201
|
Iommarini L, Calvaruso MA, Kurelac I, Gasparre G, Porcelli AM. Complex I impairment in mitochondrial diseases and cancer: Parallel roads leading to different outcomes. Int J Biochem Cell Biol 2013; 45:47-63. [DOI: 10.1016/j.biocel.2012.05.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/03/2012] [Accepted: 05/24/2012] [Indexed: 02/06/2023]
|
202
|
Han Y, Chen JZ. Oxidative stress induces mitochondrial DNA damage and cytotoxicity through independent mechanisms in human cancer cells. BIOMED RESEARCH INTERNATIONAL 2012; 2013:825065. [PMID: 23509785 PMCID: PMC3591153 DOI: 10.1155/2013/825065] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 01/21/2023]
Abstract
Intrinsic oxidative stress through increased production of reactive oxygen species (ROS) is associated with carcinogenic transformation, cell toxicity, and DNA damage. Mitochondrial DNA (mtDNA) is a natural surrogate to oxidative DNA damage. MtDNA damage results in the loss of its supercoiled structure and is readily detectable using a novel, supercoiling-sensitive real-time PCR method. Our studies have demonstrated that mtDNA damage, as measured by DNA strand breaks and copy number depletion, is very sensitive to exogenous H2O2 but independent of endogenous ROS production in both prostate cancer and normal cells. In contrast, aggressive prostate cancer cells exhibit a more than 10-fold sensitivity to H2O2-induced cell toxicity than normal cells, and a cascade of secondary ROS production is a critical determinant to the differential response. We propose a new paradigm to account for different mechanisms governing cellular oxidative stress, cell toxicity, and DNA damage with important ramifications in devising new techniques and strategies in prostate cancer prevention and treatment.
Collapse
Affiliation(s)
- Yue Han
- Division of Urology, Department of Surgery, Research Institute of McGill University Health Center, Room R1-107, 1650 Cedar Avenue, Montreal, QC, Canada H3G 1A4
| | - Junjian Z. Chen
- Division of Urology, Department of Surgery, Research Institute of McGill University Health Center, Room R1-107, 1650 Cedar Avenue, Montreal, QC, Canada H3G 1A4
| |
Collapse
|
203
|
[Energy metabolism pathway related genes and adaptive evolution of tumor cells]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:557-65. [PMID: 23266974 DOI: 10.3724/sp.j.1141.2012.06557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The proliferation of tumor cells is an extremely energy-consuming process. However, different from normal cells, tumor cells generate energy via glycolysis even under aerobic conditions, which is one of the ten hallmarks of tumor cells. The switch of energy metabolism results in a series of physiological changes in tumor cells, including rapid generation of ATP and abundant biomass for cell proliferation, which form the basis of tumor cells to successfully adapt to their extreme microenvironment (e.g. lack of oxygen). In this review, we will introduce recent progress in studying somatic mutations on the energy metabolism related genes in tumors, with special focus on the potential factors involving in the "switch" and to decipher the genetic adaptive footprint of the "switch" from the angle of molecular evolution.
Collapse
|
204
|
Mondal R, Ghosh SK, Talukdar FR, Laskar RS. Association of mitochondrial D-loop mutations with GSTM1 and GSTT1 polymorphisms in oral carcinoma: a case control study from northeast India. Oral Oncol 2012; 49:345-53. [PMID: 23265943 DOI: 10.1016/j.oraloncology.2012.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/10/2012] [Accepted: 11/18/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Mitochondrial dysfunction is a hallmark of cancer cells. Tobacco consumption in various forms is one of the major risk factors for the development of oral squamous cell carcinoma which makes the mitochondrial DNA susceptible to damage by reactive oxygen species. The GSTT1 and GSTM1 members of the glutathione S-transferase multigene family are candidate carcinogen metabolizing genes. Here we determined the hot spot mutations in the D-loop region and revealing correlation if any, with clinical parameters, along with analysing the genetic polymorphism of GSTT1 and GSTM1 and its susceptibility towards oral cancer. MATERIALS AND METHODS To determine the hot spot mutations 25 matched tissue samples of OSCC patients with 25 control subjects were used for PCR and direct sequencing. Analysis for GSTM1 and GSTT1 gene polymorphism was done by multiplex PCR. RESULTS Several mutations were found within the D-loop region among which mutations at nt146, nt152 and nt196 are found to be hot spot (P<0.0001, P<0.0001 and P<0.001 respectively). A significant association was found between the numbers of D-loop mutation and GSTM1 (OR=2.03; 95% CI, 1.04-3.96, P=0.003), GSTT1 (OR=1.73; 95% CI, 1.10-2.71, P=0.0027) null genotypes respectively. We observed a significant correlation between the increased number of D-loop mutations with the advancement in tumour stage of the patients (P=0.009, r=0.48). CONCLUSION The association of null genotypes and mutations can be used as a possible biomarker for early detection and preventive measure of oral cancer for those habituated to tobacco consumption.
