201
|
Nataf S. Autoimmunity as a Driving Force of Cognitive Evolution. Front Neurosci 2017; 11:582. [PMID: 29123465 PMCID: PMC5662758 DOI: 10.3389/fnins.2017.00582] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated “brain superautoantigens” theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens) has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions) expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to “neuroimmune co-pathologies” i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific emphasis is given here to the potential evolutionary role exerted by two families of genes, namely the MHC class II genes, involved in antigen presentation to T-cells, and the Foxp genes, which play crucial roles in language (Foxp2) and the regulation of autoimmunity (Foxp3).
Collapse
Affiliation(s)
- Serge Nataf
- CarMeN Laboratory, Bank of Tissues and Cells, Institut National de la Santé et de la Recherche Médicale 1060, INRA 1397, INSA Lyon, Lyon University Hospital (Hospices Civils de Lyon), Université Claude Bernard Lyon-1, Lyon, France
| |
Collapse
|
202
|
Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, Hodi FS, Martín-Algarra S, Mandal R, Sharfman WH, Bhatia S, Hwu WJ, Gajewski TF, Slingluff CL, Chowell D, Kendall SM, Chang H, Shah R, Kuo F, Morris LGT, Sidhom JW, Schneck JP, Horak CE, Weinhold N, Chan TA. Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell 2017; 171:934-949.e16. [PMID: 29033130 DOI: 10.1016/j.cell.2017.09.028] [Citation(s) in RCA: 1564] [Impact Index Per Article: 195.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/11/2017] [Accepted: 09/18/2017] [Indexed: 01/02/2023]
Abstract
The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T cell receptor (TCR) sequencing. In responding patients, mutation and neoantigen load were reduced from baseline, and analysis of intratumoral heterogeneity during therapy demonstrated differential clonal evolution within tumors and putative selection against neoantigenic mutations on-therapy. Transcriptome analyses before and during nivolumab therapy revealed increases in distinct immune cell subsets, activation of specific transcriptional networks, and upregulation of immune checkpoint genes that were more pronounced in patients with response. Temporal changes in intratumoral TCR repertoire revealed expansion of T cell clones in the setting of neoantigen loss. Comprehensive genomic profiling data in this study provide insight into nivolumab's mechanism of action.
Collapse
Affiliation(s)
- Nadeem Riaz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan J Havel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexis Desrichard
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Walter J Urba
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR 97213, USA
| | - Jennifer S Sims
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Salvador Martín-Algarra
- Medical Oncology, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Rajarsi Mandal
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - William H Sharfman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shailender Bhatia
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98105, USA
| | - Wen-Jen Hwu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Thomas F Gajewski
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Craig L Slingluff
- Department of Surgery and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Diego Chowell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sviatoslav M Kendall
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Han Chang
- Bristol-Myers Squibb, Princeton, NJ 08648, USA
| | - Rachna Shah
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fengshen Kuo
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luc G T Morris
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John-William Sidhom
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan P Schneck
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Nils Weinhold
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
203
|
Castro R, Navelsaker S, Krasnov A, Du Pasquier L, Boudinot P. Describing the diversity of Ag specific receptors in vertebrates: Contribution of repertoire deep sequencing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:28-37. [PMID: 28259700 DOI: 10.1016/j.dci.2017.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
During the last decades, gene and cDNA cloning identified TCR and Ig genes across vertebrates; genome sequencing of TCR and Ig loci in many species revealed the different organizations selected during evolution under the pressure of generating diverse repertoires of Ag receptors. By detecting clonotypes over a wide range of frequency, deep sequencing of Ig and TCR transcripts provides a new way to compare the structure of expressed repertoires in species of various sizes, at different stages of development, with different physiologies, and displaying multiple adaptations to the environment. In this review, we provide a short overview of the technologies currently used to produce global description of immune repertoires, describe how they have already been used in comparative immunology, and we discuss the future potential of such approaches. The development of these methodologies in new species holds promise for new discoveries concerning particular adaptations. As an example, understanding the development of adaptive immunity across metamorphosis in frogs has been made possible by such approaches. Repertoire sequencing is now widely used, not only in basic research but also in the context of immunotherapy and vaccination. Analysis of fish responses to pathogens and vaccines has already benefited from these methods. Finally, we also discuss potential advances based on repertoire sequencing of multigene families of immune sensors and effectors in invertebrates.
Collapse
Affiliation(s)
- Rosario Castro
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - Sofie Navelsaker
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Adamstuen Campus, Oslo 0454, Norway; Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | | | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
204
|
Yang X, Chen G, Weng NP, Mariuzza RA. Structural basis for clonal diversity of the human T-cell response to a dominant influenza virus epitope. J Biol Chem 2017; 292:18618-18627. [PMID: 28931605 DOI: 10.1074/jbc.m117.810382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) causes an acute infection in humans that is normally eliminated by CD8+ cytotoxic T lymphocytes. Individuals expressing the MHC class I molecule HLA-A2 produce cytotoxic T lymphocytes bearing T-cell receptors (TCRs) that recognize the immunodominant IAV epitope GILGFVFTL (GIL). Most GIL-specific TCRs utilize α/β chain pairs encoded by the TRAV27/TRBV19 gene combination to recognize this relatively featureless peptide epitope (canonical TCRs). However, ∼40% of GIL-specific TCRs express a wide variety of other TRAV/TRBV combinations (non-canonical TCRs). To investigate the structural underpinnings of this remarkable diversity, we determined the crystal structure of a non-canonical GIL-specific TCR (F50) expressing the TRAV13-1/TRBV27 gene combination bound to GIL-HLA-A2 to 1.7 Å resolution. Comparison of the F50-GIL-HLA-A2 complex with the previously published complex formed by a canonical TCR (JM22) revealed that F50 and JM22 engage GIL-HLA-A2 in markedly different orientations. These orientations are distinguished by crossing angles of TCR to peptide-MHC of 29° for F50 versus 69° for JM22 and by a focus by F50 on the C terminus rather than the center of the MHC α1 helix for JM22. In addition, F50, unlike JM22, uses a tryptophan instead of an arginine to fill a critical notch between GIL and the HLA-A2 α2 helix. The F50-GIL-HLA-A2 complex shows that there are multiple structurally distinct solutions to recognizing an identical peptide-MHC ligand with sufficient affinity to elicit a broad anti-IAV response that protects against viral escape and T-cell clonal loss.
Collapse
Affiliation(s)
- Xinbo Yang
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850.,the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Guobing Chen
- the Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Nan-Ping Weng
- the Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Roy A Mariuzza
- From the University of Maryland Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, Maryland 20850, .,the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
205
|
Goronzy JJ, Weyand CM. Successful and Maladaptive T Cell Aging. Immunity 2017; 46:364-378. [PMID: 28329703 DOI: 10.1016/j.immuni.2017.03.010] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Throughout life, the T cell system adapts to shifting resources and demands, resulting in a fundamentally restructured immune system in older individuals. Here we review the cellular and molecular features of an aged immune system and discuss the trade-offs inherent to these adaptive mechanisms. Processes include homeostatic proliferation that maintains compartment size at the expense of partial loss in stemness and incomplete differentiation and the activation of negative regulatory programs, which constrain effector T cell expansion and prevent increasing oligoclonality but also interfere with memory cell generation. We propose that immune failure occurs when adaptive strategies developed by the aging T cell system fail and also discuss how, in some settings, the programs associated with T cell aging culminates in a maladaptive response that directly contributes to chronic inflammatory disease.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA.
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
206
|
|
207
|
Chen X, Poncette L, Blankenstein T. Human TCR-MHC coevolution after divergence from mice includes increased nontemplate-encoded CDR3 diversity. J Exp Med 2017; 214:3417-3433. [PMID: 28835417 PMCID: PMC5679170 DOI: 10.1084/jem.20161784] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/19/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022] Open
Abstract
Chen et al. demonstrate that human MHC selects a larger human TCR repertoire than mouse MHC. They show how humans optimized TCR diversity and suggest that CDR3 length adjusts for different V segment–MHC affinity. For thymic selection and responses to pathogens, T cells interact through their αβ T cell receptor (TCR) with peptide–major histocompatibility complex (MHC) molecules on antigen-presenting cells. How the diverse TCRs interact with a multitude of MHC molecules is unresolved. It is also unclear how humans generate larger TCR repertoires than mice do. We compared the TCR repertoire of CD4 T cells selected from a single mouse or human MHC class II (MHC II) in mice containing the human TCR gene loci. Human MHC II yielded greater thymic output and a more diverse TCR repertoire. The complementarity determining region 3 (CDR3) length adjusted for different inherent V-segment affinities to MHC II. Humans evolved with greater nontemplate-encoded CDR3 diversity than did mice. Our data, which demonstrate human TCR–MHC coevolution after divergence from rodents, explain the greater T cell diversity in humans and suggest a mechanism for ensuring that any V–J gene combination can be selected by a single MHC II.
Collapse
Affiliation(s)
- Xiaojing Chen
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Charité Campus Buch, Institute of Immunology, Berlin, Germany
| | - Lucia Poncette
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany .,Charité Campus Buch, Institute of Immunology, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
208
|
Josephs TM, Grant EJ, Gras S. Molecular challenges imposed by MHC-I restricted long epitopes on T cell immunity. Biol Chem 2017; 398:1027-1036. [PMID: 28141543 DOI: 10.1515/hsz-2016-0305] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/25/2017] [Indexed: 11/15/2022]
Abstract
It has widely been accepted that major histocompatibility complex class I molecules (MHC-I) are limited to binding small peptides of 8-10 residues in length. However, this consensus has recently been challenged with the identification of longer peptides (≥11 residues) that can also elicit cytotoxic CD8+ T cell responses. Indeed, a growing number of studies demonstrate that these non-canonical epitopes are important targets for the immune system. As long epitopes represent up to 10% of the peptide repertoire bound to MHC-I molecules, here we review their impact on antigen presentation by MHC-I, TCR recognition, and T cell immunity.
Collapse
|
209
|
Reeves DB, Peterson CW, Kiem HP, Schiffer JT. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia. J Virol 2017; 91:e00095-17. [PMID: 28404854 PMCID: PMC5469274 DOI: 10.1128/jvi.00095-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient.IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact of stem cell transplantation in a macaque simian/HIV (SHIV) system. Using a mechanistic mathematical model, we found that while primary infection generates an adaptive immune memory response, stem cell transplantation disrupts this learned immunity. The results have implications for HIV cure regimens based on stem cell transplantation.
