201
|
|
202
|
Ohta T, Michel JJ, Xiong Y. Association with cullin partners protects ROC proteins from proteasome-dependent degradation. Oncogene 1999; 18:6758-66. [PMID: 10597284 DOI: 10.1038/sj.onc.1203115] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cullin 1/CDC53 represents a multigene family and has been linked to the ubiquitin-mediated proteolysis of several different proteins. We recently identified two closely related RING finger proteins, ROC1 and ROC2, that share considerable sequence similarity to an APC subunit, APC11, and demonstrated ROC1 as an essential subunit of CUL1 and CDC53 ubiquitin ligases. We report here that the expression of ROC1, ROC2 and APC11 genes are induced by mitogens and remain constant during the cell cycle. Unlike other subunits of SCF and APC E3 ligases, ectopically expressed ROC family proteins are degraded by a proteasome-inhibitor sensitive pathway and are stabilized by associating with cullins. Mutations at the conserved Phe79 and His80 residues in the RING finger of ROC1 diminish its binding with cullins, resulting in a loss of cullin protection and ubiquitin ligase activity. These results suggest a potential mechanism for regulating the activity of ROC-cullin ligases through complex assembly and ROC/APC11 subunit ubiquitination.
Collapse
Affiliation(s)
- T Ohta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599-7295, USA
| | | | | |
Collapse
|
203
|
Moynihan TP, Ardley HC, Nuber U, Rose SA, Jones PF, Markham AF, Scheffner M, Robinson PA. The ubiquitin-conjugating enzymes UbcH7 and UbcH8 interact with RING finger/IBR motif-containing domains of HHARI and H7-AP1. J Biol Chem 1999; 274:30963-8. [PMID: 10521492 DOI: 10.1074/jbc.274.43.30963] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitinylation of proteins appears to be mediated by the specific interplay between ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s). However, cognate E3s and/or substrate proteins have been identified for only a few E2s. To identify proteins that can interact with the human E2 UbcH7, a yeast two-hybrid screen was performed. Two proteins were identified and termed human homologue of Drosophila ariadne (HHARI) and UbcH7-associated protein (H7-AP1). Both proteins, which are widely expressed, are characterized by the presence of RING finger and in between RING fingers (IBR) domains. No other overt structural similarity was observed between the two proteins. In vitro binding studies revealed that an N-terminal RING finger motif (HHARI) and the IBR domain (HHARI and H7-AP1) are involved in the interaction of these proteins with UbcH7. Furthermore, binding of these two proteins to UbcH7 is specific insofar that both HHARI and H7-AP1 can bind to the closely related E2, UbcH8, but not to the unrelated E2s UbcH5 and UbcH1. Although it is not clear at present whether HHARI and H7-AP1 serve, for instance, as substrates for UbcH7 or represent proteins with E3 activity, our data suggests that a subset of RING finger/IBR proteins are functionally linked to the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- T P Moynihan
- Molecular Medicine Unit, University of Leeds, Clinical Sciences Building, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Fang G, Yu H, Kirschner MW. Control of mitotic transitions by the anaphase-promoting complex. Philos Trans R Soc Lond B Biol Sci 1999; 354:1583-90. [PMID: 10582244 PMCID: PMC1692672 DOI: 10.1098/rstb.1999.0502] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proteolysis controls key transitions at several points in the cell cycle. In mitosis, the activation of a large ubiquitin-protein ligase, the anaphase-promoting complex (APC), is required for anaphase initiation and for exit from mitosis. We show that APC is under complex control by a network of regulatory factors, CDC20, CDH1 and MAD2. CDC20 and CDH1 are activators of APC; they bind directly to APC and activate its cyclin ubiquitination activity. CDC20 activates APC at the onset of anaphase in a destruction box (DB)-dependent manner, while CDH1 activates APC from late anaphase through G1 with apparently a much relaxed specificity for the DB. Therefore, CDC20 and CDH1 control both the temporal order of activation and the substrate specificity of APC, and hence regulate different events during mitosis and G1. Counteracting the effect of CDC20, the checkpoint protein MAD2 acts as an inhibitor of APC. When the spindle-assembly checkpoint is activated, MAD2 forms a ternary complex with CDC20 and APC to prevent activation of APC, and thereby arrests cells at prometaphase. Thus, a combination of positive and negative regulators establishes a regulatory circuit of APC, ensuring an ordered progression of events through cell division.
Collapse
Affiliation(s)
- G Fang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
205
|
Yanagida M, Yamashita YM, Tatebe H, Ishii K, Kumada K, Nakaseko Y. Control of metaphase-anaphase progression by proteolysis: cyclosome function regulated by the protein kinase A pathway, ubiquitination and localization. Philos Trans R Soc Lond B Biol Sci 1999; 354:1559-69; discussion 1569-70. [PMID: 10582241 PMCID: PMC1692673 DOI: 10.1098/rstb.1999.0499] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ubiquitin-mediated proteolysis is fundamental to cell cycle progression. In the fission yeast Schizosaccharomyces pombe, a mitotic cyclin (Cdc13), a key cell cycle regulator, is degraded for exiting mitosis, while Cut2 has to be destroyed for the onset of sister chromatid separation in anaphase. Ubiquitination of these proteins requires the special destruction box (DB) sequences locating in their N-termini and the large, 20S complex called the anaphase-promoting complex or cyclosome. Here we show that cyclosome function during metaphase-anaphase progression is regulated by the protein kinase A (PKA) inactivation pathway, ubiquitination of the cyclosome subunit, and cellular localization of the target substrates. Evidence is provided that the cyclosome plays pleiotropic roles in the cell cycle: mutations in the subunit genes show a common anaphase defect, but subunit-specific phenotypes such as in G1/S or G2/M transition, septation and cytokinesis, stress response and heavy metal sensitivity, are additionally produced, suggesting that different subunits take distinct parts of complex cyclosome functions. Inactivation of PKA is important for the activation of the cyclosome for promoting anaphase, perhaps through dephosphorylation of the subunits such as Cut9 (Apc6). Cut4 (Apc1), the largest subunit, plays an essential role in the assembly and functional regulation of the cyclosome in response to cell cycle arrest and stresses. Cut4 is highly modified, probably by ubiquitination, when it is not assembled into the 20S cyclosome. Sds23 is implicated in DB-mediated ubiquitination possibly through regulating de-ubiquitination, while Cut8 is necessary for efficient proteolysis of Cdc13 and Cut2 coupled with cytokinesis. Unexpectedly, the timing of proteolysis is dependent on cellular localization of the substrate. Cdc13 enriched along the spindle disappears first, followed by decay of the nuclear signal, whereas Cut2 in the nucleus disappears first, followed by decline in the spindle signal during metaphase-anaphase progression.
Collapse
Affiliation(s)
- M Yanagida
- CREST Research Project, Department of Biophysics, Graduate School of Science, Kyoto University, Japan.
| | | | | | | | | | | |
Collapse
|
206
|
Toda T, Ochotorena I, Kominami K. Two distinct ubiquitin-proteolysis pathways in the fission yeast cell cycle. Philos Trans R Soc Lond B Biol Sci 1999; 354:1551-7. [PMID: 10582240 PMCID: PMC1692669 DOI: 10.1098/rstb.1999.0498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The SCF complex (Skp1-Cullin-1-F-box) and the APC/cyclosome (anaphase-promoting complex) are two ubiquitin ligases that play a crucial role in eukaryotic cell cycle control. In fission yeast F-box/WD-repeat proteins Pop1 and Pop2, components of SCF are required for cell-cycle-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor Rum1 and the S-phase regulator Cdc18. Accumulation of these proteins in pop1 and pop2 mutants leads to re-replication and defects in sexual differentiation. Despite structural and functional similarities, Pop1 and Pop2 are not redundant homologues. Instead, these two proteins form heterodimers as well as homodimers, such that three distinct complexes, namely SCFPop1/Pop1, SCFPop1/Pop2 and SCFPop2/Pop2, appear to exist in the cell. The APC/cyclosome is responsible for inactivation of CDK/cyclins through the degradation of B-type cyclins. We have identified two novel components or regulators of this complex, called Apc10 and Ste9, which are evolutionarily highly conserved. Apc10 (and Ste9), together with Rum1, are required for the establishment of and progression through the G1 phase in fission yeast. We propose that dual downregulation of CDK, one via the APC/cyclosome and the other via the CDK inhibitor, is a universal mechanism that is used to arrest the cell cycle at G1.