Collapse
Affiliation(s)
- Rosy Mondal
- Department of Biotechnology, Assam University (A Central University), Silchar 788011, Assam, India.
| | | | | | | |
Collapse
|
205
|
Meunier B, Fisher N, Ransac S, Mazat JP, Brasseur G. Respiratory complex III dysfunction in humans and the use of yeast as a model organism to study mitochondrial myopathy and associated diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1346-61. [PMID: 23220121 DOI: 10.1016/j.bbabio.2012.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/21/2012] [Accepted: 11/28/2012] [Indexed: 11/25/2022]
Abstract
The bc1 complex or complex III is a central component of the aerobic respiratory chain in prokaryotic and eukaryotic organisms. It catalyzes the oxidation of quinols and the reduction of cytochrome c, establishing a proton motive force used to synthesize adenosine triphosphate (ATP) by the F1Fo ATP synthase. In eukaryotes, the complex III is located in the inner mitochondrial membrane. The genes coding for the complex III have a dual origin. While cytochrome b is encoded by the mitochondrial genome, all the other subunits are encoded by the nuclear genome. In this review, we compile an exhaustive list of the known human mutations and associated pathologies found in the mitochondrially-encoded cytochrome b gene as well as the fewer mutations in the nuclear genes coding for the complex III structural subunits and accessory proteins such as BCS1L involved in the assembly of the complex III. Due to the inherent difficulties of studying human biopsy material associated with complex III dysfunction, we also review the work that has been conducted to study the pathologies with the easy to handle eukaryotic microorganism, the yeast Saccharomyces cerevisiae. Phenotypes, biochemical data and possible effects due to the mutations are also discussed in the context of the known three-dimensional structure of the eukaryotic complex III. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- B Meunier
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, F-91198, France
| | | | | | | | | |
Collapse
|
206
|
De Paepe B. Mitochondrial Markers for Cancer: Relevance to Diagnosis, Therapy, and Prognosis and General Understanding of Malignant Disease Mechanisms. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/217162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cancer cells display changes that aid them to escape from cell death, sustain their proliferative powers, and shift their metabolism toward glycolytic energy production. Mitochondria are key organelles in many metabolic and biosynthetic pathways, and the adaptation of mitochondrial function has been recognized as crucial to the changes that occur in cancer cells. This paper zooms in on the pathologic evaluation of mitochondrial markers for diagnosing and staging of human cancer and determining the patients’ prognoses.