Collapse
Affiliation(s)
- Daniel B Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Christopher W Peterson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
210
|
Glanville J, Huang H, Nau A, Hatton O, Wagar LE, Rubelt F, Ji X, Han A, Krams SM, Pettus C, Haas N, Arlehamn CSL, Sette A, Boyd SD, Scriba TJ, Martinez OM, Davis MM. Identifying specificity groups in the T cell receptor repertoire. Nature 2017. [PMID: 28636589 DOI: 10.1038/nature22976] [Citation(s) in RCA: 680] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
T cell receptor (TCR) sequences are very diverse, with many more possible sequence combinations than T cells in any one individual. Here we define the minimal requirements for TCR antigen specificity, through an analysis of TCR sequences using a panel of peptide and major histocompatibility complex (pMHC)-tetramer-sorted cells and structural data. From this analysis we developed an algorithm that we term GLIPH (grouping of lymphocyte interactions by paratope hotspots) to cluster TCRs with a high probability of sharing specificity owing to both conserved motifs and global similarity of complementarity-determining region 3 (CDR3) sequences. We show that GLIPH can reliably group TCRs of common specificity from different donors, and that conserved CDR3 motifs help to define the TCR clusters that are often contact points with the antigenic peptides. As an independent validation, we analysed 5,711 TCRβ chain sequences from reactive CD4 T cells from 22 individuals with latent Mycobacterium tuberculosis infection. We found 141 TCR specificity groups, including 16 distinct groups containing TCRs from multiple individuals. These TCR groups typically shared HLA alleles, allowing prediction of the likely HLA restriction, and a large number of M. tuberculosis T cell epitopes enabled us to identify pMHC ligands for all five of the groups tested. Mutagenesis and de novo TCR design confirmed that the GLIPH-identified motifs were critical and sufficient for shared-antigen recognition. Thus the GLIPH algorithm can analyse large numbers of TCR sequences and define TCR specificity groups shared by TCRs and individuals, which should greatly accelerate the analysis of T cell responses and expedite the identification of specific ligands.
Collapse
Affiliation(s)
- Jacob Glanville
- Computational and Systems Immunology Program, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Huang Huang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Allison Nau
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Olivia Hatton
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lisa E Wagar
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Florian Rubelt
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Xuhuai Ji
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA.,Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Arnold Han
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sheri M Krams
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Christina Pettus
- PSM Biotechnology, University of San Francisco, California 94305, USA
| | - Nikhil Haas
- PSM Biotechnology, University of San Francisco, California 94305, USA
| | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, Division of Vaccine Discovery, La Jolla, California 92037, USA
| | - Scott D Boyd
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Olivia M Martinez
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.,The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
211
|
Benichou JIC, van Heijst JWJ, Glanville J, Louzoun Y. Converging evolution leads to near maximal junction diversity through parallel mechanisms in B and T cell receptors. Phys Biol 2017; 14:045003. [PMID: 28510537 DOI: 10.1088/1478-3975/aa7366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
T and B cell receptor (TCR and BCR) complementarity determining region 3 (CDR3) genetic diversity is produced through multiple diversification and selection stages. Potential holes in the CDR3 repertoire were argued to be linked to immunodeficiencies and diseases. In contrast with BCRs, TCRs have practically no Dβ germline genetic diversity, and the question emerges as to whether they can produce a diverse CDR3 repertoire. In order to address the genetic diversity of the adaptive immune system, appropriate quantitative measures for diversity and large-scale sequencing are required. Such a diversity method should incorporate the complex diversification mechanisms of the adaptive immune response and the BCR and TCR loci structure. We combined large-scale sequencing and diversity measures to show that TCRs have a near maximal CDR3 genetic diversity. Specifically, TCR have a larger junctional and V germline diversity, which starts more 5' in Vβ than BCRs. Selection decreases the TCR repertoire diversity, but does not affect BCR repertoire. As a result, TCR is as diverse as BCR repertoire, with a biased CDR3 length toward short TCRs and long BCRs. These differences suggest parallel converging evolutionary tracks to reach the required diversity to avoid holes in the CDR3 repertoire.
Collapse
|
212
|
Gea-Banacloche J, Komanduri KV, Carpenter P, Paczesny S, Sarantopoulos S, Young JA, El Kassar N, Le RQ, Schultz KR, Griffith LM, Savani BN, Wingard JR. National Institutes of Health Hematopoietic Cell Transplantation Late Effects Initiative: The Immune Dysregulation and Pathobiology Working Group Report. Biol Blood Marrow Transplant 2017; 23:870-881. [PMID: 27751936 PMCID: PMC5392182 DOI: 10.1016/j.bbmt.2016.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Abstract
Immune reconstitution after hematopoietic stem cell transplantation (HCT) beyond 1 year is not completely understood. Many transplant recipients who are free of graft-versus-host disease (GVHD) and not receiving any immunosuppression more than 1 year after transplantation seem to be able to mount appropriate immune responses to common pathogens and respond adequately to immunizations. However, 2 large registry studies over the last 2 decades seem to indicate that infection is a significant cause of late mortality in some patients, even in the absence of concomitant GVHD. Research on this topic is particularly challenging for several reasons. First, there are not enough long-term follow-up clinics able to measure even basic immune parameters late after HCT. Second, the correlation between laboratory measurements of immune function and infections is not well known. Third, accurate documentation of infectious episodes is notoriously difficult. Finally, it is unclear what measures can be implemented to improve the immune response in a clinically relevant way. A combination of long-term multicenter prospective studies that collect detailed infectious data and store samples as well as a national or multinational registry of clinically significant infections (eg, vaccine-preventable severe infections, opportunistic infections) could begin to address our knowledge gaps. Obtaining samples for laboratory evaluation of the immune system should be both calendar and eventdriven. Attention to detail and standardization of practices regarding prophylaxis, diagnosis, and definitions of infections would be of paramount importance to obtain clean reliable data. Laboratory studies should specifically address the neogenesis, maturation, and exhaustion of the adaptive immune system and, in particular, how these are influenced by persistent alloreactivity, inflammation, and viral infection. Ideally, some of these long-term prospective studies would collect information on long-term changes in the gut microbiome and their influence on immunity. Regarding enhancement of immune function, prospective measurement of the response to vaccines late after HCT in a variety of clinical settings should be undertaken to better understand the benefits as well as the limitations of immunizations. The role of intravenous immunoglobulin is still not well defined, and studies to address it should be encouraged.
Collapse
Affiliation(s)
- Juan Gea-Banacloche
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, Maryland.
| | - Krishna V Komanduri
- Sylvester Adult Stem Cell Transplant Program, University of Miami, Coral Gables, Florida
| | - Paul Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; University of Washington School of Medicine Pediatrics, Seattle, Washington
| | - Sophie Paczesny
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke University Department of Medicine and Duke Cancer Institute, Durham, North Carolina
| | - Jo-Anne Young
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nahed El Kassar
- National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Robert Q Le
- Medical Officer, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Kirk R Schultz
- Professor of Pediatrics, UBC, Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital and Research Institute, Vancouver, Canada
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Bipin N Savani
- Long Term Transplant Clinic, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John R Wingard
- University of Florida Health Cancer Center, Gainesville, Florida; Bone Marrow Transplant Program, Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
213
|
Isobe KI, Nishio N, Hasegawa T. Immunological aspects of age-related diseases. World J Biol Chem 2017; 8:129-137. [PMID: 28588756 PMCID: PMC5439164 DOI: 10.4331/wjbc.v8.i2.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 02/05/2023] Open
Abstract
The proportion of elderly people rises in the developed countries. The increased susceptibility of the elderly to infectious diseases is caused by immune dysfunction, especially T cell functional decline. Age-related hematopoietic stem cells deviate from lymphoid lineage to myeloid lineage. Thymus shrinks early in life, which is followed by the decline of naïve T cells. T-cell receptor repertoire diversity declines by aging, which is caused by cytomegalovirus-driven T cell clonal expansion. Functional decline of B cell induces antibody affinity declines by aging. Many effector functions including phagocytosis of myeloid cells are down regulated by aging. The studies of aging of myeloid cells have some controversial results. Although M1 macrophages have been shown to be replaced by anti-inflammatory (M2) macrophages by advanced age, many human studies showed that pro-inflammatory cytokines are elevated in older human. To solve this discrepancy here we divide age-related pathological changes into two categories. One is an aging of immune cell itself. Second is involvement of immune cells to age-related pathological changes. Cellular senescence and damaged cells in aged tissue recruit pro-inflammatory M1 macrophages, which produce pro-inflammatory cytokines and proceed to age-related diseases. Underlying biochemical and metabolic studies will open nutritional treatment.
