201
|
Zhou J, Guo Q, Zhang B, Cheng SX, Hao XT, Zhong Y, Tang A, Sun X, Zhou E. Improving the Photovoltaic Performance of Dithienobenzodithiophene-Based Polymers via Addition of an Additional Eluent in the Soxhlet Extraction Process. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52244-52252. [PMID: 36346919 DOI: 10.1021/acsami.2c14280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dithieno[2,3-d;2',3'-d']benzo[1,2-b;4,5-b']dithiophene (DTBDT) is a kind of pentacyclic aromatic electron-donating unit with unique optoelectronic properties, but it has received less attention in the design of photovoltaic polymers. In this work, we copolymerized DTBDT with the electron-deficient unit of dithieno[3',2':3,4;2″,3″:5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT) and obtained two polymers, PE55 and PE56, with a synergistic heteroatom substitution strategy. When blended with the classic nonfullerene acceptor Y6, PE55 and PE56 achieve power conversion efficiencies (PCEs) of 13.78% and 14.49%, respectively, which indicates that the introduction of sulfur atoms on the conjugated side chain of the D unit is a promising method to enhance the performance of DTBDT-based polymers. Besides, we utilize dichloromethane and chloroform to separate the low molecular weight (Mw) fractions in the solvent extraction process to obtain PE55-CF and PE56-CB, and the PCEs are further improved to 15.00% and 16.11%, respectively. The stronger π-π stacking, optimized blend film morphology, and higher charge mobilities contribute to the enhanced PCEs for polymers with higher Mw obtained via the multistep solvent extraction strategy. Our results not only provide a simple and effective way to improve the photovoltaic performance of conjugated polymers but also imply that some reported polymers purified from the traditional one-step solvent extraction method might be seriously underestimated.
Collapse
Affiliation(s)
- Jialing Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qing Guo
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou450003, China
| | - Bao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou450003, China
| | - Si-Xuan Cheng
- School of Physics, Shandong University, Jinan250100, China
| | - Xiao-Tao Hao
- School of Physics, Shandong University, Jinan250100, China
| | - Yufei Zhong
- School of Materials Science and Engineering, NingboTech University, Ningbo315100, China
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
| | - Xiangnan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
202
|
Choe MS, Choi S, Lee HS, Chon B, Shin JY, Kim CH, Son HJ, Kang SO. Sustainable Carbon Dioxide Reduction of the P3HT Polymer-Sensitized TiO 2/Re(I) Photocatalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50718-50730. [PMID: 36331558 DOI: 10.1021/acsami.2c09924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a p-type π-conjugated polymer chain, poly(3-hexylthiophene-2,5-diyl) (P3HT), was physically adsorbed onto n-type TiO2 nanoparticles functionalized with a molecular CO2 reduction catalyst, (4,4-Y2-bpy)ReI(CO)3Cl (ReP, Y = CH2PO(OH)2), to generate a new type of P3HT-heterogenized hybrid system (P3HT/TiO2/ReP), and its photosensitizing properties were assessed in a heteroternary system for photochemical CO2 reduction. We found that P3HT immobilization on TiO2 facilitated photoinduced electron transfer (PET) from photoactivated P3HT* to the n-type TiO2 semiconductor via rapid interfacial electron injection (∼65 ps) at the P3HT and TiO2 surface interface (P3HT* → TiO2). With such effective charge separation, the heterogenization of P3HT onto TiO2 resulted in a steady electron supply toward the co-adsorbed Re(I) catalyst, attaining durable catalytic activity with a turnover number (TON) of ∼5300 over an extended time period of 655 h over five consecutive photoreactions, without deformation of the adsorbed P3HT polymer. The long-period structural stability of TiO2-adsorbed P3HT was verified based on a comparative analysis of its photophysical properties before and after 655 h of photolysis. To our knowledge, this conversion activity is the highest reported so far for polymer-sensitized photochemical CO2 reduction systems. This investigation provides insights and design guidelines for photocatalytic systems that utilize organic photoactive polymers as photosensitizing units.
Collapse
Affiliation(s)
- Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Sunghan Choi
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyun Seok Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Bumsoo Chon
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
203
|
Hwang S, Yasuda T. Indoor photovoltaic energy harvesting based on semiconducting π-conjugated polymers and oligomeric materials toward future IoT applications. Polym J 2022. [DOI: 10.1038/s41428-022-00727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AbstractWith the advancement of artificial intelligence computing systems that can collect, analyze, and utilize metadata from our activities and surrounding environments, establishing self-powered electronic systems/networks supported by energy harvesters is strongly desired. With the lowering of power consumption in contemporary IoT electronics such as wireless sensors, indoor organic photovoltaic devices (iOPVs), which can be driven under ambient indoor light, have recently attracted significant interest as self-sustainable eco-friendly power sources. iOPVs based on organic semiconductors have unique advantages, such as light weight, flexibility, solution processability, and feasibility of low-temperature mass production. Additionally, the spectral tunability and high optical absorptivity of organic semiconductors make iOPVs more effective as energy harvesters in indoor lighting environments. With recent intensive research effort, iOPVs have realized the delivery of high power conversion efficiencies exceeding 25% with output power densities of several tens to a hundred μW cm−2, which are sufficient to drive various low-power electronics compatible with the IoT. This review article focuses on recent progress in iOPVs based on π-conjugated polymers and oligomeric materials and outlines their fundamental principles and characterization techniques.
Collapse
|
204
|
Structure modification of isoindigo copolymer synthesized by direct arylation that improves the open circuit voltage on organic solar cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
205
|
Cho S, Heo C, Lim Y, Oh S, Minami D, Yu M, Chun H, Yun S, Seo H, Fang F, Park J, Ham C, Shin J, Choi T, Lim J, Kim H, Hong HR, Shibuya H, Yi J, Choi B, Park K. Small Molecule Based Organic Photo Signal Receiver for High-Speed Optical Wireless Communications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203715. [PMID: 36192160 PMCID: PMC9661864 DOI: 10.1002/advs.202203715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The present work describes the development of an organic photodiode (OPD) receiver for high-speed optical wireless communication. To determine the optimal communication design, two different types of photoelectric conversion layers, bulk heterojunction (BHJ) and planar heterojunction (PHJ), are compared. The BHJ-OPD device has a -3 dB bandwidth of 0.65 MHz (at zero bias) and a maximum of 1.4 MHz (at -4 V bias). A 150 Mbps single-channel visible light communication (VLC) data rate using this device by combining preequalization and machine learning (ML)-based digital signal processing (DSP) is demonstrated. To the best of the authors' knowledge, this is the highest data rate ever achieved on an OPD-based VLC system by a factor of 40 over the previous fastest reported. Additionally, the proposed OPD receiver achieves orders of magnitude higher spectral efficiency than the previously reported organic photovoltaic (OPV)-based receivers.