Collapse
Affiliation(s)
- Boel De Paepe
- Laboratories for Neuropathology & Mitochondrial Disorders, Ghent University Hospital, Building K5 3rd Floor, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
207
|
Greaves LC, Elson JL, Nooteboom M, Grady JP, Taylor GA, Taylor RW, Mathers JC, Kirkwood TBL, Turnbull DM. Comparison of mitochondrial mutation spectra in ageing human colonic epithelium and disease: absence of evidence for purifying selection in somatic mitochondrial DNA point mutations. PLoS Genet 2012; 8:e1003082. [PMID: 23166522 PMCID: PMC3499406 DOI: 10.1371/journal.pgen.1003082] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/28/2012] [Indexed: 01/12/2023] Open
Abstract
Human ageing has been predicted to be caused by the accumulation of molecular damage in cells and tissues. Somatic mitochondrial DNA (mtDNA) mutations have been documented in a number of ageing tissues and have been shown to be associated with cellular mitochondrial dysfunction. It is unknown whether there are selective constraints, which have been shown to occur in the germline, on the occurrence and expansion of these mtDNA mutations within individual somatic cells. Here we compared the pattern and spectrum of mutations observed in ageing human colon to those observed in the general population (germline variants) and those associated with primary mtDNA disease. The pathogenicity of the protein encoding mutations was predicted using a computational programme, MutPred, and the scores obtained for the three groups compared. We show that the mutations associated with ageing are randomly distributed throughout the genome, are more frequently non-synonymous or frameshift mutations than the general population, and are significantly more pathogenic than population variants. Mutations associated with primary mtDNA disease were significantly more pathogenic than ageing or population mutations. These data provide little evidence for any selective constraints on the occurrence and expansion of mtDNA mutations in somatic cells of the human colon during human ageing in contrast to germline mutations seen in the general population. Mitochondrial DNA encodes essential components of the mitochondrial respiratory chain and is strictly maternally inherited, making it vulnerable to the accumulation of deleterious mutations. To avoid this, mtDNA is subjected to a bottleneck phenomenon whereby only a small number of mtDNA molecules are passed on to the oocyte precursor. These are then amplified to the required number of mtDNA molecules in the mature oocyte, meaning that any mutations may be either lost or rapidly fixed. Purifying selection is thought to be an important protective mechanism against pathogenic mtDNA mutations in the germline, as this is essential for mtDNA stability. It is unknown whether there are any such protective mechanisms in the somatic tissues. To investigate this we have compared the spectrum of mutations present in ageing human colonocytes with those population variants passed through the maternal germline and mtDNA mutations responsible for primary mtDNA disease. We show that pathogenic mtDNA mutations are present at a significantly higher frequency in the somatic cells of the human colon in contrast to variants that have passed though the germline, showing little evidence for purifying selection in the somatic tissues studied here, but strong evidence of this selective mechanism in the germline.
Collapse
Affiliation(s)
- Laura C. Greaves
- Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Joanna L. Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marco Nooteboom
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John P. Grady
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Geoffrey A. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John C. Mathers
- Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- Human Nutrition Research Centre, Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle Upon Tyne, United Kingdom
| | - Thomas B. L. Kirkwood
- Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle Upon Tyne, United Kingdom
| | - Doug M. Turnbull
- Newcastle University Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
208
|
Mutations in the D-loop region and increased copy number of mitochondrial DNA in human laryngeal squamous cell carcinoma. Mol Biol Rep 2012; 40:13-20. [PMID: 23114912 DOI: 10.1007/s11033-012-1939-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
The effects of D-loop mutations and the mtDNA copy number alterations in LSCC are poorly understood. Herein, we investigated the features and roles of somatic mutations of the D-loop region and copy number alterations in mtDNA of LSCC. Using direct sequencing and real-time quantitative PCR, we examined D-loop mutations and mtDNA copy number in LSCC tissues, paracancerous normal tissues and peripheral vein blood samples from 40 LSCC patients. A student's t test, ANOVA test and χ(2) test were used to analyze association among mutations, mtDNA copy number alterations with clinicopathologic parameters. The results revealed that 21 tumors (52.5 %) had somatic mtDNA D-loop mutations with a total of 34 mutations. Among them, 28 (82.4 %) and 6 (17.6 %) were located in HVII and HVI, respectively. D-loop mutations correlated with tumor differentiation and p53 mutation (P < 0.05), and increased mtDNA copy number. In addition, mtDNA copy number in tumor tissues and paracancerous normal tissues were all significantly higher than in peripheral blood (P < 0.05). The copy number of mtDNA in the cases which carried D-loop mutation was significantly higher than that of the negative cases (P < 0.05). These results suggest that the mtDNA D-loop in LSCC is an unstable region with a high frequency of somatic mutation and polymorphisms. Together with the increase in mtDNA copy number, these factors may play a role in carcinogenesis of the larynx.
Collapse
|
209
|
Hammoudi N, Ahmed KBR, Garcia-Prieto C, Huang P. Metabolic alterations in cancer cells and therapeutic implications. CHINESE JOURNAL OF CANCER 2012; 30:508-25. [PMID: 21801600 PMCID: PMC4013402 DOI: 10.5732/cjc.011.10267] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.
