201
|
Nuclear Nestin deficiency drives tumor senescence via lamin A/C-dependent nuclear deformation. Nat Commun 2018; 9:3613. [PMID: 30190500 PMCID: PMC6127343 DOI: 10.1038/s41467-018-05808-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/27/2018] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence has revealed that Nestin not only serves as a biomarker for multipotent stem cells, but also regulates cell proliferation and invasion in various tumors. However, the mechanistic contributions of Nestin to cancer pathogenesis are still unknown. In the present study, previously thought to reside exclusively in the cytoplasm, Nestin can also be found in the nucleus and participate in protecting tumor cells against cellular senescence. Specifically, we reveal that Nestin has a nuclear localization signal (aa318–aa347) at the downstream of rod domain. We then find nuclear Nestin could interact with lamin A/C. Mechanistic investigations demonstrate that Nestin depletion results in the activation of cyclin-dependent kinase 5 (Cdk5), which causes the phosphorylation of lamin A/C (mainly at S392 site) and its subsequent translocation to the cytoplasm for degradation. The findings establish a role for nuclear Nestin in tumor senescence, which involves its nucleus-localized form and interaction with lamin A/C. Nestin can be localised in the nucleus of cancer cells, but its nuclear role in tumorigenesis is unclear. Here, the authors show that nuclear Nestin prevents senescence in tumor cells by stabilising lamin A/C from proteasomal degradation to maintain nuclear integrity.
Collapse
|
202
|
Puca AA, Spinelli C, Accardi G, Villa F, Caruso C. Centenarians as a model to discover genetic and epigenetic signatures of healthy ageing. Mech Ageing Dev 2018; 174:95-102. [DOI: 10.1016/j.mad.2017.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 01/07/2023]
|
203
|
Cañeque T, Müller S, Rodriguez R. Visualizing biologically active small molecules in cells using click chemistry. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0030-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
204
|
Abstract
In this issue of Science Signaling, Larrieu et al show that an acetyltransferase inhibitor that rescues many dominant nuclear phenotypes caused by progerin, a truncated form of lamin A, does so by releasing the specialized nuclear import receptor TNPO1 from sequestration by microtubules. This release enables TNPO1-dependent import of specific cargoes, including the nuclear pore protein Nup153 and the heterogeneous nuclear ribonucleoprotein hnRNPA1, thus restoring the functionality of nuclear pore complexes, rebalancing the nucleocytoplasmic Ran gradient, and normalizing gene expression.
Collapse
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
205
|
Larrieu D, Viré E, Robson S, Breusegem SY, Kouzarides T, Jackson SP. Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway. Sci Signal 2018; 11:eaar5401. [PMID: 29970603 PMCID: PMC6331045 DOI: 10.1126/scisignal.aar5401] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an incurable premature aging disease. Identifying deregulated biological processes in HGPS might thus help define novel therapeutic strategies. Fibroblasts from HGPS patients display defects in nucleocytoplasmic shuttling of the GTP-bound form of the small GTPase Ran (RanGTP), which leads to abnormal transport of proteins into the nucleus. We report that microtubule stabilization in HGPS cells sequestered the nonclassical nuclear import protein Transportin-1 (TNPO1) in the cytoplasm, thus affecting the nuclear localization of its cargo, including the nuclear pore protein NUP153. Consequently, nuclear Ran, nuclear anchorage of the nucleoporin TPR, and chromatin organization were disrupted, deregulating gene expression and inducing senescence. Inhibiting N-acetyltransferase 10 (NAT10) ameliorated HGPS phenotypes by rebalancing the nuclear to cytoplasmic ratio of TNPO1. This restored nuclear pore complex integrity and nuclear Ran localization, thereby correcting HGPS cellular phenotypes. We observed a similar mechanism in cells from healthy aged individuals. This study identifies a nuclear import pathway affected in aging and underscores the potential for NAT10 inhibition as a possible therapeutic strategy for HGPS and perhaps also for pathologies associated with normal aging.
Collapse
Affiliation(s)
- Delphine Larrieu
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN, UK.
| | - Emmanuelle Viré
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN, UK
| | - Samuel Robson
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN, UK
| | - Sophia Y Breusegem
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN, UK
| | - Tony Kouzarides
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN, UK
| | - Stephen P Jackson
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN, UK.
| |
Collapse
|
206
|
Cañeque T, Müller S, Lafon A, Sindikubwabo F, Versini A, Saier L, Barutaut M, Gaillet C, Rodriguez R. Reprogramming the chemical reactivity of iron in cancer stem cells. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
207
|
Bikkul MU, Clements CS, Godwin LS, Goldberg MW, Kill IR, Bridger JM. Farnesyltransferase inhibitor and rapamycin correct aberrant genome organisation and decrease DNA damage respectively, in Hutchinson-Gilford progeria syndrome fibroblasts. Biogerontology 2018; 19:579-602. [PMID: 29907918 PMCID: PMC6223735 DOI: 10.1007/s10522-018-9758-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal premature ageing disease in children. HGPS is one of several progeroid syndromes caused by mutations in the LMNA gene encoding the nuclear structural proteins lamins A and C. In classic HGPS the mutation G608G leads to the formation of a toxic lamin A protein called progerin. During post-translational processing progerin remains farnesylated owing to the mutation interfering with a step whereby the farnesyl moiety is removed by the enzyme ZMPSTE24. Permanent farnesylation of progerin is thought to be responsible for the proteins toxicity. Farnesyl is generated through the mevalonate pathway and three drugs that interfere with this pathway and hence the farnesylation of proteins have been administered to HGPS children in clinical trials. These are a farnesyltransferase inhibitor (FTI), statin and a bisphosphonate. Further experimental studies have revealed that other drugs such as N-acetyl cysteine, rapamycin and IGF-1 may be of use in treating HGPS through other pathways. We have shown previously that FTIs restore chromosome positioning in interphase HGPS nuclei. Mis-localisation of chromosomes could affect the cells ability to regulate proper genome function. Using nine different drug treatments representing drug regimes in the clinic we have shown that combinatorial treatments containing FTIs are most effective in restoring specific chromosome positioning towards the nuclear periphery and in tethering telomeres to the nucleoskeleton. On the other hand, rapamycin was found to be detrimental to telomere tethering, it was, nonetheless, the most effective at inducing DNA damage repair, as revealed by COMET analyses.
Collapse
Affiliation(s)
- Mehmet U Bikkul
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Craig S Clements
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Lauren S Godwin
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Martin W Goldberg
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK
| | - Ian R Kill
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Joanna M Bridger
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
208
|
Velimezi G, Robinson-Garcia L, Muñoz-Martínez F, Wiegant WW, Ferreira da Silva J, Owusu M, Moder M, Wiedner M, Rosenthal SB, Fisch KM, Moffat J, Menche J, van Attikum H, Jackson SP, Loizou JI. Map of synthetic rescue interactions for the Fanconi anemia DNA repair pathway identifies USP48. Nat Commun 2018; 9:2280. [PMID: 29891926 PMCID: PMC5996029 DOI: 10.1038/s41467-018-04649-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 05/14/2018] [Indexed: 01/26/2023] Open
Abstract
Defects in DNA repair can cause various genetic diseases with severe pathological phenotypes. Fanconi anemia (FA) is a rare disease characterized by bone marrow failure, developmental abnormalities, and increased cancer risk that is caused by defective repair of DNA interstrand crosslinks (ICLs). Here, we identify the deubiquitylating enzyme USP48 as synthetic viable for FA-gene deficiencies by performing genome-wide loss-of-function screens across a panel of human haploid isogenic FA-defective cells (FANCA, FANCC, FANCG, FANCI, FANCD2). Thus, as compared to FA-defective cells alone, FA-deficient cells additionally lacking USP48 are less sensitive to genotoxic stress induced by ICL agents and display enhanced, BRCA1-dependent, clearance of DNA damage. Consequently, USP48 inactivation reduces chromosomal instability of FA-defective cells. Our results highlight a role for USP48 in controlling DNA repair and suggest it as a potential target that could be therapeutically exploited for FA.