Collapse
Affiliation(s)
- Seonghyeon Cho
- Dept. of Information and Telecommunication EngineeringIncheon National UniversityIncheon‐si22012Republic of Korea
| | - Chul‐Joon Heo
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Younhee Lim
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Seoyeon Oh
- Dept. of Information and Telecommunication EngineeringIncheon National UniversityIncheon‐si22012Republic of Korea
| | - Daiki Minami
- CSE teamInnovation CenterSamsung Electronics Co. Ltd.1 Samsungjeonja‐roHwasung‐siGyeonggi‐do18448Republic of Korea
| | - Minseok Yu
- Dept. of Information and Telecommunication EngineeringIncheon National UniversityIncheon‐si22012Republic of Korea
| | - Hyunchae Chun
- Dept. of Information and Telecommunication EngineeringIncheon National UniversityIncheon‐si22012Republic of Korea
- Energy Excellence & Smart City Lab., Incheon National UniversityIncheon‐si22012Republic of Korea
| | - Sungyoung Yun
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Hwijoung Seo
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Feifei Fang
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Jeong‐Il Park
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Cheol Ham
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Jisoo Shin
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Taejin Choi
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Juhyung Lim
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Hyeong‐Ju Kim
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Hye Rim Hong
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Hiromasa Shibuya
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Jeoungin Yi
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Byoungki Choi
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| | - Kyung‐Bae Park
- Organic Materials LaboratorySamsung Advanced Institute of Technology (SAIT)Samsung Electronics Co. Ltd.130 Samsung‐ro, Yeongtong‐guSuwon‐siGyeonggi‐do443‐803Republic of Korea
| |
Collapse
|
206
|
Liirò-Peluso L, Wrigley J, Amabilino DB, Beton PH. Submolecular Resolution Imaging of P3HT:PCBM Nanostructured Films by Atomic Force Microscopy: Implications for Organic Solar Cells. ACS APPLIED NANO MATERIALS 2022; 5:13794-13804. [PMID: 36338328 PMCID: PMC9623582 DOI: 10.1021/acsanm.2c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The efficiency of organic bulk-heterojunction (BHJ) solar cells depends greatly on both the bulk and surface structure of the nanostructured bicontinuous interpenetrating network of materials, known as the active layer. The morphology of the top layer of a coated film is often resolved at the scale of a few nanometers, but fine details of the domains and the order within them are more difficult to identify. Here, we report a high-resolution atomic force microscopy (AFM) investigation of various stoichiometries of the well-studied poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) active layer mixture. Images of the surface were obtained using AC-mode AFM exciting higher-order resonance frequencies of a standard silicon probe, a promising technique for acquiring real-space images of organic-based thin films with nanoscale and even submolecular resolution. We provide firm evidence of the nanoscale organization of the P3HT polymer and of the P3HT:PCBM stoichiometric mixtures at the surface-air interface of the BHJ architecture. Our study shows the characteristic periodicity of the regioregular P3HT identified in the nanoscale domain areas with submolecular resolution. Such areas are then distorted in place when adding different quantities of PCBM forming stoichiometric mixtures. When the samples were exposed to ambient light, the morphologies were very different, and submolecular resolution was not achieved. This approach is shown to provide a precise view of the active layer's nanostructure and will be useful for studies of other materials as a function of various parameters, with particular attention to the role of the acceptor in tuning morphology for understanding optimum performance in organic photovoltaic devices.
Collapse
Affiliation(s)
- Letizia Liirò-Peluso
- The
GSK Carbon Neutral Laboratories for Sustainable Chemistry, School
of Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.
- School
of Physics and Astronomy, University of
Nottingham, University
Park, Nottingham NG7 2RD, U.K.
| | - James Wrigley
- School
of Physics and Astronomy, University of
Nottingham, University
Park, Nottingham NG7 2RD, U.K.
| | - David B. Amabilino
- The
GSK Carbon Neutral Laboratories for Sustainable Chemistry, School
of Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.
- Institut
de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones
Científicas, Carrer dels Til.lers, Campus Universitari de Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Peter H. Beton
- School
of Physics and Astronomy, University of
Nottingham, University
Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
207
|
Anabestani H, Nabavi S, Bhadra S. Advances in Flexible Organic Photodetectors: Materials and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3775. [PMID: 36364551 PMCID: PMC9655925 DOI: 10.3390/nano12213775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Future electronics will need to be mechanically flexible and stretchable in order to enable the development of lightweight and conformal applications. In contrast, photodetectors, an integral component of electronic devices, remain rigid, which prevents their integration into everyday life applications. In recent years, significant efforts have been made to overcome the limitations of conventional rigid photodetectors, particularly their low mechanical deformability. One of the most promising routes toward facilitating the fabrication of flexible photodetectors is to replace conventional optoelectronic materials with nanomaterials or organic materials that are intrinsically flexible. Compared with other functional materials, organic polymers and molecules have attracted more attention for photodetection applications due to their excellent photodetection performance, cost-effective solution-fabrication capability, flexible design, and adaptable manufacturing processes. This article comprehensively discusses recent advances in flexible organic photodetectors in terms of optoelectronic, mechanical properties, and hybridization with other material classes. Furthermore, flexible organic photodetector applications in health-monitoring sensors, X-ray detection, and imager devices have been surveyed.
Collapse
|
208
|
An Organic Small Molecule as a Solid Additive in Non-Fullerene Organic Solar Cells with Improved Efficiency and Operational Stability. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
209
|
Advances in Thermoelectric Composites Consisting of Conductive Polymers and Fillers with Different Architectures. Molecules 2022; 27:molecules27206932. [PMID: 36296524 PMCID: PMC9612169 DOI: 10.3390/molecules27206932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Stretchable wireless power is in increasingly high demand in fields such as smart devices, flexible robots, and electronic skins. Thermoelectric devices are able to convert heat into electricity due to the Seebeck effect, making them promising candidates for wearable electronics. Therefore, high-performance conductive polymer-based composites are urgently required for flexible wearable thermoelectric devices for the utilization of low-grade thermal energy. In this review, mechanisms and optimization strategies for polymer-based thermoelectric composites containing fillers of different architectures will be introduced, and recent advances in the development of such thermoelectric composites containing 0- to 3-dimensional filler components will be presented and outlooked.
Collapse
|
210
|
Nakayama Y, Tsuruta R, Koganezawa T. 'Molecular Beam Epitaxy' on Organic Semiconductor Single Crystals: Characterization of Well-Defined Molecular Interfaces by Synchrotron Radiation X-ray Diffraction Techniques. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7119. [PMID: 36295203 PMCID: PMC9605552 DOI: 10.3390/ma15207119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Epitaxial growth, often termed "epitaxy", is one of the most essential techniques underpinning semiconductor electronics, because crystallinities of the materials seriously dominate operation efficiencies of the electronic devices such as power gain/consumption, response speed, heat loss, and so on. In contrast to already well-established epitaxial growth methodologies for inorganic (covalent or ionic) semiconductors, studies on inter-molecular (van der Waals) epitaxy for organic semiconductors is still in the initial stage. In the present review paper, we briefly summarize recent works on the epitaxial inter-molecular junctions built on organic semiconductor single-crystal surfaces, particularly on single crystals of pentacene and rubrene. Experimental methodologies applicable for the determination of crystal structures of such organic single-crystal-based molecular junctions are also illustrated.
Collapse
Affiliation(s)
- Yasuo Nakayama
- Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Division of Colloid and Interface Science, Tokyo University of Science, Noda 278-8510, Japan
- Research Group for Advanced Energy Conversion, Tokyo University of Science, Noda 278-8510, Japan
| | - Ryohei Tsuruta
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Tomoyuki Koganezawa
- Industrial Application Division, Japan Synchrotron Radiation Research Institute (JASRI), Hyogo 679-5198, Japan
| |
Collapse
|
211
|
Liu Y, Zhang Q, Guan J, Xue J, Yu X, Wu F, Ma W, Han Y. Improving the Molecular Packing Order and Vertical Phase Separation of the P3HT:O-IDTBR Blend by Extending the Crystallization Period of O-IDTBR. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44685-44696. [PMID: 36153967 DOI: 10.1021/acsami.2c12220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The morphology with strong molecular packing order and gradient vertical composition distribution associated with efficient charge transport and collection is critical to achieve high performance in nonfullerene solar cells. However, the rapid solidification process of the active layer upon the fast removal of solvent usually results in a kinetically trapped state with undesired morphology. Herein, we proposed a strategy to extend the crystal growth time of the acceptor via a high-boiling-point additive that selectively dissolved the acceptor. This was enabled by adding dibenzyl ether (DBE) to the poly(3-hexylthiophene) (P3HT):O-IDTBR blend in chlorobenzene (CB) solution. The combination of the kinetic study by time-resolved ultraviolet-visible (UV-vis) absorption spectra and detailed morphological characterization allows us to correlate the crystallization kinetics with the microstructural transition. The results show that the crystal growth time of O-IDTBR increases from 3 to 60 s upon the addition of 0.75% DBE, leading to further evolution of the molecular order of O-IDTBR during the DBE-dominated drying period. Meanwhile, O-IDTBR has more time to migrate toward the substrate owing to the larger surface energy. In addition, the onset of the crystallization process of P3HT is brought forward from 8 to 6 s due to the reduced solvent quality, which favors P3HT to crystallize into a fibril network. As a result, an optimized morphology that features the enhanced molecular packing order of P3HT and O-IDTBR as well as the vertical compositional gradient of O-IDTBR is obtained. Devices based on the optimized blend show more balanced charge transport and suppressed bimolecular recombination, giving rise to an improved power conversion efficiency (PCE) from 4.29 ± 0.04 to 7.30 ± 0.12%.