Collapse
Affiliation(s)
- Naima Hammoudi
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
210
|
Larman TC, DePalma SR, Hadjipanayis AG, Protopopov A, Zhang J, Gabriel SB, Chin L, Seidman CE, Kucherlapati R, Seidman JG. Spectrum of somatic mitochondrial mutations in five cancers. Proc Natl Acad Sci U S A 2012; 109:14087-91. [PMID: 22891333 PMCID: PMC3435197 DOI: 10.1073/pnas.1211502109] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Somatic mtDNA mutations have been reported in some human tumors, but their spectrum in different malignancies and their role in cancer development remain incompletely understood. Here, we describe the breadth of somatic and inherited mutations across the mitochondrial genome by sequence analyses of paired tumor and normal tissue samples from 226 individuals with five types of cancer using whole-genome data generated by The Cancer Genome Atlas Research Network. The frequencies of deleterious tumor-specific somatic mutations found in mtDNA varied across tumor types, ranging from 13% of glioblastomas to 63% of rectal adenocarcinomas. Compared with inherited mtDNA variants, somatic mtDNA mutations were enriched for nonsynonymous vs. synonymous changes (93 vs. 15; P < 2.2E-16) and were predicted to functionally impact the encoded protein. Somatic missense mutations in tumors were distributed uniformly among the mitochondrial protein genes, but 65% of somatic truncating mutations occurred in NADH dehydrogenase 5. Analysis of staging data in colon and rectal cancers revealed that the frequency of damaging mitochondrial mutations is the same in stages I and IV tumors. In summary, these data suggest that damaging somatic mtDNA mutations occur frequently (13-63%) in these five tumor types and likely confer a selective advantage in oncogenesis.
Collapse
Affiliation(s)
- Tatianna C. Larman
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815
- University of California at San Diego School of Medicine, La Jolla, CA 92093
| | - Steven R. DePalma
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | | | - The Cancer Genome Atlas Research Network
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815
- University of California at San Diego School of Medicine, La Jolla, CA 92093
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115
- The Broad Institute, Cambridge, MA 02142; and
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | - Alexei Protopopov
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Jianhua Zhang
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | - Lynda Chin
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115
| | | | - J. G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
211
|
Li H, Hong ZH. Mitochondrial DNA mutations in human tumor cells. Oncol Lett 2012; 4:868-872. [PMID: 23162613 DOI: 10.3892/ol.2012.874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/20/2012] [Indexed: 02/02/2023] Open
Abstract
Mitochondria play significant roles in cellular energy metabolism, free radical generation and apoptosis. The dysfunction of mitochondria is correlated with the origin and progression of tumors; thus, mutations in the mitochondrial genome that affect mitochondrial function may be one of the causal factors of tumorigenesis. Although the role of mitochondrial DNA (mtDNA) mutations in carcinogenesis has been investigated extensively by various approaches, the conclusions remain controversial to date. This review briefly summarizes the recent progress in this field.
Collapse
Affiliation(s)
- Hui Li
- Department of Genetics and Developmental Biology, Southeast University School of Medicine; ; The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | | |
Collapse
|
212
|
Catania C, Spitaleri G, Delmonte A, Giovannini M, Toffalorio F, Noberasco C, Bresolin N, Comi G, De Pas T. Safety of systemic chemotherapy in a patient with mitochondrial myopathy and non-small-cell lung cancer. J Clin Oncol 2012; 30:e226-8. [PMID: 22711848 DOI: 10.1200/jco.2011.40.1828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
213
|
Grzybowska-Szatkowska L, Slaska B. Mitochondrial DNA and carcinogenesis (review). Mol Med Rep 2012; 6:923-30. [PMID: 22895648 DOI: 10.3892/mmr.2012.1027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 07/26/2012] [Indexed: 11/05/2022] Open
Abstract
The role of the mitochondria in the process of carcinogenesis has drawn researchers' attention since the discovery of respiratory deficit in cells, particularly those characterized by rapid proliferation. The deficit was assumed to stimulate further differentiation of the cells and initiate the process of neoplastic transformation. As many as 25-80% of somatic mutations in mitochondrial DNA (mtDNA) are found in various neoplasms. These mutations are considered to trigger the neoplastic transformation through shifts of cell energy resources, an increase in the mitochondrial oxidative stress and modulation of apoptosis. The question arises as to whether the mtDNA mutations precede a neoplasm or whether they are a result of changes and processes that take place during neoplastic proliferation.