Collapse
Affiliation(s)
- Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Lydia Robinson-Garcia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Francisco Muñoz-Martínez
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Joana Ferreira da Silva
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Martin Moder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0681, La Jolla, CA, 92093, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0681, La Jolla, CA, 92093, USA
| | - Jason Moffat
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Stephen P Jackson
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria.
| |
Collapse
|
209
|
Tan Y, Zheng J, Liu X, Lu M, Zhang C, Xing B, Du X. Loss of nucleolar localization of NAT10 promotes cell migration and invasion in hepatocellular carcinoma. Biochem Biophys Res Commun 2018; 499:1032-1038. [PMID: 29634924 DOI: 10.1016/j.bbrc.2018.04.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/16/2022]
Abstract
NAT10, a nucleolar acetyltransferase, participates in a variety of cellular processes including ribosome biogenesis and DNA damage response. Immunohistochemistry staining showed that cytoplasmic and membranous NAT10 is related to the clinical pathologic characteristics in human cancer tissues. However, the mechanism about how NAT10 translocates from the nucleolus to cytoplasm and membrane is unclear. Here, we obtain a NAT10 deletion mutant localizing in cytoplasm and membrane. Bioinformatics analysis showed that residues 68-75 and 989-1018 are two potential nuclear localization signals (NLS) of NAT10. GFP-NAT10 deletion mutant (Δ989-1018) predominantly translocates into cytoplasm with faint signal retained in the nucleolus, while GFP-NAT10(Δ68-75) still remains in the nucleolus and nucleoplasm, indicating residues 989-1018 is the main nucleolar localization signal (NuLS). GFP-NAT10-D3, with both fragments (residues 68-75 and 989-1018) deleted, completely excludes from the nucleolus and translocates to cytoplasm and membrane. Therefore, complete NuLSs of NAT10 should include residues 68-75 and 989-1018. The cytoplasmic and membranous NAT10 mutant (Flag-NAT10-D3) colocalizes with α-tubulin in cytoplasm and with integrin on cell membrane. Importantly, Flag-NAT10-D3 promotes α-tubulin acetylation and stabilizes microtubules. Consequently, Flag-NAT10-D3 promotes migration and invasion in hepatocellular carcinoma (HCC) cells. Statistical analysis of immunohistochemistry staining of NAT10 in HCC tissues demonstrates that the cytoplasmic NAT10 is correlated with poorer prognosis compared with nuclear NAT10, while the membranous NAT10 predicts the poorest clinical outcome of the patients. We thus provide the evidence for the function of cytoplasmic and membranous NAT10 in the metastasis and prognosis of HCC patients.
Collapse
Affiliation(s)
- Yuqin Tan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jiaojiao Zheng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, No. 52, Fu-Cheng Road, Beijing, 100142, China
| | - Min Lu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, No. 52, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
210
|
A Flow Cytometry-Based Phenotypic Screen To Identify Novel Endocytic Factors in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018. [PMID: 29540444 PMCID: PMC5940143 DOI: 10.1534/g3.118.200102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endocytosis is a fundamental process for internalizing material from the plasma membrane, including many transmembrane proteins that are selectively internalized depending on environmental conditions. In most cells, the main route of entry is clathrin-mediated endocytosis (CME), a process that involves the coordinated activity of over 60 proteins; however, there are likely as-yet unidentified proteins involved in cargo selection and/or regulation of endocytosis. We performed a mutagenic screen to identify novel endocytic genes in Saccharomyces cerevisiae expressing the methionine permease Mup1 tagged with pHluorin (pHl), a pH-sensitive GFP variant whose fluorescence is quenched upon delivery to the acidic vacuole lumen. We used fluorescence-activated cell sorting to isolate mutagenized cells with elevated fluorescence, resulting from failure to traffic Mup1-pHl cargo to the vacuole, and further assessed subcellular localization of Mup1-pHl to characterize the endocytic defects in 256 mutants. A subset of mutant strains was classified as having general endocytic defects based on mislocalization of additional cargo proteins. Within this group, we identified mutations in four genes encoding proteins with known roles in endocytosis: the endocytic coat components SLA2, SLA1, and EDE1, and the ARP3 gene, whose product is involved in nucleating actin filaments to form branched networks. All four mutants demonstrated aberrant dynamics of the endocytic machinery at sites of CME; moreover, the arp3R346H mutation showed reduced actin nucleation activity in vitro. Finally, whole genome sequencing of two general endocytic mutants identified mutations in conserved genes not previously implicated in endocytosis, KRE33 and IQG1, demonstrating that our screening approach can be used to identify new components involved in endocytosis.
Collapse
|
211
|
Zhang S, Duan E. Fighting against Skin Aging: The Way from Bench to Bedside. Cell Transplant 2018; 27:729-738. [PMID: 29692196 PMCID: PMC6047276 DOI: 10.1177/0963689717725755] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022] Open
Abstract
As the most voluminous organ of the body that is exposed to the outer environment, the skin suffers from both intrinsic and extrinsic aging factors. Skin aging is characterized by features such as wrinkling, loss of elasticity, laxity, and rough-textured appearance. This aging process is accompanied with phenotypic changes in cutaneous cells as well as structural and functional changes in extracellular matrix components such as collagens and elastin. In this review, we summarize these changes in skin aging, research advances of the molecular mechanisms leading to these changes, and the treatment strategies aimed at preventing or reversing skin aging.
Collapse
Affiliation(s)
- Shoubing Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Central laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Enkui Duan
- State Key Lab of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
212
|
Balmus G, Larrieu D, Barros AC, Collins C, Abrudan M, Demir M, Geisler NJ, Lelliott CJ, White JK, Karp NA, Atkinson J, Kirton A, Jacobsen M, Clift D, Rodriguez R, Adams DJ, Jackson SP. Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome. Nat Commun 2018; 9:1700. [PMID: 29703891 PMCID: PMC5923383 DOI: 10.1038/s41467-018-03770-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/12/2018] [Indexed: 02/02/2023] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare, but devastating genetic disease characterized by segmental premature aging, with cardiovascular disease being the main cause of death. Cells from HGPS patients accumulate progerin, a permanently farnesylated, toxic form of Lamin A, disrupting the nuclear shape and chromatin organization, leading to DNA-damage accumulation and senescence. Therapeutic approaches targeting farnesylation or aiming to reduce progerin levels have provided only partial health improvements. Recently, we identified Remodelin, a small-molecule agent that leads to amelioration of HGPS cellular defects through inhibition of the enzyme N-acetyltransferase 10 (NAT10). Here, we show the preclinical data demonstrating that targeting NAT10 in vivo, either via chemical inhibition or genetic depletion, significantly enhances the healthspan in a Lmna G609G HGPS mouse model. Collectively, the data provided here highlights NAT10 as a potential therapeutic target for HGPS.
Collapse
Affiliation(s)
- Gabriel Balmus
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Delphine Larrieu
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK.
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Ana C Barros
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Casey Collins
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Monica Abrudan
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Mukerrem Demir
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Nicola J Geisler
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | | | - Natasha A Karp
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - James Atkinson
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, CB2 23AT, UK
| | - Andrea Kirton
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Matt Jacobsen
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, CB2 23AT, UK
| | - Dean Clift
- Laboratory of Molecular Biology, Cambridge, CB2 OQH, UK
| | - Raphael Rodriguez
- Institut Curie, PSL Research University, Paris Cedex 05, France
- CNRS UMR3666, 75005, Paris, France
- INSERM U1143, 75005, Paris, France
| | - David J Adams
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephen P Jackson
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK.
| |
Collapse
|
213
|
Hussain I, Patni N, Ueda M, Sorkina E, Valerio CM, Cochran E, Brown RJ, Peeden J, Tikhonovich Y, Tiulpakov A, Stender SRS, Klouda E, Tayeh MK, Innis JW, Meyer A, Lal P, Godoy-Matos AF, Teles MG, Adams-Huet B, Rader DJ, Hegele RA, Oral EA, Garg A. A Novel Generalized Lipodystrophy-Associated Progeroid Syndrome Due to Recurrent Heterozygous LMNA p.T10I Mutation. J Clin Endocrinol Metab 2018; 103:1005-1014. [PMID: 29267953 PMCID: PMC6283411 DOI: 10.1210/jc.2017-02078] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lamin A/C (LMNA) gene mutations cause a heterogeneous group of progeroid disorders, including Hutchinson-Gilford progeria syndrome, mandibuloacral dysplasia, and atypical progeroid syndrome (APS). Five of the 31 previously reported patients with APS harbored a recurrent de novo heterozygous LMNA p.T10I mutation. All five had generalized lipodystrophy, as well as similar metabolic and clinical features, suggesting a distinct progeroid syndrome. METHODS We report nine new patients and follow-up of two previously reported patients with the heterozygous LMNA p.T10I mutation and compare their clinical and metabolic features with other patients with APS. RESULTS Compared with other patients with APS, those with the heterozygous LMNA p.T10I mutation were younger in age but had increased prevalence of generalized lipodystrophy, diabetes mellitus, acanthosis nigricans, hypertriglyceridemia, and hepatomegaly, together with higher fasting serum insulin and triglyceride levels and lower serum leptin and high-density lipoprotein cholesterol levels. Prominent clinical features included mottled skin pigmentation, joint contractures, and cardiomyopathy resulting in cardiac transplants in three patients at ages 13, 33, and 47 years. Seven patients received metreleptin therapy for 0.5 to 16 years with all, except one noncompliant patient, showing marked improvement in metabolic complications. CONCLUSIONS Patients with the heterozygous LMNA p.T10I mutation have distinct clinical features and significantly worse metabolic complications compared with other patients with APS as well as patients with Hutchinson-Gilford progeria syndrome. We propose that they be recognized as having generalized lipodystrophy-associated progeroid syndrome. Patients with generalized lipodystrophy-associated progeroid syndrome should undergo careful multisystem assessment at onset and yearly metabolic and cardiac evaluation, as hyperglycemia, hypertriglyceridemia, hepatic steatosis, and cardiomyopathy are the major contributors to morbidity and mortality.
