms of learning and memory, primarily at the DNA level, and look ahead to discuss their potential implications in reward memory and development of drug addiction.
Collapse
Affiliation(s)
- Luis M Tuesta
- Howard Hughes Medical Institute, Boston, MA, USA Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, USA Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston, MA, USA Program in Cellular and Molecular Medicine Boston Children's Hospital, Boston, MA, USA Department of Genetics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| |
Collapse
|
230
|
Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 2014; 282:23-48. [PMID: 24735820 DOI: 10.1016/j.neuroscience.2014.04.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/21/2022]
Abstract
This review covers the intrinsic organization and afferent and efferent connections of the midbrain dopaminergic complex, comprising the substantia nigra, ventral tegmental area and retrorubral field, which house, respectively, the A9, A10 and A8 groups of nigrostriatal, mesolimbic and mesocortical dopaminergic neurons. In addition, A10dc (dorsal, caudal) and A10rv (rostroventral) extensions into, respectively, the ventrolateral periaqueductal gray and supramammillary nucleus are discussed. Associated intrinsic and extrinsic connections of the midbrain dopaminergic complex that utilize gamma-aminobutyric acid (GABA), glutamate and neuropeptides and various co-expressed combinations of these compounds are considered in conjunction with the dopamine-containing systems. A framework is provided for understanding the organization of massive afferent systems descending and ascending to the midbrain dopaminergic complex from the telencephalon and brainstem, respectively. Within the context of this framework, the basal ganglia direct and indirect output pathways are treated in some detail. Findings from rodent brain are briefly compared with those from primates, including humans. Recent literature is emphasized, including traditional experimental neuroanatomical and modern gene transfer and optogenetic studies. An attempt was made to provide sufficient background and cite a representative sampling of earlier primary papers and reviews so that people new to the field may find this to be a relatively comprehensive treatment of the subject.
Collapse
Affiliation(s)
- L Yetnikoff
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| | - H N Lavezzi
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - R A Reichard
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - D S Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| |
Collapse
|
231
|
Covey DP, Roitman MF, Garris PA. Illicit dopamine transients: reconciling actions of abused drugs. Trends Neurosci 2014; 37:200-10. [PMID: 24656971 DOI: 10.1016/j.tins.2014.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 01/03/2023]
Abstract
Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome.
Collapse
Affiliation(s)
- Dan P Covey
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607-7137, USA
| | - Paul A Garris
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA.
| |
Collapse
|
232
|
Creed MC, Ntamati NR, Tan KR. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front Behav Neurosci 2014; 8:8. [PMID: 24478655 PMCID: PMC3897868 DOI: 10.3389/fnbeh.2014.00008] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/06/2014] [Indexed: 11/13/2022] Open
Abstract
The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA) and the nucleus accumbens (NAc) as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to dopamine (DA) neurons, the VTA also contains approximately 30% γ-aminobutyric acid (GABA) neurons. The task of signaling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs), a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioral level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs) to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.
Collapse
Affiliation(s)
- Meaghan C Creed
- Department of Basic Neurosciences, Medical Faculty, University of Geneva Geneva, Switzerland
| | - Niels R Ntamati
- Department of Basic Neurosciences, Medical Faculty, University of Geneva Geneva, Switzerland
| | - Kelly R Tan
- Department of Basic Neurosciences, Medical Faculty, University of Geneva Geneva, Switzerland
| |
Collapse
|
233
|
McDevitt RA, Reed SJ, Britt JP. Optogenetics in preclinical neuroscience and psychiatry research: recent insights and potential applications. Neuropsychiatr Dis Treat 2014; 10:1369-79. [PMID: 25092982 PMCID: PMC4114904 DOI: 10.2147/ndt.s45896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
There have been significant advances in the treatment of psychiatric disease in the last half century, but it is still unclear which neural circuits are ultimately responsible for specific disease states. Fortunately, technical limitations that have constrained this research have recently been mitigated by advances in research tools that facilitate circuit-based analyses. The most prominent of these tools is optogenetics, which refers to the use of genetically encoded, light-sensitive proteins that can be used to manipulate discrete neural circuits with temporal precision. Optogenetics has recently been used to examine the neural underpinnings of both psychiatric disease and symptom relief, and this research has rapidly identified novel therapeutic targets for what could be a new generation of rational drug development. As these and related methodologies for controlling neurons ultimately make their way into the clinic, circuit-based strategies for alleviating psychiatric symptoms could become a remarkably refined approach to disease treatment.
Collapse
Affiliation(s)
- Ross A McDevitt
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Sean J Reed
- Integrated Program in Neuroscience, Montreal Neurological Institute, Montreal, QC, Canada
| | - Jonathan P Britt
- Integrated Program in Neuroscience, Montreal Neurological Institute, Montreal, QC, Canada ; Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|