Collapse
|
214
|
Mastrodemou S, Stalika E, Vardi A, Gemenetzi K, Spanoudakis M, Karypidou M, Mavroudi I, Hadzidimitriou A, Stavropoulos-Giokas C, Papadaki HA, Stamatopoulos K. Cytotoxic T cells in chronic idiopathic neutropenia express restricted antigen receptors. Leuk Lymphoma 2017; 58:2926-2933. [DOI: 10.1080/10428194.2017.1324154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Semeli Mastrodemou
- Department of Hematology, University of Crete School of Medicine, Heraklion, Greece
| | - Evangelia Stalika
- Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece
| | - Anna Vardi
- Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece
| | - Katerina Gemenetzi
- Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece
| | - Michalis Spanoudakis
- Department of Hematology, University of Crete School of Medicine, Heraklion, Greece
| | - Maria Karypidou
- Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece
| | - Irene Mavroudi
- Department of Hematology, University of Crete School of Medicine, Heraklion, Greece
| | | | | | - Helen A. Papadaki
- Department of Hematology, University of Crete School of Medicine, Heraklion, Greece
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
215
|
Yoshida K, Cologne JB, Cordova K, Misumi M, Yamaoka M, Kyoizumi S, Hayashi T, Robins H, Kusunoki Y. Aging-related changes in human T-cell repertoire over 20years delineated by deep sequencing of peripheral T-cell receptors. Exp Gerontol 2017; 96:29-37. [PMID: 28535950 DOI: 10.1016/j.exger.2017.05.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 01/21/2023]
Abstract
Recent deep sequencing studies on T-cell receptor (TCR) repertoire have provided robust data to characterize diversity of T-cell immune responsiveness to a wide variety of peptide antigens, including viral and tumor antigens. The human TCR repertoire declines with age, but this decline has not been fully investigated longitudinally in individuals. Using a deep sequencing approach, we analyzed TCRβ repertoires longitudinally over approximately 20years, with ages ranging from 23 to 50years at the start (23 to 65years overall), in peripheral-blood CD4 and CD8 T-cell populations that were collected and cryopreserved 3 times at intervals of approximately 10years from each of 6 healthy adults (3 men and 3 women). Sequence data at the hypervariable complementarity determining region 3 (CDR3) in the TCRB gene locus were evaluated by applying a random-coefficient statistical regression model. Two outcomes were analyzed: total number of distinct TCRB CDR3 sequences as a TCR diversity metric, and clonality of the T-cell populations. TCR repertoire diversity decreased (p<0.001) and frequencies of clonal populations increased (p=0.003) with age in CD8 T cells, whereas CD4 T cells retained fairly diverse TCR repertoires along with relatively low clonality. We also found that approximately 10-30% and 30-80% of read sequences in CD4 and CD8 T cells, respectively, overlapped at different ages within each individual, indicating long-term stable maintenance of T-cell clonal composition. Moreover, many of the most frequent TCRB CDR3 sequences (i.e., top T-cell clones) persisted over 20years, and some of them expanded and exerted a dominating influence on clonality of peripheral T-cell populations. It is thus possible that persistence or expansion of top T-cell clones is a driver of T-cell immunity aging, and therefore represents a potential interventional target.
Collapse
Affiliation(s)
- Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan.
| | - John B Cologne
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kismet Cordova
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Mika Yamaoka
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Seishi Kyoizumi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Tomonori Hayashi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Harlan Robins
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
216
|
|
217
|
Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat Genet 2017; 49:659-665. [DOI: 10.1038/ng.3822] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/28/2017] [Indexed: 12/16/2022]
|
218
|
Link CS, Hölig K, Rücker-Braun E, Lang K, Kuhn M, Eugster A, Klesse C, Schmiedgen M, Heidenreich F, Oelschlägel U, Dahl A, Bornhäuser M, Bonifacio E, Schetelig J. Assessment of the T cell receptor repertoire in long-term platelet donors by next generation sequencing. Br J Haematol 2017; 181:389-391. [PMID: 28272738 DOI: 10.1111/bjh.14576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Cornelia S Link
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany.,DFG Research Centre for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Kristina Hölig
- Fachbereich Transfusionsmedizin, Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Elke Rücker-Braun
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | | - Matthias Kuhn
- Institut für medizinische Informatik und Biometrie (IMB), Medizinische Fakultät der TU Dresden, Dresden, Germany
| | - Anne Eugster
- DFG Research Centre for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | | | - Maria Schmiedgen
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Falk Heidenreich
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Uta Oelschlägel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Andreas Dahl
- DFG Research Centre for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany.,BIOTEChnology Centre, TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany.,DFG Research Centre for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Ezio Bonifacio
- DFG Research Centre for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany.,DKMS Clinical Trials Unit, Dresden, Germany
| |
Collapse
|
219
|
Gonçalves P, Ferrarini M, Molina-Paris C, Lythe G, Vasseur F, Lim A, Rocha B, Azogui O. A new mechanism shapes the naïve CD8 + T cell repertoire: the selection for full diversity. Mol Immunol 2017; 85:66-80. [PMID: 28212502 DOI: 10.1016/j.molimm.2017.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 01/16/2017] [Accepted: 01/28/2017] [Indexed: 12/17/2022]
Abstract
During thymic T cell differentiation, TCR repertoires are shaped by negative, positive and agonist selection. In the thymus and in the periphery, repertoires are also shaped by strong inter-clonal and intra-clonal competition to survive death by neglect. Understanding the impact of these events on the T cell repertoire requires direct evaluation of TCR expression in peripheral naïve T cells. Several studies have evaluated TCR diversity, with contradictory results. Some of these studies had intrinsic technical limitations since they used material obtained from T cell pools, preventing the direct evaluation of clonal sizes. Indeed with these approaches, identical TCRs may correspond to different cells expressing the same receptor, or to several amplicons from the same T cell. We here overcame this limitation by evaluating TCRB expression in individual naïve CD8+ T cells. Of the 2269 Tcrb sequences we obtained from 13 mice, 99% were unique. Mathematical analysis of the data showed that the average number of naïve peripheral CD8+ T cells expressing the same TCRB is 1.1 cell. Since TCRA co-expression studies could only increase repertoire diversity, these results reveal that the number of naïve T cells with unique TCRs approaches the number of naïve cells. Since thymocytes undergo multiple rounds of divisions after TCRB rearrangement and 3-5% of thymocytes survive thymic selection events the number of cells expressing the same TCRB was expected to be much higher. Thus, these results suggest a new repertoire selection mechanism, which strongly selects for full TCRB diversity.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France.
| | - Marco Ferrarini
- Department of Applied Mathematics, University of Leeds, Leeds LS29JT, UK
| | | | - Grant Lythe
- Department of Applied Mathematics, University of Leeds, Leeds LS29JT, UK
| | - Florence Vasseur
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France
| | - Annik Lim
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France
| | - Benedita Rocha
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France.
| | - Orly Azogui
- INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France
| |
Collapse
|
220
|
Hoffmann T, Marion A, Antes I. DynaDom: structure-based prediction of T cell receptor inter-domain and T cell receptor-peptide-MHC (class I) association angles. BMC STRUCTURAL BIOLOGY 2017; 17:2. [PMID: 28148269 PMCID: PMC5289058 DOI: 10.1186/s12900-016-0071-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/29/2016] [Indexed: 11/22/2022]
Abstract
Background T cell receptor (TCR) molecules are involved in the adaptive immune response as they distinguish between self- and foreign-peptides, presented in major histocompatibility complex molecules (pMHC). Former studies showed that the association angles of the TCR variable domains (Vα/Vβ) can differ significantly and change upon binding to the pMHC complex. These changes can be described as a rotation of the domains around a general Center of Rotation, characterized by the interaction of two highly conserved glutamine residues. Methods We developed a computational method, DynaDom, for the prediction of TCR Vα/Vβ inter-domain and TCR/pMHC orientations in TCRpMHC complexes, which allows predicting the orientation of multiple protein-domains. In addition, we implemented a new approach to predict the correct orientation of the carboxamide endgroups in glutamine and asparagine residues, which can also be used as an external, independent tool. Results The approach was evaluated for the remodeling of 75 and 53 experimental structures of TCR and TCRpMHC (class I) complexes, respectively. We show that the DynaDom method predicts the correct orientation of the TCR Vα/Vβ angles in 96 and 89% of the cases, for the poses with the best RMSD and best interaction energy, respectively. For the concurrent prediction of the TCR Vα/Vβ and pMHC orientations, the respective rates reached 74 and 72%. Through an exhaustive analysis, we could show that the pMHC placement can be further improved by a straightforward, yet very time intensive extension of the current approach. Conclusions The results obtained in the present remodeling study prove the suitability of our approach for interdomain-angle optimization. In addition, the high prediction rate obtained specifically for the energetically highest ranked poses further demonstrates that our method is a powerful candidate for blind prediction. Therefore it should be well suited as part of any accurate atomistic modeling pipeline for TCRpMHC complexes and potentially other large molecular assemblies. Electronic supplementary material The online version of this article (doi:10.1186/s12900-016-0071-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Hoffmann
- Department of Biosciences and Center for Integrated Protein Science Munich, Technische Universität München, Emil-Erlenmeyer-Forum 8, 85354, Freising, Germany
| | - Antoine Marion
- Department of Biosciences and Center for Integrated Protein Science Munich, Technische Universität München, Emil-Erlenmeyer-Forum 8, 85354, Freising, Germany
| | - Iris Antes
- Department of Biosciences and Center for Integrated Protein Science Munich, Technische Universität München, Emil-Erlenmeyer-Forum 8, 85354, Freising, Germany.
| |
Collapse
|
221
|
Callan CG, Mora T, Walczak AM. Repertoire sequencing and the statistical ensemble approach to adaptive immunity. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2016.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
222
|
Silva SL, Albuquerque AS, Matoso P, Charmeteau-de-Muylder B, Cheynier R, Ligeiro D, Abecasis M, Anjos R, Barata JT, Victorino RMM, Sousa AE. IL-7-Induced Proliferation of Human Naive CD4 T-Cells Relies on Continued Thymic Activity. Front Immunol 2017; 8:20. [PMID: 28154568 PMCID: PMC5243809 DOI: 10.3389/fimmu.2017.00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/05/2017] [Indexed: 01/06/2023] Open
Abstract
Naive CD4 T-cell maintenance is critical for immune competence. We investigated here the fine-tuning of homeostatic mechanisms of the naive compartment to counteract the loss of de novo CD4 T-cell generation. Adults thymectomized in early childhood during corrective cardiac surgery were grouped based on presence or absence of thymopoiesis and compared with age-matched controls. We found that the preservation of the CD31- subset was independent of the thymus and that its size is tightly controlled by peripheral mechanisms, including prolonged cell survival as attested by Bcl-2 levels. Conversely, a significant contraction of the CD31+ naive subset was observed in the absence of thymic activity. This was associated with impaired responses of purified naive CD4 T-cells to IL-7, namely, in vitro proliferation and upregulation of CD31 expression, which likely potentiated the decline in recent thymic emigrants. Additionally, we found no apparent constraint in the differentiation of naive cells into the memory compartment in individuals completely lacking thymic activity despite upregulation of DUSP6, a phosphatase associated with increased TCR threshold. Of note, thymectomized individuals featuring some degree of thymopoiesis were able to preserve the size and diversity of the naive CD4 compartment, further arguing against complete thymectomy in infancy. Overall, our data suggest that robust peripheral mechanisms ensure the homeostasis of CD31- naive CD4 pool and point to the requirement of continuous thymic activity to the maintenance of IL-7-driven homeostatic proliferation of CD31+ naive CD4 T-cells, which is essential to secure T-cell diversity throughout life.
