201
|
He Q, Arroyo ED, Smukowski SN, Xu J, Piochon C, Savas JN, Portera-Cailliau C, Contractor A. Critical period inhibition of NKCC1 rectifies synapse plasticity in the somatosensory cortex and restores adult tactile response maps in fragile X mice. Mol Psychiatry 2019; 24:1732-1747. [PMID: 29703945 PMCID: PMC6204122 DOI: 10.1038/s41380-018-0048-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/15/2022]
Abstract
Sensory perturbations in visual, auditory and tactile perception are core problems in fragile X syndrome (FXS). In the Fmr1 knockout mouse model of FXS, the maturation of synapses and circuits during critical period (CP) development in the somatosensory cortex is delayed, but it is unclear how this contributes to altered tactile sensory processing in the mature CNS. Here we demonstrate that inhibiting the juvenile chloride co-transporter NKCC1, which contributes to altered chloride homeostasis in developing cortical neurons of FXS mice, rectifies the chloride imbalance in layer IV somatosensory cortex neurons and corrects the development of thalamocortical excitatory synapses during the CP. Comparison of protein abundances demonstrated that NKCC1 inhibition during early development caused a broad remodeling of the proteome in the barrel cortex. In addition, the abnormally large size of whisker-evoked cortical maps in adult Fmr1 knockout mice was corrected by rectifying the chloride imbalance during the early CP. These data demonstrate that correcting the disrupted driving force through GABAA receptors during the CP in cortical neurons restores their synaptic development, has an unexpectedly large effect on differentially expressed proteins, and produces a long-lasting correction of somatosensory circuit function in FXS mice.
Collapse
Affiliation(s)
- Qionger He
- Department of Physiology, Northwestern University Feinberg School of Medicine
| | - Erica D Arroyo
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Samuel N Smukowski
- Department of Neurology, Northwestern University Feinberg School of Medicine
| | - Jian Xu
- Department of Physiology, Northwestern University Feinberg School of Medicine
| | - Claire Piochon
- Department of Physiology, Northwestern University Feinberg School of Medicine
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine
| | - Carlos Portera-Cailliau
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
202
|
Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl Psychiatry 2019; 9:267. [PMID: 31636273 PMCID: PMC6803711 DOI: 10.1038/s41398-019-0608-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/17/2019] [Indexed: 02/05/2023] Open
Abstract
Despite the substantial progress made in identifying genetic defects in autism spectrum disorder (ASD), the etiology for majority of ASD individuals remains elusive. Maternal exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug during pregnancy in human, has long been considered a risk factor to contribute to ASD susceptibility in offspring from epidemiological studies in humans. The similar exposures in murine models have provided tentative evidence to support the finding from human epidemiology. However, the apparent difference between rodent and human poses a significant challenge to extrapolate the findings from rodent models to humans. Here we report for the first time the neurodevelopmental and behavioral outcomes of maternal VPA exposure in non-human primates. Monkey offspring from the early maternal VPA exposure have significantly reduced NeuN-positive mature neurons in prefrontal cortex (PFC) and cerebellum and the Ki67-positive proliferating neuronal precursors in the cerebellar external granular layer, but increased GFAP-positive astrocytes in PFC. Transcriptome analyses revealed that maternal VPA exposure disrupted the expression of genes associated with neurodevelopment in embryonic brain in offspring. VPA-exposed juvenile offspring have variable presentations of impaired social interaction, pronounced stereotypies, and more attention on nonsocial stimuli by eye tracking analysis. Our findings in non-human primates provide the best evidence so far to support causal link between maternal VPA exposure and neurodevelopmental defects and ASD susceptibility in humans.
Collapse
|
203
|
Pisella LI, Gaiarsa JL, Diabira D, Zhang J, Khalilov I, Duan J, Kahle KT, Medina I. Impaired regulation of KCC2 phosphorylation leads to neuronal network dysfunction and neurodevelopmental pathology. Sci Signal 2019; 12:eaay0300. [PMID: 31615899 PMCID: PMC7192243 DOI: 10.1126/scisignal.aay0300] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
KCC2 is a vital neuronal K+/Cl- cotransporter that is implicated in the etiology of numerous neurological diseases. In normal cells, KCC2 undergoes developmental dephosphorylation at Thr906 and Thr1007 We engineered mice with heterozygous phosphomimetic mutations T906E and T1007E (KCC2E/+ ) to prevent the normal developmental dephosphorylation of these sites. Immature (postnatal day 15) but not juvenile (postnatal day 30) KCC2E/+ mice exhibited altered GABAergic inhibition, an increased glutamate/GABA synaptic ratio, and greater susceptibility to seizure. KCC2E/+ mice also had abnormal ultrasonic vocalizations at postnatal days 10 to 12 and impaired social behavior at postnatal day 60. Postnatal bumetanide treatment restored network activity by postnatal day 15 but failed to restore social behavior by postnatal day 60. Our data indicate that posttranslational KCC2 regulation controls the GABAergic developmental sequence in vivo, indicating that deregulation of KCC2 could be a risk factor for the emergence of neurological pathology.
Collapse
Affiliation(s)
- Lucie I Pisella
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Jean-Luc Gaiarsa
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Diabé Diabira
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Ilgam Khalilov
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
- Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| | - JingJing Duan
- Department of Neurobiology, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Igor Medina
- Aix-Marseille University, UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France.
| |
Collapse
|
204
|
The inflammatory event of birth: How oxytocin signaling may guide the development of the brain and gastrointestinal system. Front Neuroendocrinol 2019; 55:100794. [PMID: 31560883 DOI: 10.1016/j.yfrne.2019.100794] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023]
Abstract
The role of oxytocin (OT) as a neuropeptide that modulates social behavior has been extensively studied and reviewed, but beyond these functions, OT's adaptive functions at birth are quite numerous, as OT coordinates many physiological processes in the mother and fetus to ensure a successful delivery. In this review we explore in detail the potential adaptive roles of oxytocin as an anti-inflammatory, protective molecule at birth for the developing fetal brain and gastrointestinal system based on evidence that birth is a potent inflammatory/immune event. We discuss data with relevance for a number of neurodevelopmental disorders, as well as the emerging role of the gut-brain axis for health and disease. Finally, we discuss the potential relevance of sex differences in OT signaling present at birth in the increased male vulnerability to neurodevelopmental disabilities.
Collapse
|
205
|
Cheyne JE, Zabouri N, Baddeley D, Lohmann C. Spontaneous Activity Patterns Are Altered in the Developing Visual Cortex of the Fmr1 Knockout Mouse. Front Neural Circuits 2019; 13:57. [PMID: 31616256 PMCID: PMC6775252 DOI: 10.3389/fncir.2019.00057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/19/2019] [Indexed: 11/17/2022] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent inherited cause of autism and is accompanied by behavioral and sensory deficits. Errors in the wiring of the brain during early development likely contribute to these deficits, but the underlying mechanisms are unclear. Spontaneous activity patterns, which are required for fine-tuning neuronal networks before the senses become active, are perturbed in rodent models of FXS. Here, we investigated spontaneous network activity patterns in the developing visual cortex of the Fmr1 knockout mouse using in vivo calcium imaging during the second postnatal week, before eye opening. We found that while the frequency, mean amplitude and duration of spontaneous network events were unchanged in the knockout mouse, pair-wise correlations between neurons were increased compared to wild type littermate controls. Further analysis revealed that interneuronal correlations were not generally increased, rather that low-synchronization events occurred relatively less frequently than high-synchronization events. Low-, but not high-, synchronization events have been associated with retinal inputs previously. Since we found that spontaneous retinal waves were normal in the knockout, our results suggest that peripherally driven activity is underrepresented in the Fmr1 KO visual cortex. Therefore, we propose that central gating of retinal inputs may be affected in FXS and that peripherally and centrally driven activity patterns are already unbalanced before eye opening in this disorder.
Collapse
Affiliation(s)
- Juliette E Cheyne
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Nawal Zabouri
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - David Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
206
|
Witchey SK, Fuchs J, Patisaul HB. Perinatal bisphenol A (BPA) exposure alters brain oxytocin receptor (OTR) expression in a sex- and region- specific manner: A CLARITY-BPA consortium follow-up study. Neurotoxicology 2019; 74:139-148. [PMID: 31251963 PMCID: PMC6750986 DOI: 10.1016/j.neuro.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is a well-characterized endocrine disrupting chemical (EDC) used in plastics, epoxy resins and other products. Neurodevelopmental effects of BPA exposure are a major concern with multiple rodent and human studies showing that early life BPA exposure may impact the developing brain and sexually dimorphic behaviors. The CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) program was established to assess multiple endpoints, including neural, across a wide dose range. Studies from our lab as part of (and prior to) CLARITY-BPA have shown that BPA disrupts estrogen receptor expression in the developing brain, and some evidence of oxytocin (OT) and oxytocin receptor (OTR) disruption in the hypothalamus and amygdala. While BPA disruption of steroid hormone function is well documented, less is known about its capacity to alter nonapeptide signals. In this CLARITY-BPA follow up study, we used remaining juvenile rat tissues to test the hypothesis that developmental BPA exposure affects OTR expression across the brain. Perinatal BPA exposure (2.5, 25, or 2500 μg/kg body weight (bw)/day) spanned gestation and lactation with dams gavaged from gestational day 6 until birth and then the offspring gavaged directly through weaning. Ethinyl estradiol (0.5 μg/kg bw/day) was used as a reference estrogen. Animals of both sexes were sacrificed as juveniles and OTR expression assessed by receptor binding. Our results demonstrate prenatal exposure to BPA can eliminate sex differences in OTR expression in three hypothalamic regions, and that male OTR expression may be more susceptible. Our data also identify a sub-region of the BNST with sexually dimorphic OTR expression not previously reported in juvenile rats that is also susceptible to BPA.
Collapse
Affiliation(s)
- Shannah K Witchey
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, United States
| | - Joelle Fuchs
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, United States
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, United States; Center for Human Health and the Environment, NC State University, Raleigh, NC, 27695, United States.
| |
Collapse
|
207
|
Mollajani R, Joghataei MT, Tehrani-Doost M. Bumetanide Therapeutic Effect in Children and Adolescents With Autism Spectrum Disorder: A Review Study. Basic Clin Neurosci 2019; 10:433-441. [PMID: 32284832 PMCID: PMC7149950 DOI: 10.32598/bcn.9.10.380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/10/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
Introduction: Autism Spectrum Disorder (ASD) is characterized by several impairments in communications and social interactions, as well as restricted interests or stereotyped behaviors. Interventions applied for this disorder are based on multi-modal approaches, including pharmacotherapy. No definitive cure or medication has been introduced so far; therefore, researchers still investigate potential drugs for treating ASD. One of the new medications introduced for this purpose is bumetanide. The present article aimed to review the efficacy of this drug on the core symptoms of ASD and its potential side effects. Methods: We searched all papers reported on pharmacokinetics, pharmacodynamics, efficacy, and adverse effects of bumetanide on animal models and humans with ASD. The papers were extracted from the main databases of PubMed, Web of Science, and Scopus. Results: The findings revealed that cortical neurons have high Chloride ion (Cl−)i and excitatory actions of gamma-aminobutyric acid in the valproic acid animal model with ASD and mice with fragile X syndrome. Bumetanide, which has been introduced as a diuretic, is also a high-affinity-specific Na+−K+−Cl− cotransporter (NKCC1) antagonist that can reduce Cl− level. The results also indicate that bumetanide can attenuate behavioral features of autism in both animal and human models. Moreover, the studies showed that such medication could activate fusiform face area in individuals with ASD while viewing emotional faces. Also, recent findings suggest that a dose of 1 mg/d of this drug, taken twice daily, might be the best compromise between safety and efficacy. Conclusion: Recent studies provided some evidence that bumetanide can be a novel pharmacological agent in treating core symptoms of ASD. Future studies are required to confirm the efficacy of this medication in individuals with ASD.