Collapse
Affiliation(s)
- T Toda
- Laboratory of Cell Regulation, Imperial Cancer Research Fund, London, UK.
| | | | | |
Collapse
|
207
|
Hershko A. Mechanisms and regulation of the degradation of cyclin B. Philos Trans R Soc Lond B Biol Sci 1999; 354:1571-5; discussion 1575-6. [PMID: 10582242 PMCID: PMC1692665 DOI: 10.1098/rstb.1999.0500] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The degradation of the cyclin B subunit of protein kinase Cdk1/cyclin B is required for inactivation of the kinase and exit from mitosis. Cyclin B is degraded by the ubiquitin pathway, a system involved in most selective protein degradation in eukaryotic cells. In this pathway, proteins are targeted for degradation by ligation to ubiquitin, a process carried out by the sequential action of three enzymes: the ubiquitin-activating enzyme E1, a ubiquitin-carrier protein E2 and a ubiquitin-protein ligase E3. In the system responsible for cyclin B degradation, the E3-like function is carried out by a large complex called cyclosome or anaphase-promoting complex (APC). In the early embryonic cell cycles, the cyclosome is inactive in the interphase, but becomes active at the end of mitosis. Activation requires phosphorylation of the cyclosome/APC by protein kinase Cdk1/cyclin B. The lag kinetics of cyclosome activation may be explained by Suc1-assisted multiple phosphorylations of partly phosphorylated complex. The presence of a Fizzy/Cdc20-like protein is necessary for maximal activity of the mitotic form of cyclosome/APC in cyclin-ubiquitin ligation.
Collapse
Affiliation(s)
- A Hershko
- Unit of Biochemistry, B. Rappaport Faculty of Medicine, Technion-Israel Institute for Technology, Haifa, Israel
| |
Collapse
|
208
|
Willems AR, Goh T, Taylor L, Chernushevich I, Shevchenko A, Tyers M. SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis. Philos Trans R Soc Lond B Biol Sci 1999; 354:1533-50. [PMID: 10582239 PMCID: PMC1692661 DOI: 10.1098/rstb.1999.0497] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many key activators and inhibitors of cell division are targeted for degradation by a recently described family of E3 ubiquitin protein ligases termed Skp1-Cdc53-F-box protein (SCF) complexes. SCF complexes physically link substrate proteins to the E2 ubiquitin-conjugating enzyme Cdc34, which catalyses substrate ubiquitination, leading to subsequent degradation by the 26S proteasome. SCF complexes contain a variable subunit called an F-box protein that confers substrate specificity on an invariant core complex composed of the subunits Cdc34, Skp1 and Cdc53. Here, we review the substrates and pathways regulated by the yeast F-box proteins Cdc4, Grr1 and Met30. The concepts of SCF ubiquitin ligase function are illustrated by analysis of the degradation pathway for the G1 cyclin Cln2. Through mass spectrometric analysis of Cdc53 associated proteins, we have identified three novel F-box proteins that appear to participate in SCF-like complexes. As many F-box proteins can be found in sequence databases, it appears that a host of cellular pathways will be regulated by SCF-dependent proteolysis.
Collapse
Affiliation(s)
- A R Willems
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
209
|
Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U S A 1999; 96:11364-9. [PMID: 10500182 PMCID: PMC18039 DOI: 10.1073/pnas.96.20.11364] [Citation(s) in RCA: 899] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A RING finger-containing protein (AO7) that binds ubiquitin-conjugating enzymes (E2s) and is a substrate for E2-dependent ubiquitination was identified. Mutations of cation-coordinating residues within AO7's RING finger abolished ubiquitination, as did chelation of zinc. Several otherwise-unrelated RING finger proteins, including BRCA1, Siah-1, TRC8, NF-X1, kf-1, and Praja1, were assessed for their ability to facilitate E2-dependent ubiquitination. In all cases, ubiquitination was observed. The RING fingers were implicated directly in this activity through mutations of metal-coordinating residues or chelation of zinc. These findings suggest that a large number of RING finger-containing proteins, with otherwise diverse structures and functions, may play previously unappreciated roles in modulating protein levels via ubiquitination.
Collapse
Affiliation(s)
- K L Lorick
- Laboratory of Immune Cell Biology, Division of Basic Sciences, National Cancer Institute, Building 10, Room 1B34, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-1152, USA
| | | | | | | | | | | |
Collapse
|
210
|
Maney T, Ginkel LM, Hunter AW, Wordeman L. The kinetochore of higher eucaryotes: a molecular view. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 194:67-131. [PMID: 10494625 DOI: 10.1016/s0074-7696(08)62395-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This review summarizes results concerning the molecular nature of the higher eucaryotic kinetochore. The first major section of this review includes kinetochore proteins whose general functions remain to be determined, precluding their entry into a discrete functional category. Many of the proteins in this section, however, are likely to be involved in kinetochore formation or structure. The second major section is concerned with how microtubule motor proteins function to cause chromosome movement. The microtubule motors dynein, CENP-E, and MCAK have all been observed at the kinetochore. While their precise functions are not well understood, all three are implicated in chromosome movement during mitosis. Finally, the last section deals with kinetochore components that play a role in the spindle checkpoint; a checkpoint that delays mitosis until all kinetochores have attached to the mitotic spindle. Brief reviews of kinetochore morphology and of an important technical breakthrough that enabled the molecular dissection of the kinetochore are also included.
Collapse
Affiliation(s)
- T Maney
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
211
|
Tokumoto M, Nagahama Y, Tokumoto T. Molecular cloning of cDNA encoding a cyclin-selective ubiquitin carrier protein (E2-C) from Carassius auratus (goldfish) and expression analysis of the cloned gene. FEBS Lett 1999; 458:375-7. [PMID: 10570943 DOI: 10.1016/s0014-5793(99)01189-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Destruction of cyclin B is required for exit from mitosis and meiosis. A cyclin-specific ubiquitinating system, including cyclin-selective ubiquitin carrier protein (E2-C), is thought to be responsible for cyclin B destruction. Here we present the cloning, sequencing and expression analysis of goldfish, Carassius auratus, E2-C which encodes the cyclin-selective ubiquitin carrier protein from goldfish ovary. The cloned cDNA is 677 bp long and encodes 172 amino acids. The deduced amino acid sequence is highly homologous to E2-C from other species. Recombinant goldfish E2-C possesses ubiquitinating activity against cyclin B. The expression of mRNA for E2-C was similar to that of mRNA for cyclin B, occurring at very high level in the ovary. The similarity of the expression pattern of E2-C and cyclin B suggests that E2-C mediates a cyclin-specific ubiquitination.