Collapse
Affiliation(s)
- Susana L Silva
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Centro Hospitalar de Lisboa Norte, Hospital de Santa Maria, Lisboa, Portugal
| | - Adriana S Albuquerque
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Paula Matoso
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Bénédicte Charmeteau-de-Muylder
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Paris, France
| | - Rémi Cheynier
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Paris, France
| | - Dário Ligeiro
- Centro de Sangue e Tranplantação de Lisboa, Instituto Português de Sangue e Transplantação, IP , Lisboa , Portugal
| | - Miguel Abecasis
- Departamento do Coração, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental , Carnaxide , Portugal
| | - Rui Anjos
- Departamento do Coração, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental , Carnaxide , Portugal
| | - João T Barata
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Rui M M Victorino
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Centro Hospitalar de Lisboa Norte, Hospital de Santa Maria, Lisboa, Portugal
| | - Ana E Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
223
|
Henriksen EKK, Jørgensen KK, Kaveh F, Holm K, Hamm D, Olweus J, Melum E, Chung BK, Eide TJ, Lundin KEA, Boberg KM, Karlsen TH, Hirschfield GM, Liaskou E. Gut and liver T-cells of common clonal origin in primary sclerosing cholangitis-inflammatory bowel disease. J Hepatol 2017; 66:116-122. [PMID: 27647428 DOI: 10.1016/j.jhep.2016.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Recruitment of gut-derived memory T-cells to the liver is believed to drive hepatic inflammation in primary sclerosing cholangitis (PSC). However, whether gut-infiltrating and liver-infiltrating T-cells share T cell receptors (TCRs) and antigenic specificities is unknown. We used paired gut and liver samples from PSC patients with concurrent inflammatory bowel disease (PSC-IBD), and normal tissue samples from colon cancer controls, to assess potential T cell clonotype overlap between the two compartments. METHODS High-throughput sequencing of TCRβ repertoires was applied on matched colon, liver and blood samples from patients with PSC-IBD (n=10), and on paired tumor-adjacent normal gut and liver tissue samples from colon cancer patients (n=10). RESULTS An average of 9.7% (range: 4.7-19.9%) memory T cell clonotypes overlapped in paired PSC-IBD affected gut and liver samples, after excluding clonotypes present at similar frequencies in blood. Shared clonotypes constituted on average 16.0% (range: 8.7-32.6%) and 15.0% (range: 5.9-26.3%) of the liver and gut memory T-cells, respectively. A significantly higher overlap was observed between paired PSC-IBD affected samples (8.7%, p=0.0007) compared to paired normal gut and liver samples (3.6%), after downsampling to equal number of reads. CONCLUSION Memory T-cells of common clonal origin were detected in paired gut and liver samples of patients with PSC-IBD. Our data indicate that this is related to PSC-IBD pathogenesis, suggesting that memory T-cells driven by shared antigens are present in the gut and liver of PSC-IBD patients. Our findings support efforts to therapeutically target memory T cell recruitment in PSC-IBD. LAY SUMMARY Primary sclerosing cholangitis (PSC) is a devastating liver disease strongly associated with inflammatory bowel disease (IBD). The cause of PSC is unknown, but it has been suggested that the immune reactions in the gut and the liver are connected. Our data demonstrate for the first time that a proportion of the T-cells in the gut and the liver react to similar triggers, and that this proportion is particularly high in patients with PSC and IBD.
Collapse
Affiliation(s)
- Eva Kristine Klemsdal Henriksen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristin Kaasen Jørgensen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Fatemeh Kaveh
- K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital Ullevål, Oslo, Norway
| | - Kristian Holm
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - David Hamm
- Adaptive Biotechnologies Corp., Seattle, WA, USA
| | - Johanna Olweus
- K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Brian K Chung
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Centre for Liver Research and NIHR Birmingham Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Tor J Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Knut E A Lundin
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Centre for Immune Regulation, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kirsten Muri Boberg
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Gideon M Hirschfield
- Centre for Liver Research and NIHR Birmingham Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Evaggelia Liaskou
- Centre for Liver Research and NIHR Birmingham Biomedical Research Unit, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
224
|
Cole DK, van den Berg HA, Lloyd A, Crowther MD, Beck K, Ekeruche-Makinde J, Miles JJ, Bulek AM, Dolton G, Schauenburg AJ, Wall A, Fuller A, Clement M, Laugel B, Rizkallah PJ, Wooldridge L, Sewell AK. Structural Mechanism Underpinning Cross-reactivity of a CD8+ T-cell Clone That Recognizes a Peptide Derived from Human Telomerase Reverse Transcriptase. J Biol Chem 2016; 292:802-813. [PMID: 27903649 PMCID: PMC5247654 DOI: 10.1074/jbc.m116.741603] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/18/2016] [Indexed: 01/20/2023] Open
Abstract
T-cell cross-reactivity is essential for effective immune surveillance but has also been implicated as a pathway to autoimmunity. Previous studies have demonstrated that T-cell receptors (TCRs) that focus on a minimal motif within the peptide are able to facilitate a high level of T-cell cross-reactivity. However, the structural database shows that most TCRs exhibit less focused antigen binding involving contact with more peptide residues. To further explore the structural features that allow the clonally expressed TCR to functionally engage with multiple peptide-major histocompatibility complexes (pMHCs), we examined the ILA1 CD8+ T-cell clone that responds to a peptide sequence derived from human telomerase reverse transcriptase. The ILA1 TCR contacted its pMHC with a broad peptide binding footprint encompassing spatially distant peptide residues. Despite the lack of focused TCR-peptide binding, the ILA1 T-cell clone was still cross-reactive. Overall, the TCR-peptide contacts apparent in the structure correlated well with the level of degeneracy at different peptide positions. Thus, the ILA1 TCR was less tolerant of changes at peptide residues that were at, or adjacent to, key contact sites. This study provides new insights into the molecular mechanisms that control T-cell cross-reactivity with important implications for pathogen surveillance, autoimmunity, and transplant rejection.
Collapse
Affiliation(s)
- David K Cole
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom,
| | - Hugo A van den Berg
- the Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Angharad Lloyd
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Michael D Crowther
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Konrad Beck
- the Cardiff University School of Dentistry, Heath Park, Cardiff CF14 4XY, United Kingdom
| | - Julia Ekeruche-Makinde
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - John J Miles
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom.,the Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia.,James Cook University, Cairns, Queensland 4870, Australia, and
| | - Anna M Bulek
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Garry Dolton
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Andrea J Schauenburg
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Aaron Wall
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Anna Fuller
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Mathew Clement
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Bruno Laugel
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Pierre J Rizkallah
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Linda Wooldridge
- the Faculty of Health Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Andrew K Sewell
- From the Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom,
| |
Collapse
|
225
|
Autoimmune susceptibility imposed by public TCRβ chains. Sci Rep 2016; 6:37543. [PMID: 27869234 PMCID: PMC5116635 DOI: 10.1038/srep37543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 11/21/2022] Open
Abstract
Although the TCR repertoire is highly diverse, a small fraction of TCR chains, referred to as public, preferentially form and are shared by most individuals. Prior studies indicated that public TCRβ may be preferentially deployed in autoimmunity. We hypothesized that if these TCRβ modulate the likelihood of a TCRαβ heterodimer productively engaging autoantigen, because they are widely present in the population and often high frequency within individual repertoires, they could also broadly influence repertoire responsiveness to specific autoantigens. We assess this here using a series of public and private TCRβ derived from autoimmune encephalomyelitis-associated TCR. Transgenic expression of public, but not private, disease-associated TCRβ paired with endogenously rearranged TCRα endowed unprimed T cells with autoantigen reactivity. Further, two of six public, but none of five private TCRβ provoked spontaneous early-onset autoimmunity in mice. Our findings indicate that single TCRβ are sufficient to confer on TCRαβ chains reactivity toward disease-associated autoantigens in the context of diverse TCRα. They further suggest that public TCR can skew autoimmune susceptibility, and that subsets of public TCR sequences may serve as disease- specific biomarkers or therapeutic targets.
Collapse
|
226
|
Gálvez J, Gálvez JJ, García-Peñarrubia P. TCR/pMHC Interaction: Phenotypic Model for an Unsolved Enigma. Front Immunol 2016; 7:467. [PMID: 27881981 PMCID: PMC5101211 DOI: 10.3389/fimmu.2016.00467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
Abstract
TCR-pMHC interaction is the keystone of the adaptive immune response. This process exhibits an impressive capacity of speed, sensitivity, and discrimination that allows detecting foreign pMHCs at very low concentration among much more abundant self-pMHC ligands. However, and despite over three decades of intensive research, the mechanisms by which this remarkable discrimination and sensitivity is attained remain controversial. In kinetic proofreading mechanisms (KPR), an increase of specificity occurs by reducing the sensitivity. To overcome this difficulty, more elaborate models including feedback processes or induced rebinding have been incorporated into the KPR scheme. Here a new approach based on the assumption that the proofreading chain behaves differently for foreign- and self-pMHC complexes has been integrated into a phenotypic model in which the complexes responsible for T cell activation stabilize (for foreign peptides) or weaken (for foreign peptides), resulting in a dramatic increase in sensitivity and specificity. Stabilization and destabilization of complexes may be caused by conformational changes, rebinding, or any other process leading to variations in the dissociation rate constants of the complexes transmitting the activation. The numerical solution and the analytical expression for the steady-state response as a function of koff(i) (i = 0, 1, …, N, where C0, C1, …, CN are the complexes in the proofreading chain) are provided. The activation chain speeds up, and larger increases in sensitivity and discrimination are obtained if the rate of activation along the proofreading chain increases for foreign pMHCs and decreases for self-ligands. Experimental implications and comparison with current models are discussed.