Collapse
Affiliation(s)
- Raheleh Mollajani
- Cognitive Neuroscience Institute for Cognitive Science Studies, Tehran, Iran
| | - Mohamad Taghi Joghataei
- Department of Anatomy and Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Tehrani-Doost
- Research Center for Cognitive and Behavioral Sciences, Tehran university of Medial Sciences, Tehran, Iran
| |
Collapse
|
208
|
Port RG, Oberman LM, Roberts TPL. Revisiting the excitation/inhibition imbalance hypothesis of ASD through a clinical lens. Br J Radiol 2019; 92:20180944. [PMID: 31124710 PMCID: PMC6732925 DOI: 10.1259/bjr.20180944] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/19/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) currently affects 1 in 59 children, although the aetiology of this disorder remains unknown. Faced with multiple seemingly disparate and noncontiguous neurobiological alterations, Rubenstein and Merzenich hypothesized that imbalances between excitatory and inhibitory neurosignaling (E/I imbalance) underlie ASD. Since this initial statement, there has been a major focus examining this exact topic spanning both clinical and preclinical realms. The purpose of this article is to review the clinical neuroimaging literature surrounding E/I imbalance as an aetiology of ASD. Evidence for E/I imbalance is presented from several complementary clinical techniques including magnetic resonance spectroscopy, magnetoencephalography and transcranial magnetic stimulation. Additionally, two GABAergic potential interventions for ASD, which explicitly attempt to remediate E/I imbalance, are reviewed. The current literature suggests E/I imbalance as a useful framework for discussing the neurobiological etiology of ASD in at least a subset of affected individuals. While not constituting a completely unifying aetiology, E/I imbalance may be relevant as one of several underlying neuropathophysiologies that differentially affect individuals with ASD. Such statements do not diminish the value of the E/I imbalance concept-instead they suggest a possible role for the characterization of E/I imbalance, as well as other underlying neuropathophysiologies, in the biologically-based subtyping of individuals with ASD for potential applications including clinical trial enrichment as well as treatment triage.
Collapse
Affiliation(s)
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland
| | - Timothy PL Roberts
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Pennsylvania
| |
Collapse
|
209
|
Liu Y, Donovan M, Jia X, Wang Z. The ventromedial hypothalamic circuitry and male alloparental behaviour in a socially monogamous rodent species. Eur J Neurosci 2019; 50:3689-3701. [PMID: 31423669 DOI: 10.1111/ejn.14550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/27/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
As prairie voles (Microtus ochrogaster) display spontaneous biparental care, and the ventromedial hypothalamus (VMH) has been implicated in reproductive behaviour, we conducted experiments to test the hypothesis that the VMH neurochemical circuitry is involved in alloparental behaviours in male prairie voles. We compared alloparental behaviours of adult, sexually naïve male and female voles-both displayed licking/grooming, huddling and retrieving behaviours towards conspecific pups. We also stained for the immediate-early gene encoded early growth protein Egr-1 in the vole brain. The pup-exposed animals showed levels of Egr-1 staining that was higher in the VMH but lower in the amygdala compared to animals exposed to a pup-sized piece of plastic (control). A retrograde tracer, Fluoro-Gold (FG), was injected into the VMH of male voles that were subsequently tested in the pup exposure or control condition. More FG/Egr-1 cells were detected for glutamatergic (GLU) staining in the ventral bed nucleus of the stria terminalis (BNSTv) and medial amygdala (MeA), whereas less FG/Egr-1 cells were stained for gamma-aminobutyric acid (GABA) in the MeA of the pup-exposed group compared to the control group. Further, the ratio of GLU:GABA expression in FG/Egr-1 projection neurons from both the BNSTv and MeA to the VMH was increased following pup exposure. Finally, pharmacological blockade of either dopamine D1 receptor or oxytocin receptor in the VMH impaired the onset of male alloparental behaviour. Together, these data suggest that the VMH may be involved in the onset of alloparental care and play a role in regulating social approach in male prairie voles.
Collapse
Affiliation(s)
- Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Xixi Jia
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
210
|
Matsushita H, Latt HM, Koga Y, Nishiki T, Matsui H. Oxytocin and Stress: Neural Mechanisms, Stress-Related Disorders, and Therapeutic Approaches. Neuroscience 2019; 417:1-10. [PMID: 31400490 DOI: 10.1016/j.neuroscience.2019.07.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
Clinical reports show that oxytocin (OT) is related to stress-related disorders such as depression, anxiety disorder, and post-traumatic stress disorder. Two key structures in the brain should be paid special attention with regard to stress regulation, namely, the hypothalamus and the hippocampus. The former is the region for central command for most, if not all, of the major endocrine systems, and the latter takes a key position in the regulation of mood and anxiety. There are extensive neural projections between the two structures, and both are functionally intertwined. The hypothalamus projects OTergic neurons to the hippocampus, and the latter possesses high levels of OT receptors. The hippocampus also regulates the secretion of glucocorticoids, a major group of stress hormones. Excessive levels of glucocorticoids in chronic stress cause atrophy of the hippocampus, whereas OT has been shown to protect hippocampal neurons from the toxic effects of glucocorticoids. In this article, we discuss how neural and endocrine mechanisms interplay in stress regulation, with an emphasis on the role of OT, as well as its therapeutic potential in the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Hiroaki Matsushita
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Hein Min Latt
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Yuuri Koga
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Teiichi Nishiki
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hideki Matsui
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
211
|
Tang X, Drotar J, Li K, Clairmont CD, Brumm AS, Sullins AJ, Wu H, Liu XS, Wang J, Gray NS, Sur M, Jaenisch R. Pharmacological enhancement of KCC2 gene expression exerts therapeutic effects on human Rett syndrome neurons and Mecp2 mutant mice. Sci Transl Med 2019; 11:eaau0164. [PMID: 31366578 PMCID: PMC8140401 DOI: 10.1126/scitranslmed.aau0164] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 04/14/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl CpG binding protein 2 (MECP2) gene. There are currently no approved treatments for RTT. The expression of K+/Cl- cotransporter 2 (KCC2), a neuron-specific protein, has been found to be reduced in human RTT neurons and in RTT mouse models, suggesting that KCC2 might play a role in the pathophysiology of RTT. To develop neuron-based high-throughput screening (HTS) assays to identify chemical compounds that enhance the expression of the KCC2 gene, we report the generation of a robust high-throughput drug screening platform that allows for the rapid assessment of KCC2 gene expression in genome-edited human reporter neurons. From an unbiased screen of more than 900 small-molecule chemicals, we have identified a group of compounds that enhance KCC2 expression termed KCC2 expression-enhancing compounds (KEECs). The identified KEECs include U.S. Food and Drug Administration-approved drugs that are inhibitors of the fms-like tyrosine kinase 3 (FLT3) or glycogen synthase kinase 3β (GSK3β) pathways and activators of the sirtuin 1 (SIRT1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) pathways. Treatment with hit compounds increased KCC2 expression in human wild-type (WT) and isogenic MECP2 mutant RTT neurons, and rescued electrophysiological and morphological abnormalities of RTT neurons. Injection of KEEC KW-2449 or piperine in Mecp2 mutant mice ameliorated disease-associated respiratory and locomotion phenotypes. The small-molecule compounds described in our study may have therapeutic effects not only in RTT but also in other neurological disorders involving dysregulation of KCC2.
Collapse
Affiliation(s)
- Xin Tang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jesse Drotar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Keji Li
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Austin J Sullins
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hao Wu
- Fulcrum Therapeutics, Cambridge, MA 02139, USA
| | | | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
212
|
Enhanced Glutamatergic Currents at Birth in Shank3 KO Mice. Neural Plast 2019; 2019:2382639. [PMID: 31354805 PMCID: PMC6636579 DOI: 10.1155/2019/2382639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders induced by genetic and environmental factors. In our recent studies, we showed that the GABA developmental shifts during delivery and the second postnatal week are abolished in two rodent models of ASD. Maternal treatment around birth with bumetanide restored the GABA developmental sequence and attenuated the autism pathogenesis in offspring. Clinical trials conducted in parallel confirmed the usefulness of bumetanide treatment to attenuate the symptoms in children with ASD. Collectively, these observations suggest that an alteration of the GABA developmental sequence is a hallmark of ASD. Here, we investigated whether similar alterations occur in the Shank3 mouse model of ASD. We report that in CA3 pyramidal neurons, the driving force and inhibitory action of GABA are not different in naïve and Shank3-mutant age-matched animals at birth and during the second postnatal week. In contrast, the frequency of spontaneous excitatory postsynaptic currents is already enhanced at birth and persists through postnatal day 15. Therefore, in CA3 pyramidal neurons of Shank3-mutant mice, glutamatergic but not GABAergic activity is affected at early developmental stages, hence reflecting the heterogeneity of mechanisms underlying the pathogenesis of ASD.
Collapse
|
213
|
Lozovaya N, Nardou R, Tyzio R, Chiesa M, Pons-Bennaceur A, Eftekhari S, Bui TT, Billon-Grand M, Rasero J, Bonifazi P, Guimond D, Gaiarsa JL, Ferrari DC, Ben-Ari Y. Early alterations in a mouse model of Rett syndrome: the GABA developmental shift is abolished at birth. Sci Rep 2019; 9:9276. [PMID: 31239460 PMCID: PMC6592949 DOI: 10.1038/s41598-019-45635-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Genetic mutations of the Methyl-CpG-binding protein-2 (MECP2) gene underlie Rett syndrome (RTT). Developmental processes are often considered to be irrelevant in RTT pathogenesis but neuronal activity at birth has not been recorded. We report that the GABA developmental shift at birth is abolished in CA3 pyramidal neurons of Mecp2-/y mice and the glutamatergic/GABAergic postsynaptic currents (PSCs) ratio is increased. Two weeks later, GABA exerts strong excitatory actions, the glutamatergic/GABAergic PSCs ratio is enhanced, hyper-synchronized activity is present and metabotropic long-term depression (LTD) is impacted. One day before delivery, maternal administration of the NKCC1 chloride importer antagonist bumetanide restored these parameters but not respiratory or weight deficits, nor the onset of mortality. Results suggest that birth is a critical period in RTT with important alterations that can be attenuated by bumetanide raising the possibility of early treatment of the disorder.