Collapse
Affiliation(s)
- Yadi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jian Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Fan Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
212
|
Al-Azzawi AGS, Dannoun EMA, Aziz SB, Iraqi A, Al-Saeedi SI, Nofal MM, Murad AR. Synthesis and Characterization of Polymers Containing Ethynylene and Ethynylene-Thiophene Based Alternating Polymers Containing 2,1,3-Linked Naphthothiadiazole Units as Acceptor Linked with Fluorine as Donor: Electrochemical and Spectroscopic Studies. Polymers (Basel) 2022; 14:polym14194139. [PMID: 36236087 PMCID: PMC9571599 DOI: 10.3390/polym14194139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
The effect of ethynylene or ethynylene-thiophene spacers on the band gap of alternating polymers, containing 4,9-naphthothiadiazole units as an acceptor and 2,7-linked fluorene repeat units as a donor, were investigated. The Sonogashira coupling reaction was employed to prepare the two novel copolymers, namely ((9,9-dioctyl-fluorene)-2,7-diethynylene-alt-4,9-2,1,3-naphthothiadiazole (PFDENT) and poly(5,5'-(9,9-dioctyl-fluorene-2,7-diyl)bis(ethynyl-2-thienyl)-alt-4,9-(2,1,3-naphthothiadiazole) (PFDTENT). The optical, electrochemical and thermal properties of the two obtained polymers were widely investigated and compared. Both resulting polymers showed low solubility in common organic solvents and moderate molecular weights. It is believed that the introduction of acetylene linkers rather than acetylene-thiophene spacers on the polymer chains reduces the steric hindrance between the donor and acceptor units which leads to the adoption of more planar structures of polymeric chains, resulting in decreased molecular weights of the resulting conjugated polymers. Thus, both ethynylene-based polymers and ethynylene-thiophene-based polymers showed red-shifted absorption maxima compared to their counterpart (thiophene-based polymer), owing to the adoption of more planar structures. Optical studies revealed that the new ethynylene and ethynylene-thiophene-based polymers displayed low band gaps compared to their thiophene analogue polymer PFDTNT. Both resulting polymers showed good thermal stability. X-ray diffraction (XRD) patterns of both polymers revealed that PFDENT and PFDTENT possessed an amorphous nature in solid state.
Collapse
Affiliation(s)
- Ahmed G. S. Al-Azzawi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
- Department of Chemistry, College of Education for Pure Science, University of Mosul, Mosul 41002, Iraq
| | - Elham M. A. Dannoun
- Department of Mathematics and Science, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq
- The Development Center for Research and Training (DCRT), University of Human Development, Kurdistan Region of Iraq, Sulaymaniyah 46001, Iraq
- Correspondence:
| | - Ahmed Iraqi
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | - Sameerah I. Al-Saeedi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muaffaq M. Nofal
- Department of Mathematics and Science, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Ary R. Murad
- Department of Pharmaceutical Chemistry, College of Medical and Applied Sciences, Charmo University, Chamchamal, Sulaimani 46023, Iraq
| |
Collapse
|
213
|
Combined role of regioregularity and molecular weight on melt-crystallization and self-nucleation of poly(3-hexylthiophene). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
214
|
Yamada M, Kurihara Y, Koizumi M, Tsuji K, Maeda Y, Suzuki M. Understanding the Nature and Strength of Noncovalent Face‐to‐Face Arene–Fullerene Interactions. Angew Chem Int Ed Engl 2022; 61:e202212279. [DOI: 10.1002/anie.202212279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Michio Yamada
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Yukiyo Kurihara
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Masaaki Koizumi
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Kasumi Tsuji
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Yutaka Maeda
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Mitsuaki Suzuki
- Department of Chemistry Josai University Sakado Saitama 350-0295 Japan
| |
Collapse
|
215
|
Theoretical Study on the Diels–Alder Reaction of Fullerenes: Analysis of Isomerism, Aromaticity, and Solvation. ORGANICS 2022. [DOI: 10.3390/org3040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fullerenes are reactive as dienophiles in Diels–Alder reactions. Their distinctive molecular shape and properties result in interesting and sometimes elusive reaction patterns. Herein, to contribute to the understanding of fullerene reactivity, we evaluate the energies of reactions for Diels–Alder cycloadditions of C60, C70, and IC60MA with anthracene (Ant), by means of DFT computational analysis in vacuum and solution. The methods used showed little differentiation between the reactivity of the different fullerenes. The C70-Ant adducts where addition takes place near the edge of the fullerene were found to be the most stable regioisomers. For the IC60MA-Ant adducts, the calculated energies of reaction increase in the order: equatorial > trans-3 > trans-2 ≈ trans-4 ≈ trans-1 > cis-3 > cis-2. The change in the functional suggests the existence of stabilizing dispersive interactions between the surface of the fullerene and the addends. HOMA (harmonic oscillator model of aromaticity) analysis indicated an increase in aromaticity in the fullerene hexagons adjacent to the bonded addend. This increase is bigger in the rings of bisadduct isomers that are simultaneously adjacent to both addends, which helps explain the extra stability of the equatorial isomers. Solvation by m-xylene decreases the exothermicity of the reactions studied but has little distinguishing effect on the possible isomers. Thermal corrections reduce the exothermicity of the reactions by ~10 kJ∙mol−1.
Collapse
|
216
|
Sun W, Wang Y, Zhang Y, Sun B, Zhang Z, Xiao M, Li X, Huo Y, Xin J, Zhu Q, Ma W, Zhang H. A Cathode Interface Layer Based on 4,5,9,10‐Pyrene Diimide for Highly Efficient Binary Organic Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202208383. [DOI: 10.1002/anie.202208383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Jing Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Key Laboratory of Special Function Materials and Structure Design (MOE) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Ya‐Ting Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Key Laboratory of Special Function Materials and Structure Design (MOE) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Yamin Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Key Laboratory of Special Function Materials and Structure Design (MOE) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Bing Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Key Laboratory of Special Function Materials and Structure Design (MOE) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Ze‐Qi Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Key Laboratory of Special Function Materials and Structure Design (MOE) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Ming‐Jun Xiao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Key Laboratory of Special Function Materials and Structure Design (MOE) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Xiang‐Yang Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Key Laboratory of Special Function Materials and Structure Design (MOE) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Yong Huo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Key Laboratory of Special Function Materials and Structure Design (MOE) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Jingming Xin
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Qinglian Zhu
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Hao‐Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Key Laboratory of Special Function Materials and Structure Design (MOE) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
217
|
Cardone A, Capodilupo AL. Functional Organic Materials for Photovoltaics: The Synthesis as a Tool for Managing Properties for Solid State Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6333. [PMID: 36143645 PMCID: PMC9501031 DOI: 10.3390/ma15186333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The continuous increase in the global energy demand deeply impacts the environment. Consequently, the research is moving towards more sustainable forms of energy production, storage and saving. Suitable technologies and materials are fundamental to win the challenge towards a greener and more eco-friendly society. Organic π-conjugated materials, including small molecules, oligomers and polymers are a wide and versatile class of functional materials with great potentiality, as they can be used as active matrixes in the fabrication of lightweight, flexible, cheap and large area devices. Their chemical and physical properties, both at a molecular level and mainly in the solid state, are a result of many factors, strictly related to the conjugated structure and functional groups on the backbone, which control the intermolecular forces driving solid state aggregations. The synthesis, through the molecular design, the choice of conjugated backbone and functionalization, represents the first and most powerful tool for finely tuning the chemico-physical properties of organic materials tailored for specific applications. In the present review, we report an overview of our works focused on synthetic methodologies, characterization, structure-properties correlation studies and applications of organic materials designed for energy-involving solid-state applications, organic photovoltaics in particular. The impact of functionalization on electro-optical properties and performance in device are discussed, also in relation to the specific applications.