Collapse
Affiliation(s)
- Jesús Gálvez
- Department of Physical Chemistry, Faculty of Chemistry, University of Murcia , Murcia , Spain
| | - Juan J Gálvez
- Department of Information and Communications Engineering, Computer Science Faculty, University of Murcia , Murcia , Spain
| | - Pilar García-Peñarrubia
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia , Murcia , Spain
| |
Collapse
|
227
|
Fozza C, Barraqueddu F, Corda G, Contini S, Virdis P, Dore F, Bonfigli S, Longinotti M. Study of the T-cell receptor repertoire by CDR3 spectratyping. J Immunol Methods 2016; 440:1-11. [PMID: 27823906 DOI: 10.1016/j.jim.2016.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 09/26/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
The T-cell receptor (TCR) is the key player within the so called immunological synapse and the analysis of its repertoire offers a picture of both versatility and wideness of the whole immune T-cell compartment. Among the different approaches applied to its study the so-called spectratyping identifies the pattern of the third complementarity determining region (CDR3) length distribution in each one of the beta variable (TRBV) subfamilies encoded by the corresponding genes. This technique consists in a CDR3 fragment analysis through capillary electrophoresis, performed after cell separation, RNA extraction and reverse transcriptase PCR. This review will run through the most relevant studies which have tried to dissect the TCR repertoire usage in patients with different immune-mediated and infective diseases as well as solid or haematologic malignancies.
Collapse
Affiliation(s)
- Claudio Fozza
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy.
| | - Francesca Barraqueddu
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Giovanna Corda
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Salvatore Contini
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Patrizia Virdis
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Fausto Dore
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Silvana Bonfigli
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Maurizio Longinotti
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| |
Collapse
|
228
|
Xu L, You X, Zheng P, Zhang BM, Gupta PK, Lavori P, Meyer E, Zehnder JL. Methodologic Considerations in the Application of Next-Generation Sequencing of Human TRB Repertoires for Clinical Use. J Mol Diagn 2016; 19:72-83. [PMID: 27815002 DOI: 10.1016/j.jmoldx.2016.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/28/2016] [Indexed: 01/08/2023] Open
Abstract
Next-generation sequencing (NGS) of immune receptors has become a standard tool to assess minimal residual disease (MRD) in patients treated for lymphoid malignancy, and it is being used to study the T-cell repertoire in many clinical settings. To better understanding the potential clinical utility and limitations of this application outside of MRD, we developed a BIOMED-2 primer-based NGS method and characterized its performance in controls and patients with graft-versus-host disease (GVHD) after allogeneic hematopoietic transplant. For controls and patients with GVHD, replicate sequencing of the same T-cell receptor β (TRB) libraries was highly reproducible. Higher variability was observed in sequencing of different TRB libraries made from the same DNA stock. Variability was increased in patients with GVHD compared with controls; patients with GVHD also had lower diversity than controls. In the T-cell repertoire of a healthy person, approximately 99.6% of the CDR3 clones were in low abundance, with frequency <10-3. A single library could identify >93% of the clones with frequency ≥10-3 in the repertoire. Sequencing in duplicate increased the average detection rate to >97%. This work demonstrates that NGS reliably and robustly characterizes TRB populations in healthy individuals and patients with GVHD with frequency ≥10-3 and provides a methodologic framework for applying NGS immune repertoire methods to clinical testing applications beyond MRD.
Collapse
Affiliation(s)
- Liwen Xu
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, California
| | - Xiaoqing You
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, California
| | - PingPing Zheng
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford School of Medicine, Stanford University, Stanford, California
| | - Bing M Zhang
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, California
| | - Puja K Gupta
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford School of Medicine, Stanford University, Stanford, California
| | - Philip Lavori
- Department of Biomedical Data Science, Stanford School of Medicine, Stanford University, Stanford, California
| | - Everett Meyer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford School of Medicine, Stanford University, Stanford, California
| | - James L Zehnder
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, California.
| |
Collapse
|
229
|
Immunity to Infections after Haploidentical Hematopoietic Stem Cell Transplantation. Mediterr J Hematol Infect Dis 2016; 8:e2016057. [PMID: 27872737 PMCID: PMC5111540 DOI: 10.4084/mjhid.2016.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
The advantage of using a Human Leukocyte Antigen (HLA)-mismatched related donor is that almost every patient who does not have an HLA-identical donor or who urgently needs hematopoietic stem cell transplantation (HSCT) has at least one family member with whom shares one haplotype (haploidentical) and who is promptly available as a donor. The major challenge of haplo-HSCT is intense bi-directional alloreactivity leading to high incidences of graft rejection and graft-versus-host disease (GVHD). Advances in graft processing and pharmacologic prophylaxis of GVHD have reduced these risks and have made haplo-HSCT a viable alternative for patients lacking a matched donor. Indeed, the haplo-HSCT has spread to centers worldwide even though some centers have preferred an approach based on T cell depletion of G-CSF-mobilized peripheral blood progenitor cells (PBPCs), others have focused on new strategies for GvHD prevention, such as G-CSF priming of bone marrow and robust post-transplant immune suppression or post-transplant cyclophosphamide (PTCY). Today, the graft can be a megadose of T-cell depleted PBPCs or a standard dose of unmanipulated bone marrow and/or PBPCs. Although haplo-HSCT modalities are based mainly on high intensity conditioning regimens, recently introduced reduced intensity regimens (RIC) showed promise in decreasing early transplant-related mortality (TRM), and extending the opportunity of HSCT to an elderly population with more comorbidities. Infections are still mostly responsible for toxicity and non-relapse mortality due to prolonged immunosuppression related, or not, to GVHD. Future challenges lie in determining the safest preparative conditioning regimen, minimizing GvHD and promoting rapid and more robust immune reconstitution.
Collapse
|
230
|
Qu Y, Huang Y, Liu D, Huang Y, Zhang Z, Mi Z, An X, Tong Y, Lu J. High-Throughput Analysis of the T Cell Receptor Beta Chain Repertoire in PBMCs from Chronic Hepatitis B Patients with HBeAg Seroconversion. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2016; 2016:8594107. [PMID: 27818694 PMCID: PMC5081459 DOI: 10.1155/2016/8594107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/04/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
T lymphocytes are the most important immune cells that affect both the development and treatment of hepatitis B. We used high-throughput sequencing to determine the diversity in the V and J regions of the TCRβ chain in 4 chronic hepatitis B patients before and after HBeAg seroconversion. Here, we demonstrate that the 4 patients expressed Vβ12-4 at the highest frequencies of 10.6%, 9.2%, 17.5%, and 7.5%, and Vβ28 was the second most common, with frequencies of 7.8%, 6.7%, 5.3%, and 10.9%, respectively. No significant changes were observed following seroconversion. With regard to the Jβ gene, Jβ2-1 was the most commonly expressed in the 4 patients at frequencies of 5.8%, 6.5%, 11.3%, and 7.3%, respectively. Analysis of the V-J region genes revealed several differences, including significant increases in the expression levels of V7-2-01-J2-1, V12-4-J1-1, and V28-1-J1-5 and a decrease in that of V19-01-J2-3. These results illustrate the presence of biased TCRVβ and Jβ gene expression in the chronic hepatitis B patients. TRBVβ12-4, Vβ28, Jβ2-1, V7-2-01-J2-1, V12-4-J1-1, and V28-1-J1-5 may be associated with the development and treatment of CHB.
Collapse
Affiliation(s)
- Yachao Qu
- Hepatology and Cancer Biotherapy Ward, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Di Liu
- Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yinuo Huang
- Hepatology and Cancer Biotherapy Ward, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Zhiyi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoping An
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jun Lu
- Hepatology and Cancer Biotherapy Ward, Beijing You'an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
231
|
Kitaura K, Shini T, Matsutani T, Suzuki R. A new high-throughput sequencing method for determining diversity and similarity of T cell receptor (TCR) α and β repertoires and identifying potential new invariant TCR α chains. BMC Immunol 2016; 17:38. [PMID: 27729009 PMCID: PMC5059964 DOI: 10.1186/s12865-016-0177-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-throughput sequencing of T cell receptor (TCR) genes is a powerful tool for analyses of antigen specificity, clonality and diversity of T lymphocytes. Here, we developed a new TCR repertoire analysis method using 454 DNA sequencing technology in combination with an adaptor-ligation mediated polymerase chain reaction (PCR). This method allows the amplification of all TCR genes without PCR bias. To compare gene usage, diversity and similarity of expressed TCR repertoires among individuals, we conducted next-generation sequencing (NGS) of TRA and TRB genes in peripheral blood mononuclear cells from 20 healthy human individuals. RESULTS From a total of 267,037 sequence reads from 20 individuals, 149,216 unique sequence reads were identified. Preferential usage of several V and J genes were observed while some recombinations of TRAV with TRAJ appeared to be restricted. The extent of TCR diversity was not significantly different between TRA and TRB, while TRA repertoires were more similar between individuals than TRB repertoires were. The interindividual similarity of TRA depended largely on the frequent presence of shared TCRs among two or more individuals. A publicly available TRA had a near-germline TCR with a shorter CDR3. Notably, shared TRA sequences, especially those shared among a large number of individuals', often contained TCRα related with invariant TCRα derived from invariant natural killer T cells and mucosal-associated invariant T cells. CONCLUSION These results suggest that retrieval of shared TCRs by NGS would be useful for the identification of potential new invariant TCRα chains. This NGS method will enable the comprehensive quantitative analysis of TCR repertoires at a clonal level.
Collapse
Affiliation(s)
- Kazutaka Kitaura
- Repertoire Genesis Incorporation, 104 Saito-Bioincubator, 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Tadasu Shini
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Japan.,BITS. Co., Ltd, Tokyo, Japan
| | - Takaji Matsutani
- Repertoire Genesis Incorporation, 104 Saito-Bioincubator, 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan.
| | - Ryuji Suzuki
- Repertoire Genesis Incorporation, 104 Saito-Bioincubator, 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan.,Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Japan
| |
Collapse
|
232
|
Cabrera-Perez J, Badovinac VP, Griffith TS. Enteric immunity, the gut microbiome, and sepsis: Rethinking the germ theory of disease. Exp Biol Med (Maywood) 2016; 242:127-139. [PMID: 27633573 DOI: 10.1177/1535370216669610] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a poorly understood syndrome of systemic inflammation responsible for hundreds of thousands of deaths every year. The integrity of the gut epithelium and competence of adaptive immune responses are notoriously compromised during sepsis, and the prevalent assumption in the scientific and medical community is that intestinal commensals have a detrimental role in the systemic inflammation and susceptibility to nosocomial infections seen in critically ill, septic patients. However, breakthroughs in the last decade provide strong credence to the idea that our mucosal microbiome plays an essential role in adaptive immunity, where a human host and its prokaryotic colonists seem to exist in a carefully negotiated armistice with compromises and benefits that go both ways. In this review, we re-examine the notion that intestinal contents are the driving force of critical illness. An overview of the interaction between the microbiome and the immune system is provided, with a special focus on the impact of commensals in priming and the careful balance between normal intestinal flora and pathogenic organisms residing in the gut microbiome. Based on the data in hand, we hypothesize that sepsis induces imbalances in microbial populations residing in the gut, along with compromises in epithelial integrity. As a result, normal antigen sampling becomes impaired, and proliferative cues are intermixed with inhibitory signals. This situates the microbiome, the gut, and its complex immune network of cells and bacteria, at the center of aberrant immune responses during and after sepsis.