Collapse
Affiliation(s)
- Iram Hussain
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Nivedita Patni
- Division of Pediatric Endocrinology, Department of Pediatrics, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, Texas
| | - Masako Ueda
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ekaterina Sorkina
- Endocrinology Research Centre, Moscow, Russia
- Laboratory of Molecular Endocrinology, Medical Scientific Educational Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Cynthia M Valerio
- Division of Metabology, State Institute of Diabetes and Endocrinology, Rio de Janeiro, Brazil
| | - Elaine Cochran
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Joseph Peeden
- East Tennessee Children’s Hospital, University of Tennessee Department of Medicine, Knoxville, Tennessee
| | | | | | - Sarah R S Stender
- Department of Pediatrics, University of California San Francisco–Fresno, Fresno, California
| | | | - Marwan K Tayeh
- Division of Pediatric Genetics, Metabolism and Genomic Medicine, Division of Genetics, Metabolism and Genomic Medicine and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey W Innis
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Anders Meyer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Priti Lal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amelio F Godoy-Matos
- Division of Metabology, State Institute of Diabetes and Endocrinology, Rio de Janeiro, Brazil
| | - Milena G Teles
- Monogenic Diabetes Group, Genetic Endocrinology Unit (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Beverley Adams-Huet
- Department of Clinical Sciences, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert A Hegele
- Department of Medicine, Western University, London, Ontario, Canada
| | - Elif A Oral
- Metabolism, Endocrinology and Diabetes Division, Department of Internal of Medicine, Brehm Center for Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, Texas
- Correspondence and Reprint Requests: Abhimanyu Garg, MD, Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and the Center for Human Nutrition, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8537. E-mail:
| |
Collapse
|
214
|
Wu J, Zhu H, Wu J, Chen W, Guan X. Inhibition of N-acetyltransferase 10 using remodelin attenuates doxorubicin resistance by reversing the epithelial-mesenchymal transition in breast cancer. Am J Transl Res 2018; 10:256-264. [PMID: 29423010 PMCID: PMC5801363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 06/08/2023]
Abstract
Development of resistance to doxorubicin-based chemotherapy limits curative effect in breast cancer (BC). N-acetyltransferase 10 (NAT10), a nucleolar protein involved in histone acetylation, is overexpressed in several cancers. We investigated whether NAT10 is involved in doxorubicin resistance in BC and explored the potential mechanisms. Remodelin, a NAT10 inhibitor, and a NAT10 small interfering RNA (siRNA) were used to inhibit NAT10; both remodelin and the NAT10 siRNA reduced cell viability and attenuated doxorubicin resistance in four BC cell lines. Remodelin and doxorubicin synergistically reduced cell viability, though knockdown of NAT10 and remodelin did not exert a synergistic effect in doxorubicin-treated cells. Remodelin upregulated E-cadherin and downregulated vimentin, canonical markers of the epithelial-mesenchymal transition (EMT), whereas doxorubicin had the opposite effects. Moreover, both remodelin and knockdown of NAT10 reversed the doxorubicin-induced EMT. Finally, when the EMT was blocked using a siRNA targeting Twist, remodelin could not alleviate doxorubicin resistance. Collectively, these findings demonstrate that inhibition of NAT10 attenuates doxorubicin resistance by reversing the EMT in BC. This represents a novel mechanism of doxorubicin resistance in BC and indicates remodelin may have potential clinical value to increase the efficacy of doxorubicin-based chemotherapy in BC.
Collapse
Affiliation(s)
- Ji Wu
- Department of Thyroid Breast Surgery, People’s Hospital of Suqian, Nanjing Drum Tower Hospital GroupSuqian, China
| | - Hong Zhu
- Department of Endocrinology, People’s Hospital of Suqian, Nanjing Drum Tower Hospital GroupSuqian, China
| | - Jianqiang Wu
- Department of General Surgery, People’s Hospital of Suqian, Nanjing Drum Tower Hospital GroupSuqian, China
| | - Wei Chen
- Institute of Molecular Engineering, University of ChicagoChicago, USA
| | - Xiaoqing Guan
- Department of Thyroid Breast Surgery, People’s Hospital of Suqian, Nanjing Drum Tower Hospital GroupSuqian, China
| |
Collapse
|
215
|
Stephens AD, Liu PZ, Banigan EJ, Almassalha LM, Backman V, Adam SA, Goldman RD, Marko JF. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol Biol Cell 2018; 29:220-233. [PMID: 29142071 PMCID: PMC5909933 DOI: 10.1091/mbc.e17-06-0410] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 01/29/2023] Open
Abstract
Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed "blebs" are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Conversely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson-Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Patrick Z Liu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Edward J Banigan
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
216
|
Robijns J, Houthaeve G, Braeckmans K, De Vos WH. Loss of Nuclear Envelope Integrity in Aging and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:205-222. [DOI: 10.1016/bs.ircmb.2017.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
217
|
Houthaeve G, Robijns J, Braeckmans K, De Vos WH. Bypassing Border Control: Nuclear Envelope Rupture in Disease. Physiology (Bethesda) 2018; 33:39-49. [DOI: 10.1152/physiol.00029.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 11/22/2022] Open
Abstract
Recent observations in laminopathy patient cells and cancer cells have revealed that the nuclear envelope (NE) can transiently rupture during interphase. NE rupture leads to an uncoordinated exchange of nuclear and cytoplasmic material, thereby deregulating cellular homeostasis. Moreover, concurrently inflicted DNA damage could prime rupture-prone cells for genome instability. Thus, NE rupture may represent a novel pathogenic mechanism that has far-reaching consequences for cell and organism physiology.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Joke Robijns
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Department of Molecular Biotechnology, Cell Systems and Imaging Research Group (CSI), Ghent University, Ghent, Belgium
| |
Collapse
|
218
|
Sinclair WR, Arango D, Shrimp JH, Zengeya TT, Thomas JM, Montgomery DC, Fox SD, Andresson T, Oberdoerffer S, Meier JL. Profiling Cytidine Acetylation with Specific Affinity and Reactivity. ACS Chem Biol 2017; 12:2922-2926. [PMID: 29039931 PMCID: PMC7900898 DOI: 10.1021/acschembio.7b00734] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The human acetyltransferase NAT10 has recently been shown to catalyze formation of N4-acetylcytidine (ac4C), a minor nucleobase known to alter RNA structure and function. In order to better understand the role of RNA acetyltransferases in biology and disease, here we report the development and application of chemical methods to study ac4C. First, we demonstrate that ac4C can be conjugated to carrier proteins using optimized protocols. Next, we describe methods to access ac4C-containing RNAs, enabling the screening of anti-ac4C antibodies. Finally, we validate the specificity of an optimized ac4C affinity reagent in the context of cellular RNA by demonstrating its ability to accurately report on chemical deacetylation of ac4C. Overall, these studies provide a powerful new tool for studying ac4C in biological contexts, as well as new insights into the stability and half-life of this highly conserved RNA modification. More broadly, they demonstrate how chemical reactivity may be exploited to aid the development and validation of nucleobase-targeting affinity reagents designed to target the emerging epitranscriptome.
Collapse
Affiliation(s)
- Wilson R. Sinclair
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Daniel Arango
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20817, United States
| | - Jonathan H. Shrimp
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Thomas T. Zengeya
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Justin M. Thomas
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - David C. Montgomery
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Stephen D. Fox
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20817, United States
| | - Jordan L. Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
219
|
Carrero D, Soria-Valles C, López-Otín C. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis Model Mech 2017; 9:719-35. [PMID: 27482812 PMCID: PMC4958309 DOI: 10.1242/dmm.024711] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ageing is a process that inevitably affects most living organisms and involves the accumulation of macromolecular damage, genomic instability and loss of heterochromatin. Together, these alterations lead to a decline in stem cell function and to a reduced capability to regenerate tissue. In recent years, several genetic pathways and biochemical mechanisms that contribute to physiological ageing have been described, but further research is needed to better characterize this complex biological process. Because premature ageing (progeroid) syndromes, including progeria, mimic many of the characteristics of human ageing, research into these conditions has proven to be very useful not only to identify the underlying causal mechanisms and identify treatments for these pathologies, but also for the study of physiological ageing. In this Review, we summarize the main cellular and animal models used in progeria research, with an emphasis on patient-derived induced pluripotent stem cell models, and define a series of molecular and cellular hallmarks that characterize progeroid syndromes and parallel physiological ageing. Finally, we describe the therapeutic strategies being investigated for the treatment of progeroid syndromes, and their main limitations. Summary: This Review defines the molecular and cellular hallmarks of progeroid syndromes according to the main cellular and animal models, and discusses the therapeutic strategies developed to date.