Collapse
Affiliation(s)
- Antonio Cardone
- Institute of Chemistry of OrganoMetallic Compounds, Italian National Council of Research, CNR, Via Orabona, 4, 70125 Bari, Italy
| | - Agostina Lina Capodilupo
- Institute of Nanotechnology, Italian National Council of Research, CNR, Campus Ecotekne, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
218
|
Yao H, Hou J. Recent Advances in Single‐Junction Organic Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202209021. [DOI: 10.1002/anie.202209021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Huifeng Yao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
219
|
Yamada M, Kurihara Y, Koizumi M, Tsuji K, Maeda Y, Suzuki M. Understanding the Nature and Strength of Noncovalent Face‐to‐Face Arene–Fullerene Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michio Yamada
- Tokyo Gakugei University Department of Chemistry 4-1-1 Nukuikitamachi 184-8501 Koganei, Tokyo JAPAN
| | - Yukiyo Kurihara
- Tokyo Gakugei University: Tokyo Gakugei Daigaku Department of Chemistry JAPAN
| | - Masaaki Koizumi
- Tokyo Gakugei University: Tokyo Gakugei Daigaku Department of Chemistry JAPAN
| | - Kasumi Tsuji
- Tokyo Gakugei University: Tokyo Gakugei Daigaku Department of Chemistry JAPAN
| | - Yutaka Maeda
- Tokyo Gakugei University: Tokyo Gakugei Daigaku Department of Chemistry JAPAN
| | - Mitsuaki Suzuki
- Josai University: Josai Daigaku Department of Chemistry JAPAN
| |
Collapse
|
220
|
Wang J, Cui Y, Xu Y, Xian K, Bi P, Chen Z, Zhou K, Ma L, Zhang T, Yang Y, Zu Y, Yao H, Hao X, Ye L, Hou J. A New Polymer Donor Enables Binary All-Polymer Organic Photovoltaic Cells with 18% Efficiency and Excellent Mechanical Robustness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205009. [PMID: 35838497 DOI: 10.1002/adma.202205009] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The development of polymerized small-molecule acceptors has boosted the power conversion efficiencies (PCEs) of all-polymer organic photovoltaic (OPV) cells to 17%. However, the polymer donors suitable for all-polymer OPV cells are still lacking, restricting the further improvement of their PCEs. Herein, a new polymer donor named PQM-Cl is designed and its photovoltaic performance is explored. The negative electrostatic potential and low average local ionization energy distribution of the PQM-Cl surface enable efficient charge generation and transfer process. When blending with a well-used polymer acceptor, PY-IT, the PQM-Cl-based devices deliver an impressive PCE of 18.0% with a superior fill factor of 80.7%, both of which are the highest values for all-polymer OPV cells. The relevant measurements demonstrate that PQM-Cl-based films possess excellent mechanical and flexible properties. As such, PQM-Cl-based flexible photovoltaic cells are fabricated and an excellent PCE of 16.5% with high mechanical stability is displayed. These results demonstrate that PQM-Cl is a potential candidate for all-polymer OPV cells and provide insights into the design of polymer donors for high-efficient all-polymer OPV cells.
Collapse
Affiliation(s)
- Jingwen Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yong Cui
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ye Xu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kaihu Xian
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, P. R. China
| | - Pengqing Bi
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhihao Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandong, 250100, P. R. China
| | - Kangkang Zhou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, P. R. China
| | - Lijiao Ma
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunfei Zu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huifeng Yao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandong, 250100, P. R. China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
221
|
Li S, Zhan L, Li Y, He C, Zuo L, Shi M, Chen H. Achieving and Understanding of Highly Efficient Ternary Organic Photovoltaics: From Morphology and Energy Loss to Working Mechanism. SMALL METHODS 2022; 6:e2200828. [PMID: 35931458 DOI: 10.1002/smtd.202200828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Ternary strategy, adding an additional donor (D) or acceptor (A) into conventional binary D:A blend, has shown great potential in improving photovoltaic performances of organic photovoltaics (OPVs) for practical applications. Herein, this review is presented on how efficient ternary OPVs are realized from the aspects of morphology, energy loss, and working mechanism. As to morphology, the role of third component on the formation of preferred alloy-like-phase and vertical-phase, which are driven by the miscibility tuning, is discussed. For energy loss, the effect of the third component on the luminescence enhancement and energetic disordering suppression, which lead to favorable increase of voltage, is presented. Regarding working mechanism, dilution effect and relationships between two acceptors or donor/acceptor, which explain the observed device parameters variations, are analyzed. Finally, some future directions concerning ternary OPVs are pointed out. Therefore, this review can provide a comprehensive understanding of working principles and effective routes for high-efficiency ternary systems, advancing the commercialization of OPVs.
Collapse
Affiliation(s)
- Shuixing Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lingling Zhan
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yaokai Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chengliang He
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Hangzhou, 310027, P. R. China
| | - Minmin Shi
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Hangzhou, 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Hangzhou, 310027, P. R. China
| |
Collapse
|
222
|
Xie M, Li Y, Liu X, Yang J, Li H, Li X. Two-dimensional IV-VA 3 monolayers with enhanced charge mobility for high-performance solar cells. Phys Chem Chem Phys 2022; 24:20694-20700. [PMID: 36047394 DOI: 10.1039/d2cp03269d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-performance photovoltaics (PVs) constitute a subject of extensive research efforts, in which silicon (Si)-based solar cells (SCs) have been widely commercialized. However, the low carrier mobility of Si-based SCs can limit the effective charge separation, thereby negatively impacting the device performance. Here, via calculating the physicochemical and PV performance based on density functional theory, we demonstrate SCs based on two-dimensional (2D) group IV and V compounds with an AX3 configuration. Firstly, the cleavage energies of AX3 (A = Si, Ge; X = P, As, and Sb) are calculated to be less than 1 J m-2, providing an experimental feasibility to be exfoliated from the corresponding bulk. Secondly, electronic and optical properties have been systematically investigated. To be specific, the band gap of monolayer AX3 falls in the range of 1.11-1.27 eV, which is comparable with that of Si. Significantly, the electron mobility of monolayer AX3 can reach as high as ∼30 000 cm2 V-1 s-1, which is one order of magnitude higher than that of Si. Furthermore, the optical absorbance of monolayer SiAs3, SiP3 and GeAs3 exhibits high coefficients in visible light. Therefore, we believe that our designed AX3-based PV systems with power conversion efficiency of 20% can offer great potential in the application of high-performance two-dimension-based PVs.