Collapse
Affiliation(s)
- Javier Cabrera-Perez
- 1 Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,2 Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Vladimir P Badovinac
- 3 Department of Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,4 Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Thomas S Griffith
- 1 Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,5 Department of Urology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,6 Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,7 Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,8 Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| |
Collapse
|
233
|
Maintenance of the EBV-specific CD8 + TCRαβ repertoire in immunosuppressed lung transplant recipients. Immunol Cell Biol 2016; 95:77-86. [PMID: 27507557 PMCID: PMC5214975 DOI: 10.1038/icb.2016.71] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/04/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) is one of the most common viruses in humans, capable of causing life-threatening infections and cancers in immunocompromised individuals. Although CD8+ T cells provide key protection against EBV, the persistence and dynamics of specific T-cell receptor (TCR) clones during immunosuppression in transplant patients is largely unknown. For the first time, we used a novel single-cell TCRαβ multiplex-nested reverse transcriptase PCR to dissect TCRαβ clonal diversity within GLCTLVAML (GLC)-specific CD8+ T cells in healthy individuals and immunocompromised lung transplant recipients. The GLC peptide presented by HLA-A*02:01 is one of the most immunogenic T-cell targets from the EBV proteome. We found that the GLC-specific TCRαβ repertoire was heavily biased toward TRAV5 and encompassed five classes of public TCRαβs, suggesting that these clonotypes are preferentially utilized following infection. We identified that a common TRAV5 was diversely paired with different TRAJ and TRBV/TRBJ genes, in both immunocompetent and immunocompromised individuals, with an average of 12 different TCRαβ clonotypes/donor. Moreover, pre-transplant GLC-specific TCRαβ repertoires were relatively stable over 1 year post transplant under immunosuppression in the absence or presence of EBV reactivation. In addition, we provide the first evidence of early GLC-specific CD8+ T cells at 87 days post transplant, which preceded clinical EBV detection at 242 days in an EBV-seronegative patient receiving a lung allograft from an EBV-seropositive donor. This was associated with a relatively stable TCRαβ repertoire after CD8+ T-cell expansion. Our findings provide insights into the composition and temporal dynamics of the EBV-specific TCRαβ repertoire in immunocompromised transplant patients and suggest that the early detection of EBV-specific T cells might be a predictor of ensuing EBV blood viremia.
Collapse
|
234
|
Zhou CY, Wen Q, Chen XJ, Wang RN, He WT, Zhang SM, Du XL, Ma L. Human CD8(+) T cells transduced with an additional receptor bispecific for both Mycobacterium tuberculosis and HIV-1 recognize both epitopes. J Cell Mol Med 2016; 20:1984-98. [PMID: 27113787 PMCID: PMC5020620 DOI: 10.1111/jcmm.12878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) and human immunodeficiency virus type 1 (HIV-1) infection are closely intertwined, with one-quarter of TB/HIV coinfected deaths among people died of TB. Effector CD8(+) T cells play a crucial role in the control of Mycobacterium tuberculosis (MTB) and HIV-1 infection in coinfected patients. Adoptive transfer of a multitude of effector CD8(+) T cells is an appealing strategy to impose improved anti-MTB/HIV-1 activity onto coinfected individuals. Due to extensive existence of heterologous immunity, that is, T cells cross-reactive with peptides encoded by related or even very dissimilar pathogens, it is reasonable to find a single T cell receptor (TCR) recognizing both MTB and HIV-1 antigenic peptides. In this study, a single TCR specific for both MTB Ag85B199-207 peptide and HIV-1 Env120-128 peptide was screened out from peripheral blood mononuclear cells of a HLA-A*0201(+) healthy individual using complementarity determining region 3 spectratype analysis and transferred to primary CD8(+) T cells using a recombinant retroviral vector. The bispecificity of the TCR gene-modified CD8(+) T cells was demonstrated by elevated secretion of interferon-γ, tumour necrosis factor-α, granzyme B and specific cytolytic activity after antigen presentation of either Ag85B199-207 or Env120-128 by autologous dendritic cells. To the best of our knowledge, this study is the first report proposing to produce responses against two dissimilar antigenic peptides of MTB and HIV-1 simultaneously by transfecting CD8(+) T cells with a single TCR. Taken together, T cells transduced with the additional bispecific TCR might be a useful strategy in immunotherapy for MTB/HIV-1 coinfected individuals.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Base Sequence
- CD8-Positive T-Lymphocytes/immunology
- Cytotoxicity, Immunologic
- Epitopes/immunology
- Genetic Vectors/metabolism
- HIV-1/immunology
- Humans
- Interferon-gamma/metabolism
- Lectins, C-Type/metabolism
- Mycobacterium tuberculosis/immunology
- Peptides/immunology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Transduction, Genetic
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Chao-Ying Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Jie Chen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui-Ning Wang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Ting He
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shi-Meng Zhang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xia-Lin Du
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
235
|
Han Y, Li H, Guan Y, Huang J. Immune repertoire: A potential biomarker and therapeutic for hepatocellular carcinoma. Cancer Lett 2016; 379:206-12. [DOI: 10.1016/j.canlet.2015.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 12/27/2022]
|
236
|
Mose LE, Selitsky SR, Bixby LM, Marron DL, Iglesia MD, Serody JS, Perou CM, Vincent BG, Parker JS. Assembly-based inference of B-cell receptor repertoires from short read RNA sequencing data with V'DJer. Bioinformatics 2016; 32:3729-3734. [PMID: 27559159 PMCID: PMC5167060 DOI: 10.1093/bioinformatics/btw526] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 11/24/2022] Open
Abstract
Motivation: B-cell receptor (BCR) repertoire profiling is an important tool for understanding the biology of diverse immunologic processes. Current methods for analyzing adaptive immune receptor repertoires depend upon PCR amplification of VDJ rearrangements followed by long read amplicon sequencing spanning the VDJ junctions. While this approach has proven to be effective, it is frequently not feasible due to cost or limited sample material. Additionally, there are many existing datasets where short-read RNA sequencing data are available but PCR amplified BCR data are not. Results: We present here V’DJer, an assembly-based method that reconstructs adaptive immune receptor repertoires from short-read RNA sequencing data. This method captures expressed BCR loci from a standard RNA-seq assay. We applied this method to 473 Melanoma samples from The Cancer Genome Atlas and demonstrate V’DJer’s ability to accurately reconstruct BCR repertoires from short read mRNA-seq data. Availability and Implementation: V’DJer is implemented in C/C ++, freely available for academic use and can be downloaded from Github: https://github.com/mozack/vdjer Contact:benjamin_vincent@med.unc.edu or parkerjs@email.unc.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Lisa M Bixby
- Lineberger Comprehensive Cancer Center.,Division of Hematology/Oncology, Department of Internal Medicine
| | | | | | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center.,Division of Hematology/Oncology, Department of Internal Medicine.,Department of Microbiology/Immunology
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center.,Departments of Genetics and Pathology and Laboratory Medicine
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center.,Division of Hematology/Oncology, Department of Internal Medicine
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center.,Departments of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
237
|
Lai L, Wang L, Chen H, Zhang J, Yan Q, Ou M, Lin H, Hou X, Chen S, Dai Y, Sui W. T cell repertoire following kidney transplantation revealed by high-throughput sequencing. Transpl Immunol 2016; 39:34-45. [PMID: 27561238 DOI: 10.1016/j.trim.2016.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 10/25/2022]
Abstract
Delayed T cell recovery and restricted T cell receptor (TCR) diversity after kidney transplantation are associated with increased risks of infection and malignancy. Technical challenges limit the faithful measurement of TCR diversity after kidney transplantation. In this study, we used a combination of multiplex-PCR, Illumina sequencing and IMGT/HighV-QUEST to directly assess millions of TCRs per individual before and at two time points after kidney transplantation (1days and 7days after transplantation) in a cohort of 10 patients compared to a normal control (NC) group (n=10). We identified the most commonly observed CDR3 length, VD indel length, and DJ indel length in transplantation group and normal group. In addition, we found that the TCR repertoire diversity of transplantation groups was relatively lower compared to NC group. T cell depletion in Post-1 group can be observed, which resulted in the altered distribution characteristics of clonotype abundance. A modest proportion of high abundance clones were shared among the pre-1 group, post-1 group and post-7 group, and it did not exist in the NC group, which exhibited a signature of antigen selection. Moreover, our results also demonstrated that various TRBV expression increased and some public sequences at different time points after kidney transplantation, which may provide biomarkers to monitor the immune status of transplant patients.