Collapse
Affiliation(s)
- Dido Carrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo 33006, Spain
| | - Clara Soria-Valles
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo 33006, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo 33006, Spain
| |
Collapse
|
220
|
Rabhi N, Hannou SA, Gromada X, Salas E, Yao X, Oger F, Carney C, Lopez-Mejia IC, Durand E, Rabearivelo I, Bonnefond A, Caron E, Fajas L, Dani C, Froguel P, Annicotte JS. Cdkn2a deficiency promotes adipose tissue browning. Mol Metab 2017; 8:65-76. [PMID: 29237539 PMCID: PMC5985036 DOI: 10.1016/j.molmet.2017.11.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/23/2017] [Indexed: 01/01/2023] Open
Abstract
Objectives Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis. Methods We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients. Results We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression. Conclusion Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders. Cdkn2a deficiency protects mice against high fat diet-induced obesity. Cdkn2a modulates brown-like/beige fat gene networks involved in energy production and lipid metabolism. Increased CDKN2A expression in human obese adipocytes. Increased UCP1 levels in adipocytes differentiated from CDKN2A-silenced hiPS cells.
Collapse
Affiliation(s)
- Nabil Rabhi
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Sarah Anissa Hannou
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Xavier Gromada
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Elisabet Salas
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Xi Yao
- Université Côte d'Azur, CNRS, INSERM, iBV, Faculté de Médecine, F-06107 Nice Cedex 2, France
| | - Frédérik Oger
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Charlène Carney
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Isabel C Lopez-Mejia
- Center for Integrative Genomics, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Emmanuelle Durand
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Iandry Rabearivelo
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Amélie Bonnefond
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Emilie Caron
- INSERM, UMR S-1172, Development and Plasticity of Postnatal Brain, F-59000 Lille, France
| | - Lluis Fajas
- Center for Integrative Genomics, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Christian Dani
- Université Côte d'Azur, CNRS, INSERM, iBV, Faculté de Médecine, F-06107 Nice Cedex 2, France
| | - Philippe Froguel
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France; Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| | - Jean-Sébastien Annicotte
- Lille University, UMR 8199 - EGID, F-59000 Lille, France; CNRS, UMR 8199, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France.
| |
Collapse
|
221
|
Jonkhout N, Tran J, Smith MA, Schonrock N, Mattick JS, Novoa EM. The RNA modification landscape in human disease. RNA (NEW YORK, N.Y.) 2017; 23:1754-1769. [PMID: 28855326 PMCID: PMC5688997 DOI: 10.1261/rna.063503.117] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
RNA modifications have been historically considered as fine-tuning chemo-structural features of infrastructural RNAs, such as rRNAs, tRNAs, and snoRNAs. This view has changed dramatically in recent years, to a large extent as a result of systematic efforts to map and quantify various RNA modifications in a transcriptome-wide manner, revealing that RNA modifications are reversible, dynamically regulated, far more widespread than originally thought, and involved in major biological processes, including cell differentiation, sex determination, and stress responses. Here we summarize the state of knowledge and provide a catalog of RNA modifications and their links to neurological disorders, cancers, and other diseases. With the advent of direct RNA-sequencing technologies, we expect that this catalog will help prioritize those RNA modifications for transcriptome-wide maps.
Collapse
Affiliation(s)
- Nicky Jonkhout
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
| | - Julia Tran
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
| | - Martin A Smith
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
| | - Nicole Schonrock
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- Genome.One, Darlinghurst, 2010 NSW, Australia
| | - John S Mattick
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
| | - Eva Maria Novoa
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
222
|
Repair of UV-Induced DNA Damage Independent of Nucleotide Excision Repair Is Masked by MUTYH. Mol Cell 2017; 68:797-807.e7. [PMID: 29149600 DOI: 10.1016/j.molcel.2017.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/05/2017] [Accepted: 10/17/2017] [Indexed: 02/05/2023]
Abstract
DNA lesions caused by UV damage are thought to be repaired solely by the nucleotide excision repair (NER) pathway in human cells. Patients carrying mutations within genes functioning in this pathway display a range of pathologies, including an increased susceptibility to cancer, premature aging, and neurological defects. There are currently no curative therapies available. Here we performed a high-throughput chemical screen for agents that could alleviate the cellular sensitivity of NER-deficient cells to UV-induced DNA damage. This led to the identification of the clinically approved anti-diabetic drug acetohexamide, which promoted clearance of UV-induced DNA damage without the accumulation of chromosomal aberrations, hence promoting cellular survival. Acetohexamide exerted this protective function by antagonizing expression of the DNA glycosylase, MUTYH. Together, our data reveal the existence of an NER-independent mechanism to remove UV-induced DNA damage and prevent cell death.
Collapse
|
223
|
Emerging candidate treatment strategies for Hutchinson-Gilford progeria syndrome. Biochem Soc Trans 2017; 45:1279-1293. [PMID: 29127216 DOI: 10.1042/bst20170141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS, progeria) is an extremely rare premature aging disorder affecting children, with a disease incidence of ∼1 in 18 million individuals. HGPS is usually caused by a de novo point mutation in exon 11 of the LMNA gene (c.1824C>T, p.G608G), resulting in the increased usage of a cryptic splice site and production of a truncated unprocessed lamin A protein named progerin. Since the genetic cause for HGPS was published in 2003, numerous potential treatment options have rapidly emerged. Strategies to interfere with the post-translational processing of lamin A, to enhance progerin clearance, or directly target the HGPS mutation to reduce the progerin-producing alternative splicing of the LMNA gene have been developed. Here, we give an up-to-date resume of the contributions made by our and other research groups to the growing list of different candidate treatment strategies that have been tested, both in vitro, in vivo in mouse models for HGPS and in clinical trials in HGPS patients.
Collapse
|
224
|
Moder M, Velimezi G, Owusu M, Mazouzi A, Wiedner M, Ferreira da Silva J, Robinson-Garcia L, Schischlik F, Slavkovsky R, Kralovics R, Schuster M, Bock C, Ideker T, Jackson SP, Menche J, Loizou JI. Parallel genome-wide screens identify synthetic viable interactions between the BLM helicase complex and Fanconi anemia. Nat Commun 2017; 8:1238. [PMID: 29089570 PMCID: PMC5663702 DOI: 10.1038/s41467-017-01439-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 09/15/2017] [Indexed: 02/08/2023] Open
Abstract
Maintenance of genome integrity via repair of DNA damage is a key biological process required to suppress diseases, including Fanconi anemia (FA). We generated loss-of-function human haploid cells for FA complementation group C (FANCC), a gene encoding a component of the FA core complex, and used genome-wide CRISPR libraries as well as insertional mutagenesis to identify synthetic viable (genetic suppressor) interactions for FA. Here we show that loss of the BLM helicase complex suppresses FANCC phenotypes and we confirm this interaction in cells deficient for FA complementation group I and D2 (FANCI and FANCD2) that function as part of the FA I-D2 complex, indicating that this interaction is not limited to the FA core complex, hence demonstrating that systematic genome-wide screening approaches can be used to reveal genetic viable interactions for DNA repair defects.
Collapse
Affiliation(s)
- Martin Moder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Abdelghani Mazouzi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Joana Ferreira da Silva
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Lydia Robinson-Garcia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Fiorella Schischlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Rastislav Slavkovsky
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Trey Ideker
- Department of Medicine, Division of Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- The Cancer Cell Map Initiative, La Jolla, CA, 92093, USA
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria.
| |
Collapse
|
225
|
Tschida BR, Temiz NA, Kuka TP, Lee LA, Riordan JD, Tierrablanca CA, Hullsiek R, Wagner S, Hudson WA, Linden MA, Amin K, Beckmann PJ, Heuer RA, Sarver AL, Yang JD, Roberts LR, Nadeau JH, Dupuy AJ, Keng VW, Largaespada DA. Sleeping Beauty Insertional Mutagenesis in Mice Identifies Drivers of Steatosis-Associated Hepatic Tumors. Cancer Res 2017; 77:6576-6588. [PMID: 28993411 DOI: 10.1158/0008-5472.can-17-2281] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/11/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022]
Abstract
Hepatic steatosis is a strong risk factor for the development of hepatocellular carcinoma (HCC), yet little is known about the molecular pathology associated with this factor. In this study, we performed a forward genetic screen using Sleeping Beauty (SB) transposon insertional mutagenesis in mice treated to induce hepatic steatosis and compared the results to human HCC data. In humans, we determined that steatosis increased the proportion of female HCC patients, a pattern also reflected in mice. Our genetic screen identified 203 candidate steatosis-associated HCC genes, many of which are altered in human HCC and are members of established HCC-driving signaling pathways. The protein kinase A/cyclic AMP signaling pathway was altered frequently in mouse and human steatosis-associated HCC. We found that activated PKA expression drove steatosis-specific liver tumorigenesis in a mouse model. Another candidate HCC driver, the N-acetyltransferase NAT10, which we found to be overexpressed in human steatosis-associated HCC and associated with decreased survival in human HCC, also drove liver tumorigenesis in a steatotic mouse model. This study identifies genes and pathways promoting HCC that may represent novel targets for prevention and treatment in the context of hepatic steatosis, an area of rapidly growing clinical significance. Cancer Res; 77(23); 6576-88. ©2017 AACR.