Collapse
Affiliation(s)
- Meiqiu Xie
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| | - Yang Li
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| | - Xuhai Liu
- College of Microtechnology & Nanotechnology, Qingdao University, Qingdao 266071, China
| | - Jianping Yang
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| | - Hui Li
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| | - Xing'ao Li
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China. .,School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
223
|
Jee MH, Ryu HS, Lee D, Lee W, Woo HY. Recent Advances in Nonfullerene Acceptor-Based Layer-by-Layer Organic Solar Cells Using a Solution Process. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201876. [PMID: 35794317 PMCID: PMC9443470 DOI: 10.1002/advs.202201876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Recently, sequential layer-by-layer (LbL) organic solar cells (OSCs) have attracted significant attention owing to their favorable p-i-n vertical phase separation, efficient charge transport/extraction, and potential for lab-to-fab large-scale production, achieving high power conversion efficiencies (PCEs) of over 18%. This review first summarizes recent studies on various approaches to obtain ideal vertical D/A phase separation in nonfullerene acceptor (NFAs)-based LbL OSCs by proper solvent selection, processing additives, protecting solvent treatment, ternary blends, etc. Additionally, the longer exciton diffusion length of NFAs compared with fullerene derivatives, which provides a new scope for further improvement in the performance of LbL OSCs, is been discussed. Large-area device/module production by LbL techniques and device stability issues, including thermal and mechanical stability, are also reviewed. Finally, the current challenges and prospects for further progress toward their eventual commercialization are discussed.
Collapse
Affiliation(s)
- Min Hun Jee
- Department of ChemistryKU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hwa Sook Ryu
- Department of ChemistryKU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Dongmin Lee
- Department of Polymer Science and EngineeringDepartment of Energy Engineering ConvergenceKumoh National Institute of TechnologyGumiGyeongbuk39177Republic of Korea
| | - Wonho Lee
- Department of Polymer Science and EngineeringDepartment of Energy Engineering ConvergenceKumoh National Institute of TechnologyGumiGyeongbuk39177Republic of Korea
| | - Han Young Woo
- Department of ChemistryKU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
224
|
Mombrú D, Romero M, Faccio R, Mombrú ÁW. Roles of amorphous and crystalline regions in determining the optical and electronic properties of donor:acceptor systems comprising poly(3-hexylthiophene) embedded with nitrogen/sulfur-doped graphene quantum dots. Polym J 2022. [DOI: 10.1038/s41428-022-00694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
225
|
Lin YC, She NZ, Chen CH, Yabushita A, Lin H, Li MH, Chang B, Hsueh TF, Tsai BS, Chen PT, Yang Y, Wei KH. Perylene Diimide-Fused Dithiophenepyrroles with Different End Groups as Acceptors for Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37990-38003. [PMID: 35904802 DOI: 10.1021/acsami.2c06135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we synthesized four new A-DA'D-A acceptors (where A and D represent acceptor and donor chemical units) incorporating perylene diimide units (A') as their core structures and presenting various modes of halogenation and substitution of the functional groups at their end groups (A). In these acceptors, by fusing dithiophenepyrrole (DTP) moieties (D) to the helical perylene diimide dimer (hPDI) to form fused-hPDI (FhPDI) cores, we could increase the D/A' oscillator strength in the cores and, thus, the intensity of intramolecular charge transfer (ICT), thereby enhancing the intensity of the absorption bands. With four different end group units─IC2F, IC2Cl, IO2F, and IO2Cl─tested, each of these acceptor molecules exhibited different optical characteristics. Among all of these systems, the organic photovoltaic device incorporating the polymer PCE10 blended with the acceptor FhPDI-IC2F (1:1.1 wt %) had the highest power conversion efficiency (PCE) of 9.0%; the optimal PCEs of PCE10:FhPDI-IO2F, PCE10:FhPDI-IO2Cl, and PCE10:FhPDI-IC2Cl (1:1.1 wt %) devices were 5.2, 4.7, and 7.7%, respectively. The relatively high PCE of the PCE10:FhPDI-IC2F device resulted primarily from the higher absorption coefficients of the FhPDI-IC2F acceptor, lower energy loss, and more efficient charge transfer; the FhPDI-IC2F system experienced a lower degree of geminate recombination─as a result of improved delocalization of π-electrons along the acceptor unit─relative to that of the other three acceptors systems. Thus, altering the end groups of multichromophoric PDI units can increase the PCEs of devices incorporating PDI-derived materials and might also be a new pathway for the creation of other valuable fused-ring derivatives.
Collapse
Affiliation(s)
- Yu-Che Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Nian-Zu She
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chung-Hao Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Atsushi Yabushita
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Heng Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Meng-Hua Li
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Bin Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ting-Fang Hsueh
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Bing-Shiun Tsai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Po-Tuan Chen
- Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yang Yang
- Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Kung-Hwa Wei
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
226
|
Ueno H, Kitabatake D, Lin HS, Ma Y, Jeon I, Izawa S, Hiramoto M, Misaizu F, Maruyama S, Matsuo Y. Synthesis of neutral Li-endohedral PCBM: an n-dopant for fullerene derivatives. Chem Commun (Camb) 2022; 58:10190-10193. [PMID: 36000312 DOI: 10.1039/d2cc03678a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Li@PCBM, the first neutral Li@C60 derivative, was synthesized. The Li@PCBM exists in a monomer-dimer equilibrium in solution but as a monomer in the PCBM matrix. The fully dispersed Li@PCBM n-doped the surrounding empty PCBM, raising the Fermi level by 0.13 eV compared with the undoped PCBM film. The hybrid films were utilized as an ETL for PSCs, promoting the efficiency of the device.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Creative Interdisciplinary Research Division, The Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Daiki Kitabatake
- Creative Interdisciplinary Research Division, The Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Hao-Sheng Lin
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yue Ma
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Il Jeon
- Department of Nano Engineering, SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Seiichiro Izawa
- Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masahiro Hiramoto
- Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Fuminori Misaizu
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Shigeo Maruyama
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaka Matsuo
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan. .,Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
227
|
Moorthy VM, Srivastava VM. Device Modeling of Organic Photovoltaic Cells with Traditional and Inverted Cells Using s-SWCNT:C 60 as Active Layer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162844. [PMID: 36014708 PMCID: PMC9412363 DOI: 10.3390/nano12162844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 05/09/2023]
Abstract
This research work presents a thorough analysis of Traditional Organic Solar Cell (TOSC) and novel designed Inverted OSC (IOSC) using Bulk Hetero-Junction (BHJ) structure. Herein, 2D photovoltaic device models were used to observe the results of the semiconducting Single Wall Carbon Nanotube (s-SWCNT):C60-based organic photovoltaic. This work has improved the BHJ photodiodes by varying the active layer thickness. The analysis has been performed at various active layer thicknesses from 50 to 300 nm using the active material s-SWCNT:C60. An analysis with various parameters to determine the most effective parameters for organic photovoltaic performance has been conducted. As a result, it has been established that IOSC has the maximum efficiency of 10.4%, which is higher than the efficiency of TOSC (9.5%). In addition, the active layer with the highest efficacy has been recorded using this material for both TOSC and IOSC Nano Photodiodes (NPDs). Furthermore, the diode structure and geometrical parameters have been optimized and compared to maximize the performance of photodiodes.
Collapse
|
228
|
Li L, Zhan H, Chen S, Zhao Q, Peng J. Interrogating the Effect of Block Sequence on Cocrystallization, Microphase Separation, and Charge Transport in All-Conjugated Triblock Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lixin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hao Zhan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Shuwen Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qingqing Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
229
|
Xu X, Sun C, Jing J, Niu T, Wu X, Zhang K, Huang F, Xu Q, Yuan J, Lu X, Zhou Y, Zou Y. High-Performance Ternary Organic Solar Cells Enabled by Introducing a New A-DA'D-A Guest Acceptor with Higher-Lying LUMO Level. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36582-36591. [PMID: 35938933 DOI: 10.1021/acsami.2c07883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A ternary strategy is viable to minimize the trade-off between short-circuit current density (Jsc) and open-circuit voltage (Voc) in organic solar cells. Generally, the ternary OSCs can achieve a higher PCE than the binary counterparts by subtly utilizing the particular photoelectric properties of the third material. In this regard, we choose BTP-CC with a higher-lying LUMO level based on a fused TPBT (dithienothiophen[3.2-b]-pyrrolobenzothiadiazole) central framework and CC (2-(6-oxo-5,6-dihydro-4H-cyclopenta [b]thiophen-4-ylidene) malononitrile) flanking groups as the third component to broaden the light-absorption spectrum, regulate the bulk heterojunction (BHJ) morphology, improve the Voc, and reduce the charge recombination in OSCs. In addition, BTP-CC demonstrates intense intermolecular energy transfer to Y6 by fluorescence resonance energy transfer (FRET) pathway, which is due to the photoluminescence (PL) spectrum of BTP-CC covering the absorption region of Y6. The PM6:Y6:BTP-CC based ternary OSC achieves a champion PCE of 17.55%. Further investigation indicates that introduction of BTP-CC could reduce the trap states in OSCs, leading to an increased charge carrier density. Moreover, the incorporation of BTP-CC could improve the device stability. These results demonstrated that BTP-CC is important in improving the photovoltaic performance of ternary OSCs, and this work also provides a guideline for constructing ideal ternary OSCs in the future.