Collapse
Affiliation(s)
- Liusheng Lai
- Department of Nephrology, The Affiliated Guilin Hospital of Southern Medical University, Guilin, Guangxi 541002, PR China
| | - Lei Wang
- Department of Nephrology, The Affiliated Guilin Hospital of Southern Medical University, Guilin, Guangxi 541002, PR China
| | - Huaizhou Chen
- Department of Nephrology, Guilin 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, PR China
| | - Jiaxing Zhang
- Department of Nephrology, The Affiliated Guilin Hospital of Southern Medical University, Guilin, Guangxi 541002, PR China
| | - Qiang Yan
- Department of Nephrology, The Affiliated Guilin Hospital of Southern Medical University, Guilin, Guangxi 541002, PR China
| | - Minglin Ou
- Department of Nephrology, Guilin 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, PR China
| | - Hua Lin
- Department of Nephrology, Guilin 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, PR China
| | - Xianliang Hou
- Department of Nephrology, Guilin 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, PR China
| | - Sisi Chen
- Beijing Genomics Institute, Shenzhen 518083, PR China
| | - Yong Dai
- Department of Nephrology, Guilin 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, PR China; Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, PR China
| | - Weiguo Sui
- Department of Nephrology, The Affiliated Guilin Hospital of Southern Medical University, Guilin, Guangxi 541002, PR China; Department of Nephrology, Guilin 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, PR China.
| |
Collapse
|
238
|
K Singh V, Werner S, Hackstein H, Lennerz V, Reiter A, Wölfel T, Damm-Welk C, Woessmann W. Analysis of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-reactive CD8(+) T cell responses in children with NPM-ALK(+) anaplastic large cell lymphoma. Clin Exp Immunol 2016; 186:96-105. [PMID: 27414060 DOI: 10.1111/cei.12842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 01/06/2023] Open
Abstract
Cellular immune responses against the oncoantigen anaplastic lymphoma kinase (ALK) in patients with ALK-positive anaplastic large cell lymphoma (ALCL) have been detected using peptide-based approaches in individuals preselected for human leucocyte antigen (HLA)-A*02:01. In this study, we aimed to evaluate nucleophosmin (NPM)-ALK-specific CD8(+) T cell responses in ALCL patients ensuring endogenous peptide processing of ALK antigens and avoiding HLA preselection. We also examined the HLA class I restriction of ALK-specific CD8(+) T cells. Autologous dendritic cells (DCs) transfected with in-vitro-transcribed RNA (IVT-RNA) encoding NPM-ALK were used as antigen-presenting cells for T cell stimulation. Responder T lymphocytes were tested in interferon-gamma enzyme-linked immunospot (ELISPOT) assays with NPM-ALK-transfected autologous DCs as well as CV-1 in Origin with SV40 genes (COS-7) cells co-transfected with genes encoding the patients' HLA class I alleles and with NPM-ALK encoding cDNA to verify responses and define the HLA restrictions of specific T cell responses. NPM-ALK-specific CD8(+) T cell responses were detected in three of five ALK-positive ALCL patients tested between 1 and 13 years after diagnosis. The three patients had also maintained anti-ALK antibody responses. No reactivity was detected in samples from five healthy donors. The NPM-ALK-specific CD8(+) T cell responses were restricted by HLA-C-alleles (C*06:02 and C*12:02) in all three cases. This approach allowed for the detection of NPM-ALK-reactive T cells, irrespective of the individual HLA status, up to 9 years after ALCL diagnosis.
Collapse
Affiliation(s)
- V K Singh
- Department of Pediatric Hematology and Oncology
| | - S Werner
- Department of Pediatric Hematology and Oncology
| | - H Hackstein
- Institute of Clinical Immunology and Transfusion Medicine, Justus-Liebig-University, Giessen, Germany
| | - V Lennerz
- Department of Internal Medicine III, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - A Reiter
- Department of Pediatric Hematology and Oncology
| | - T Wölfel
- Department of Internal Medicine III, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - C Damm-Welk
- Department of Pediatric Hematology and Oncology
| | - W Woessmann
- Department of Pediatric Hematology and Oncology
| |
Collapse
|
239
|
T cell receptor diversity in the human thymus. Mol Immunol 2016; 76:116-22. [DOI: 10.1016/j.molimm.2016.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 01/21/2023]
|
240
|
Khor B. Regulatory T Cells: Central Concepts from Ontogeny to Therapy. Transfus Med Rev 2016; 31:36-44. [PMID: 27523957 DOI: 10.1016/j.tmrv.2016.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/06/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023]
Abstract
The balanced differentiation of naive CD4+ T cells into either pro- or anti-inflammatory fates is a central regulator of immune homeostasis, dysregulation of which can lead to inflammatory disease or cancer. Accordingly, the development of diagnostics and therapeutics to measure and modulate this balance is of great interest. In this review, we focus on the predominant anti-inflammatory subset, regulatory T cells, discussing key concepts including development, function, antigen specificity, and lineage stability. In particular, we highlight how these notions are shaping the evolution of therapeutics, especially in the context of the transfusion medicine specialist, and identify several key areas that urgently need to be addressed.
Collapse
Affiliation(s)
- Bernard Khor
- Department of Pathology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
241
|
Gerritsen B, Pandit A, Andeweg AC, de Boer RJ. RTCR: a pipeline for complete and accurate recovery of T cell repertoires from high throughput sequencing data. Bioinformatics 2016; 32:3098-3106. [PMID: 27324198 PMCID: PMC5048062 DOI: 10.1093/bioinformatics/btw339] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 05/26/2016] [Indexed: 12/11/2022] Open
Abstract
Motivation: High Throughput Sequencing (HTS) has enabled researchers to probe the human T cell receptor (TCR) repertoire, which consists of many rare sequences. Distinguishing between true but rare TCR sequences and variants generated by polymerase chain reaction (PCR) and sequencing errors remains a formidable challenge. The conventional approach to handle errors is to remove low quality reads, and/or rare TCR sequences. Such filtering discards a large number of true and often rare TCR sequences. However, accurate identification and quantification of rare TCR sequences is essential for repertoire diversity estimation. Results: We devised a pipeline, called Recover TCR (RTCR), that accurately recovers TCR sequences, including rare TCR sequences, from HTS data (including barcoded data) even at low coverage. RTCR employs a data-driven statistical model to rectify PCR and sequencing errors in an adaptive manner. Using simulations, we demonstrate that RTCR can easily adapt to the error profiles of different types of sequencers and exhibits consistently high recall and high precision even at low coverages where other pipelines perform poorly. Using published real data, we show that RTCR accurately resolves sequencing errors and outperforms all other pipelines. Availability and Implementation: The RTCR pipeline is implemented in Python (v2.7) and C and is freely available at http://uubram.github.io/RTCR/along with documentation and examples of typical usage. Contact:b.gerritsen@uu.nl
Collapse
Affiliation(s)
- Bram Gerritsen
- Theoretical Biology and Bioinformatics, Utrecht University, 3584CH the Netherlands
| | - Aridaman Pandit
- Theoretical Biology and Bioinformatics, Utrecht University, 3584CH the Netherlands
| | - Arno C Andeweg
- Department of Viroscience, Rotterdam, Erasmus MC, 3000CA, the Netherlands
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, 3584CH the Netherlands
| |
Collapse
|
242
|
Molecular dynamics at the receptor level of immunodominant myelin oligodendrocyte glycoprotein 35-55 epitope implicated in multiple sclerosis. J Mol Graph Model 2016; 68:78-86. [PMID: 27388119 DOI: 10.1016/j.jmgm.2016.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/24/2022]
Abstract
Multiple Sclerosis (MS) is a common autoimmune disease whereby myelin is destroyed by the immune system. The disease is triggered by the stimulation of encephalitogenic T-cells via the formation of a trimolecular complex between the Human Leukocyte Antigen (HLA), an immunodominant epitope of myelin proteins and T-cell Receptor (TCR). Myelin Oligodendrocyte Glycoprotein (MOG) is located on the external surface of myelin and has been implicated in MS induction. The immunodominant 35-55 epitope of MOG is widely used for in vivo biological evaluation and immunological studies that are related with chronic Experimental Autoimmune Encephalomyelitis (EAE, animal model of MS), inflammatory diseases and MS. In this report, Molecular Dynamics (MD) simulations were used to explore the interactions of MOG35-55 at the receptor level. A detailed mapping of the developed interactions during the creation of the trimolecular complex is reported. This is the first attempt to gain an understanding of the molecular recognition of the MOG35-55 epitope by the HLA and TCR receptors. During the formation of the trimolecular complex, the residues Arg(41) and Arg(46) of MOG35-55 have been confirmed to serve as TCR anchors while Tyr(40) interacts with HLA. The present structural findings indicate that the Arg at positions 41 and 46 is a key residue for the stimulation of the encephalitogenic T-cells.
Collapse
|
243
|
Deciphering the clinical relevance of allo-human leukocyte antigen cross-reactivity in mediating alloimmunity following transplantation. Curr Opin Organ Transplant 2016; 21:29-39. [PMID: 26575852 DOI: 10.1097/mot.0000000000000264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Despite a growing awareness regarding the potential of cross-reactive virus-specific memory T cells to mediate alloimmunity, there has been limited clinical evaluation on allograft immunopathology. This review will explore published models of human T-cell cross-reactivity and discuss criteria required to drive this mechanism as a contributing cause of allograft dysfunction in transplantation. RECENT FINDINGS Published models of human allogeneic (allo)-human leukocyte antigen (HLA) cross-reactivity have enabled dissection of the cross-reactive T cell receptor/peptide/major histocompatibility complex (TCR/peptide/MHC) interaction. In many of the models, the cross-reactive T cells express a unique TCR, although the relevance of a public cross-reactive TCR repertoire has yet to be determined. Equally, allopeptide identity, a vital component driving cross-recognition, remains unknown in the majority of models thereby prompting further characterization utilizing novel technologies. Although clinical studies examining the presence and impact of specific cross-reactive virus-specific T cells have been minimally explored, the existing data suggest that there may be a marginal set of requirements that need to be satisfied before the potentially damaging effects of allo-HLA cross-reactivity can be realized. SUMMARY Our understanding of allo-HLA cross-reactivity continues to evolve as improved technology and novel strategies allow us to better question the contribution of allo-HLA cross-reactivity in clinically relevant allograft dysfunction.
Collapse
|
244
|
Marrero I, Aguilera C, Hamm DE, Quinn A, Kumar V. High-throughput sequencing reveals restricted TCR Vβ usage and public TCRβ clonotypes among pancreatic lymph node memory CD4(+) T cells and their involvement in autoimmune diabetes. Mol Immunol 2016; 74:82-95. [PMID: 27161799 PMCID: PMC6301078 DOI: 10.1016/j.molimm.2016.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/28/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023]
Abstract
Islet-reactive memory CD4(+) T cells are an essential feature of type 1 diabetes (T1D) as they are involved in both spontaneous disease and in its recurrence after islet transplantation. Expansion and enrichment of memory T cells have also been shown in the peripheral blood of diabetic patients. Here, using high-throughput sequencing, we investigated the clonal diversity of the TCRβ repertoire of memory CD4(+) T cells in the pancreatic lymph nodes (PaLN) of non-obese diabetic (NOD) mice and examined their clonal overlap with islet-infiltrating memory CD4T cells. Both prediabetic and diabetic NOD mice exhibited a restricted TCRβ repertoire dominated by clones expressing TRBV13-2, TRBV13-1 or TRBV5 gene segments. There is a limited degree of TCRβ overlap between the memory CD4 repertoire of PaLN and pancreas as well as between the prediabetic and diabetic group. However, public TCRβ clonotypes were identified across several individual animals, some of them with sequences similar to the TCRs from the islet-reactive T cells suggesting their antigen-driven expansion. Moreover, the majority of the public clonotypes expressed TRBV13-2 (Vβ8.2) gene segment. Nasal vaccination with an immunodominat peptide derived from the TCR Vβ8.2 chain led to protection from diabetes, suggesting a critical role for Vβ8.2(+) CD4(+) memory T cells in T1D. These results suggest that memory CD4(+) T cells bearing limited dominant TRBV genes contribute to the autoimmune diabetes and can be potentially targeted for intervention in diabetes. Furthermore, our results have important implications for the identification of public T cell clonotypes as potential novel targets for immune manipulation in human T1D.