Collapse
Affiliation(s)
- N Lozovaya
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - R Nardou
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - R Tyzio
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - M Chiesa
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - A Pons-Bennaceur
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - S Eftekhari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - T-T Bui
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - M Billon-Grand
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - J Rasero
- Biocruces Health Research Institute, 48903, Barakaldo, Spain
| | - P Bonifazi
- Biocruces Health Research Institute, 48903, Barakaldo, Spain.,IKERBASQUE: The Basque Foundation for Science, 48013, Bilbao, Spain
| | - D Guimond
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - J-L Gaiarsa
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - D C Ferrari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - Y Ben-Ari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.
| |
Collapse
|
214
|
Pisu MG, Boero G, Garau A, Casula C, Cisci S, Biggio F, Concas A, Follesa P, Maciocco E, Porcu P, Serra M. Are preconceptional stressful experiences crucial elements for the aetiology of autism spectrum disorder? Insights from an animal model. Neuropharmacology 2019; 157:107686. [PMID: 31247268 DOI: 10.1016/j.neuropharm.2019.107686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by changes in social interactions, impaired language and communication, fear responses and presence of repetitive behaviours. Although the genetic bases of ASD are well documented, the recent increase in clinical cases of idiopathic ASD indicates that several environmental risk factors could play a role in ASD aetiology. Among these, maternal exposure to psychosocial stressors during pregnancy has been hypothesized to affect the risk for ASD in offspring. Here, we tested the hypothesis that preconceptional stressful experiences might also represent crucial elements in the aetiology of ASD. We previously showed that social isolation stress during adolescence results in a marked decrease in the brain and plasma concentrations of progesterone and in the quality of maternal care that these female rats later provide to their young. Here we report that male offspring of socially isolated parents showed decreased agonistic behaviour and social transmission of flavour preference, impairment in reversal learning, increased seizure susceptibility, reduced plasma oxytocin levels, and increased plasma and brain levels of BDNF, all features resembling an ASD-like phenotype. These alterations came with no change in spatial learning, aggression, anxiety and testosterone plasma levels, and were sex-dependent. Altogether, the results suggest that preconceptional stressful experiences should be considered as crucial elements for the aetiology of ASD, and indicate that male offspring of socially isolated parents may be a useful animal model to further study the neurobiological bases of ASD, avoiding the adaptations that may occur in other genetic or pharmacologic experimental models of these disorders.
Collapse
Affiliation(s)
| | - Giorgia Boero
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anna Garau
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Claudia Casula
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Sonia Cisci
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Francesca Biggio
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Alessandra Concas
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Elisabetta Maciocco
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| |
Collapse
|
215
|
Verma V, Paul A, Amrapali Vishwanath A, Vaidya B, Clement JP. Understanding intellectual disability and autism spectrum disorders from common mouse models: synapses to behaviour. Open Biol 2019; 9:180265. [PMID: 31185809 PMCID: PMC6597757 DOI: 10.1098/rsob.180265] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Normal brain development is highly dependent on the timely coordinated actions of genetic and environmental processes, and an aberration can lead to neurodevelopmental disorders (NDDs). Intellectual disability (ID) and autism spectrum disorders (ASDs) are a group of co-occurring NDDs that affect between 3% and 5% of the world population, thus presenting a great challenge to society. This problem calls for the need to understand the pathobiology of these disorders and to design new therapeutic strategies. One approach towards this has been the development of multiple analogous mouse models. This review discusses studies conducted in the mouse models of five major monogenic causes of ID and ASDs: Fmr1, Syngap1, Mecp2, Shank2/3 and Neuroligins/Neurnexins. These studies reveal that, despite having a diverse molecular origin, the effects of these mutations converge onto similar or related aetiological pathways, consequently giving rise to the typical phenotype of cognitive, social and emotional deficits that are characteristic of ID and ASDs. This convergence, therefore, highlights common pathological nodes that can be targeted for therapy. Other than conventional therapeutic strategies such as non-pharmacological corrective methods and symptomatic alleviation, multiple studies in mouse models have successfully proved the possibility of pharmacological and genetic therapy enabling functional recovery.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Anjali Amrapali Vishwanath
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Bhupesh Vaidya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| |
Collapse
|
216
|
Salmi M, Del Gallo F, Minlebaev M, Zakharov A, Pauly V, Perron P, Pons‐Bennaceur A, Corby‐Pellegrino S, Aniksztejn L, Lenck‐Santini P, Epsztein J, Khazipov R, Burnashev N, Bertini G, Szepetowski P. Impaired vocal communication, sleep‐related discharges, and transient alteration of slow‐wave sleep in developing mice lacking the GluN2A subunit of
N
‐methyl‐
d
‐aspartate receptors. Epilepsia 2019; 60:1424-1437. [DOI: 10.1111/epi.16060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Manal Salmi
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Federico Del Gallo
- Department of Neurosciences, Biomedicine, and Movement Sciences University of Verona Verona Italy
| | - Marat Minlebaev
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
- Laboratory of Neurobiology Kazan Federal University Kazan Russia
| | - Andrey Zakharov
- Laboratory of Neurobiology Kazan Federal University Kazan Russia
| | - Vanessa Pauly
- Public Health Laboratory, Recognized Team (EA) 3279 Associate Center for Drug Dependency and Addictovigilance Faculty of Medicine Aix‐Marseille University Marseille France
| | - Pauline Perron
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Alexandre Pons‐Bennaceur
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Séverine Corby‐Pellegrino
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Laurent Aniksztejn
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Pierre‐Pascal Lenck‐Santini
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Jérôme Epsztein
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Rustem Khazipov
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
- Laboratory of Neurobiology Kazan Federal University Kazan Russia
| | - Nail Burnashev
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| | - Giuseppe Bertini
- Department of Neurosciences, Biomedicine, and Movement Sciences University of Verona Verona Italy
| | - Pierre Szepetowski
- National Institute of Health and Medical Research INSERM Joint Research Unit UMR 1249Mediterranean Institute of Neurobiology INMEDAix‐Marseille University Marseille France
| |
Collapse
|
217
|
Thakur P, Shrivastava R, Shrivastava VK. Effects of exogenous oxytocin and atosiban antagonist on GABA in different region of brain. IBRO Rep 2019; 6:185-189. [PMID: 31211283 PMCID: PMC6562178 DOI: 10.1016/j.ibror.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 04/16/2019] [Indexed: 12/23/2022] Open
Abstract
Gamma amino butyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebral central nervous system. It functions by altering the membrane conductance of Cl- ions, maintaining the membrane potential close to the resting potential. The hormone oxytocin (OT) has a central action where it acts as a neuromodulatory peptide and exerts its action depending upon the distribution of OT receptors (OTR) in the target site. OTRs are G-protein-coupled receptors (GPCRs) comprising different subunits (Gq, Gi, and Gs). The G- protein isoforms have the ability to activate different pathways, but specific agonists and antagonists may show different affinities to OTRs, depending on the specific G-protein isoform to which they are coupled. It is well documented that OTR distribution varies with age and species and in regions of the brain. In this study, we attempted to observe the impact of OT and atosiban (OTA), an OT antagonist, on GABA levels in different regions of the brain. Study animals were exposed intraperitoneally (i.p.) to normal saline (0.89%), OT 0.0116 mg/kg, and OTA 1 mg/kg in different combinations, for 30days. It was observed that OT and OTA administration modulated GABA levels in different regions of brain, while normal saline had no effect. It may be due to OTR receptor expression in different regions of the brain. This is significant because region-specific expression of different receptors could be important in the development of new drugs targeting specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Department of Biosciences, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Renu Shrivastava
- Sri Satya Sai College for Women BHEL, Bhopal, Madhya Pradesh 462024, India
| | - Vinoy K. Shrivastava
- Endocrinology Unit, Department of Biosciences, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| |
Collapse
|
218
|
Abnormal empathy-like pro-social behaviour in the valproic acid model of autism spectrum disorder. Behav Brain Res 2019; 364:11-18. [DOI: 10.1016/j.bbr.2019.01.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/17/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
|
219
|
Friedlander E, Yirmiya N, Laiba E, Harel-Gadassi A, Yaari M, Feldstein O, Mankuta D, Israel S. Cumulative Risk of the Oxytocin Receptor Gene Interacts with Prenatal Exposure to Oxytocin Receptor Antagonist to Predict Children's Social Communication Development. Autism Res 2019; 12:1087-1100. [PMID: 31025834 DOI: 10.1002/aur.2111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/27/2019] [Accepted: 04/06/2019] [Indexed: 01/13/2023]
Abstract
Compelling evidence for the far-reaching role of oxytocin (OT) in social cognition and affiliative behaviors set the basis for examining the association between genetic variation in the OT receptor (OXTR) gene and risk for autism spectrum disorder (ASD). In the current study, gene-environment interaction between OXTR and prenatal exposure to either OT or OXTR antagonist (OXTRA) in predicting early social communication development was examined. One hundred and fifty-three children (age: M = 4.32, SD = 1.07) were assigned to four groups based on prenatal history: children whose mothers prenatally received OXTRA and Nifedipine to delay preterm labor (n = 27); children whose mothers received Nifedipine only to delay preterm labor (n = 35); children whose mothers received OT for labor augmentation (n = 56), and a no intervention group (n = 35). Participants completed a developmental assessment of intelligence quotient (IQ), adaptive behavior, and social communication abilities. DNA was extracted via buccal swab. A genetic risk score was calculated based on four OXTR single nucleotide polymorphisms (rs53576, rs237887, rs1042778, and rs2254298) previously reported to be associated with ASD symptomatology. OXTRrisk-allele dosage was associated with more severe autism diagnostics observation schedule (ADOS) scores only in the OXTRA group. In contrast, in the Nifedipine, OT, and no intervention groups, OXTRrisk-allele dosage was not associated with children's ADOS scores. These findings highlight the importance of both genetic and environmental pathways of OT in signaling early social development and raise the need for further research in this field. Autism Res 2019, 12: 1087-1100. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: In the current study, we examined if the association between prenatal exposure to an oxytocin receptor antagonist (OXTRA) and autism spectrum disorder (ASD) related impairments are dependent on an individual's genetic background for the oxytocin receptor gene (OXTR). Children who carried a greater number of risk alleles for the OXTR gene and whose mothers received OXTRA to delay preterm labor showed more ASD-related impairments. The results highlight the importance of both genetic and environmental pathways of oxytocin in shaping early social development.
Collapse
Affiliation(s)
- Edwa Friedlander
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nurit Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Laiba
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Maya Yaari
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ohad Feldstein
- Department of Obstetrics and Gynecology, Hadassah Ein-Kerem University Hospital, Jerusalem, Israel
| | - David Mankuta
- Department of Obstetrics and Gynecology, Hadassah Ein-Kerem University Hospital, Jerusalem, Israel
| | - Salomon Israel
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.,Scheinfeld Center of Human Genetics for the Social Sciences, Jerusalem, Israel
| |
Collapse
|
220
|
Zafarullah M, Tassone F. Molecular Biomarkers in Fragile X Syndrome. Brain Sci 2019; 9:E96. [PMID: 31035599 PMCID: PMC6562871 DOI: 10.3390/brainsci9050096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability (ID) and a known monogenic cause of autism spectrum disorder (ASD). It is a trinucleotide repeat disorder, in which more than 200 CGG repeats in the 5' untranslated region (UTR) of the fragile X mental retardation 1 (FMR1) gene causes methylation of the promoter with consequent silencing of the gene, ultimately leading to the loss of the encoded fragile X mental retardation 1 protein, FMRP. FMRP is an RNA binding protein that plays a primary role as a repressor of translation of various mRNAs, many of which are involved in the maintenance and development of neuronal synaptic function and plasticity. In addition to intellectual disability, patients with FXS face several behavioral challenges, including anxiety, hyperactivity, seizures, repetitive behavior, and problems with executive and language performance. Currently, there is no cure or approved medication for the treatment of the underlying causes of FXS, but in the past few years, our knowledge about the proteins and pathways that are dysregulated by the loss of FMRP has increased, leading to clinical trials and to the path of developing molecular biomarkers for identifying potential targets for therapies. In this paper, we review candidate molecular biomarkers that have been identified in preclinical studies in the FXS mouse animal model and are now under validation for human applications or have already made their way to clinical trials.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, 95817 CA, USA.