Collapse
Affiliation(s)
- Xiang Xu
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Chaoyuan Sun
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jianhua Jing
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Tianqi Niu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiao Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Kai Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Qinghua Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jun Yuan
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Yonghua Zhou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yingping Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
230
|
Hagita K, Murashima T, Kawakatsu T. Lamellar Domain Spacing of Symmetric Linear, Ring, and Four-Arm-Star Block Copolymer Blends. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katsumi Hagita
- Department of Applied Physics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan
| | - Takahiro Murashima
- Department of Physics, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Toshihiro Kawakatsu
- Department of Physics, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
231
|
A simple structure copolymer donor based on carboxylated benzodithiophene for polymer solar cells. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
232
|
Luo M, Chen Y, Liang J, Zhou J, Yuan D, Zhang Z, Liu X, Zhang L, Xie Z, Chen J. Three Isomeric Non-Fullerene Acceptors Comprising a Mono-Brominated End-Group for Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35985-35996. [PMID: 35900128 DOI: 10.1021/acsami.2c09323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Non-fullerene acceptors (NFAs) carrying a 1,1-dicyanomethylene-3-indanone (IC) end-group are the most powerful ones to boost the power conversion efficiency of organic solar cells (OSCs). However, the well-known Knoevenagel condensation of the mono-halogenated IC end-group will result in an NFA isomeric effect, a chemical issue that needs to be addressed. Herein, facile preparations and separations of three well-defined mono-brominated isomers BTzIC-2Br-δ, BTzIC-2Br-γ, and BTzIC-2Br-δγ via column chromatography with a well-chosen mixing solvent were demonstrated for Knoevenagel condensation, and their structures were verified by NMR spectra and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) mass spectra. It is the first time that an asymmetric isomer BTzIC-2Br-δγ is reported, and the regioisomeric effect on optoelectronic properties can be investigated based on all three isomers. Moreover, the single-crystal structure was successfully achieved for the symmetric molecule BTzIC-2Br-γ. With benzodithiophene (BDT)-free PFBT4T-T20 as an easily accessible and low-cost polymer donor, the three isomers could show differentiated device performances, with a power conversion efficiency order of BTzIC-2Br-γ (16.00%) > BTzIC-2Br-δγ (15.81%) > BTzIC-2Br-δ (15.29%). The best efficiency of 16.00% achieved with BTzIC-2Br-γ is among the highest ones for binary OSCs based on the low-cost BDT-free donors. The facile and complete synthesis of isomeric NFAs with mono-halogenated IC end-groups would promote the elucidation of the structure-property relationship.
Collapse
Affiliation(s)
- Mei Luo
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yinchu Chen
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiahao Liang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiadong Zhou
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Dong Yuan
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zesheng Zhang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xuanchen Liu
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lianjie Zhang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Junwu Chen
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
233
|
Liu S, Wu H, Zhao B, Wang W, Zhou Y, Xue Z, Ding K, Cong Z, Gao C. Efficient Polymer Solar Cells Facilitated by Halogenated Substituted Wide‐Bandgap Polymers and a Backbone Twisted Low‐Bandgap Acceptor. ChemistrySelect 2022. [DOI: 10.1002/slct.202201508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shujuan Liu
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an Shaanxi 710065 China
| | - Haimei Wu
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an Shaanxi 710065 China
| | - Baofeng Zhao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an Shaanxi 710065 China
| | - Weiping Wang
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an Shaanxi 710065 China
| | - Yuchen Zhou
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an Shaanxi 710065 China
| | - Zeyu Xue
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an Shaanxi 710065 China
- Key Laboratory of Light Field Manipulation and Information Acquisition Ministry of Industry and Information Technology and Shaanxi Key Laboratory of Optical Information Technology School of Physical Science and Technology Northwestern Polytechnical University Xi'an 710129 China
| | - Kai Ding
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an Shaanxi 710065 China
- School of Materials Science and Engineering Xi'an University of Technology Xi'an Shaanxi 710048 China
| | - Zhiyuan Cong
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an Shaanxi 710065 China
| | - Chao Gao
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials State Key Laboratory of Fluorine & Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an Shaanxi 710065 China
| |
Collapse
|
234
|
Yuan D, Zhang L, Chen J. Fine-Tuning of Siloxane Pendant Distance for Achieving Highly Efficient Eco-Friendly Nonfullerene Solar Cells. CHEMSUSCHEM 2022; 15:e202200789. [PMID: 35606681 DOI: 10.1002/cssc.202200789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Side-chain engineering has been proved to show profound impact on polymer properties and blend morphology. Herein, the critical role of siloxane-terminated alkoxy side chains was revealed by a tiny decorating method through which the molar content of siloxane-terminated alkoxy side chain was fixed to 5 %, and its alkyl linker was the only tuning factor. The pentylene, heptylene, and nonylene linkers were designed and used to synthesize wide-bandgap polymers PQSi505, PQSi705, and PQSi905, respectively. Interestingly, the siloxane pendant of combinatory side chain exhibited a distinct impact on molecular packing when its branching position shifted slightly. Among the three polymers, PQSi705 had the strongest aggregation and the highest packing order. Finally, toluene-processed organic solar cells (OSCs) based on PQSi705 and Y6-BO achieved the best power conversion efficiency of 15.77 %. This work suggests that siloxane pendant can serve as a powerful modulator to enhance the photovoltaic performance of OSCs.