Collapse
Affiliation(s)
- M Tokumoto
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | |
Collapse
|
212
|
Kurasawa Y, Todokoro K. Identification of human APC10/Doc1 as a subunit of anaphase promoting complex. Oncogene 1999; 18:5131-7. [PMID: 10498862 DOI: 10.1038/sj.onc.1203133] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anaphase-promoting complex or cyclosome (APC) is a ubiquitin ligase which specifically targets mitotic regulatory factors such as Pds1/Cut2 and cyclin B. Identification of the subunits of multiprotein complex APC in several species revealed the highly conserved composition of APC from yeast to human. It has been reported, however, that vertebrate APC is composed of at least eight subunits, APC1 to APC8, while budding yeast APC is constituted of at least 12 components, Apc1 to Apc13. It has not yet been clearly understood whether additional components found in budding yeast, Apc9 to Apc13, are actually composed of mammalian APC. Here we isolated and characterized human APC10/Doc1, and found that APC10/Doc1 binds to APC core subunits throughout the cell cycle. Further, it was found that APC10/Doc1 is localized in centrosomes and mitotic spindles throughout mitosis, while it is also localized in kinetochores from prophase to anaphase and in midbody in telophase and cytokinesis. These results strongly support the notion that human APC10/Doc1 may be one of the APC core subunits rather than the transiently associated regulatory factor.
Collapse
Affiliation(s)
- Y Kurasawa
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1, Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | |
Collapse
|
213
|
Smith KN, Iwanejko L, Loeillet S, Fabre F, Nicolas A. Disruption and functional analysis of seven ORFs on chromosome IV: YDL057w, YDL012c, YDL010w, YDL009c, YDL008w (APC11), YDL005c (MED2) and YDL003w (MCD1). Yeast 1999; 15:1255-67. [PMID: 10487928 DOI: 10.1002/(sici)1097-0061(19990915)15:12<1255::aid-yea451>3.0.co;2-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the context of the EUROFAN project, we have carried out the systematic disruption of seven ORFs on chromosome IV of Saccharomyces cerevisiae using the long flanking homology technique to replace each ORF with the KanMX cassette. Targeted disruption of YDL057w, YDL012c, or YDL010w with YDL009c (the two ORFs overlap) confers no overt defects in haploid growth on a variety of media at different temperatures, in mating, or in the sporulation of diploids homozygous for the disruption. By contrast, YDL008w and YDL003w disruptants are non-viable. The product of YDL008w (elsewhere identified as APC11) is a component of the anaphase promoting complex. YDL003w (also termed MCD1) is a homologue of Schizosaccharomyces pombe rad21, an essential gene implicated in DNA double-strand break repair and nuclear organization in fission yeast. In budding yeast, this ORF has been shown by several laboratories to encode a protein involved in sister chromatid cohesion and chromosome condensation. The remaining ORF, YDL005c (also termed MED2), encodes a component of the transcriptional activator complex known as Mediator. Disruption of YDL005c confers a modest slow growth phenotype on rich medium and a more severe phenotype on minimal medium, aberrant cellular morphology, and mating defects; diploids homozygous for the disruption cannot sporulate.
Collapse
Affiliation(s)
- K N Smith
- Institut Curie, Section de Recherche, CNRS UMR 144, 26, Rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
214
|
Freed E, Lacey KR, Huie P, Lyapina SA, Deshaies RJ, Stearns T, Jackson PK. Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev 1999; 13:2242-57. [PMID: 10485847 PMCID: PMC316987 DOI: 10.1101/gad.13.17.2242] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1999] [Accepted: 07/20/1999] [Indexed: 11/24/2022]
Abstract
Centrosomes organize the mitotic spindle to ensure accurate segregation of the chromosomes in mitosis. The mechanism that ensures accurate duplication and separation of the centrosomes underlies the fidelity of chromosome segregation, but remains unknown. In Saccharomyces cerevisiae, entry into S phase and separation of spindle pole bodies each require CDC4 and CDC34, which encode components of an SCF (Skp1-cullin-F-box) ubiquitin ligase, but a direct (SCF) connection to the spindle pole body is unknown. Using immunofluorescence microscopy, we show that in mammalian cells the Skp1 protein and the cullin Cul1 are localized to interphase and mitotic centrosomes and to the cytoplasm and nucleus. Deconvolution and immunoelectron microscopy suggest that Skp1 forms an extended pericentriolar structure that may function to organize the centrosome. Purified centrosomes also contain Skp1, and Cul1 modified by the ubiquitin-like molecule NEDD8, suggesting a role for NEDD8 in targeting. Using an in vitro assay for centriole separation in Xenopus extracts, antibodies to Skp1 or Cul1 block separation. Proteasome inhibitors block both centriole separation in vitro and centrosome duplication in Xenopus embryos. We identify candidate centrosomal F-box proteins, suggesting that distinct SCF complexes may direct proteolysis of factors mediating multiple steps in the centrosome cycle.
Collapse
Affiliation(s)
- E Freed
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Palo Alto, California 94305 USA
| | | | | | | | | | | | | |
Collapse
|
215
|
Kotani S, Tanaka H, Yasuda H, Todokoro K. Regulation of APC activity by phosphorylation and regulatory factors. J Cell Biol 1999; 146:791-800. [PMID: 10459014 PMCID: PMC2156135 DOI: 10.1083/jcb.146.4.791] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/1999] [Accepted: 07/19/1999] [Indexed: 11/22/2022] Open
Abstract
Ubiquitin-dependent proteolysis of Cut2/Pds1 and Cyclin B is required for sister chromatid separation and exit from mitosis, respectively. Anaphase-promoting complex/cyclosome (APC) specifically ubiquitinates Cut2/Pds1 at metaphase-anaphase transition, and ubiquitinates Cyclin B in late mitosis and G1 phase. However, the exact regulatory mechanism of substrate-specific activation of mammalian APC with the right timing remains to be elucidated. We found that not only the binding of the activators Cdc20 and Cdh1 and the inhibitor Mad2 to APC, but also the phosphorylation of Cdc20 and Cdh1 by Cdc2-Cyclin B and that of APC by Polo-like kinase and cAMP-dependent protein kinase, regulate APC activity. The cooperation of the phosphorylation/dephosphorylation and the regulatory factors in regulation of APC activity may thus control the precise progression of mitosis.
Collapse
Affiliation(s)
- Shuji Kotani
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research, Tsukuba, Ibaraki 305-0074, Japan
| | - Hirofumi Tanaka
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachiooji, Tokyo 192-0355, Japan
| | - Hideyo Yasuda
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachiooji, Tokyo 192-0355, Japan
| | - Kazuo Todokoro
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
216
|
Pause A, Peterson B, Schaffar G, Stearman R, Klausner RD. Studying interactions of four proteins in the yeast two-hybrid system: structural resemblance of the pVHL/elongin BC/hCUL-2 complex with the ubiquitin ligase complex SKP1/cullin/F-box protein. Proc Natl Acad Sci U S A 1999; 96:9533-8. [PMID: 10449727 PMCID: PMC22243 DOI: 10.1073/pnas.96.17.9533] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The yeast two-hybrid system is a powerful technique that detects interactions between two proteins and has been useful in identifying new binding partners. However, the system fails to detect protein-protein interactions that require the presence of additional components of a multisubunit complex. Here we demonstrate that the vector YIpDCE1 can be used to express elongins B and C in yeast, and that these proteins form a stable complex that interacts with the von Hippel-Lindau tumor-suppressor gene product (pVHL). Only when pVHL and elongins B and C (VBC) are present does an interaction with the cullin family member, hCUL-2, occur, forming the heterotetrameric pVHL/elongin BC/hCUL-2 complex. This system was then used to map the binding region of hCUL-2 for the VBC complex. The first amino-terminal 108 aa of hCUL-2 are necessary for interaction with the VBC complex. The elongin BC dimer acts as a bridge between pVHL and hCUL-2 because pVHL and hCUL-2 can form distinct complexes with elongins B and C. These results reveal a striking structural resemblance of pVHL/elongin BC/hCUL-2 complex with the E3-like ubiquitin ligase complex SKP1/Cullin/F-box protein with respect to protein composition and sites of interactions. Thus, it seems possible that pVHL/elongin BC/hCUL-2 complex will possess ubiquitin ligase activity targeting specific proteins for degradation by the proteasome.