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, 95817 CA, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, 95817 CA, USA.
| |
Collapse
|
221
|
Kharod SC, Kang SK, Kadam SD. Off-Label Use of Bumetanide for Brain Disorders: An Overview. Front Neurosci 2019; 13:310. [PMID: 31068771 PMCID: PMC6491514 DOI: 10.3389/fnins.2019.00310] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/19/2019] [Indexed: 01/17/2023] Open
Abstract
Bumetanide (BTN or BUM) is a FDA-approved potent loop diuretic (LD) that acts by antagonizing sodium-potassium-chloride (Na-K-Cl) cotransporters, NKCC1 (SLc12a2) and NKCC2. While NKCC1 is expressed both in the CNS and in systemic organs, NKCC2 is kidney-specific. The off-label use of BTN to modulate neuronal transmembrane Cl− gradients by blocking NKCC1 in the CNS has now been tested as an anti-seizure agent and as an intervention for neurological disorders in pre-clinical studies with varying results. BTN safety and efficacy for its off-label use has also been tested in several clinical trials for neonates, children, adolescents, and adults. It failed to meet efficacy criteria for hypoxic-ischemic encephalopathy (HIE) neonatal seizures. In contrast, positive outcomes in temporal lobe epilepsy (TLE), autism, and schizophrenia trials have been attributed to BTN in studies evaluating its off-label use. NKCC1 is an electroneutral neuronal Cl− importer and the dominance of NKCC1 function has been proposed as the common pathology for HIE seizures, TLE, autism, and schizophrenia. Therefore, the use of BTN to antagonize neuronal NKCC1 with the goal to lower internal Cl− levels and promote GABAergic mediated hyperpolarization has been proposed. In this review, we summarize the data and results for pre-clinical and clinical studies that have tested off-label BTN interventions and report variable outcomes. We also compare the data underlying the developmental expression profile of NKCC1 and KCC2, highlight the limitations of BTN’s brain-availability and consider its actions on non-neuronal cells.
Collapse
Affiliation(s)
- Shivani C Kharod
- Neuroscience Laboratory, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Seok Kyu Kang
- Neuroscience Laboratory, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States.,Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
222
|
Anacker AMJ, Moran JT, Santarelli S, Forsberg CG, Rogers TD, Stanwood GD, Hall BJ, Delpire E, Veenstra-VanderWeele J, Saxe MD. Enhanced Social Dominance and Altered Neuronal Excitability in the Prefrontal Cortex of Male KCC2b Mutant Mice. Autism Res 2019; 12:732-743. [PMID: 30977597 DOI: 10.1002/aur.2098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/20/2023]
Abstract
The K-Cl cotransporter KCC2 is essential in the development of the "GABA switch" that produces a change in neuronal responses to GABA signaling from excitatory to inhibitory early in brain development, and alterations in this progression have previously been hypothesized to play a causal role in autism spectrum disorder (ASD). We investigated the KCC2b (Slc12a5) heterozygous knockout mouse using a battery of rodent behavioral tests relevant to core and comorbid ASD symptoms. Compared to wild-type littermates, KCC2+/- mice were normal in standard measures of locomotor activity, grooming and digging behaviors, and social, vocalization, and anxiety-like behaviors. However, KCC2+/- mice exhibited increased social dominance behaviors and increased amplitude of spontaneous postsynaptic currents in the medial prefrontal cortex (PFC) that were previously implicated in governing social hierarchy and dominance behaviors. Treatment of wild-type mouse brain slices with the KCC2 inhibitor VU0240511 increased the amplitude and frequency of excitatory postsynaptic currents, partially recapitulating the phenotype of KCC2+/- mice. These findings indicate that the activity of KCC2 plays a role in social dominance, in parallel with effects on PFC signaling, further suggesting that KCC2 function has some relevance to social behavior but without the breadth of impact on autism-like behavior suggested by previous studies. Further testing could assess whether KCC2 alters other circuits and whether additional factors such as environmental insults may precipitate autism-related behavioral phenotypes. Autism Research 2019, 12: 732-743. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: A mouse model of altered chloride transporter expression was used to look for a role in behaviors and brain function relevant to autism. There was an imbalance in signaling in the prefrontal cortex, and increased social dominance behavior, although other autism-related behaviors were not changed. These findings indicate that altered chloride transporter function affects prefrontal cortex function and social dominance without a broader impact on autism-like behaviors.
Collapse
Affiliation(s)
- Allison M J Anacker
- Division of Child & Adolescent Psychiatry, New York State Psychiatric Institute, Columbia University, New York, New York
| | - Jacqueline T Moran
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.,Tulane University Department of Cell and Molecular Biology and the Neuroscience Program, New Orleans, Louisiana
| | - Sara Santarelli
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - C Gunnar Forsberg
- Departments of Psychiatry, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tiffany D Rogers
- Departments of Psychiatry, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Gregg D Stanwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Benjamin J Hall
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.,Tulane University Department of Cell and Molecular Biology and the Neuroscience Program, New Orleans, Louisiana
| | - Eric Delpire
- Departments of Psychiatry, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeremy Veenstra-VanderWeele
- Division of Child & Adolescent Psychiatry, New York State Psychiatric Institute, Columbia University, New York, New York.,Departments of Psychiatry, Pediatrics, and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Michael D Saxe
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
223
|
Abstract
Autism is a neuro-developmental pathology affecting 1 out of 100 children worldwide. The trauma and social consequences induced by autism are a real public health issue. Clinically, autism is characterized primarily by communications and social interactions deficits associated with repetitive behaviors and restricted interests. The term of autism spectrum disorders (ASD) is used to account for the diversity of symptoms that characterize this pathology. Based on observations made in humans, a rodent (rats and mice) model of autism was obtained and validated by prenatal exposure to sodium valproate. Using this model, mechanisms that concern both the functioning of neural networks and the properties of neurons have been proposed to account for some disorders that characterize autism. This model is also widely used in pre-clinical studies to evaluate new therapies against ASD.
Collapse
Affiliation(s)
- Jean-Louis Bossu
- Institut des neurosciences cellulaires et intégratives (INCI), associé à l'Université Louis Pasteur, 5, rue Blaise Pascal, 67000 Strasbourg, France
| | - Sébastien Roux
- Institut des neurosciences cellulaires et intégratives (INCI), associé à l'Université Louis Pasteur, 5, rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
224
|
Martucci LL, Amar M, Chaussenot R, Benet G, Bauer O, de Zélicourt A, Nosjean A, Launay JM, Callebert J, Sebrié C, Galione A, Edeline JM, de la Porte S, Fossier P, Granon S, Vaillend C, Cancela JM. A multiscale analysis in CD38 -/- mice unveils major prefrontal cortex dysfunctions. FASEB J 2019; 33:5823-5835. [PMID: 30844310 DOI: 10.1096/fj.201800489r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by early onset of behavioral and cognitive alterations. Low plasma levels of oxytocin (OT) have also been found in ASD patients; recently, a critical role for the enzyme CD38 in the regulation of OT release was demonstrated. CD38 is important in regulating several Ca2+-dependent pathways, but beyond its role in regulating OT secretion, it is not known whether a deficit in CD38 expression leads to functional modifications of the prefrontal cortex (PFC), a structure involved in social behavior. Here, we report that CD38-/- male mice show an abnormal cortex development, an excitation-inhibition balance shifted toward a higher excitation, and impaired synaptic plasticity in the PFC such as those observed in various mouse models of ASD. We also show that a lack of CD38 alters social behavior and emotional responses. Finally, examining neuromodulators known to control behavioral flexibility, we found elevated monoamine levels in the PFC of CD38-/- adult mice. Overall, our study unveiled major changes in PFC physiologic mechanisms and provides new evidence that the CD38-/- mouse could be a relevant model to study pathophysiological brain mechanisms of mental disorders such as ASD.-Martucci, L. L., Amar, M., Chaussenot, R., Benet, G., Bauer, O., de Zélicourt, A., Nosjean, A., Launay, J.-M., Callebert, J., Sebrié, C., Galione, A., Edeline, J.-M., de la Porte, S., Fossier, P., Granon, S., Vaillend, C., Cancela, J.-M., A multiscale analysis in CD38-/- mice unveils major prefrontal cortex dysfunctions.
Collapse
Affiliation(s)
- Lora L Martucci
- Neuroscience Paris-Saclay Institute (Neuro-PSI), Unité Mixte de Recherche (UMR) 9197, Paris-Sud University, Paris-Saclay University, Orsay, France.,INSERM Unité 1179, Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie Appliquées, Unité de Formation et de Recherche (UFR) des Sciences de la Santé Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Montigny-le-Bretonneux, France
| | - Muriel Amar
- Neuroscience Paris-Saclay Institute (Neuro-PSI), Unité Mixte de Recherche (UMR) 9197, Paris-Sud University, Paris-Saclay University, Orsay, France
| | - Remi Chaussenot
- Neuroscience Paris-Saclay Institute (Neuro-PSI), Unité Mixte de Recherche (UMR) 9197, Paris-Sud University, Paris-Saclay University, Orsay, France
| | - Gabriel Benet
- Neuroscience Paris-Saclay Institute (Neuro-PSI), Unité Mixte de Recherche (UMR) 9197, Paris-Sud University, Paris-Saclay University, Orsay, France
| | - Oscar Bauer
- Neuroscience Paris-Saclay Institute (Neuro-PSI), Unité Mixte de Recherche (UMR) 9197, Paris-Sud University, Paris-Saclay University, Orsay, France.,Génétique Humaine et Fonctions Cognitives, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3571, Gènes, Synapses et Cognition, CNRS, Institut Pasteur, Paris, France
| | - Antoine de Zélicourt
- Neuroscience Paris-Saclay Institute (Neuro-PSI), Unité Mixte de Recherche (UMR) 9197, Paris-Sud University, Paris-Saclay University, Orsay, France.,INSERM Unité 1179, Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie Appliquées, Unité de Formation et de Recherche (UFR) des Sciences de la Santé Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Montigny-le-Bretonneux, France
| | - Anne Nosjean
- Neuroscience Paris-Saclay Institute (Neuro-PSI), Unité Mixte de Recherche (UMR) 9197, Paris-Sud University, Paris-Saclay University, Orsay, France
| | | | | | - Catherine Sebrié
- Imagerie par Résonance Magnétique Médicale et Multimodalité (IR4M) Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8081, Paris-Sud University, Paris-Saclay University, CNRS, Orsay, France
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Jean-Marc Edeline
- Neuroscience Paris-Saclay Institute (Neuro-PSI), Unité Mixte de Recherche (UMR) 9197, Paris-Sud University, Paris-Saclay University, Orsay, France
| | - Sabine de la Porte
- INSERM Unité 1179, Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie Appliquées, Unité de Formation et de Recherche (UFR) des Sciences de la Santé Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Montigny-le-Bretonneux, France
| | - Philippe Fossier
- Neuroscience Paris-Saclay Institute (Neuro-PSI), Unité Mixte de Recherche (UMR) 9197, Paris-Sud University, Paris-Saclay University, Orsay, France
| | - Sylvie Granon
- Neuroscience Paris-Saclay Institute (Neuro-PSI), Unité Mixte de Recherche (UMR) 9197, Paris-Sud University, Paris-Saclay University, Orsay, France
| | - Cyrille Vaillend
- Neuroscience Paris-Saclay Institute (Neuro-PSI), Unité Mixte de Recherche (UMR) 9197, Paris-Sud University, Paris-Saclay University, Orsay, France
| | - José-Manuel Cancela
- Neuroscience Paris-Saclay Institute (Neuro-PSI), Unité Mixte de Recherche (UMR) 9197, Paris-Sud University, Paris-Saclay University, Orsay, France
| |
Collapse
|
225
|
Oxytocin Receptors Are Expressed by Glutamatergic Prefrontal Cortical Neurons That Selectively Modulate Social Recognition. J Neurosci 2019; 39:3249-3263. [PMID: 30804095 DOI: 10.1523/jneurosci.2944-18.2019] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 01/08/2023] Open
Abstract
Social recognition, the ability to recognize individuals that were previously encountered, requires complex integration of sensory inputs with previous experience. Here, we use a variety of approaches to discern how oxytocin-sensitive neurons in the PFC exert descending control over a circuit mediating social recognition in mice. Using male mice with Cre-recombinase directed to the oxytocin receptor gene (Oxtr), we revealed that oxytocin receptors (OXTRs) are expressed on glutamatergic neurons in the PFC, optogenetic stimulation of which elicited activation of neurons residing in several mesolimbic brain structures. Optogenetic stimulation of axons in the BLA arising from OXTR-expressing neurons in the PFC eliminated the ability to distinguish novel from familiar conspecifics, but remarkably, distinguishing between novel and familiar objects was unaffected. These results suggest that an oxytocin-sensitive PFC to BLA circuit is required for social recognition. The implication is that impaired social memory may manifest from dysregulation of this circuit.SIGNIFICANCE STATEMENT Using mice, we demonstrate that optogenetic activation of the neurons in the PFC that express the oxytocin receptor gene (Oxtr) impairs the ability to distinguish between novel and familiar conspecifics, but the ability to distinguish between novel and familiar objects remains intact. Subjects with autism spectrum disorders (ASDs) have difficulty identifying a person based on remembering facial features; however, ASDs and typical subjects perform similarly when remembering objects. In subjects with ASD, viewing the same face increases neural activity in the PFC, which may be analogous to the optogenetic excitation of oxytocin receptor (OXTR) expressing neurons in the PFC that impairs social recognition in mice. The implication is that overactivation of OXTR-expressing neurons in the PFC may contribute to ASD symptomology.