Collapse
Affiliation(s)
- Barbara R Tschida
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Nuri A Temiz
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Timothy P Kuka
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Lindsey A Lee
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | | | - Carlos A Tierrablanca
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Robert Hullsiek
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Sandra Wagner
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Wendy A Hudson
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Pauline J Beckmann
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Rachel A Heuer
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Aaron L Sarver
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Ju Dong Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Vincent W Keng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China. .,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - David A Largaespada
- Department of Pediatrics, Masonic Cancer Center and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
226
|
Oh TI, Lee YM, Lim BO, Lim JH. Inhibition of NAT10 Suppresses Melanogenesis and Melanoma Growth by Attenuating Microphthalmia-Associated Transcription Factor (MITF) Expression. Int J Mol Sci 2017; 18:ijms18091924. [PMID: 28880216 PMCID: PMC5618573 DOI: 10.3390/ijms18091924] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 01/25/2023] Open
Abstract
N-acetyltransferase 10 (NAT10) has been considered a target for the treatment of human diseases such as cancer and laminopathies; however, its functional role in the biology of melanocytes is questionable. Using a small molecule or small interfering RNA targeting NAT10, we examined the effect of NAT10 inhibition on melanogenesis and melanoma growth in human and mouse melanoma cells. Genetic silencing or chemical inhibition of NAT10 resulted in diminished melanin synthesis through the suppression of melanogenesis-stimulating genes such as those encoding dopachrome tautomerase (DCT) and tyrosinase in B16F10 melanoma cells. In addition, NAT10 inhibition significantly increased cell cycle arrest in S-phase, thereby suppressing the growth and proliferation of malignant melanoma cells in vitro and in vivo. These results demonstrate the potential role of NAT10 in melanogenesis and melanoma growth through the regulation of microphthalmia-associated transcription factor (MITF) expression and provide a promising strategy for the treatment of various skin diseases (melanoma) and pigmentation disorders (chloasma and freckles).
Collapse
Affiliation(s)
- Taek-In Oh
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Yoon-Mi Lee
- Department of Food Bioscience, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
- Nanotechnology Research Center, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Beong-Ou Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Ji-Hong Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
- Nanotechnology Research Center, Konkuk University, Chungju 27478, Chungbuk, Korea.
| |
Collapse
|
227
|
Turgay Y, Medalia O. The structure of lamin filaments in somatic cells as revealed by cryo-electron tomography. Nucleus 2017; 8:475-481. [PMID: 28635493 PMCID: PMC5703231 DOI: 10.1080/19491034.2017.1337622] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022] Open
Abstract
Metazoan nuclei are equipped with nuclear lamina - a thin layer of intermediate filaments (IFs) mostly built of nuclear lamins facing the inner nuclear membrane (INM). The nuclear lamina serves as an interaction hub for INM-proteins, soluble nuclear factors and DNA. It confers structural and mechanical stability to the nucleus, transduces mechanical forces and biochemical signals across the nuclear envelope (NE) and regulates the organization of chromatin. By using cryo-electron tomography (cryo-ET), we recently provided an unprecedented view into the 3D organization of lamin filaments within the lamina meshwork in mammalian somatic cells. Through implementation of averaging procedures, we resolved the rod and globular Ig-fold domains of lamin filaments. The density maps suggested that they assemble into 3.5 nm thick filaments. Our analysis revealed interesting structural differences between nucleoplasmic and cytoplasmic intermediate filaments, raising the question of which molecular cues define their assembly modes inside the cell.
Collapse
Affiliation(s)
- Y. Turgay
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - O. Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
228
|
Li Q, Liu X, Jin K, Lu M, Zhang C, Du X, Xing B. NAT10 is upregulated in hepatocellular carcinoma and enhances mutant p53 activity. BMC Cancer 2017; 17:605. [PMID: 28859621 PMCID: PMC5579925 DOI: 10.1186/s12885-017-3570-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 08/21/2017] [Indexed: 04/05/2023] Open
Abstract
Background N-acetyltransferase 10 (NAT10) is a histone acetyltransferase which is involved in a wide range of cellular processes. Recent evidences indicate that NAT10 is involved in the development of human cancers. Previous study showed that NAT10 acetylates the tumor suppressor p53 and regulates p53 activation. As Tp53 gene is frequently mutated in hepatocellular carcinoma (HCC) and associates with the occurrence and development of HCC, the relationship between NAT10 and HCC was investigated in this study. Methods Immunohistochemistry (IHC) and western blot analysis were performed to evaluate the NAT10 expression in HCC. Immunoprecipitation experiments were performed to verify the interaction of NAT10 with mutant p53 and Mdm2. RNA interference and Western blot were applied to determine the effect of NAT10 on mutant p53. Cell growth curve was used to examine the effect of NAT10 on HCC cell proliferation. Results NAT10 was upregulated in HCC and increased NAT10 expression was correlated with poor overall survival of the patients. NAT10 protein levels were significantly correlated with p53 levels in human HCC tissues. Furthermore, NAT10 increased mutant p53 levels by counteracting Mdm2 action in HCC cells and promoted proliferation in cells carrying p53 mutation. Conclusion Increased NAT10 expression levels are associated with shortened patient survival and correlated with mutant p53 levels. NAT10 upregulates mutant p53 level and might enhance its tumorigenic activity. Hence, we propose that NAT10 is a potential prognostic and therapeutic candidate for p53-mutated HCC.
Collapse
Affiliation(s)
- Qijiong Li
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, China
| | - Xiaofeng Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Kemin Jin
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Min Lu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chunfeng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
229
|
Janin A, Bauer D, Ratti F, Millat G, Méjat A. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology. Orphanet J Rare Dis 2017; 12:147. [PMID: 28854936 PMCID: PMC5577761 DOI: 10.1186/s13023-017-0698-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain.Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of "nuclear envelopathies" is currently challenging.The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.
Collapse
Affiliation(s)
- Alexandre Janin
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Delphine Bauer
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France
| | - Francesca Ratti
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France
| | - Gilles Millat
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France.,CNRS UMR 5310, F-69622, Villeurbanne, France.,INSERM U1217, F-69622, Villeurbanne, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Méjat
- University Lyon, Université Claude Bernard Lyon 1, Institut NeuroMyoGène, F-69622, Villeurbanne, France. .,CNRS UMR 5310, F-69622, Villeurbanne, France. .,INSERM U1217, F-69622, Villeurbanne, France. .,Nuclear Architecture Team, Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France. .,Groupement Hospitalier Est - Centre de Biologie Est - Laboratoire de Cardiogénétique, 59 Boulevard Pinel, 69677, Bron, France.
| |
Collapse
|
230
|
Abstract
During aging, the mechanisms that normally maintain health and stress resistance strikingly decline, resulting in decrepitude, frailty, and ultimately death. Exactly when and how this decline occurs is unknown. Changes in transcriptional networks and chromatin state lie at the heart of age-dependent decline. These epigenomic changes are not only observed during aging but also profoundly affect cellular function and stress resistance, thereby contributing to the progression of aging. We propose that the dysregulation of transcriptional and chromatin networks is a crucial component of aging. Understanding age-dependent epigenomic changes will yield key insights into how aging begins and progresses and should lead to the development of new therapeutics that delay or even reverse aging and age-related diseases.
Collapse
Affiliation(s)
- Lauren N Booth
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
231
|
Tariq Z, Zhang H, Chia-Liu A, Shen Y, Gete Y, Xiong ZM, Tocheny C, Campanello L, Wu D, Losert W, Cao K. Lamin A and microtubules collaborate to maintain nuclear morphology. Nucleus 2017; 8:433-446. [PMID: 28557611 DOI: 10.1080/19491034.2017.1320460] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lamin A (LA) is a critical structural component of the nuclear lamina. Mutations within the LA gene (LMNA) lead to several human disorders, most striking of which is Hutchinson-Gilford Progeria Syndrome (HGPS), a premature aging disorder. HGPS cells are best characterized by an abnormal nuclear morphology known as nuclear blebbing, which arises due to the accumulation of progerin, a dominant mutant form of LA. The microtubule (MT) network is known to mediate changes in nuclear morphology in the context of specific events such as mitosis, cell polarization, nucleus positioning and cellular migration. What is less understood is the role of the microtubule network in determining nuclear morphology during interphase. In this study, we elucidate the role of the cytoskeleton in regulation and misregulation of nuclear morphology through perturbations of both the lamina and the microtubule network. We found that LA knockout cells exhibit a crescent shape morphology associated with the microtubule-organizing center. Furthermore, this crescent shape ameliorates upon treatment with MT drugs, Nocodazole or Taxol. Expression of progerin, in LA knockout cells also rescues the crescent shape, although the response to Nocodazole or Taxol treatment is altered in comparison to cells expressing LA. Together these results describe a collaborative effort between LA and the MT network to maintain nuclear morphology.
Collapse
Affiliation(s)
- Zeshan Tariq
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Haoyue Zhang
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Alexander Chia-Liu
- b Department of Physics , University of Maryland , College Park , MD , USA
| | - Yang Shen
- b Department of Physics , University of Maryland , College Park , MD , USA
| | - Yantenew Gete
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Zheng-Mei Xiong
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Claire Tocheny
- c Department of Biology , The College of William and Mary , Williamsburg , VA , USA
| | - Leonard Campanello
- b Department of Physics , University of Maryland , College Park , MD , USA
| | - Di Wu
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Wolfgang Losert
- b Department of Physics , University of Maryland , College Park , MD , USA
| | - Kan Cao
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| |
Collapse
|
232
|
Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 2017; 9:1025-1033. [PMID: 28937680 DOI: 10.1038/nchem.2778] [Citation(s) in RCA: 445] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/03/2017] [Indexed: 12/30/2022]
Abstract
Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.