Collapse
Affiliation(s)
- A Pause
- Molecular Oncology Group, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
217
|
Yamashita YM, Nakaseko Y, Kumada K, Nakagawa T, Yanagida M. Fission yeast APC/cyclosome subunits, Cut20/Apc4 and Cut23/Apc8, in regulating metaphase-anaphase progression and cellular stress responses. Genes Cells 1999; 4:445-63. [PMID: 10526233 DOI: 10.1046/j.1365-2443.1999.00274.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The 20S cyclosome/APC complex promotes metaphase-anaphase transition by ubiquitinating its specific substrates such as mitotic cyclins and anaphase inhibitor Cut2/Pds1/securin. The complex has been shown to contain more than 10 proteins in budding yeast and frog. In fission yeast, however, only five (Cut4, Cut9, Nuc2, Apc10, Hcn1) have been identified. RESULTS More than five hundred temperature-sensitive mutants were screened for identifying those defective in mitotic anaphase. Fifty-five showed the cut (cell untimely torn) phenotype or metaphase-arrest phenotypes, 27 of them locating at new loci. Their extracts were run in sucrose gradient centrifugation, and four showed alterations in the sedimentation profiles. The gene products of cut20+ and cut23+ were thus identified. Phenotypes of cut20-100 mutant highly resemble cut4-533 in many ways: they are hypersensitive to canavanine and CdCl2, and suppressed by PKA-inactivating regulators, cAMP-dependent phosphodiesterase and PKA regulatory subunits. Cut20 interacts closely with Cut4 in the assembly process of cyclosome. But cut20 mutant differs from cut4, as a novel gene stw1+ suppresses cut20 mutant but not cut4. cut23-194 mutant cells are sterile and blocked at metaphase, but does not show sensitivity to the stress and cAMP. TPR repeat-containing Cut23 may not be the stable component of APC/cyclosome, and its level significantly fluctuates during cell cycle. Cut23 may be ubiquitinated and degraded in a cell cycle dependent fashion. CONCLUSIONS We identified two new subunits of fission yeast cyclosome/APC complex. Our observations indicate that cyclosome components are divided into several subgroups with distinctly different roles.
Collapse
Affiliation(s)
- Y M Yamashita
- CREST Research Project, Department of Biophysics, Graduate School of Science, Japan
| | | | | | | | | |
Collapse
|
218
|
Cohen-Fix O, Koshland D. Pds1p of budding yeast has dual roles: inhibition of anaphase initiation and regulation of mitotic exit. Genes Dev 1999; 13:1950-9. [PMID: 10444593 PMCID: PMC316926 DOI: 10.1101/gad.13.15.1950] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Progression through mitosis is controlled by protein degradation that is mediated by the anaphase-promoting complex/cyclosome (APC/C) and its associated specificity factors. In budding yeast, APC/C(Cdc20) promotes the degradation of the Pds1p anaphase inhibitor at the metaphase-to-anaphase transition, whereas APC/C(Cdh1) promotes the degradation of the mitotic cyclins at the exit from mitosis. Here we show that Pds1p has a novel activity as an inhibitor of mitotic cyclin destruction, apparently by preventing the activation of APC/C(Cdh1). This activity of Pds1p is independent of its activity as an anaphase inhibitor. We propose that the dual role of Pds1p as an inhibitor of anaphase and of cyclin degradation allows the cell to couple the exit from mitosis to the prior completion of anaphase. Finally, these observations provide a novel regulatory paradigm in which the sequential degradation of two substrates is determined by the substrates themselves, such that an early substrate inhibits the degradation of a later one.
Collapse
Affiliation(s)
- O Cohen-Fix
- The Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland 20982, USA.
| | | |
Collapse
|
219
|
Abstract
The rapid expansion of nucleotide sequence data available in public databases is revolutionizing biomedical research. These databases have a variety of uses, including the discovery of novel genes, identification of homologous genes, analysis of alternative splicing, chromosomal localization of genes, and detection of polymorphisms. Data sets such as the human transcript map will undoubtedly accelerate identification of candidate genes in positional-cloning approaches. Careful in silico analysis can significantly reduce the amount of lab work required. Approximately half of all human genes are represented in these databases; therefore, one need not wait for the entire human genome to be sequenced before performing genome-wide studies.
Collapse
Affiliation(s)
- A Pandey
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
220
|
Farr KA, Cohen-Fix O. The metaphase to anaphase transition: a case of productive destruction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:14-9. [PMID: 10429181 DOI: 10.1046/j.1432-1327.1999.00510.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The metaphase to anaphase transition is a point of no return; the duplicated sister chromatids segregate to the future daughter cells, and any mistake in this process may be deleterious to both progeny. At the heart of this process lies the anaphase inhibitor, which must be degraded in order for this transition to take place. The degradation of the anaphase inhibitor occurs via the ubiquitin-degradation pathway, and it involves the activity of the cyclosome/anaphase promoting complex (APC). The fidelity of the metaphase to anaphase transition is ensured by several different regulatory mechanisms that modulate the activity of the cyclosome/APC. Great advancements have been made in this field in the past few years, but many questions still remain to be answered.
Collapse
Affiliation(s)
- K A Farr
- The Laboratory of Molecular and Cellular Biology, NIDDK, NIH, Bethesda, MD, USA
| | | |
Collapse
|
221
|
|
222
|
Seol JH, Feldman RM, Zachariae W, Shevchenko A, Correll CC, Lyapina S, Chi Y, Galova M, Claypool J, Sandmeyer S, Nasmyth K, Deshaies RJ, Shevchenko A, Deshaies RJ. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev 1999; 13:1614-26. [PMID: 10385629 PMCID: PMC316801 DOI: 10.1101/gad.13.12.1614] [Citation(s) in RCA: 333] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SCFCdc4 (Skp1, Cdc53/cullin, F-box protein) defines a family of modular ubiquitin ligases (E3s) that regulate diverse processes including cell cycle, immune response, and development. Mass spectrometric analysis of proteins copurifying with Cdc53 identified the RING-H2 finger protein Hrt1 as a subunit of SCF. Hrt1 shows striking similarity to the Apc11 subunit of anaphase-promoting complex. Conditional inactivation of hrt1(ts) results in stabilization of the SCFCdc4 substrates Sic1 and Cln2 and cell cycle arrest at G1/S. Hrt1 assembles into recombinant SCF complexes and individually binds Cdc4, Cdc53 and Cdc34, but not Skp1. Hrt1 stimulates the E3 activity of recombinant SCF potently and enables the reconstitution of Cln2 ubiquitination by recombinant SCFGrr1. Surprisingly, SCF and the Cdc53/Hrt1 subcomplex activate autoubiquitination of Cdc34 E2 enzyme by a mechanism that does not appear to require a reactive thiol. The highly conserved human HRT1 complements the lethality of hrt1Delta, and human HRT2 binds CUL-1. We conclude that Cdc53/Hrt1 comprise a highly conserved module that serves as the functional core of a broad variety of heteromeric ubiquitin ligases.
Collapse
Affiliation(s)
- J H Seol
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Resing KA, Ahn NG. Applications of mass spectrometry to signal transduction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:501-23. [PMID: 10354711 DOI: 10.1016/s0079-6107(98)00048-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Advances in mass spectrometry instrumentation, protocols for sample handling, and computational methods provide powerful new approaches to solving problems in analytical biochemistry. This review summarizes recent work illustrating ways in which mass spectrometry has been used to address questions relevant to signal transduction. Rather than encompass all of the instruments or methodologies that might be brought to bear on these problems, we present an overview of commonly used techniques, promising new methodologies, and some applications.