Collapse
|
226
|
Goubert E, Altvater M, Rovira MN, Khalilov I, Mazzarino M, Sebastiani A, Schaefer MKE, Rivera C, Pellegrino C. Bumetanide Prevents Brain Trauma-Induced Depressive-Like Behavior. Front Mol Neurosci 2019; 12:12. [PMID: 30804751 PMCID: PMC6370740 DOI: 10.3389/fnmol.2019.00012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/14/2019] [Indexed: 01/24/2023] Open
Abstract
Brain trauma triggers a cascade of deleterious events leading to enhanced incidence of drug resistant epilepsies, depression, and cognitive dysfunctions. The underlying mechanisms leading to these alterations are poorly understood and treatment that attenuates those sequels are not available. Using controlled-cortical impact as an experimental model of brain trauma in adult mice, we found a strong suppressive effect of the sodium-potassium-chloride importer (NKCC1) specific antagonist bumetanide on the appearance of depressive-like behavior. We demonstrate that this alteration in behavior is associated with an impairment of post-traumatic secondary neurogenesis within the dentate gyrus of the hippocampus. The mechanism mediating the effect of bumetanide involves early transient changes in the expression of chloride regulatory proteins and qualitative changes in GABA(A) mediated transmission from hyperpolarizing to depolarizing after brain trauma. This work opens new perspectives in the early treatment of human post-traumatic induced depression. Our results strongly suggest that bumetanide might constitute an efficient prophylactic treatment to reduce neurological and psychiatric consequences of brain trauma.
Collapse
Affiliation(s)
- Emmanuelle Goubert
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Marc Altvater
- Department of Anesthesiology and Research Center Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marie-Noelle Rovira
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Ilgam Khalilov
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Morgane Mazzarino
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Anne Sebastiani
- Department of Anesthesiology and Research Center Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael K E Schaefer
- Department of Anesthesiology and Research Center Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudio Rivera
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Christophe Pellegrino
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| |
Collapse
|
227
|
Okada N, Yahata N, Koshiyama D, Morita K, Sawada K, Kanata S, Fujikawa S, Sugimoto N, Toriyama R, Masaoka M, Koike S, Araki T, Kano Y, Endo K, Yamasaki S, Ando S, Nishida A, Hiraiwa-Hasegawa M, Edden RAE, Barker PB, Sawa A, Kasai K. Neurometabolic and functional connectivity basis of prosocial behavior in early adolescence. Sci Rep 2019; 9:732. [PMID: 30679738 PMCID: PMC6345858 DOI: 10.1038/s41598-018-38355-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023] Open
Abstract
Human prosocial behavior (PB) emerges in childhood and matures during adolescence. Previous task-related functional magnetic resonance imaging (fMRI) studies have reported involvement of the medial prefrontal cortex including the anterior cingulate cortex (ACC) in social cognition in adolescence. However, neurometabolic and functional connectivity (FC) basis of PB in early adolescence remains unclear. Here, we measured GABA levels in the ACC and FC in a subsample (aged 10.5–13.4 years) of a large-scale population-based cohort with MR spectroscopy (MEGA-PRESS) and resting-state fMRI. PB was negatively correlated with GABA levels in the ACC (N = 221), and positively correlated with right ACC-seeded FC with the right precentral gyrus and the bilateral middle and posterior cingulate gyrus (N = 187). Furthermore, GABA concentrations and this FC were negatively correlated, and the FC mediated the association between GABA levels and PB (N = 171). Our results from a minimally biased, large-scale sample provide new insights into the neurometabolic and neurofunctional correlates of prosocial development during early adolescence.
Collapse
Affiliation(s)
- Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kingo Sawada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sho Kanata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Shinya Fujikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Sugimoto
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rie Toriyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mio Masaoka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.,The University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Kano
- Department of Child Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Endo
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Syudo Yamasaki
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsushi Nishida
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mariko Hiraiwa-Hasegawa
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Akira Sawa
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
228
|
Peripheral oxytocin restores light touch and nociceptor sensory afferents towards normal after nerve injury. Pain 2019; 160:1146-1155. [DOI: 10.1097/j.pain.0000000000001495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
229
|
Antoine MW, Langberg T, Schnepel P, Feldman DE. Increased Excitation-Inhibition Ratio Stabilizes Synapse and Circuit Excitability in Four Autism Mouse Models. Neuron 2019; 101:648-661.e4. [PMID: 30679017 DOI: 10.1016/j.neuron.2018.12.026] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/19/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
Abstract
Distinct genetic forms of autism are hypothesized to share a common increase in excitation-inhibition (E-I) ratio in cerebral cortex, causing hyperexcitability and excess spiking. We provide a systematic test of this hypothesis across 4 mouse models (Fmr1-/y, Cntnap2-/-, 16p11.2del/+, Tsc2+/-), focusing on somatosensory cortex. All autism mutants showed reduced feedforward inhibition in layer 2/3 coupled with more modest, variable reduction in feedforward excitation, driving a common increase in E-I conductance ratio. Despite this, feedforward spiking, synaptic depolarization, and spontaneous spiking were largely normal. Modeling revealed that E and I conductance changes in each mutant were quantitatively matched to yield stable, not increased, synaptic depolarization for cells near spike threshold. Correspondingly, whisker-evoked spiking was not increased in vivo despite detectably reduced inhibition. Thus, elevated E-I ratio is a common circuit phenotype but appears to reflect homeostatic stabilization of synaptic drive rather than driving network hyperexcitability in autism.
Collapse
Affiliation(s)
- Michelle W Antoine
- Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA.
| | - Tomer Langberg
- Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Philipp Schnepel
- Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Daniel E Feldman
- Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
230
|
Blauwblomme T, Dossi E, Pellegrino C, Goubert E, Iglesias BG, Sainte-Rose C, Rouach N, Nabbout R, Huberfeld G. Gamma-aminobutyric acidergic transmission underlies interictal epileptogenicity in pediatric focal cortical dysplasia. Ann Neurol 2019; 85:204-217. [PMID: 30597612 DOI: 10.1002/ana.25403] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Dysregulation of γ-aminobutyric acidergic (GABAergic) transmission has been reported in lesional acquired epilepsies (gliomas, hippocampal sclerosis). We investigated its involvement in a developmental disorder, human focal cortical dysplasia (FCD), focusing on chloride regulation driving GABAergic signals. METHODS In vitro recordings of 47 human cortical acute slices from 11 pediatric patients who received operations for FCD were performed on multielectrode arrays. GABAergic receptors and chloride regulators were pharmacologically modulated. Immunostaining for chloride cotransporter KCC2 and interneurons were performed on recorded slices to correlate electrophysiology and expression patterns. RESULTS FCD slices retain intrinsic epileptogenicity. Thirty-six of 47 slices displayed spontaneous interictal discharges, along with a pattern specific to the histological subtypes. Ictal discharges were induced in proepileptic conditions in 6 of 8 slices in the areas generating spontaneous interictal discharges, with a transition to seizure involving the emergence of preictal discharges. Interictal discharges were sustained by GABAergic signaling, as a GABAA receptor blocker stopped them in 2 of 3 slices. Blockade of NKCC1 Cl- cotransporters further controlled interictal discharges in 9 of 12 cases, revealing a Cl- dysregulation affecting actions of GABA. Immunohistochemistry highlighted decreased expression and changes in KCC2 subcellular localization and a decrease in the number of GAD67-positive interneurons in regions generating interictal discharges. INTERPRETATION Altered chloride cotransporter expression and changes in interneuron density in FCD may lead to paradoxical depolarization of pyramidal cells. Spontaneous interictal discharges are consequently mediated by GABAergic signals, and targeting chloride regulation in neurons may be considered for the development of new antiepileptic drugs. Ann Neurol 2019; 1-14 ANN NEUROL 2019;85:204-217.
Collapse
Affiliation(s)
- Thomas Blauwblomme
- APHP, Department of Pediatric Neurosurgery, Hospital Necker, Paris, France.,Université René Descartes. PRES Sorbonne Paris Cité, Paris, France.,INSERM U1129, Infantile Epilepsies and Brain Plasticity, Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France
| | - Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | | | | | - Beatriz Gal Iglesias
- Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea, Madrid, Spain
| | - Christian Sainte-Rose
- APHP, Department of Pediatric Neurosurgery, Hospital Necker, Paris, France.,Université René Descartes. PRES Sorbonne Paris Cité, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Rima Nabbout
- Université René Descartes. PRES Sorbonne Paris Cité, Paris, France.,APHP, Department of Neuropediatrics, Hospital Necker, Paris, France
| | - Gilles Huberfeld
- INSERM U1129, Infantile Epilepsies and Brain Plasticity, Paris Descartes University, PRES Sorbonne Paris Cité, Paris, France.,Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.,Sorbonne University, AP-HP, Department of Neurophysiology, La Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
231
|
Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, Costa-Mattioli M. Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron 2019; 101:246-259.e6. [PMID: 30522820 PMCID: PMC6645363 DOI: 10.1016/j.neuron.2018.11.018] [Citation(s) in RCA: 526] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/18/2018] [Accepted: 11/08/2018] [Indexed: 01/01/2023]
Abstract
Currently, there are no medications that effectively treat the core symptoms of Autism Spectrum Disorder (ASD). We recently found that the bacterial species Lactobacillus (L.) reuteri reverses social deficits in maternal high-fat-diet offspring. However, whether the effect of L. reuteri on social behavior is generalizable to other ASD models and its mechanism(s) of action remains unknown. Here, we found that treatment with L. reuteri selectively rescues social deficits in genetic, environmental, and idiopathic ASD models. Interestingly, the effects of L. reuteri on social behavior are not mediated by restoring the composition of the host's gut microbiome, which is altered in all of these ASD models. Instead, L. reuteri acts in a vagus nerve-dependent manner and rescues social interaction-induced synaptic plasticity in the ventral tegmental area of ASD mice, but not in oxytocin receptor-deficient mice. Collectively, treatment with L. reuteri emerges as promising non-invasive microbial-based avenue to combat ASD-related social dysfunction.