Collapse
|
233
|
Abstract
The nuclear lamina is a critical structural domain for the maintenance of genomic stability and whole-cell mechanics. Mutations in the LMNA gene, which encodes nuclear A-type lamins lead to the disruption of these key cellular functions, resulting in a number of devastating diseases known as laminopathies. Cardiomyopathy is a common laminopathy and is highly penetrant with poor prognosis. To date, cell mechanical instability and dysregulation of gene expression have been proposed as the main mechanisms driving cardiac dysfunction, and indeed discoveries in these areas have provided some promising leads in terms of therapeutics. However, important questions remain unanswered regarding the role of lamin A dysfunction in the heart, including a potential role for the toxicity of lamin A precursors in LMNA cardiomyopathy, which has yet to be rigorously investigated.
Collapse
Affiliation(s)
- Daniel Brayson
- a King's College London, The James Black Centre , London , United Kingdom
| | | |
Collapse
|
234
|
Zacharioudakis E, Agarwal P, Bartoli A, Abell N, Kunalingam L, Bergoglio V, Xhemalce B, Miller KM, Rodriguez R. Chromatin Regulates Genome Targeting with Cisplatin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emmanouil Zacharioudakis
- Institut Curie; PSL Research University; Chemical Cell Biology Group; 26 Rue d'Ulm 75248 Paris Cedex 05 France
- CNRS UMR3666; 75005 Paris France
- INSERM U1143; 75005 Paris France
- Institut de Chimie des Substances Naturelles; UPR2301; 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Poonam Agarwal
- Department of Molecular Biosciences; Institute of Cellular and Molecular Biology; University of Texas at Austin; 2506 Speedway Stop A5000 Austin TX 78712 USA
| | - Alexandra Bartoli
- Institut Curie; PSL Research University; Chemical Cell Biology Group; 26 Rue d'Ulm 75248 Paris Cedex 05 France
- CNRS UMR3666; 75005 Paris France
- INSERM U1143; 75005 Paris France
- Institut de Chimie des Substances Naturelles; UPR2301; 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Nathan Abell
- Department of Molecular Biosciences; Institute of Cellular and Molecular Biology; University of Texas at Austin; 2506 Speedway Stop A5000 Austin TX 78712 USA
| | - Lavaniya Kunalingam
- Institut Curie; PSL Research University; Chemical Cell Biology Group; 26 Rue d'Ulm 75248 Paris Cedex 05 France
- CNRS UMR3666; 75005 Paris France
- INSERM U1143; 75005 Paris France
- Institut de Chimie des Substances Naturelles; UPR2301; 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Valérie Bergoglio
- CRCT; University of Toulouse; INSERM, CNRS, UPS; Avenue Hubert Curien 31037 Toulouse France
| | - Blerta Xhemalce
- Department of Molecular Biosciences; Institute of Cellular and Molecular Biology; University of Texas at Austin; 2506 Speedway Stop A5000 Austin TX 78712 USA
| | - Kyle M. Miller
- Department of Molecular Biosciences; Institute of Cellular and Molecular Biology; University of Texas at Austin; 2506 Speedway Stop A5000 Austin TX 78712 USA
| | - Raphaël Rodriguez
- Institut Curie; PSL Research University; Chemical Cell Biology Group; 26 Rue d'Ulm 75248 Paris Cedex 05 France
- CNRS UMR3666; 75005 Paris France
- INSERM U1143; 75005 Paris France
- Institut de Chimie des Substances Naturelles; UPR2301; 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| |
Collapse
|
235
|
Zacharioudakis E, Agarwal P, Bartoli A, Abell N, Kunalingam L, Bergoglio V, Xhemalce B, Miller KM, Rodriguez R. Chromatin Regulates Genome Targeting with Cisplatin. Angew Chem Int Ed Engl 2017; 56:6483-6487. [PMID: 28474855 PMCID: PMC5488169 DOI: 10.1002/anie.201701144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/14/2017] [Indexed: 01/11/2023]
Abstract
Cisplatin derivatives can form various types of DNA lesions (DNA‐Pt) and trigger pleiotropic DNA damage responses. Here, we report a strategy to visualize DNA‐Pt with high resolution, taking advantage of a novel azide‐containing derivative of cisplatin we named APPA, a cellular pre‐extraction protocol and the labeling of DNA‐Pt by means of click chemistry in cells. Our investigation revealed that pretreating cells with the histone deacetylase (HDAC) inhibitor SAHA led to detectable clusters of DNA‐Pt that colocalized with the ubiquitin ligase RAD18 and the replication protein PCNA. Consistent with activation of translesion synthesis (TLS) under these conditions, SAHA and cisplatin cotreatment promoted focal accumulation of the low‐fidelity polymerase Polη that also colocalized with PCNA. Remarkably, these cotreatments synergistically triggered mono‐ubiquitination of PCNA and apoptosis in a RAD18‐dependent manner. Our data provide evidence for a role of chromatin in regulating genome targeting with cisplatin derivatives and associated cellular responses.
Collapse
Affiliation(s)
- Emmanouil Zacharioudakis
- Institut Curie, PSL Research University, Chemical Cell Biology Group, 26 Rue d'Ulm, 75248, Paris Cedex 05, France.,CNRS UMR3666, 75005, Paris, France.,INSERM U1143, 75005, Paris, France.,Institut de Chimie des Substances Naturelles, UPR2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Poonam Agarwal
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX, 78712, USA
| | - Alexandra Bartoli
- Institut Curie, PSL Research University, Chemical Cell Biology Group, 26 Rue d'Ulm, 75248, Paris Cedex 05, France.,CNRS UMR3666, 75005, Paris, France.,INSERM U1143, 75005, Paris, France.,Institut de Chimie des Substances Naturelles, UPR2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Nathan Abell
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX, 78712, USA
| | - Lavaniya Kunalingam
- Institut Curie, PSL Research University, Chemical Cell Biology Group, 26 Rue d'Ulm, 75248, Paris Cedex 05, France.,CNRS UMR3666, 75005, Paris, France.,INSERM U1143, 75005, Paris, France.,Institut de Chimie des Substances Naturelles, UPR2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Valérie Bergoglio
- CRCT, University of Toulouse, INSERM, CNRS, UPS, Avenue Hubert Curien, 31037, Toulouse, France
| | - Blerta Xhemalce
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX, 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX, 78712, USA
| | - Raphaël Rodriguez
- Institut Curie, PSL Research University, Chemical Cell Biology Group, 26 Rue d'Ulm, 75248, Paris Cedex 05, France.,CNRS UMR3666, 75005, Paris, France.,INSERM U1143, 75005, Paris, France.,Institut de Chimie des Substances Naturelles, UPR2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
236
|
A Novel Lamin A Mutant Responsible for Congenital Muscular Dystrophy Causes Distinct Abnormalities of the Cell Nucleus. PLoS One 2017; 12:e0169189. [PMID: 28125586 PMCID: PMC5268432 DOI: 10.1371/journal.pone.0169189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/13/2016] [Indexed: 11/26/2022] Open
Abstract
A-type lamins, the intermediate filament proteins participating in nuclear structure and function, are encoded by LMNA. LMNA mutations can lead to laminopathies such as lipodystrophies, premature aging syndromes (progeria) and muscular dystrophies. Here, we identified a novel heterozygous LMNA p.R388P de novo mutation in a patient with a non-previously described severe phenotype comprising congenital muscular dystrophy (L-CMD) and lipodystrophy. In culture, the patient’s skin fibroblasts entered prematurely into senescence, and some nuclei showed a lamina honeycomb pattern. C2C12 myoblasts were transfected with a construct carrying the patient’s mutation; R388P-lamin A (LA) predominantly accumulated within the nucleoplasm and was depleted at the nuclear periphery, altering the anchorage of the inner nuclear membrane protein emerin and the nucleoplasmic protein LAP2-alpha. The mutant LA triggered a frequent and severe nuclear dysmorphy that occurred independently of prelamin A processing, as well as increased histone H3K9 acetylation. Nuclear dysmorphy was not significantly improved when transfected cells were treated with drugs disrupting microtubules or actin filaments or modifying the global histone acetylation pattern. Therefore, releasing any force exerted at the nuclear envelope by the cytoskeleton or chromatin did not rescue nuclear shape, in contrast to what was previously shown in Hutchinson-Gilford progeria due to other LMNA mutations. Our results point to the specific cytotoxic effect of the R388P-lamin A mutant, which is clinically related to a rare and severe multisystemic laminopathy phenotype.