Collapse
Affiliation(s)
- K A Resing
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309, USA
| | | |
Collapse
|
224
|
Abstract
The events of late mitosis, from sister-chromatid separation to cytokinesis, are governed by the anaphase-promoting complex (APC), a multisubunit assembly that triggers the ubiquitin-dependent proteloysis of key regulatory proteins. An intricate regulatory network governs APC activity and helps to ensure that late mitotic events are properly timed and coordinated.
Collapse
Affiliation(s)
- D O Morgan
- Department of Physiology, University of California, San Francisco 94143-0444, USA.
| |
Collapse
|
225
|
Grossberger R, Gieffers C, Zachariae W, Podtelejnikov AV, Schleiffer A, Nasmyth K, Mann M, Peters JM. Characterization of the DOC1/APC10 subunit of the yeast and the human anaphase-promoting complex. J Biol Chem 1999; 274:14500-7. [PMID: 10318877 DOI: 10.1074/jbc.274.20.14500] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC) is a ubiquitin-protein ligase whose activity is essential for progression through mitosis. The vertebrate APC is thought to be composed of 8 subunits, whereas in budding yeast several additional APC-associated proteins have been identified, including a 33-kDa protein called Doc1 or Apc10. Here, we show that Doc1/Apc10 is a subunit of the yeast APC throughout the cell cycle. Mutation of Doc1/Apc10 inactivates the APC without destabilizing the complex. An ortholog of Doc1/Apc10, which we call APC10, is associated with the APC in different vertebrates, including humans and frogs. Biochemical fractionation experiments and mass spectrometric analysis of a component of the purified human APC show that APC10 is a genuine APC subunit whose cellular levels or association with the APC are not cell cycle-regulated. We have further identified an APC10 homology region, which we propose to call the DOC domain, in several protein sequences that also contain either cullin or HECT domains. Cullins are present in several ubiquitination complexes including the APC, whereas HECT domains represent the catalytic core of a different type of ubiquitin-protein ligase. DOC domains may therefore be important for reactions catalyzed by several types of ubiquitin-protein ligases.
Collapse
Affiliation(s)
- R Grossberger
- Research Institute of Molecular Pathology, Dr.-Bohr Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Affiliation(s)
- D M Koepp
- Howard Hughes Medical Institute, and Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
227
|
Fesquet D, Fitzpatrick PJ, Johnson AL, Kramer KM, Toyn JH, Johnston LH. A Bub2p-dependent spindle checkpoint pathway regulates the Dbf2p kinase in budding yeast. EMBO J 1999; 18:2424-34. [PMID: 10228157 PMCID: PMC1171325 DOI: 10.1093/emboj/18.9.2424] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exit from mitosis in all eukaroytes requires inactivation of the mitotic kinase. This occurs principally by ubiquitin-mediated proteolysis of the cyclin subunit controlled by the anaphase-promoting complex (APC). However, an abnormal spindle and/or unattached kinetochores activates a conserved spindle checkpoint that blocks APC function. This leads to high mitotic kinase activity and prevents mitotic exit. DBF2 belongs to a group of budding yeast cell cycle genes that when mutated prevent cyclin degradation and block exit from mitosis. DBF2 encodes a protein kinase which is cell cycle regulated, peaking in metaphase-anaphase B/telophase, but its function remains unknown. Here, we show the Dbf2p kinase activity to be a target of the spindle checkpoint. It is controlled specifically by Bub2p, one of the checkpoint components that is conserved in fission yeast and higher eukaroytic cells. Significantly, in budding yeast, Bub2p shows few genetic or biochemical interactions with other members of the spindle checkpoint. Our data now point to the protein kinase Mps1p triggering a new parallel branch of the spindle checkpoint in which Bub2p blocks Dbf2p function.
Collapse
Affiliation(s)
- D Fesquet
- Division of Yeast Genetics, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
228
|
Kaiser P, Moncollin V, Clarke DJ, Watson MH, Bertolaet BL, Reed SI, Bailly E. Cyclin-dependent kinase and Cks/Suc1 interact with the proteasome in yeast to control proteolysis of M-phase targets. Genes Dev 1999; 13:1190-202. [PMID: 10323869 PMCID: PMC316943 DOI: 10.1101/gad.13.9.1190] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell cycle-specific proteolysis is critical for proper execution of mitosis in all eukaryotes. Ubiquitination and subsequent proteolysis of the mitotic regulators Clb2 and Pds1 depend on the cyclosome/APC and the 26S proteasome. We report here that components of the cell cycle machinery in yeast, specifically the cell cycle regulatory cyclin-dependent kinase Cdc28 and a conserved associated protein Cks1/Suc1, interact genetically, physically, and functionally with components of the 26S proteasome. A mutation in Cdc28 (cdc28-1N) that interferes with Cks1 binding, or inactivation of Cks1 itself, confers stabilization of Clb2, the principal mitotic B-type cyclin in budding yeast. Surprisingly, Clb2-ubiquitination in vivo and in vitro is not affected by mutations in cks1, indicating that Cks1 is not essential for cyclosome/APC activity. However, mutant Cks1 proteins no longer physically interact with the proteasome, suggesting that Cks1 is required for some aspect of proteasome function during M-phase-specific proteolysis. We further provide evidence that Cks1 function is required for degradation of the anaphase inhibitor Pds1. Stabilization of Pds1 is partially responsible for the metaphase arrest phenotype of cks1 mutants because deletion of PDS1 partially relieves the metaphase block in these mutants.
Collapse
Affiliation(s)
- P Kaiser
- The Scripps Research Institute, MB7, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
The initiation of anaphase and exit from mitosis depend on a ubiquitination complex called the anaphase-promoting complex (APC) or cyclosome. The APC is composed of more than 10 constitutive subunits and associates with additional regulatory factors in mitosis and during the G1 phase of the cell cycle. At the metaphase-anaphase transition the APC ubiquitinates proteins such as Pds1 in budding yeast and Cut2 in fission yeast whose subsequent degradation by the 26S proteasome is essential for the initiation of sister chromatid separation. Later in anaphase and telophase the APC promotes the inactivation of the mitotic cyclin-dependent protein kinase 1 by ubiquitinating its activating subunit cyclin B. The APC also mediates the ubiquitin-dependent proteolysis of several other mitotic regulators, including other protein kinases, APC activators, spindle-associated proteins, and inhibitors of DNA replication.
Collapse
Affiliation(s)
- J M Peters
- Research Institute of Molecular Pathology (IMP), Dr.-Bohr Gasse 7, Vienna, A-1030, Austria.
| |
Collapse
|
230
|
Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ, Iliopoulos O, Lane WS, Kaelin WG, Elledge SJ, Conaway RC, Harper JW, Conaway JW. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 1999; 284:657-61. [PMID: 10213691 DOI: 10.1126/science.284.5414.657] [Citation(s) in RCA: 618] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The von Hippel-Lindau (VHL) tumor suppressor gene is mutated in most human kidney cancers. The VHL protein is part of a complex that includes Elongin B, Elongin C, and Cullin-2, proteins associated with transcriptional elongation and ubiquitination. Here it is shown that the endogenous VHL complex in rat liver also includes Rbx1, an evolutionarily conserved protein that contains a RING-H2 fingerlike motif and that interacts with Cullins. The yeast homolog of Rbx1 is a subunit and potent activator of the Cdc53-containing SCFCdc4 ubiquitin ligase required for ubiquitination of the cyclin-dependent kinase inhibitor Sic1 and for the G1 to S cell cycle transition. These findings provide a further link between VHL and the cellular ubiquitination machinery.