Collapse
Affiliation(s)
- Martina Sgritta
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean W Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shelly A Buffington
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric N Momin
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael B Francis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
232
|
Maternal High Fat Diet-Induced Obesity Modifies Histone Binding and Expression of Oxtr in Offspring Hippocampus in a Sex-Specific Manner. Int J Mol Sci 2019; 20:ijms20020329. [PMID: 30650536 PMCID: PMC6359595 DOI: 10.3390/ijms20020329] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/05/2023] Open
Abstract
Maternal obesity during pregnancy increases risk for neurodevelopmental disorders in offspring, although the underlying mechanisms remain unclear. Epigenetic deregulation associates with many neurodevelopmental disorders, and recent evidence indicates that maternal nutritional status can alter chromatin marks in the offspring brain. Thus, maternal obesity may disrupt epigenetic regulation of gene expression during offspring neurodevelopment. Using a C57BL/6 mouse model, we investigated whether maternal high fat diet (mHFD)-induced obesity alters the expression of genes previously implicated in the etiology of neurodevelopmental disorders within the Gestational Day 17.5 (GD 17.5) offspring hippocampus. We found significant two-fold upregulation of oxytocin receptor (Oxtr) mRNA in the hippocampus of male, but not female, GD 17.5 offspring from mHFD-induced obese dams (p < 0.05). To determine whether altered histone binding at the Oxtr gene promoter may underpin these transcriptional changes, we then performed chromatin immunoprecipitation (ChIP). Consistent with the Oxtr transcriptional changes, we observed increased binding of active histone mark H3K9Ac at the Oxtr transcriptional start site (TSS) in the hippocampus of mHFD male (p < 0.05), but not female, offspring. Together, these data indicate an increased vulnerability of male offspring to maternal obesity-induced changes in chromatin remodeling processes that regulate gene expression in the developing hippocampus, and contributes to our understanding of how early life nutrition affects the offspring brain epigenome.
Collapse
|
233
|
Yoga: Balancing the excitation-inhibition equilibrium in psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2019; 244:387-413. [PMID: 30732846 DOI: 10.1016/bs.pbr.2018.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Social behavioral disturbances are central to most psychiatric disorders. A disequilibrium within the cortical excitatory and inhibitory neurotransmitter systems underlies these deficits. Gamma-aminobutyric acid (GABA) and glutamate are the most abundant excitatory and inhibitory neurotransmitters in the brain that contribute to this equilibrium. Several contemporary therapies used in treating psychiatric disorders, regulate this GABA-glutamate balance. Yoga has been studied as an adjuvant treatment across a broad range of psychiatric disorders and is shown to have short-term therapeutic gains. Emerging evidence from recent clinical in vivo experiments suggests that yoga improves GABA-mediated cortical-inhibitory tone and enhances peripheral oxytocin levels. This is likely to have a more controlled downstream response of the hypothalamo-pituitary-adrenal system by means of reduced cortisol release and hence a blunted sympathetic response to stress. Animal and early fetal developmental studies suggest an inter-dependent role of oxytocin and GABA in regulating social behaviors. In keeping with these observations, we propose an integrated neurobiological model to study the mechanisms of therapeutic benefits with yoga. Apart from providing a neuroscientific basis for applying a traditional system of practice in the clinical setting, this model can be used as a framework for studying yoga mechanisms in future clinical trials.
Collapse
|
234
|
Cloarec R, Riffault B, Dufour A, Rabiei H, Gouty-Colomer LA, Dumon C, Guimond D, Bonifazi P, Eftekhari S, Lozovaya N, Ferrari DC, Ben-Ari Y. Pyramidal neuron growth and increased hippocampal volume during labor and birth in autism. SCIENCE ADVANCES 2019; 5:eaav0394. [PMID: 30746473 PMCID: PMC6357736 DOI: 10.1126/sciadv.aav0394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
We report that the apical dendrites of CA3 hippocampal pyramidal neurons are increased during labor and birth in the valproate model of autism but not in control animals. Using the iDISCO clearing method, we show that hippocampal, especially CA3 region, and neocortical volumes are increased and that the cerebral volume distribution shifts from normal to lognormal in valproate-treated animals. Maternal administration during labor and birth of the NKCC1 chloride transporter antagonist bumetanide, which reduces [Cl-]i levels and attenuates the severity of autism, abolished the neocortical and hippocampal volume changes and reduced the whole-brain volume in valproate-treated animals. These results suggest that the abolition of the oxytocin-mediated excitatory-to-inhibitory shift of GABA actions during labor and birth contributes to the pathogenesis of autism spectrum disorders by stimulating growth during a vulnerable period.
Collapse
Affiliation(s)
- R. Cloarec
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - B. Riffault
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - A. Dufour
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - H. Rabiei
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - L.-A. Gouty-Colomer
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - C. Dumon
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - D. Guimond
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - P. Bonifazi
- Biocruces Health Research Institute, Barakaldo, Spain & IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - S. Eftekhari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - N. Lozovaya
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - D. C. Ferrari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| | - Y. Ben-Ari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Zone Luminy Biotech Entreprises, 13288 Cedex 09 , Marseille, France
| |
Collapse
|
235
|
Baud O, Berkane N. Hormonal Changes Associated With Intra-Uterine Growth Restriction: Impact on the Developing Brain and Future Neurodevelopment. Front Endocrinol (Lausanne) 2019; 10:179. [PMID: 30972026 PMCID: PMC6443724 DOI: 10.3389/fendo.2019.00179] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
The environment in which a fetus develops is not only important for its growth and maturation but also for its long-term postnatal health and neurodevelopment. Several hormones including glucocorticosteroids, estrogens and progesterone, insulin growth factor and thyroid hormones, carefully regulate the growth of the fetus and its metabolism during pregnancy by controlling the supply of nutrients crossing the placenta. In addition to fetal synthesis, hormones regulating fetal growth are also expressed and regulated in the placenta, and they play a key role in the vulnerability of the developing brain and its maturation. This review summarizes the current understanding and evidence regarding the involvement of hormonal dysregulation associated with intra-uterine growth restriction and its consequences on brain development.
Collapse
Affiliation(s)
- Olivier Baud
- Division of Neonatology and Pediatric Intensive Care, Department of Women-Children-Teenagers, University Hospitals Geneva, Geneva, Switzerland
- Inserm U1141, Sorbonne, Paris Diderot University, Paris, France
- *Correspondence: Olivier Baud
| | - Nadia Berkane
- Division of Obstetrics and Gynecology, Department of Women-Children-Teenagers, University Hospitals Geneva, Geneva, Switzerland
| |
Collapse
|
236
|
Cilz NI, Cymerblit-Sabba A, Young WS. Oxytocin and vasopressin in the rodent hippocampus. GENES BRAIN AND BEHAVIOR 2018; 18:e12535. [PMID: 30378258 DOI: 10.1111/gbb.12535] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
Abstract
The role of the hippocampus in social memory and behavior is under intense investigation. Oxytocin (Oxt) and vasopressin (Avp) are two neuropeptides with many central actions related to social cognition. Oxt- and Avp-expressing fibers are abundant in the hippocampus and receptors for both peptides are seen throughout the different subfields, suggesting that Oxt and Avp modulate hippocampal-dependent processes. In this review, we first focus on the anatomical sources of Oxt and Avp input to the hippocampus and consider the distribution of their corresponding receptors in different hippocampal subfields and neuronal populations. We next discuss the behavioral outcomes related to social memory seen with perturbation of hippocampal Oxt and Avp signaling. Finally, we review Oxt and Avp modulatory mechanisms in the hippocampus that may underlie the behavioral roles for both peptides.
Collapse
Affiliation(s)
- Nicholas I Cilz
- Section on Neural Gene Expression, National Institute of Mental Health, Bethesda, Maryland
| | - Adi Cymerblit-Sabba
- Section on Neural Gene Expression, National Institute of Mental Health, Bethesda, Maryland
| | - W Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, Bethesda, Maryland
| |
Collapse
|
237
|
Hsu YT, Chang YG, Chern Y. Insights into GABA Aergic system alteration in Huntington's disease. Open Biol 2018; 8:rsob.180165. [PMID: 30518638 PMCID: PMC6303784 DOI: 10.1098/rsob.180165] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disease that is characterized by a triad of motor, psychiatric and cognitive impairments. There is still no effective therapy to delay or halt the disease progress. The striatum and cortex are two particularly affected brain regions that exhibit dense reciprocal excitatory glutamate and inhibitory gamma-amino butyric acid (GABA) connections. Imbalance between excitatory and inhibitory signalling is known to greatly affect motor and cognitive processes. Emerging evidence supports the hypothesis that disrupted GABAergic circuits underlie HD pathogenesis. In the present review, we focused on the multiple defects recently found in the GABAergic inhibitory system, including altered GABA level and synthesis, abnormal subunit composition and distribution of GABAA receptors and aberrant GABAA receptor-mediated signalling. In particular, the important role of cation–chloride cotransporters (i.e. NKCC1 and KCC2) is discussed. Recent studies also suggest that neuroinflammation contributes significantly to the abnormal GABAergic inhibition in HD. Thus, GABAA receptors and cation–chloride cotransporters are potential therapeutic targets for HD. Given the limited availability of therapeutic treatments for HD, a better understanding of GABAergic dysfunction in HD could provide novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yi-Ting Hsu
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan, Republic of China.,Department of Neurology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Ya-Gin Chang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, Republic of China.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yijuang Chern
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taiwan, Republic of China .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
238
|
Development of GABAergic Inputs Is Not Altered in Early Maturation of Adult Born Dentate Granule Neurons in Fragile X Mice. eNeuro 2018; 5:eN-NRS-0137-18. [PMID: 30627633 PMCID: PMC6325535 DOI: 10.1523/eneuro.0137-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited mental retardation and the most common known cause of autism. Loss of fragile X mental retardation protein (FMRP) in mice (Fmr1 KO) leads to altered synaptic and circuit maturation in the hippocampus that is correlated with alterations in hippocampal-dependent behaviors. Previous studies have demonstrated that loss of FMRP increased the rate of proliferation of progenitor cells and altered their fate specification in adult Fmr1 KO mice. While these studies clearly demonstrate a role for FMRP in adult neurogenesis in the hippocampus, it is not known whether the functional synaptic maturation and integration of adult-born dentate granule cells (abDGCs) into hippocampal circuits is affected in Fmr1 KO mice. Here, we used retroviral labeling to birthdate abDGCs in Fmr1 KO mice which allowed us to perform targeted patch clamp recording to measure the development of synaptic inputs to these neurons at precise time points after differentiation. The frequency and amplitude of spontaneous GABAergic events increased over the first three weeks after differentiation; however, this normal development of GABAergic synapses was not altered in Fmr1 KO mice. Furthermore, the relatively depolarized GABA reversal potential (EGABA) in immature abDGCs was unaffected by loss of FMRP as was the development of dendritic arbor of the adult generated neurons. These studies systematically characterized the functional development of abDGCs during the first four weeks after differentiation and demonstrate that the maturation of GABAergic synaptic inputs to these neurons is not grossly affected by the loss of FMRP.