Collapse
Affiliation(s)
- Dong Yuan
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Lianjie Zhang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Junwu Chen
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
235
|
Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Renewed Prospects for Organic Photovoltaics. Chem Rev 2022; 122:14180-14274. [PMID: 35929847 DOI: 10.1021/acs.chemrev.1c00955] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
Collapse
Affiliation(s)
- Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Feng Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
236
|
Keshtov ML, Konstantinov IO, Khokhlov AR, Ostapov IE, Godovsky DY, Alekseev VG, Zou Y, Singhal R, Singh MK, Sharma GD. New Wide Bandgap Conjugated D‐A Copolymers Based on BDT or NDT Donor Unit and Anthra[1,2‐b:4,3,bʹ:6,7‐cʺ]trithiophene‐8‐12‐dione Acceptor for Fullerene‐Free Polymer Solar Cells. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mukhamed L. Keshtov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Igor O. Konstantinov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Alexie R. Khokhlov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Ilya E. Ostapov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Dimitri Y. Godovsky
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Vladimir G. Alekseev
- Analytical Chemistry Department Tver State University Sadovyi per. 35 Tver 170002 Russian Federation
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| | - Rahul Singhal
- Department of Physics Malviya National Institute of Technology JLN Marg Jaipur (Rajasthan) 302017 India
| | - Manish Kumar Singh
- Department of Physics and Electronics Engineering The LNM Institute for Information Technology Jamdoli Jaipur (Rajasthan) 302031 India
| | - Ganesh D. Sharma
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| |
Collapse
|
237
|
Fu H, Peng Z, Fan Q, Lin FR, Qi F, Ran Y, Wu Z, Fan B, Jiang K, Woo HY, Lu G, Ade H, Jen AKY. A Top-Down Strategy to Engineer ActiveLayer Morphology for Highly Efficient and Stable All-Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202608. [PMID: 35748129 DOI: 10.1002/adma.202202608] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
A major challenge hindering the further development of all-polymer solar cells (all-PSCs) employing polymerized small-molecule acceptors is the relatively low fill factor (FF) due to the difficulty in controlling the active-layer morphology. The issues typically arise from oversized phase separation resulting from the thermodynamically unfavorable mixing between two macromolecular species, and disordered molecular orientation/packing of highly anisotropic polymer chains. Herein, a facile top-down controlling strategy to engineer the morphology of all-polymer blends is developed by leveraging the layer-by-layer (LBL) deposition. Optimal intermixing of polymer components can be achieved in the two-step process by tuning the bottom-layer polymer swelling during top-layer deposition. Consequently, both the molecular orientation/packing of the bottom layer and the molecular ordering of the top layer can be optimized with a suitable top-layer processing solvent. A favorable morphology with gradient vertical composition distribution for efficient charge transport and extraction is therefore realized, affording a high all-PSC efficiency of 17.0% with a FF of 76.1%. The derived devices also possess excellent long-term thermal stability and can retain >90% of their initial efficiencies after being annealed at 65 °C for 1300 h. These results validate the distinct advantages of employing an LBL processing protocol to fabricate high-performance all-PSCs.
Collapse
Affiliation(s)
- Huiting Fu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zhengxing Peng
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Qunping Fan
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Francis R Lin
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Feng Qi
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yixin Ran
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Baobing Fan
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Kui Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| |
Collapse
|
238
|
Theoretical Study of Carbon Nanotubes as Candidates for Active Layer in Solar Cells. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
239
|
He C, Pan Y, Lu G, Wu B, Xia X, Ma CQ, Chen Z, Zhu H, Lu X, Ma W, Zuo L, Chen H. Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203379. [PMID: 35765940 DOI: 10.1002/adma.202203379] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely-used blend casting (BC) method for BHJ construction, sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here, BC and SC methods on three representative donor:acceptor (D:A) blends are utilized, that is, PM6:PC71 BM, PM6:IT-4F and PM6:L8-BO. Higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing are achieved, and a champion PCE of 18.86% (certified as 18.44%) based on the PM6:L8-BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to interpret the morphology evolution during SC processing. Further, the vertical phase segregation is found to deliver an improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A-ratio-dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and upscale fabrication. This work demonstrates the versatility and efficacy of the SC method for BHJ-based OSCs.
Collapse
Affiliation(s)
- Chengliang He
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Youwen Pan
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Baohua Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xinxin Xia
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Chang-Qi Ma
- i-Lab & Printable Electronics Research Centre, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Zeng Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinhui Lu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
240
|
Guo S, Hu Y, Qin M, Li J, Wang Y, Qin J, Cheng P. Toward high-performance organic photovoltaics: the new cooperation of sequential solution-processing and promising non-fullerene acceptors. MATERIALS HORIZONS 2022; 9:2097-2108. [PMID: 35670540 DOI: 10.1039/d2mh00376g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic photovoltaics (OPVs) have long been a hot topic due to their light weight, low cost, and flexibility. Simple blend-based OPVs have sufficient donor/acceptor (D/A) interfaces and high exciton dissociation efficiency, which result in certified high power conversion efficiency (PCE) exceeding 18%. However, the difficult morphology control and poor device stability limit further progress toward higher PCE and future application. Sequential solution-processing with tunable vertical phase distribution, D/A interfaces, and charge transportation pathways not only benefit device stability but can also overcome the up-scaling challenge. In recent years, the development of non-fullerene acceptors (NFAs) has been very rapid, which is attributed to their tunable energy levels, bandgaps, planarity, and crystallinity. In this minireview, the opportunities for the cooperation of sequential solution-processing and NFAs are revealed based on their characteristics, such as diverse molecular shapes, abundant functional groups and heteroatoms, and various aggregation states for NFAs; independent active layer processing, controllable D/A interfaces, and excellent device stability for sequential solution-processing. Few but important existing examples are discussed to display the prospects of sequential solution-processed fullerene-free OPVs toward high PCE, good device stability, high semitransparency, and large-area industrial manufacture. Finally, some possible research directions are predicted and the main issues that need to be overcome are proposed for sequential solution-processed fullerene-free OPVs toward higher performance.
Collapse
Affiliation(s)
- Siru Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Yingyue Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Yinghan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Jiaqiang Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| |
Collapse
|
241
|
Wang J, Xue P, Jiang Y, Huo Y, Zhan X. The principles, design and applications of fused-ring electron acceptors. Nat Rev Chem 2022; 6:614-634. [PMID: 37117709 DOI: 10.1038/s41570-022-00409-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 11/10/2022]
Abstract
Fused-ring electron acceptors (FREAs) have a donor-acceptor-donor structure comprising an electron-donating fused-ring core, electron-accepting end groups, π-bridges and side chains. FREAs possess beneficial features, such as feasibility to tailor their structures, high property tunability, strong visible and near-infrared light absorption and excellent n-type semiconducting characteristics. FREAs have initiated a revolution to the field of organic solar cells in recent years. FREA-based organic solar cells have achieved unprecedented efficiencies, over 20%, which breaks the theoretical efficiency limit of traditional fullerene acceptors (~13%), and boast potential operational lifetimes approaching 10 years. Based on the original studies of FREAs, a variety of new structures, mechanisms and applications have flourished. In this Review, we introduce the fundamental principles of FREAs, including their structures and inherent electronic and physical properties. Next, we discuss the way in which the properties of FREAs can be modulated through variations to the electronic structure or molecular packing. We then present the current applications and consider the future areas that may benefit from developments in FREAs. Finally, we conclude with the position of FREA chemistry, reflecting on the challenges and opportunities that may arise in the future of this burgeoning field.
Collapse
|
242
|
Xue J, Zhao H, Lin B, Wang Y, Zhu Q, Lu G, Wu B, Bi Z, Zhou X, Zhao C, Lu G, Zhou K, Ma W. Nonhalogenated Dual-Slot-Die Processing Enables High-Efficiency Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202659. [PMID: 35698785 DOI: 10.1002/adma.202202659] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Organic solar cells (OSCs) are promising candidates for next-generation photovoltaic technologies, with their power conversion efficiencies (PCEs) reaching 19%. However, the typically used spin-coating method, toxic halogenated processing solvents, and the conventional bulk-heterojunction (BHJ), which causes excessive charge recombination, hamper the commercialization and further efficiency promotion of OSCs. Here, a simple but effective dual-slot-die sequential processing (DSDS) strategy is proposed to address the above issues by achieving a continuous solution supply, avoiding the solubility limit of the nonhalogen solvents, and creating a graded-BHJ morphology. As a result, an excellent PCE of 17.07% is obtained with the device processed with o-xylene in an open-air environment with no post-treatment required, while a PCE of over 14% is preserved in a wide range of active-layer thickness. The unique film-formation mechanism is further identified during the DSDS processing, which suggests the formation of the graded-BHJ morphology by the mutual diffusion between the donor and acceptor and the subsequent progressive aggregation. The graded-BHJ structure leads to improved charge transport, inhibited charge recombination, and thus an excellent PCE. Therefore, the newly developed DSDS approach can effectively contribute to the realm of high-efficiency and eco-friendly OSCs, which can also possibly be generalized to other organic photoelectric devices.