Collapse
|
237
|
Abell NS, Mercado M, Cañeque T, Rodriguez R, Xhemalce B. Click Quantitative Mass Spectrometry Identifies PIWIL3 as a Mechanistic Target of RNA Interference Activator Enoxacin in Cancer Cells. J Am Chem Soc 2017; 139:1400-1403. [PMID: 28094937 DOI: 10.1021/jacs.6b11751] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Enoxacin is a small molecule that stimulates RNA interference (RNAi) and acts as a growth inhibitor selectively in cancer but not in untransformed cells. Here, we used alkenox, a clickable enoxacin surrogate, coupled with quantitative mass spectrometry, to identify PIWIL3 as a mechanistic target of enoxacin. PIWIL3 is an Argonaute protein of the PIWI subfamily that is mainly expressed in the germline and that mediates RNAi through piRNAs. Our results suggest that cancer cells re-express PIWIL3 to repress RNAi through miRNAs and thus open a new opportunity for cancer-specific targeting.
Collapse
Affiliation(s)
- Nathan S Abell
- Department of Molecular Biosciences, University of Texas at Austin , 2500 Speedway, Austin, Texas 78712, United States
| | - Marvin Mercado
- Department of Molecular Biosciences, University of Texas at Austin , 2500 Speedway, Austin, Texas 78712, United States
| | - Tatiana Cañeque
- UPR2301, Institut de Chimie des Substances Naturelles , 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.,Organic Synthesis and Cell Biology Group, Institut Curie, PSL Research University , 26 rue d'Ulm, 75248 Paris Cedex 05, France.,CNRS UMR3666 , 75005 Paris, France.,INSERM U1143 , 75005 Paris, France
| | - Raphaël Rodriguez
- UPR2301, Institut de Chimie des Substances Naturelles , 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.,Organic Synthesis and Cell Biology Group, Institut Curie, PSL Research University , 26 rue d'Ulm, 75248 Paris Cedex 05, France.,CNRS UMR3666 , 75005 Paris, France.,INSERM U1143 , 75005 Paris, France
| | - Blerta Xhemalce
- Department of Molecular Biosciences, University of Texas at Austin , 2500 Speedway, Austin, Texas 78712, United States
| |
Collapse
|
238
|
Dorado B, Andrés V. A-type lamins and cardiovascular disease in premature aging syndromes. Curr Opin Cell Biol 2017; 46:17-25. [PMID: 28086161 DOI: 10.1016/j.ceb.2016.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 01/17/2023]
Abstract
Lamin A is a nuclear intermediate filament protein with important structural and regulatory roles in most differentiated mammalian cells. Excessive accumulation of its precursor prelamin A or the mutant form called 'progerin' causes premature aging syndromes. Progeroid 'laminopathies' are characterized by severe cardiovascular problems (cardiac electrical defects, vascular calcification and stiffening, atherosclerosis, myocardial infarction, and stroke) and premature death. Here, we review studies in cell and mouse models and patients that are unraveling how abnormal prelamin A and progerin accumulation accelerates cardiovascular disease and aging. This knowledge is essential for developing effective therapies to treat progeria and may help identify new mechanisms underlying normal aging.
Collapse
Affiliation(s)
- Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
| |
Collapse
|
239
|
Gonzalo S, Kreienkamp R, Askjaer P. Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations. Ageing Res Rev 2017; 33:18-29. [PMID: 27374873 DOI: 10.1016/j.arr.2016.06.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
Abstract
Products of the LMNA gene, primarily lamin A and C, are key components of the nuclear lamina, a proteinaceous meshwork that underlies the inner nuclear membrane and is essential for proper nuclear architecture. Alterations in lamin A and C that disrupt the integrity of the nuclear lamina affect a whole repertoire of nuclear functions, causing cellular decline. In humans, hundreds of mutations in the LMNA gene have been identified and correlated with over a dozen degenerative disorders, referred to as laminopathies. These diseases include neuropathies, muscular dystrophies, lipodystrophies, and premature aging diseases. This review focuses on one of the most severe laminopathies, Hutchinson-Gilford Progeria Syndrome (HGPS), which is caused by aberrant splicing of the LMNA gene and expression of a mutant product called progerin. Here, we discuss current views about the molecular mechanisms that contribute to the pathophysiology of this devastating disease, as well as the strategies being tested in vitro and in vivo to counteract progerin toxicity. In particular, progerin accumulation elicits nuclear morphological abnormalities, misregulated gene expression, defects in DNA repair, telomere shortening, and genomic instability, all of which limit cellular proliferative capacity. In patients harboring this mutation, a severe premature aging disease develops during childhood. Interestingly, progerin is also produced in senescent cells and cells from old individuals, suggesting that progerin accumulation might be a factor in physiological aging. Deciphering the molecular mechanisms whereby progerin expression leads to HGPS is an emergent area of research, which could bring us closer to understanding the pathology of aging.
Collapse
Affiliation(s)
- Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - Ray Kreienkamp
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/Junta de Andalucia/Universidad Pablo de Olavide, Carretera de Utrera, Km 1, 41013 Seville, Spain
| |
Collapse
|
240
|
Cai S, Liu X, Zhang C, Xing B, Du X. Autoacetylation of NAT10 is critical for its function in rRNA transcription activation. Biochem Biophys Res Commun 2016; 483:624-629. [PMID: 27993683 DOI: 10.1016/j.bbrc.2016.12.092] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 01/13/2023]
Abstract
NAT10, an important member of GNAT family, harbors histone acetyltransferase and participates in many cellular processes such as ribosome production and cell cycle. Here, we report that NAT10 is acetylated in vivo and autoacetylated in vitro. The lysine residue at 426 (K426) is the acetylation site of NAT10. K426R mutant of NAT10 fails to activate rRNA transcription. NAT10 K426R loses its capability of acetylating UBF though it still binds UBF, which fails to recruit PAF53 and RNA polymerase I to rDNA, eventually resulting in inhibition of pre-rRNA transcription. Therefore, acetylation of K426 in NAT10 is required for its function in activating rRNA transcription. These findings identify a new post-translational modification on NAT10 which regulates its function.
Collapse
Affiliation(s)
- Shiying Cai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaofeng Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital and Institute, No. 52, Fu-Cheng Road, Beijing 100142, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
241
|
Cobb AM, Larrieu D, Warren DT, Liu Y, Srivastava S, Smith AJO, Bowater RP, Jackson SP, Shanahan CM. Prelamin A impairs 53BP1 nuclear entry by mislocalizing NUP153 and disrupting the Ran gradient. Aging Cell 2016; 15:1039-1050. [PMID: 27464478 PMCID: PMC5114580 DOI: 10.1111/acel.12506] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2016] [Indexed: 01/29/2023] Open
Abstract
The nuclear lamina is essential for the proper structure and organization of the nucleus. Deregulation of A-type lamins can compromise genomic stability, alter chromatin organization and cause premature vascular aging. Here, we show that accumulation of the lamin A precursor, prelamin A, inhibits 53BP1 recruitment to sites of DNA damage and increases basal levels of DNA damage in aged vascular smooth muscle cells. We identify that this genome instability arises through defective nuclear import of 53BP1 as a consequence of abnormal topological arrangement of nucleoporin NUP153. We show for the first time that this nucleoporin is important for the nuclear localization of Ran and that the deregulated Ran gradient is likely to be compromising the nuclear import of 53BP1. Importantly, many of the defects associated with prelamin A expression were significantly reduced upon treatment with Remodelin, a small molecule recently reported to reverse deficiencies associated with abnormal nuclear lamina.
Collapse
Affiliation(s)
- Andrew M. Cobb
- The James Black CentreKing's College London125 Coldharbour LaneLondonSE5 9NUUK
| | - Delphine Larrieu
- Wellcome Trust/Cancer Research UK Gurdon InstituteThe Henry Wellcome Building of Cancer and Developmental BiologyUniversity of CambridgeTennis Court RoadCambridgeCB2 1QNUK
| | - Derek T. Warren
- The James Black CentreKing's College London125 Coldharbour LaneLondonSE5 9NUUK
| | - Yiwen Liu
- The James Black CentreKing's College London125 Coldharbour LaneLondonSE5 9NUUK
| | - Sonal Srivastava
- The James Black CentreKing's College London125 Coldharbour LaneLondonSE5 9NUUK
| | | | | | - Stephen P. Jackson
- Wellcome Trust/Cancer Research UK Gurdon InstituteThe Henry Wellcome Building of Cancer and Developmental BiologyUniversity of CambridgeTennis Court RoadCambridgeCB2 1QNUK
| | | |
Collapse
|
242
|
Zacharioudakis E, Cañeque T, Custodio R, Müller S, Cuadro AM, Vaquero JJ, Rodriguez R. Quinolizinium as a new fluorescent lysosomotropic probe. Bioorg Med Chem Lett 2016; 27:203-207. [PMID: 27919658 DOI: 10.1016/j.bmcl.2016.11.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
We have synthesized a collection of quinolizinium fluorescent dyes for the purpose of cell imaging. Preliminary biological studies in human U2OS osteosarcoma cancer cells have shown that different functional groups appended to the cationic quinolizinium scaffold efficiently modulate photophysical properties but also cellular distribution. While quinolizinium probes are known nuclear staining reagents, we have identified a particular quinolizinium derivative salt that targets the lysosomal compartment. This finding raises the question of predictability of specific organelle targeting from structural features of small molecules.