Collapse
|
239
|
Mairesse J, Zinni M, Pansiot J, Hassan-Abdi R, Demene C, Colella M, Charriaut-Marlangue C, Rideau Batista Novais A, Tanter M, Maccari S, Gressens P, Vaiman D, Soussi-Yanicostas N, Baud O. Oxytocin receptor agonist reduces perinatal brain damage by targeting microglia. Glia 2018; 67:345-359. [PMID: 30506969 DOI: 10.1002/glia.23546] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 11/06/2022]
Abstract
Prematurity and fetal growth restriction (FGR) are frequent conditions associated with adverse neurocognitive outcomes. We have previously identified early deregulation of genes controlling neuroinflammation as a putative mechanism linking FGR and abnormal trajectory of the developing brain. While the oxytocin system was also found to be impaired following adverse perinatal events, its role in the modulation of neuroinflammation in the developing brain is still unknown. We used a double-hit rat model of perinatal brain injury induced by gestational low protein diet (LPD) and potentiated by postnatal injections of subliminal doses of interleukin-1β (IL1β) and a zebrafish model of neuroinflammation. Effects of the treatment with carbetocin, a selective, long lasting, and brain diffusible oxytocin receptor agonist, have been assessed using a combination of histological, molecular, and functional tools in vivo and in vitro. In the double-hit model, white matter inflammation, deficient myelination, and behavioral deficits have been observed and the oxytocin system was impaired. Early postnatal supplementation with carbetocin alleviated microglial activation at both transcriptional and cellular levels and provided long-term neuroprotection. The central anti-inflammatory effects of carbetocin have been shown in vivo in rat pups and in a zebrafish model of early-life neuroinflammation and reproduced in vitro on stimulated sorted primary microglial cell cultures from rats subjected to LPD. Carbetocin treatment was associated with beneficial effects on myelination, long-term intrinsic brain connectivity and behavior. Targeting oxytocin signaling in the developing brain may be an effective approach to prevent neuroinflammation - induced brain damage of perinatal origin.
Collapse
Affiliation(s)
- Jérôme Mairesse
- PROTECT, Inserm U1141, Université Paris Diderot, Paris, France.,Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva, Geneva, Switzerland.,Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland
| | - Manuela Zinni
- PROTECT, Inserm U1141, Université Paris Diderot, Paris, France
| | - Julien Pansiot
- PROTECT, Inserm U1141, Université Paris Diderot, Paris, France
| | | | - Charlie Demene
- Institut Langevin, CNRS UMR 7587, Inserm U979, ESPCI Paris, PSL Research University, Paris, France
| | - Marina Colella
- PROTECT, Inserm U1141, Université Paris Diderot, Paris, France
| | | | | | - Mickael Tanter
- Institut Langevin, CNRS UMR 7587, Inserm U979, ESPCI Paris, PSL Research University, Paris, France
| | - Stefania Maccari
- International Associated Laboratory (LIA) "Prenatal Stress and Neurodegenerative Diseases, University of Lille 1 - CNRS UMR8576 Lille, France and Sapienza University of Rome - IRCCS Neuromed, Rome, Italy
| | - Pierre Gressens
- PROTECT, Inserm U1141, Université Paris Diderot, Paris, France.,PremUP Foundation, Paris, France
| | - Daniel Vaiman
- PremUP Foundation, Paris, France.,Institut Cochin, Inserm U1016, UMR8104 CNRS, Paris, France
| | | | - Olivier Baud
- PROTECT, Inserm U1141, Université Paris Diderot, Paris, France.,Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva, Geneva, Switzerland.,Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland.,PremUP Foundation, Paris, France
| |
Collapse
|
240
|
Lopatina OL, Komleva YK, Gorina YV, Olovyannikova RY, Trufanova LV, Hashimoto T, Takahashi T, Kikuchi M, Minabe Y, Higashida H, Salmina AB. Oxytocin and excitation/inhibition balance in social recognition. Neuropeptides 2018; 72:1-11. [PMID: 30287150 DOI: 10.1016/j.npep.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Social recognition is the sensitive domains of complex behavior critical for identification, interpretation and storage of socially meaningful information. Social recognition develops throughout childhood and adolescent, and is affected in a wide variety of psychiatric disorders. Recently, new data appeared on the molecular mechanisms of these processes, particularly, the excitatory-inhibitory (E/I) ratio which is modified during development, and then E/I balance is established in the adult brain. While E/I imbalance has been proposed as a mechanism for schizophrenia, it also seems to be the common mechanism in autism spectrum disorder (ASD). In addition, there is a strong suggestion that the oxytocinergic system is related to GABA-mediated E/I control in the context of brain socialization. In this review, we attempt to summarize the underpinning molecular mechanisms of E/I balance and its imbalance, and related biomarkers in the brain in healthiness and pathology. In addition, because there are increasing interest on oxytocin in the social neuroscience field, we will pay intensive attention to the role of oxytocin in maintaining E/I balance from the viewpoint of its effects on improving social impairment in psychiatric diseases, especially in ASD.
Collapse
Affiliation(s)
- Olga L Lopatina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yulia K Komleva
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Yana V Gorina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Raisa Ya Olovyannikova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Lyudmila V Trufanova
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
| | - Takanori Hashimoto
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tetsuya Takahashi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Mitsuru Kikuchi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yoshio Minabe
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Alla B Salmina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia; Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
241
|
Kuo HY, Liu FC. Molecular Pathology and Pharmacological Treatment of Autism Spectrum Disorder-Like Phenotypes Using Rodent Models. Front Cell Neurosci 2018; 12:422. [PMID: 30524240 PMCID: PMC6262306 DOI: 10.3389/fncel.2018.00422] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a high prevalence rate. The core symptoms of ASD patients are impaired social communication and repetitive behavior. Genetic and environmental factors contribute to pathophysiology of ASD. Regarding environmental risk factors, it is known that valproic acid (VPA) exposure during pregnancy increases the chance of ASD among offspring. Over a decade of animal model studies have shown that maternal treatment with VPA in rodents recapitulates ASD-like pathophysiology at a molecular, cellular and behavioral level. Here, we review the prevailing theories of ASD pathogenesis, including excitatory/inhibitory imbalance, neurotransmitter dysfunction, dysfunction of mTOR and endocannabinoid signaling pathways, neuroinflammation and epigenetic alterations that have been associated with ASD. We also describe the evidence linking neuropathological changes to ASD-like behavioral abnormalities in maternal VPA-treated rodents. In addition to obtaining an understanding of the neuropathological mechanisms, the VPA-induced ASD-like animal models also serve as a good platform for testing pharmacological reagents that might be use treating ASD. We therefore have summarized the various pharmacological studies that have targeted the classical neurotransmitter systems, the endocannabinoids, the Wnt signal pathway and neuroinflammation. These approaches have been shown to often be able to ameliorate the ASD-like phenotypes induced by maternal VPA treatments.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
242
|
Althammer F, Jirikowski G, Grinevich V. The oxytocin system of mice and men-Similarities and discrepancies of oxytocinergic modulation in rodents and primates. Peptides 2018; 109:1-8. [PMID: 30261208 DOI: 10.1016/j.peptides.2018.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023]
Abstract
Nonapeptides and their respective receptors have been conserved throughout evolution and display astonishing similarities among the animal kingdom. They can be found in worms, birds, fish, amphibians, reptiles and mammals, including rodents, non-human primates and humans. In particular, the neuropeptide oxytocin (OT) has attracted the attention of scientists due to its profound effects on social behavior. However, although both the neuropeptide and its receptor are identical in rodents and primates, the effects of OT vary greatly in the two species. Here, we provide a brief overview about OT's role in the evolution of mammals and provide reasons for the manifold effects of OT within the brain with a particular focus on the discrepancy of OT's effects in rodents and primates. In addition, we suggest new approaches towards improvement of translatability of scientific studies and highlight the most recent advances in animal models for autism spectrum disorder, a disease, in which the normal function of the OT system seems to be impaired.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Schaller Research Group on Neuropeptides at German Cancer Research Center (DKFZ) and Cell Network Cluster of Excellence at the University of Heidelberg, Heidelberg, Germany.
| | | | - Valery Grinevich
- Schaller Research Group on Neuropeptides at German Cancer Research Center (DKFZ) and Cell Network Cluster of Excellence at the University of Heidelberg, Heidelberg, Germany; Central Institute of Mental Health (ZI), Mannheim, Germany
| |
Collapse
|
243
|
Wang B, Li HH, Yue XJ, Jia FY, DU L. [A review on the role of γ-aminobutyric acid signaling pathway in autism spectrum disorder]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:974-978. [PMID: 30477634 PMCID: PMC7389027 DOI: 10.7499/j.issn.1008-8830.2018.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
The etiology and pathogenesis of autism spectrum disorder (ASD) are not yet clear. Studies have shown that there are many neurotransmitter abnormalities in children with ASD, mainly involving in glutamate, γ-aminobutyric acid (GABA), dopamine, 5-HT and oxytocin. The imbalance of excitatory glutamatergic neurotransmitters and inhibitory GABAergic neurotransmitters is closely related to the pathogenesis of ASD. Both animal model studies and clinical studies on ASD suggest that GABA signaling pathway may play an important role in the pathogenesis of ASD. This article reviews the research on the association between GABA signaling pathway and the pathogenesis of ASD to further explore the pathogenesis of ASD and provide theoretical basis for the treatment of ASD.
Collapse
Affiliation(s)
- Bing Wang
- Department of Developmental and Behaviorial Pediatrics, First Hospital of Jilin University, Changchun 130021, China.
| | | | | | | | | |
Collapse
|
244
|
Albert-Gasco H, Sanchez-Sarasua S, Ma S, García-Díaz C, Gundlach AL, Sanchez-Perez AM, Olucha-Bordonau FE. Central relaxin-3 receptor (RXFP3) activation impairs social recognition and modulates ERK-phosphorylation in specific GABAergic amygdala neurons. Brain Struct Funct 2018; 224:453-469. [PMID: 30368554 DOI: 10.1007/s00429-018-1763-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022]
Abstract
In mammals, the extended amygdala is a neural hub for social and emotional information processing. In the rat, the extended amygdala receives inhibitory GABAergic projections from the nucleus incertus (NI) in the pontine tegmentum. NI neurons produce the neuropeptide relaxin-3, which acts via the Gi/o-protein-coupled receptor, RXFP3. A putative role for RXFP3 signalling in regulating social interaction was investigated by assessing the effect of intracerebroventricular infusion of the RXFP3 agonist, RXFP3-A2, on performance in the 3-chamber social interaction paradigm. Central RXFP3-A2, but not vehicle, infusion, disrupted the capacity to discriminate between a familiar and novel conspecific subject, but did not alter differentiation between a conspecific and an inanimate object. Subsequent studies revealed that agonist-infused rats displayed increased phosphoERK(pERK)-immunoreactivity in specific amygdaloid nuclei at 20 min post-infusion, with levels similar to control again after 90 min. In parallel, we used immunoblotting to profile ERK phosphorylation dynamics in whole amygdala after RXFP3-A2 treatment; and multiplex histochemical labelling techniques to reveal that after RXFP3-A2 infusion and social interaction, pERK-immunopositive neurons in amygdala expressed vesicular GABA-transporter mRNA and displayed differential profiles of RXFP3 and oxytocin receptor mRNA. Overall, these findings demonstrate that central relaxin-3/RXFP3 signalling can modulate social recognition in rats via effects within the amygdala and likely interactions with GABA and oxytocin signalling.