Collapse
Affiliation(s)
- T Kamura
- Howard Hughes Medical Institute, Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Affiliation(s)
- M Tyers
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
| | | |
Collapse
|
232
|
Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, Elledge SJ, Harper JW. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 1999; 284:662-5. [PMID: 10213692 DOI: 10.1126/science.284.5414.662] [Citation(s) in RCA: 321] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Control of cyclin levels is critical for proper cell cycle regulation. In yeast, the stability of the G1 cyclin Cln1 is controlled by phosphorylation-dependent ubiquitination. Here it is shown that this reaction can be reconstituted in vitro with an SCF E3 ubiquitin ligase complex. Phosphorylated Cln1 was ubiquitinated by SCF (Skp1-Cdc53-F-box protein) complexes containing the F-box protein Grr1, Rbx1, and the E2 Cdc34. Rbx1 promotes association of Cdc34 with Cdc53 and stimulates Cdc34 auto-ubiquitination in the context of Cdc53 or SCF complexes. Rbx1, which is also a component of the von Hippel-Lindau tumor suppressor complex, may define a previously unrecognized class of E3-associated proteins.
Collapse
Affiliation(s)
- D Skowyra
- Verna and Marrs McLean Department of Biochemistry, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Shteinberg M, Hershko A. Role of Suc1 in the activation of the cyclosome by protein kinase Cdk1/cyclin B. Biochem Biophys Res Commun 1999; 257:12-8. [PMID: 10092502 DOI: 10.1006/bbrc.1999.0409] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large complex, called the cyclosome or anaphase-promoting complex, has specific and regulated protein-ubiquitin ligase activity that targets mitotic regulators (such as cyclin B) for degradation at the end of mitosis. In early embryonic cell cycles the cyclosome is inactive in the interphase, but is subsequently converted by protein kinase Cdk1/cyclin B to an active, phosphorylated form, in a process that includes an initial lag period. This time lag may be important to prevent premature self-inactivation of Cdk1/cyclin B before the end of mitosis. We have previously observed that the phosphorylated form of the cyclosome binds to Suc1, a protein that associates with Cdk1 and with phosphate-containing compounds. We now report that low, physiological concentrations of Suc1 stimulate the activation of the interphase form of the cyclosome by the protein kinase. When Suc1 was present from the beginning of the incubation together with protein kinase Cdk1/cyclin B, activation of the cyclosome took place with the normal lag kinetics. However, when interphase cyclosome was first incubated with protein kinase Cdk1/cyclin B without Suc1, the subsequent addition of Suc1 caused a rapid burst of cyclosome activation and the lag was completely abolished. These findings are consistent with the interpretation that following initial slow phosphorylations of the cyclosome by the protein kinase, Suc1 accelerates multiple phosphorylations that culminate in the full activation of the cyclosome. In support of this interpretation, we find that Suc1 stimulates the phosphorylation of several proteins in the preparation of interphase cyclosome and that the effect of Suc1 on phosphorylation was augmented by prior incubation of interphase cyclosome with protein kinase Cdk1/cyclin B.
Collapse
Affiliation(s)
- M Shteinberg
- Unit of Biochemistry, The B. Rappaport Faculty of Medicine and The Rappaport Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | | |
Collapse
|
234
|
Sun S, Kaluzhny Y, Ravid K. Ectopic expression of the Aspergillus nidulans mitotic inducer, nimA kinase, in megakaryocytes: effect on polyploidization. Exp Hematol 1999; 27:594-604. [PMID: 10210317 DOI: 10.1016/s0301-472x(98)00079-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aspergillus nidulans nimA gene encodes a serine/threonine protein kinase (NIMA) whose activity is essential for mitotic entry and chromatin condensation. Both the activity and the abundance of NIMA protein increase at the G2/M transition of the fungal cell cycle. In this study, we report the effects elicited by ectopic expression of nimA on polyploidization in a mouse megakaryocytic line, Y10, which is undergoing an endomitotic cell cycle. A pool of Y10 stable transfectants that have been induced to express nimA displayed a decrease in cell number and an elevated DNA content per cell. NIMA also dramatically enhanced the activity of phorbal 12-myristate 13-acetate toward polyploidization. Analysis of individual nimA transfectants revealed that the DNA content per cell rose in cells expressing high levels of nimA and that the level of cyclin B was reduced as compared to the mock-transfected cells. These effects observed in polyploidizing megakaryocytes are in contrast to those found in A. nidulans and HeLa cells, in which induced nimA expression caused abnormal chromatin condensation and cell cycle arrest. We conclude that high-level expression of nimA in cells programmed to undergo endomitosis could potentiate polyploidization. The challenge now resides in the isolation of the authentic megakaryocyte counterpart of the fungal nimA.
Collapse
Affiliation(s)
- S Sun
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA 02118, USA
| | | | | |
Collapse
|
235
|
Dobie KW, Hari KL, Maggert KA, Karpen GH. Centromere proteins and chromosome inheritance: a complex affair. Curr Opin Genet Dev 1999; 9:206-17. [PMID: 10322137 DOI: 10.1016/s0959-437x(99)80031-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Centromeres and the associated kinetochores are involved in essential aspects of chromosome transmission. Recent advances have included the identification and understanding of proteins that have a pivotal role in centromere structure, kinetochore formation, and the coordination of chromosome inheritance with the cell cycle in several organisms. A picture is beginning to emerge of the centromere-kinetechore as a complex and dynamic structure with conservation of function at the protein level across diverse species.
Collapse
Affiliation(s)
- K W Dobie
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
236
|
Ohta T, Michel JJ, Schottelius AJ, Xiong Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell 1999; 3:535-41. [PMID: 10230407 DOI: 10.1016/s1097-2765(00)80482-7] [Citation(s) in RCA: 375] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have identified two highly conserved RING finger proteins, ROC1 and ROC2, that are homologous to APC11, a subunit of the anaphase-promoting complex. ROC1 and ROC2 commonly interact with all cullins while APC11 specifically interacts with APC2, a cullin-related APC subunit. YeastROC1 encodes an essential gene whose reduced expression resulted in multiple, elongated buds and accumulation of Sic1p and Cln2p. ROC1 and APC11 immunocomplexes can catalyze isopeptide ligations to form polyubiquitin chains in an E1- and E2-dependent manner. ROC1 mutations completely abolished their ligase activity without noticeable changes in associated proteins. Ubiquitination of phosphorylated I kappa B alpha can be catalyzed by the ROC1 immunocomplex in vitro. Hence, combinations of ROC/APC11 and cullin proteins proteins potentially constitute a wide variety of ubiquitin ligases.
Collapse
Affiliation(s)
- T Ohta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
237
|
Berry LD, Feoktistova A, Wright MD, Gould KL. The schizosaccharomyces pombe dim1(+) gene interacts with the anaphase-promoting complex or cyclosome (APC/C) component lid1(+) and is required for APC/C function. Mol Cell Biol 1999; 19:2535-46. [PMID: 10082519 PMCID: PMC84046 DOI: 10.1128/mcb.19.4.2535] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Schizosaccharomyces pombe dim1(+) gene is required for entry into mitosis and for chromosome segregation during mitosis. To further understand dim1p function, we undertook a synthetic lethal screen with the temperature-sensitive dim1-35 mutant and isolated lid (for lethal in dim1-35) mutants. Here, we describe the temperature-sensitive lid1-6 mutant. At the restrictive temperature of 36 degrees C, lid1-6 mutant cells arrest with a "cut" phenotype similar to that of cut4 and cut9 mutants. An epitope-tagged version of lid1p is a component of a multiprotein approximately 20S complex; the presence of lid1p in this complex depends upon functional cut9(+). lid1p-myc coimmunoprecipitates with several other proteins, including cut9p and nuc2p, and the presence of cut9p in a 20S complex depends upon the activity of lid1(+). Further, lid1(+) function is required for the multiubiquitination of cut2p, an anaphase-promoting complex or cyclosome (APC/C) target. Thus, lid1p is a component of the S. pombe APC/C. In dim1 mutants, the abundances of lid1p and the APC/C complex decline significantly, and the ubiquitination of an APC/C target is abolished. These data suggest that at least one role of dim1p is to maintain or establish the steady-state level of the APC/C.