Collapse
Affiliation(s)
- Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Heng Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baojun Lin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yilin Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qinglian Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guanyu Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Baohua Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaobo Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Ke Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
243
|
Chen Z, Wang J, Wu H, Yang J, Wang Y, Zhang J, Bao Q, Wang M, Ma Z, Tress W, Tang Z. A Transparent Electrode Based on Solution-Processed ZnO for Organic Optoelectronic Devices. Nat Commun 2022; 13:4387. [PMID: 35902576 PMCID: PMC9334612 DOI: 10.1038/s41467-022-32010-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Achieving high-efficiency indium tin oxide (ITO)-free organic optoelectronic devices requires the development of high-conductivity and high-transparency materials for being used as the front electrode. Herein, sol-gel-grown zinc oxide (ZnO) films with high conductivity (460 S cm-1) and low optical absorption losses in both visible and near-infrared (NIR) spectral regions are realized utilizing the persistent photoinduced doping effect. The origin of the increased conductivity after photo-doping is ascribed to selective trapping of photogenerated holes by oxygen vacancies at the surface of the ZnO film. Then, the conductivity of the sol-gel-grown ZnO is further increased by stacking the ZnO using a newly developed sequential deposition strategy. Finally, the stacked ZnO is used as the cathode to construct ITO-free organic solar cells, photodetectors, and light emitting diodes: The devices based on ZnO outperform those based on ITO, owing to the reduced surface recombination losses at the cathode/active layer interface, and the reduced parasitic absorption losses in the electrodes of the ZnO based devices.
Collapse
Affiliation(s)
- Zhi Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hongbo Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jianming Yang
- Key Laboratory of Polar Materials and Devices, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, P.R. China
| | - Yikai Wang
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science & Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jing Zhang
- School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science & Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Qinye Bao
- Key Laboratory of Polar Materials and Devices, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, P.R. China
| | - Ming Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Wolfgang Tress
- Institute of Computational Physics, Zurich University of Applied Sciences, Wildbachstr. 21, 8401, Winterthur, Switzerland.
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.
| |
Collapse
|
244
|
Sun WJ, Wang YT, Zhang Y, Sun B, Zhang ZQ, Xiao MJ, Li XY, Huo Y, Zhu Q, Xin J, Ma W, Zhang HL. A Cathode Interface Layer Based on 4, 5, 9, 10‐Pyrene Diimide for Highly Efficient Binary Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wen-Jing Sun
- Lanzhou University State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering CHINA
| | - Ya-Ting Wang
- Lanzhou University State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering CHINA
| | - Yamin Zhang
- Lanzhou University State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering CHINA
| | - Bing Sun
- Lanzhou University State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering CHINA
| | - Ze-Qi Zhang
- Lanzhou University State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering CHINA
| | - Ming-Jun Xiao
- Lanzhou University State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering CHINA
| | - Xiang-Yang Li
- Lanzhou University State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering CHINA
| | - Yong Huo
- Lanzhou University State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering CHINA
| | - Qinglian Zhu
- Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Jingming Xin
- Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Wei Ma
- Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials CHINA
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry & Chemical Engineering, Lanzhou University 222 Tianshui South Road 730000 Lanzhou CHINA
| |
Collapse
|
245
|
Yao H, Hou J. Recent Advances in Single‐Junction Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huifeng Yao
- Institute of Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry 100190 CHINA
| | - Jianhui Hou
- Institute of Chemistry Chinese Academy of Sciences Institute of chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
246
|
High efficiency and more functions bring a bright future for organic photovoltaic cells. Sci Bull (Beijing) 2022; 67:1300-1303. [PMID: 36546257 DOI: 10.1016/j.scib.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
247
|
Liu X, Pang S, Zeng L, Deng W, Yang M, Yuan X, Li J, Duan C, Huang F, Cao Y. An electron acceptor featuring a B-N covalent bond and small singlet-triplet gap for organic solar cells. Chem Commun (Camb) 2022; 58:8686-8689. [PMID: 35833246 DOI: 10.1039/d2cc03172h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BNTT2F, an electron acceptor featuring a B-N covalent bond and singlet-triplet gap as low as 0.20 eV via the multiple resonance effect, is developed for organic solar cells. The optimized device based on BNTT2F offered an efficiency of 8.3%, suggesting the great prospect of B-N covalent bond-containing π-conjugated molecules for photovoltaics.
Collapse
Affiliation(s)
- Xinyuan Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| | - Shuting Pang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| | - Liang Zeng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| | - Wanyuan Deng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| | - Mingqun Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| | - Xiyue Yuan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| | - Junyu Li
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, MB Eindhoven, 5600, The Netherlands
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
248
|
Ye Q, Ge J, Li D, Chen Z, Shi J, Zhang X, Zhou E, Yang D, Ge Z. Modulation of the Fluorination Site on Side-Chain Thiophene Improved Efficiency in All-Small-Molecule Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33234-33241. [PMID: 35834357 DOI: 10.1021/acsami.2c07791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine-tuning the phase-separated morphology is of great importance to achieve efficient all-small-molecule organic solar cells (ASM-OSCs). In this work, a pair of isomers are designed and synthesized, namely, BDT-UF and BDT-DF, in which the fluorine atom in BDT-UF is close to the alkyl chain of side-chain thiophene, while that in BDT-DF is close to the center core. Owing to the noncovalent interaction between fluorine and hydrogen, BDT-DF shows a smaller dihedral angle between the thiophene side chain and the BDT core, which causes better molecular planarity. When mixed with N3, BDT-UF shows better miscibility, higher crystallinity, and more ordered molecule stacking in the blend film. Finally, the device of BDT-DF:N3 gains a power conversion efficiency (PCE) of 14.5%, while that of BDT-UF:N3 shows an increase in Voc, Jsc, and FF and gains a PCE of 15.1%. Our work exhibits a way of adjusting the substitution site of fluorine atoms to improve the PCE of ASM-OSCs.
Collapse
Affiliation(s)
- Qinrui Ye
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Li
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Chen
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Shi
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
249
|
Li Y, Wu J, Tang H, Yi X, Liu Z, Yang Q, Fu Y, Liu J, Xie Z. Non-Halogenated Solvents and Layer-by-Layer Blade-Coated Ternary Organic Solar Cells via Cascade Acceptor Adjusting Morphology and Crystallization to Reduce Energy Loss. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31054-31065. [PMID: 35763722 DOI: 10.1021/acsami.2c05504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The power conversion efficiency (PCE) of halogenated solvent spin-coated organic solar cells (OSCs) has been boosted to a high level (>18%) by developing efficient photovoltaic materials and precise morphological control. However, the PCE of OSCs prepared from non-halogenated solvents and with a scalable printing process is far behind, limited by tough morphology manipulation. Herein, we have fabricated ternary OSCs by using layer-by-layer (LBL) blade-coating and a non-halogenated solvent. The ternary OSCs based on the PM6:IT-M(1:0.2)/BTP-eC9 active layer are processed with the hydrocarbon solvent 1,2,4-trimethylbenzene with no need of any additives and post-treatment. The vertical donor/acceptor distribution is optimized by LBL blade-coating within the PM6:IT-M(1:0.2)/BTP-eC9 active layer. The cascade acceptor IT-M blended in PM6 not only attenuates the damage of BTP-eC9 to the PM6 crystallization, leading to a dense nanofiber-like morphology, but also prefers to reside between PM6 and BTP-eC9 to form a cascade energy level alignment for a fast charge-transfer process. Finally, the improved morphology and crystallization lead to a reduced molecular recombination, low energy loss, and high open-circuit voltage. The prepared non-halogenated solvent and LBL blade-coated OSCs achieve a PCE of 17.16%. The work provides an approach to fabricate hydrocarbon solvent-processed high-performance OSCs by employing LBL blade-coating and a ternary strategy.
Collapse
Affiliation(s)
- Youzhan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hao Tang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xueting Yi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zekun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qingqing Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yingying Fu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhiyuan Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
250
|
Oligothiophene-based photovoltaic materials for organic solar cells: rise, plateau, and revival. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|