Collapse
Affiliation(s)
- Emmanouil Zacharioudakis
- Institut Curie, PSL Research University, Organic Synthesis and Cell Biology Group, 26 rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3666, 75005 Paris, France; INSERM U1143, 75005 Paris, France
| | - Tatiana Cañeque
- Institut Curie, PSL Research University, Organic Synthesis and Cell Biology Group, 26 rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3666, 75005 Paris, France; INSERM U1143, 75005 Paris, France.
| | - Raúl Custodio
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Sebastian Müller
- Institut Curie, PSL Research University, Organic Synthesis and Cell Biology Group, 26 rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3666, 75005 Paris, France; INSERM U1143, 75005 Paris, France
| | - Ana M Cuadro
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Juan J Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Raphaël Rodriguez
- Institut Curie, PSL Research University, Organic Synthesis and Cell Biology Group, 26 rue d'Ulm, 75248 Paris Cedex 05, France; CNRS UMR3666, 75005 Paris, France; INSERM U1143, 75005 Paris, France
| |
Collapse
|
243
|
Abstract
Lamins are major components of the nuclear lamina, a network of proteins that supports the nuclear envelope in metazoan cells. Over the past decade, biochemical studies have provided support for the view that lamins are not passive bystanders providing mechanical stability to the nucleus but play an active role in the organization of the genome and the function of fundamental nuclear processes. It has also become apparent that lamins are critical for human health, as a large number of mutations identified in the gene that encodes for A-type lamins are associated with tissue-specific and systemic genetic diseases, including the accelerated aging disorder known as Hutchinson-Gilford progeria syndrome. Recent years have witnessed great advances in our understanding of the role of lamins in the nucleus and the functional consequences of disease-associated A-type lamin mutations. Many of these findings have been presented in comprehensive reviews. In this mini-review, we discuss recent breakthroughs in the role of lamins in health and disease and what lies ahead in lamin research.
Collapse
Affiliation(s)
- Sita Reddy
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lucio Comai
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Molecular Microbiology and Immunology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
244
|
Ma R, Chen J, Jiang S, Lin S, Zhang X, Liang X. Up regulation of NAT10 promotes metastasis of hepatocellular carcinoma cells through epithelial-to-mesenchymal transition. Am J Transl Res 2016; 8:4215-4223. [PMID: 27830005 PMCID: PMC5095314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
Dysregulation of N-acetyltransferase 10 (NAT10) is associated with the development of many types of tumors; however, its role in hepatocellular carcinoma (HCC) has not been fully elucidated. Here, we examined the role of NAT10 during epithelial-to-mesenchymal transition (EMT) in HCC and established its role in metastasis. We evaluated expression of NAT10 expression in four HCC cell lines and determined the effects of knockdown by siRNA or treatment with the NAT10 inhibitor, Remodelin. NAT10 was highly expressed in HCC cell lines with a mesenchymal-like phenotype (SNU387 and SNU449). Knockdown or inhibition of NAT10 resulted in diminished cell invasion and migration. Moreover, decreased levels of NAT10 were correlated with increased E-cadherin expression and down regulation of vimentin, both of which are canonical markers of EMT signaling, suggesting that NAT10-promoted metastasis may be mediated by EMT in HCC. Our data suggests that up regulation of NAT10-promoted metastasis of HCC cells may be mediated by EMT.
Collapse
Affiliation(s)
- Rui Ma
- Department of Surgery, Zhejiang University Hospital, Zhejiang UniversityHangzhou 310027, Zhejiang, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou 310016, Zhejiang, China
| | - Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou 310016, Zhejiang, China
| | - Shuang Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou 310016, Zhejiang, China
| | - Xiuming Zhang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou 310003, Zhejiang, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityHangzhou 310016, Zhejiang, China
| |
Collapse
|
245
|
A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells. Sci Rep 2016; 6:34798. [PMID: 27739443 PMCID: PMC5064407 DOI: 10.1038/srep34798] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders.
Collapse
|
246
|
Arsenovic PT, Ramachandran I, Bathula K, Zhu R, Narang JD, Noll NA, Lemmon CA, Gundersen GG, Conway DE. Nesprin-2G, a Component of the Nuclear LINC Complex, Is Subject to Myosin-Dependent Tension. Biophys J 2016; 110:34-43. [PMID: 26745407 DOI: 10.1016/j.bpj.2015.11.014] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/14/2023] Open
Abstract
The nucleus of a cell has long been considered to be subject to mechanical force. Despite the observation that mechanical forces affect nuclear geometry and movement, how forces are applied onto the nucleus is not well understood. The nuclear LINC (linker of nucleoskeleton and cytoskeleton) complex has been hypothesized to be the critical structure that mediates the transfer of mechanical forces from the cytoskeleton onto the nucleus. Previously used techniques for studying nuclear forces have been unable to resolve forces across individual proteins, making it difficult to clearly establish if the LINC complex experiences mechanical load. To directly measure forces across the LINC complex, we generated a fluorescence resonance energy transfer-based tension biosensor for nesprin-2G, a key structural protein in the LINC complex, which physically links this complex to the actin cytoskeleton. Using this sensor we show that nesprin-2G is subject to mechanical tension in adherent fibroblasts, with highest levels of force on the apical and equatorial planes of the nucleus. We also show that the forces across nesprin-2G are dependent on actomyosin contractility and cell elongation. Additionally, nesprin-2G tension is reduced in fibroblasts from Hutchinson-Gilford progeria syndrome patients. This report provides the first, to our knowledge, direct evidence that nesprin-2G, and by extension the LINC complex, is subject to mechanical force. We also present evidence that nesprin-2G localization to the nuclear membrane is altered under high-force conditions. Because forces across the LINC complex are altered by a variety of different conditions, mechanical forces across the LINC complex, as well as the nucleus in general, may represent an important mechanism for mediating mechanotransduction.
Collapse
Affiliation(s)
- Paul T Arsenovic
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Iswarya Ramachandran
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Kranthidhar Bathula
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Ruijun Zhu
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Jiten D Narang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Natalie A Noll
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Christopher A Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
247
|
In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells. Sci Rep 2016; 6:30325. [PMID: 27461848 PMCID: PMC4962089 DOI: 10.1038/srep30325] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/04/2016] [Indexed: 11/23/2022] Open
Abstract
The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development.
Collapse
|
248
|
Abstract
Phenotypic drug discovery (PDD) strategies are defined by screening and selection of hit or lead compounds based on quantifiable phenotypic endpoints without prior knowledge of the drug target. We outline the challenges associated with traditional phenotypic screening strategies and propose solutions and new opportunities to be gained by adopting modern PDD technologies. We highlight both historical and recent examples of approved drugs and new drug candidates discovered by modern phenotypic screening. Finally, we offer a prospective view of a new era of PDD underpinned by a wealth of technology advances in the areas of in vitro model development, high-content imaging and image informatics, mechanism-of-action profiling and target deconvolution.
Collapse
|
249
|
The growing landscape of tubulin acetylation: lysine 40 and many more. Biochem J 2016; 473:1859-68. [DOI: 10.1042/bcj20160172] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
Tubulin heterodimers are the building block of microtubules, which are major elements of the cytoskeleton. Several types of post-translational modifications are found on tubulin subunits as well as on the microtubule polymer to regulate the multiple roles of microtubules. Acetylation of lysine 40 (K40) of the α-tubulin subunit is one of these post-translational modifications which has been extensively studied. We summarize the current knowledge about the structural aspects of K40 acetylation, the functional consequences, the enzymes involved and their regulation. Most importantly, we discuss the potential importance of the recently discovered additional acetylation acceptor lysines in tubulin subunits and highlight the urgent need to study tubulin acetylation in a more integrated perspective.
Collapse
|
250
|
Bell ES, Lammerding J. Causes and consequences of nuclear envelope alterations in tumour progression. Eur J Cell Biol 2016; 95:449-464. [PMID: 27397692 DOI: 10.1016/j.ejcb.2016.06.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022] Open
Abstract
Morphological changes in the size and shape of the nucleus are highly prevalent in cancer, but the underlying molecular mechanisms and the functional relevance remain poorly understood. Nuclear envelope proteins, which can modulate nuclear shape and organization, have emerged as key components in a variety of signalling pathways long implicated in tumourigenesis and metastasis. The expression of nuclear envelope proteins is altered in many cancers, and changes in levels of nuclear envelope proteins lamins A and C are associated with poor prognosis in multiple human cancers. In this review we highlight the role of the nuclear envelope in different processes important for tumour initiation and cancer progression, with a focus on lamins A and C. Lamin A/C controls many cellular processes with key roles in cancer, including cell invasion, stemness, genomic stability, signal transduction, transcriptional regulation, and resistance to mechanical stress. In addition, we discuss potential mechanisms mediating the changes in lamin levels observed in many cancers. A better understanding of cause-and-effect relationships between lamin expression and tumour progression could reveal important mechanisms for coordinated regulation of oncogenic processes, and indicate therapeutic vulnerabilities that could be exploited for improved patient outcome.
Collapse
Affiliation(s)
- Emily S Bell
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States
| | - Jan Lammerding
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|