Collapse
Affiliation(s)
- L D Berry
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
238
|
Tan P, Fuchs SY, Chen A, Wu K, Gomez C, Ronai Z, Pan ZQ. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol Cell 1999; 3:527-33. [PMID: 10230406 DOI: 10.1016/s1097-2765(00)80481-5] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of the transcription factor NF-kappa B in response to proinflammatory stimuli requires the phosphorylation-triggered and ubiquitin-dependent degradation of the NF-kappa B inhibitor, I kappa B alpha. Here, we show the in vitro reconstitution of the phosphorylation-dependent ubiquitination of I kappa B alpha with purified components. ROC1, a novel SCF-associated protein, is recruited by cullin 1 to form a quatemary SCFHOS-ROC1 holenzyme (with Skp1 and the beta-TRCP homolog HOS). SCFHOS-ROC1 binds IKK beta-phosphorylated I kappa B alpha and catalyzes its ubiquitination in the presence of ubiquitin, E1, and Cdc34. ROC1 plays a unique role in the ubiquitination reaction by heterodimerizing with cullin 1 to catalyze ubiquitin polymerization.
Collapse
Affiliation(s)
- P Tan
- Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
239
|
Jaspersen SL, Charles JF, Morgan DO. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr Biol 1999; 9:227-36. [PMID: 10074450 DOI: 10.1016/s0960-9822(99)80111-0] [Citation(s) in RCA: 321] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Exit from mitosis requires inactivation of mitotic cyclin-dependent kinases (CDKs). A key mechanism of CDK inactivation is ubiquitin-mediated cyclin proteolysis, which is triggered by the late mitotic activation of a ubiquitin ligase known as the anaphase-promoting complex (APC). Activation of the APC requires its association with substoichiometric activating subunits termed Cdc20 and Hct1 (also known as Cdh1). Here, we explore the molecular function and regulation of the APC regulatory subunit Hct1 in Saccharomyces cerevisiae. RESULTS Recombinant Hct1 activated the cyclin-ubiquitin ligase activity of APC isolated from multiple cell cycle stages. APC isolated from cells arrested in G1, or in late mitosis due to the cdc14-1 mutation, was more responsive to Hct1 than APC isolated from other stages. We found that Hct1 was phosphorylated in vivo at multiple CDK consensus sites during cell cycle stages when activity of the cyclin-dependent kinase Cdc28 is high and APC activity is low. Purified Hct1 was phosphorylated in vitro at these sites by purified Cdc28-cyclin complexes, and phosphorylation abolished the ability of Hct1 to activate the APC in vitro. The phosphatase Cdc14, which is known to be required for APC activation in vivo, was able to reverse the effects of Cdc28 by catalyzing Hct1 dephosphorylation and activation. CONCLUSIONS We conclude that Hct1 phosphorylation is a key regulatory mechanism in the control of cyclin destruction. Phosphorylation of Hct1 provides a mechanism by which Cdc28 blocks its own inactivation during S phase and early mitosis. Following anaphase, dephosphorylation of Hct1 by Cdc14 may help initiate cyclin destruction.
Collapse
Affiliation(s)
- S L Jaspersen
- Department of Physiology, University of California, San Francisco, California 94143-0444, USA
| | | | | |
Collapse
|
240
|
Abstract
The promise of genomics has dramatically altered the way drug discovery is now viewed. Overshadowed by the exuberance for genomics are the observations that most disease processes and treatments are manifest at the protein level and that there may not be a good correlation between gene expression and protein expression. An alternative and complementary approach to genomics is protein expression profiling - proteomics. The authors describe the technology, its advantages and some applications.
Collapse
|
241
|
Abstract
Loss of cohesion between sister chromatids triggers their segregation during anaphase. Recent work has identified both a cohesin complex that holds sisters together and a sister-separating protein, separin, that destroys cohesion. Separins are bound by inhibitory proteins whose proteolysis at the metaphase-anaphase transition is mediated by the anaphase-promoting complex and its activator protein CDC20 (APCCDC20). When chromosomes are misaligned, a surveillance mechanism (checkpoint) blocks sister separation by inhibiting APCCDC20. Defects in this apparatus are implicated in causing aneuploidy in human cells.
Collapse
Affiliation(s)
- K Nasmyth
- IMP Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
242
|
Skibbens RV, Hieter P. Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery. Annu Rev Genet 1999; 32:307-37. [PMID: 9928483 DOI: 10.1146/annurev.genet.32.1.307] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whether we consider the division of the simplest unicellular organisms into two daughter cells or the generation of haploid gametes by the most complex eukaryotes, no two processes secure the continuance of life more than the proper replication and segregation of the genetic material. The cell cycle, marked in part by the periodic rise and fall of cyclin-dependent kinase (CDK) activities, is the means by which these two processes are separated. DNA damage and mistakes in chromosome segregation are costly, so nature has further devised elaborate checkpoint mechanisms that halt cell cycle progression, allowing time for repairs or corrections. In this article, we review the mitotic checkpoint mechanism that responds to defects in the chromosome segregation machinery and arrests cells in mitosis prior to anaphase onset. At opposite ends of this pathway are the kinetochore, where many checkpoint proteins reside, and the anaphase-promoting complex (APC), the metaphase-to-interphase transition regulator. Throughout this review we focus on budding yeast but reference parallel processes found in other organisms.
Collapse
Affiliation(s)
- R V Skibbens
- Carnegie Institute of Washington, Department of Embryology, Baltimore, Maryland 21210, USA.
| | | |
Collapse
|
243
|
Tóth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 1999; 13:320-33. [PMID: 9990856 PMCID: PMC316435 DOI: 10.1101/gad.13.3.320] [Citation(s) in RCA: 487] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1998] [Accepted: 12/07/1998] [Indexed: 11/24/2022]
Abstract
Sister chromatid cohesion is crucial for chromosome segregation during mitosis. Loss of cohesion very possibly triggers sister separation at the metaphase --> anaphase transition. This process depends on the destruction of anaphase inhibitory proteins like Pds1p (Cut2p), which is thought to liberate a sister-separating protein Esp1p (Cut1p). By looking for mutants that separate sister centromeres in the presence of Pds1p, this and a previous study have identified six proteins essential for establishing or maintaining sister chromatid cohesion. Four of these proteins, Scc1p, Scc3p, Smc1p, and Smc3p, are subunits of a 'Cohesin' complex that binds chromosomes from late G1 until the onset of anaphase. The fifth protein, Scc2p, is not a stoichiometric Cohesin subunit but it is required for Cohesin's association with chromosomes. The sixth protein, Eco1p(Ctf7p), is not a Cohesin subunit. It is necessary for the establishment of cohesion during DNA replication but not for its maintenance during G2 and M phases.
Collapse
Affiliation(s)
- A Tóth
- Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
244
|
Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 1999; 2:709-18. [PMID: 9885559 DOI: 10.1016/s1097-2765(00)80286-5] [Citation(s) in RCA: 596] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinases (CDKs) by an unknown mechanism. We show that the Cdc14 phosphatase triggers mitotic exit by three parallel mechanisms, each of which inhibits Cdk activity. Cdc14 dephosphorylates Sic1, a Cdk inhibitor, and Swi5, a transcription factor for SIC1, and induces degradation of mitotic cyclins, likely by dephosphorylating the activator of mitotic cyclin degradation, Cdh1/Hct1. Feedback between these pathways may lead to precipitous collapse of mitotic CDK activity and help coordinate exit from mitosis.