Collapse
Affiliation(s)
- Idania Marrero
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| | - Carlos Aguilera
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | - David E Hamm
- Adaptive Biotechnologies, 1551 Eastlake Ave E #200, Seattle, WA 98102, USA
| | - Anthony Quinn
- Department of Biological Sciences, University of Toledo, 2801 W Bancroft St., Toledo, OH 43606, USA
| | - Vipin Kumar
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
245
|
Characterization of T-cell Receptor Repertoire in Inflamed Tissues of Patients with Crohn's Disease Through Deep Sequencing. Inflamm Bowel Dis 2016; 22:1275-85. [PMID: 27135481 DOI: 10.1097/mib.0000000000000752] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Intestinal tissues of patients with Crohn's disease (CD) contain expanded populations of T cells which are believed to mediate inflammation. We performed a detailed characterization of these T-cell repertoires. METHODS We obtained biopsies from the neoterminal ileum of 12 patients undergoing evaluation for postoperative recurrent CD and 4 individuals with normal terminal ileum and no history of inflammatory bowel disease (controls). Samples of diseased terminal ileum were obtained from 5 patients undergoing surgery for stricturing or penetrating CD. Total RNA was extracted from tissues and peripheral blood mononuclear cells, and cDNAs were generated. We used next-generation sequencing to characterize T-cell receptor (TCR)-α and TCR-β cDNAs in ileal mucosal tissue and matched peripheral blood mononuclear cells of 17 patients with CD to identify oligoclonal expansions of T-cell populations associated with CD. RESULTS TCR diversity in mucosal tissue was significantly lower than that of matched peripheral blood mononuclear cells, indicating expansion of certain T-cell populations in inflamed intestinal tissue. A single TCR-β clonotype, CASSWTNGEQYF (TRBV10-1-TRBJ2-7), was enriched at a frequency of 7.0% to 28.9% in the neoterminal ileum of 4 of 12 patients with recurrent CD. The abundance of this clonotype significantly correlated with the severity of disease recurrence, based on Rutgeerts score (P = 0.015). CONCLUSIONS Specific populations of T cells are expanded in the inflamed intestinal mucosa of patients with CD; their abundance correlates with severity of disease recurrence. Studies of these T cells could provide information about mechanisms of CD pathogenesis. Deep TCR sequencing is a powerful tool that rapidly provides in-depth, real-time assessment of the T-cell repertoire.
Collapse
|
246
|
Affiliation(s)
- Veit R. Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 München, Germany; ,
| | - Ton N.M. Schumacher
- Division of Immunology, The Netherlands Cancer Institute (NKI), 1066 CX Amsterdam, The Netherlands;
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 München, Germany; ,
| |
Collapse
|
247
|
Cole DK, Bulek AM, Dolton G, Schauenberg AJ, Szomolay B, Rittase W, Trimby A, Jothikumar P, Fuller A, Skowera A, Rossjohn J, Zhu C, Miles JJ, Peakman M, Wooldridge L, Rizkallah PJ, Sewell AK. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J Clin Invest 2016; 126:2191-204. [PMID: 27183389 PMCID: PMC4887163 DOI: 10.1172/jci85679] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease.
Collapse
Affiliation(s)
- David K. Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Anna M. Bulek
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Garry Dolton
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Andrea J. Schauenberg
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Barbara Szomolay
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - William Rittase
- Woodruff School of Mechanical Engineering and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Andrew Trimby
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Prithiviraj Jothikumar
- Woodruff School of Mechanical Engineering and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Anna Fuller
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Ania Skowera
- Department of Immunobiology, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Jamie Rossjohn
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, and
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering and Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - John J. Miles
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mark Peakman
- Department of Immunobiology, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Linda Wooldridge
- Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Pierre J. Rizkallah
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Andrew K. Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
248
|
Torikai H, Cooper LJ. Translational Implications for Off-the-shelf Immune Cells Expressing Chimeric Antigen Receptors. Mol Ther 2016; 24:1178-86. [PMID: 27203439 DOI: 10.1038/mt.2016.106] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
Chimeric antigen receptor (CAR) endows specificity to T-cells independent of human leukocyte antigen (HLA). This enables one immunoreceptor to directly target the same surface antigen on different subsets of tumor cells from multiple HLA-disparate recipients. Most approaches manufacture individualized CAR(+)T-cells from the recipient or HLA-compatible donor, which are revealing promising clinical results. This is the impetus to broaden the number of patients eligible to benefit from adoptive immunotherapy such as to infuse third-party donor derived CAR(+)T-cells. This will overcome issues associated with (i) time to manufacture T-cells, (ii) cost to generate one product for one patient, (iii) inability to generate a product from lymphopenic patients or patient's immune cells fail to complete the manufacturing process, and (iv) heterogeneity of T-cell products produced for or from individual recipients. Establishing a biobank of allogeneic genetically modified immune cells from healthy third-party donors, which are cryopreserved and validated in advance of administration, will facilitate the centralizing manufacturing and widespread distribution of CAR(+)T-cells to multiple points-of-care in a timely manner. To achieve this, it is necessary to engineer an effective strategy to avoid deleterious allogeneic immune responses leading to toxicity and rejection. We review the strategies to establish "off-the-shelf" donor-derived biobanks for human application of CAR(+)T-cells as a drug.
Collapse
Affiliation(s)
- Hiroki Torikai
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laurence Jn Cooper
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Ziopharm Oncology Inc., Boston, Massachusetts, USA
| |
Collapse
|
249
|
Britanova OV, Shugay M, Merzlyak EM, Staroverov DB, Putintseva EV, Turchaninova MA, Mamedov IZ, Pogorelyy MV, Bolotin DA, Izraelson M, Davydov AN, Egorov ES, Kasatskaya SA, Rebrikov DV, Lukyanov S, Chudakov DM. Dynamics of Individual T Cell Repertoires: From Cord Blood to Centenarians. THE JOURNAL OF IMMUNOLOGY 2016; 196:5005-13. [PMID: 27183615 DOI: 10.4049/jimmunol.1600005] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/16/2016] [Indexed: 01/29/2023]
Abstract
The diversity, architecture, and dynamics of the TCR repertoire largely determine our ability to effectively withstand infections and malignancies with minimal mistargeting of immune responses. In this study, we have employed deep TCRβ repertoire sequencing with normalization based on unique molecular identifiers to explore the long-term dynamics of T cell immunity. We demonstrate remarkable stability of repertoire, where approximately half of all T cells in peripheral blood are represented by clones that persist and generally preserve their frequencies for 3 y. We further characterize the extremes of lifelong TCR repertoire evolution, analyzing samples ranging from umbilical cord blood to centenarian peripheral blood. We show that the fetal TCR repertoire, albeit structurally maintained within regulated borders due to the lower numbers of randomly added nucleotides, is not limited with respect to observed functional diversity. We reveal decreased efficiency of nonsense-mediated mRNA decay in umbilical cord blood, which may reflect specific regulatory mechanisms in development. Furthermore, we demonstrate that human TCR repertoires are functionally more similar at birth but diverge during life, and we track the lifelong behavior of CMV- and EBV-specific T cell clonotypes. Finally, we reveal gender differences in dynamics of TCR diversity constriction, which come to naught in the oldest age. Based on our data, we propose a more general explanation for the previous observations on the relationships between longevity and immunity.
Collapse
Affiliation(s)
- Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Ekaterina M Merzlyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ekaterina V Putintseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Maria A Turchaninova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mikhail V Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitriy A Bolotin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mark Izraelson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Alexey N Davydov
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Evgeny S Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Denis V Rebrikov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| |
Collapse
|
250
|
Zhao Y, Nguyen P, Ma J, Wu T, Jones LL, Pei D, Cheng C, Geiger TL. Preferential Use of Public TCR during Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2016; 196:4905-14. [PMID: 27183575 DOI: 10.4049/jimmunol.1501029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 04/04/2016] [Indexed: 12/21/2022]
Abstract
How the TCR repertoire, in concert with risk-associated MHC, imposes susceptibility for autoimmune diseases is incompletely resolved. Due largely to recombinatorial biases, a small fraction of TCRα or β-chains are shared by most individuals, or public. If public TCR chains modulate a TCRαβ heterodimer's likelihood of productively engaging autoantigen, because they are pervasive and often high frequency, they could also broadly influence disease risk and progression. Prior data, using low-resolution techniques, have identified the heavy use of select public TCR in some autoimmune models. In this study, we assess public repertoire representation in mice with experimental autoimmune encephalomyelitis at high resolution. Saturation sequencing was used to identify >18 × 10(6) TCRβ sequences from the CNSs, periphery, and thymi of mice at different stages of autoimmune encephalomyelitis and healthy controls. Analyses indicated the prominent representation of a highly diverse public TCRβ repertoire in the disease response. Preferential formation of public TCR implicated in autoimmunity was identified in preselection thymocytes, and, consistently, public, disease-associated TCRβ were observed to be commonly oligoclonal. Increased TCR sharing and a focusing of the public TCR response was seen with disease progression. Critically, comparisons of peripheral and CNS repertoires and repertoires from preimmune and diseased mice demonstrated that public TCR were preferentially deployed relative to nonshared, or private, sequences. Our findings implicate public TCR in skewing repertoire response during autoimmunity and suggest that subsets of public TCR sequences may serve as disease-specific biomarkers or influence disease susceptibility or progression.
Collapse
Affiliation(s)
- Yunqian Zhao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Phuong Nguyen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Tianhua Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Lindsay L Jones
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Terrence L Geiger
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| |
Collapse
|