Collapse
MESH Headings
- Amygdala/cytology
- Amygdala/drug effects
- Amygdala/enzymology
- Animals
- Behavior, Animal/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- GABAergic Neurons/drug effects
- GABAergic Neurons/enzymology
- Infusions, Intraventricular
- Intercellular Signaling Peptides and Proteins
- Male
- Oxytocin/metabolism
- Peptides/administration & dosage
- Phosphorylation
- Rats, Wistar
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Receptors, Peptide/agonists
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Recognition, Psychology/drug effects
- Signal Transduction/drug effects
- Social Behavior
- Vesicular Inhibitory Amino Acid Transport Proteins/genetics
- Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Hector Albert-Gasco
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Av de Vicent Sos Baynat, s/n, 12071, Castellón de la Plana, Castellón, Spain
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sandra Sanchez-Sarasua
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Av de Vicent Sos Baynat, s/n, 12071, Castellón de la Plana, Castellón, Spain
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cristina García-Díaz
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Av de Vicent Sos Baynat, s/n, 12071, Castellón de la Plana, Castellón, Spain
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ana M Sanchez-Perez
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Av de Vicent Sos Baynat, s/n, 12071, Castellón de la Plana, Castellón, Spain.
| | - Francisco E Olucha-Bordonau
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I, Av de Vicent Sos Baynat, s/n, 12071, Castellón de la Plana, Castellón, Spain.
| |
Collapse
|
245
|
Kabasakalian A, Ferretti CJ, Hollander E. Oxytocin and Prader-Willi Syndrome. Curr Top Behav Neurosci 2018; 35:529-557. [PMID: 28956320 DOI: 10.1007/7854_2017_28] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the chapter, we explore the relationship between the peptide hormone, oxytocin (OT), and behavioral and metabolic disturbances observed in the genetic disorder Prader-Willi Syndrome (PWS). Phenotypic and genotypic characteristics of PWS are described, as are the potential implications of an abnormal OT system with respect to neural development including the possible effects of OT dysfunction on interactions with other regulatory mediators, including neurotransmitters, neuromodulators, and hormones. The major behavioral characteristics are explored in the context of OT dysfunction, including hyperphagia, impulsivity, anxiety and emotion dysregulation, sensory processing and interoception, repetitive and restrictive behaviors, and dysfunctional social cognition. Behavioral overlaps with autistic spectrum disorders are discussed. The implications of OT dysfunction on the mechanisms of reward and satiety and their possible role in informing behavioral characteristics are also discussed. Treatment implications and future directions for investigation are considered.
Collapse
Affiliation(s)
- Anahid Kabasakalian
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Casara J Ferretti
- Ferkauf Graduate School of Psychology, Yeshiva University, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eric Hollander
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
246
|
Abstract
In this chapter, we introduce a new area of social pharmacology that encompasses the study of the role of neuromodulators in modulating a wide range of social behaviors and brain function, with the interplay of genetic and epigenetic factors. There are increasing evidences for the role of the neuropeptide oxytocin in modulating a wide range of social behaviors, in reducing anxiety, and in impacting the social brain network. Oxytocin also promotes social functions in patients with neuropsychiatric disorders, such as autism and reduces anxiety and fear in anxiety disorders. In this chapter, we will emphasize the importance of integrating basic research and clinical human research in determining optimal strategies for drug discoveries for social dysfunctions and anxiety disorders. We will highlight the significance of adopting a precision medicine approach to optimize targeted treatments with oxytocin in neuropsychiatry. Oxytocin effects on social behavior and brain function can vary from one individual to another based on external factors, such as heterogeneity in autism phenotype, childhood experiences, personality, attachment style, and oxytocin receptor polymorphisms. Hence, targeted therapies for subgroups of patients can help alleviating some of the core symptoms and lead to a better future for these patients and their families.
Collapse
Affiliation(s)
- Elissar Andari
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA.
| | - Rene Hurlemann
- Department of Psychiatry, Medical Psychology Division, NEMO (Neuromodulation of Emotion) Research Group, University of Bonn, Bonn, Germany
| | - Larry J Young
- Department of Psychiatry, Center for Translational Social Neuroscience, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
247
|
Birth delivery mode alters perinatal cell death in the mouse brain. Proc Natl Acad Sci U S A 2018; 115:11826-11831. [PMID: 30322936 DOI: 10.1073/pnas.1811962115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Labor and a vaginal delivery trigger changes in peripheral organs that prepare the mammalian fetus to survive ex utero. Surprisingly little attention has been given to whether birth also influences the brain, and to how alterations in birth mode affect neonatal brain development. These are important questions, given the high rates of cesarean section (C-section) delivery worldwide, many of which are elective. We examined the effect of birth mode on neuronal cell death, a widespread developmental process that occurs primarily during the first postnatal week in mice. Timed-pregnant dams were randomly assigned to C-section deliveries that were yoked to vaginal births to carefully match gestation length and circadian time of parturition. Compared with rates of cell death just before birth, vaginally-born offspring had an abrupt, transient decrease in cell death in many brain regions, suggesting that a vaginal delivery is neuroprotective. In contrast, cell death was either unchanged or increased in C-section-born mice. Effects of delivery mode on cell death were greatest for the paraventricular nucleus of the hypothalamus (PVN), which is central to the stress response and brain-immune interactions. The greater cell death in the PVN of C-section-delivered newborns was associated with a reduction in the number of PVN neurons expressing vasopressin at weaning. C-section-delivered mice also showed altered vocalizations in a maternal separation test and greater body mass at weaning. Our results suggest that vaginal birth acutely impacts brain development, and that alterations in birth mode may have lasting consequences.
Collapse
|
248
|
Impaired GABA Neural Circuits Are Critical for Fragile X Syndrome. Neural Plast 2018; 2018:8423420. [PMID: 30402088 PMCID: PMC6192167 DOI: 10.1155/2018/8423420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022] Open
Abstract
Fragile X syndrome (FXS) is an inheritable neuropsychological disease caused by silence of the fmr1 gene and the deficiency of Fragile X mental retardation protein (FMRP). Patients present neuronal alterations that lead to severe intellectual disability and altered sleep rhythms. However, the neural circuit mechanisms underlying FXS remain unclear. Previous studies have suggested that metabolic glutamate and gamma-aminobutyric acid (GABA) receptors/circuits are two counter-balanced factors involved in FXS pathophysiology. More and more studies demonstrated that attenuated GABAergic circuits in the absence of FMRP are critical for abnormal progression of FXS. Here, we reviewed the changes of GABA neural circuits that were attributed to intellectual-deficient FXS, from several aspects including deregulated GABA metabolism, decreased expressions of GABA receptor subunits, and impaired GABAergic neural circuits. Furthermore, the activities of GABA neural circuits are modulated by circadian rhythm of FMRP metabolism and reviewed the abnormal condition of FXS mice or patients.
Collapse
|
249
|
Brumback AC, Elwood I, Kjaerby C, Iafrati J, Robinson S, Lee A, Patel T, Nagaraj S, Davatolhagh F, Sohal VS. Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior. Mol Psychiatry 2018; 23:2078-2089. [PMID: 29112191 PMCID: PMC6594833 DOI: 10.1038/mp.2017.213] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
Functional imaging and gene expression studies both implicate the medial prefrontal cortex (mPFC), particularly deep-layer projection neurons, as a potential locus for autism pathology. Here, we explored how specific deep-layer prefrontal neurons contribute to abnormal physiology and behavior in mouse models of autism. First, we find that across three etiologically distinct models-in utero valproic acid (VPA) exposure, CNTNAP2 knockout and FMR1 knockout-layer 5 subcortically projecting (SC) neurons consistently exhibit reduced input resistance and action potential firing. To explore how altered SC neuron physiology might impact behavior, we took advantage of the fact that in deep layers of the mPFC, dopamine D2 receptors (D2Rs) are mainly expressed by SC neurons, and used D2-Cre mice to label D2R+ neurons for calcium imaging or optogenetics. We found that social exploration preferentially recruits mPFC D2R+ cells, but that this recruitment is attenuated in VPA-exposed mice. Stimulating mPFC D2R+ neurons disrupts normal social interaction. Conversely, inhibiting these cells enhances social behavior in VPA-exposed mice. Importantly, this effect was not reproduced by nonspecifically inhibiting mPFC neurons in VPA-exposed mice, or by inhibiting D2R+ neurons in wild-type mice. These findings suggest that multiple forms of autism may alter the physiology of specific deep-layer prefrontal neurons that project to subcortical targets. Furthermore, a highly overlapping population-prefrontal D2R+ neurons-plays an important role in both normal and abnormal social behavior, such that targeting these cells can elicit potentially therapeutic effects.
Collapse
Affiliation(s)
- Audrey C. Brumback
- Department of Neurology, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.,Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.,Current address: Departments of Neurology and Pediatrics, Dell Medical School, and Center for Learning and Memory at The University of Texas at Austin
| | - Ian Elwood
- Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Celia Kjaerby
- Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Jillian Iafrati
- Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Robinson
- Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony Lee
- Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Tosha Patel
- Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Suraj Nagaraj
- Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Felicia Davatolhagh
- Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Vikaas S. Sohal
- Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
250
|
Düsterwald KM, Currin CB, Burman RJ, Akerman CJ, Kay AR, Raimondo JV. Biophysical models reveal the relative importance of transporter proteins and impermeant anions in chloride homeostasis. eLife 2018; 7:39575. [PMID: 30260315 PMCID: PMC6200395 DOI: 10.7554/elife.39575] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/24/2018] [Indexed: 11/17/2022] Open
Abstract
Fast synaptic inhibition in the nervous system depends on the transmembrane flux of Cl- ions based on the neuronal Cl- driving force. Established theories regarding the determinants of Cl- driving force have recently been questioned. Here, we present biophysical models of Cl- homeostasis using the pump-leak model. Using numerical and novel analytic solutions, we demonstrate that the Na+/K+-ATPase, ion conductances, impermeant anions, electrodiffusion, water fluxes and cation-chloride cotransporters (CCCs) play roles in setting the Cl- driving force. Our models, together with experimental validation, show that while impermeant anions can contribute to setting [Cl-]i in neurons, they have a negligible effect on the driving force for Cl- locally and cell-wide. In contrast, we demonstrate that CCCs are well-suited for modulating Cl- driving force and hence inhibitory signaling in neurons. Our findings reconcile recent experimental findings and provide a framework for understanding the interplay of different chloride regulatory processes in neurons. Cells called neurons in the brain communicate by triggering or inhibiting electrical activity in other neurons. To inhibit electrical activity, a signal from one neuron usually triggers specific receptors on the second neuron to open, which allows particles called chloride ions to flow into or out of the neuron. The force that moves chloride ions (the so-called ‘chloride driving force’) depends on two main factors. Firstly, chloride ions, like other particles, tend to move from an area where they are plentiful to areas where they are less abundant. Secondly, chloride ions are negatively charged and are therefore attracted to areas where the net charge (determined by the mix of positively and negatively charged particles) is more positive than their current position. It was previously believed that a group of proteins known as CCCs, which transport chloride ions and positive ions together across the membranes surrounding cells, sets the chloride driving force. However, it has recently been suggested that negatively charged ions that are unable to cross the membrane (or ‘impermeant anions’ for short) may set the driving force instead by contributing to the net charge across the membrane. Düsterwald et al. used a computational model of the neuron to explore these two possibilities. In the simulations, altering the activity of the CCCs led to big changes in the chloride driving force. Changing the levels of impermeant anions altered the volume of cells, but did not drive changes in the chloride driving force. This was because the flow of chloride ions across the membrane led to a compensatory change in the net charge across the membrane. Düsterwald et al. then used an experimental technique called patch-clamping in mice and rats to confirm the model’s predictions. Defects in controlling the chloride driving force in brain cells have been linked with epilepsy, stroke and other neurological diseases. Therefore, a better knowledge of these mechanisms may in future help to identify the best targets for drugs to treat such conditions.
Collapse
Affiliation(s)
- Kira M Düsterwald
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Christopher B Currin
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard J Burman
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Colin J Akerman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Alan R Kay
- Department of Biology, University of Iowa, Iowa City Iowa, United States
| | - Joseph V Raimondo
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|