Collapse
Affiliation(s)
- R Visintin
- Whitehead Institute for Biomedical Research, Cambridge Center, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
245
|
Sawada MT, Morinaga C, Izumi K, Sawada H. The 26S proteasome assembly is regulated by a maturation-inducing hormone in starfish oocytes. Biochem Biophys Res Commun 1999; 254:338-44. [PMID: 9918840 DOI: 10.1006/bbrc.1998.9948] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in proteasome activities were observed during starfish oocyte maturation induced by a maturation-inducing hormone, 1-methyladenine. Succinyl-Leu-Leu-Val-Tyr-MCA-hydrolyzing proteasome activity in immature oocytes showed a main peak of a 1500-kDa fraction and a shoulder centered at a 650-kDa fraction on Superose 6 gel-filtration chromatography in the presence of ATP and glycerole. The 1500-kDa activity transiently decreased and then increased at about a half the time required for germinal vesicle breakdown (GVBD). In contrast, the 650-kDa activity showed only a slight change during the maturation process. The activity of the 1500-kDa complex, unlike that of the 650-kDa complex, was immunoprecipitated with an antibody raised against regulatory subunits of mammalian 26S proteasomes, whereas both 1500- and 650-kDa activities were immunoprecipitated with anti-20S proteasome antibody. In addition, the 1500-kDa complex showed an ATP/ubiquitin-dependent proteolytic activity. These results indicate that the 1500- and 650-kDa complexes correspond to the mammalian 26S and 20S proteasomes, respectively. Immunoblot analysis revealed that the change in the 26S proteasomal activity is due to the change in the amount of the 20S proteasome subcomplex. Taken together, the proteasome undergoes changes in molecular assembly and activities during hormone-induced oocyte maturation.
Collapse
Affiliation(s)
- M T Sawada
- Hokkaido National Industrial Research Institute, AIST, MITI, Sapporo, Toyohira-ku, 062-8517, Japan.
| | | | | | | |
Collapse
|
246
|
Mendenhall MD, Hodge AE. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1191-243. [PMID: 9841670 PMCID: PMC98944 DOI: 10.1128/mmbr.62.4.1191-1243.1998] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclin-dependent protein kinase (CDK) encoded by CDC28 is the master regulator of cell division in the budding yeast Saccharomyces cerevisiae. By mechanisms that, for the most part, remain to be delineated, Cdc28 activity controls the timing of mitotic commitment, bud initiation, DNA replication, spindle formation, and chromosome separation. Environmental stimuli and progress through the cell cycle are monitored through checkpoint mechanisms that influence Cdc28 activity at key cell cycle stages. A vast body of information concerning how Cdc28 activity is timed and coordinated with various mitotic events has accrued. This article reviews that literature. Following an introduction to the properties of CDKs common to many eukaryotic species, the key influences on Cdc28 activity-cyclin-CKI binding and phosphorylation-dephosphorylation events-are examined. The processes controlling the abundance and activity of key Cdc28 regulators, especially transcriptional and proteolytic mechanisms, are then discussed in detail. Finally, the mechanisms by which environmental stimuli influence Cdc28 activity are summarized.
Collapse
Affiliation(s)
- M D Mendenhall
- L. P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA.
| | | |
Collapse
|
247
|
Abstract
Progression through the cell cycle requires the activity of two ubiquitination complexes, the Skp1-cullin-F-box-protein complex (SCF) and the anaphase-promoting complex/cyclosome (APC). Observations in the past year have revealed unexpected similarities between the SCF and the APC and have allowed detailed insight into the regulation of their activities. Both complexes are now known to exist in different forms that target different substrates for ubiquitin-dependent proteolysis.
Collapse
Affiliation(s)
- J M Peters
- Research Institute of Molecular Pathology (IMP) Dr.-Bohr Gasse 7 A-1030 Vienna Austria.
| |
Collapse
|
248
|
Zachariae W, Schwab M, Nasmyth K, Seufert W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 1998; 282:1721-4. [PMID: 9831566 DOI: 10.1126/science.282.5394.1721] [Citation(s) in RCA: 416] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Proteolysis of mitotic cyclins depends on a multisubunit ubiquitin-protein ligase, the anaphase promoting complex (APC). Proteolysis commences during anaphase, persisting throughout G1 until it is terminated by cyclin-dependent kinases (CDKs) as cells enter S phase. Proteolysis of mitotic cyclins in yeast was shown to require association of the APC with the substrate-specific activator Hct1 (also called Cdh1). Phosphorylation of Hct1 by CDKs blocked the Hct1-APC interaction. The mutual inhibition between APC and CDKs explains how cells suppress mitotic CDK activity during G1 and then establish a period with elevated kinase activity from S phase until anaphase.
Collapse
Affiliation(s)
- W Zachariae
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
249
|
Jaspersen SL, Charles JF, Tinker-Kulberg RL, Morgan DO. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol Biol Cell 1998; 9:2803-17. [PMID: 9763445 PMCID: PMC25555 DOI: 10.1091/mbc.9.10.2803] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinase-cyclin complexes, primarily by ubiquitin-dependent cyclin proteolysis. Cyclin destruction is regulated by a ubiquitin ligase known as the anaphase-promoting complex (APC). In the budding yeast Saccharomyces cerevisiae, members of a large class of late mitotic mutants, including cdc15, cdc5, cdc14, dbf2, and tem1, arrest in anaphase with a phenotype similar to that of cells expressing nondegradable forms of mitotic cyclins. We addressed the possibility that the products of these genes are components of a regulatory network that governs cyclin proteolysis. We identified a complex array of genetic interactions among these mutants and found that the growth defect in most of the mutants is suppressed by overexpression of SPO12, YAK1, and SIC1 and is exacerbated by overproduction of the mitotic cyclin Clb2. When arrested in late mitosis, the mutants exhibit a defect in cyclin-specific APC activity that is accompanied by high Clb2 levels and low levels of the anaphase inhibitor Pds1. Mutant cells arrested in G1 contain normal APC activity. We conclude that Cdc15, Cdc5, Cdc14, Dbf2, and Tem1 cooperate in the activation of the APC in late mitosis but are not required for maintenance of that activity in G1.
Collapse
Affiliation(s)
- S L Jaspersen
- Department of Physiology, University of California, San Francisco, California 94143-0444, USA
| | | | | | | |
Collapse
|
250
|
Yamano H, Tsurumi C, Gannon J, Hunt T. The role of the destruction box and its neighbouring lysine residues in cyclin B for anaphase ubiquitin-dependent proteolysis in fission yeast: defining the D-box receptor. EMBO J 1998; 17:5670-8. [PMID: 9755167 PMCID: PMC1170895 DOI: 10.1093/emboj/17.19.5670] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Programmed proteolysis of proteins such as mitotic cyclins and Cut2/Pds1p requires a 9-residue conserved motif known as the destruction box (D-box). Strong expression of protein fragments containing destruction boxes, such as the first 70 residues of Cdc13 (N70), inhibits the growth of Schizosaccharomyces pombe at metaphase. This inhibition can be overcome either by removal of all lysine residues from N70 using site-directed mutagenesis (K0-N70) or by raising the concentration of intracellular ubiquitin. Consistent with the idea that competition for ubiquitin accounts for some of its inhibitory effects, wild-type N70 not only stabilized D-box proteins, but also Rum1 and Cdc18, which are degraded by a different pathway. The K0-N70 construct was neither polyubiquitinated nor degraded in vitro, but it blocked the growth of strains of yeast in which anaphase-promoting complex/cyclosome (APC/C) function was compromised by mutation, and specifically inhibited proteolysis of APC/C substrates in vivo. Both K0-N70 and 20-residue D-box peptides blocked polyubiquitination of other D-box-containing substrates in a cell-free ubiquitination assay system. These data suggest the existence of a D-box receptor protein that recognizes D-boxes prior to ubiquitination.
Collapse
Affiliation(s)
- H Yamano
- ICRF Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | | | | | | |
Collapse
|