Collapse
|
214
|
Mitochondrial haplogroups and polymorphisms reveal no association with sporadic prostate cancer in a southern European population. PLoS One 2012; 7:e41201. [PMID: 22815971 PMCID: PMC3398884 DOI: 10.1371/journal.pone.0041201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/18/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It is known that mitochondria play an important role in certain cancers (prostate, renal, breast, or colorectal) and coronary disease. These organelles play an essential role in apoptosis and the production of reactive oxygen species; in addition, mtDNA also reveals the history of populations and ancient human migration. All these events and variations in the mitochondrial genome are thought to cause some cancers, including prostate cancer, and also help us to group individuals into common origin groups. The aim of the present study is to analyze the different haplogroups and variations in the sequence in the mitochondrial genome of a southern European population consisting of subjects affected (n = 239) and non-affected (n = 150) by sporadic prostate cancer. METHODOLOGY AND PRINCIPAL FINDINGS Using primer extension analysis and DNA sequencing, we identified the nine major European haplogroups and CR polymorphisms. The frequencies of the haplogroups did not differ between patients and control cohorts, whereas the CR polymorphism T16356C was significantly higher in patients with PC compared to the controls (p = 0.029). PSA, staging, and Gleason score were associated with none of the nine major European haplogroups. The CR polymorphisms G16129A (p = 0.007) and T16224C (p = 0.022) were significantly associated with Gleason score, whereas T16311C (p = 0.046) was linked with T-stage. CONCLUSIONS AND SIGNIFICANCE Our results do not suggest that mtDNA haplogroups could be involved in sporadic prostate cancer etiology and pathogenesis as previous studies performed in middle Europe population. Although some significant associations have been obtained in studying CR polymorphisms, further studies should be performed to validate these results.
Collapse
|
215
|
Zhang W, Cui H, Wong LJC. Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clin Chem 2012; 58:1322-31. [PMID: 22777720 DOI: 10.1373/clinchem.2011.181438] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mitochondrial diseases are clinically and genetically heterogeneous, with variable penetrance, expressivity, and differing age of onset. Disease-causing point mutations and large deletions in the mitochondrial genome often exist in a heteroplasmic state. Current molecular analyses require multiple different and complementary methods for the detection and quantification of mitochondrial DNA (mtDNA) mutations. We developed a novel approach to analyze the mtDNA in 1 step. METHODS The entire human mitochondrial genome was enriched by a single amplicon long-range PCR followed by massively parallel sequencing to simultaneously detect mtDNA point mutations and large deletions with heteroplasmic levels of the mutations and variants quantified. QC samples were designed and analyzed along with each sample. A total of 45 samples were analyzed for the evaluation of analytic sensitivity and specificity. RESULTS Our analysis demonstrated 100% diagnostic sensitivity and specificity of base calls compared to the results from Sanger sequencing. The deep coverage allowed the detection and quantification of heteroplasmy at every single nucleotide position of the 16 569-bp mitochondrial genome. Moreover, the method also detected large deletions with the breakpoints mapped. CONCLUSIONS This "deep" sequencing approach provides a 1-step comprehensive molecular analysis of the whole mitochondrial genome for patients in whom a mitochondrial disease is suspected.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
216
|
Abstract
Background: The role of mitochondrial DNA (mtDNA) mutations in the development of breast cancer is largely unknown. In this study, we investigated the frequency and pattern of mutations in the D310 region, the most commonly mutated region in mtDNA, in a series of breast lesions. Methods: Using capillary electrophoresis, we genotyped the D310 sequence of neoplastic epithelial cells from 23 patients with synchronous ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC), 26 patients with IDC only and 29 patients with DCIS only. Results: A majority of DCIS (68.4%) and IDC (71.4%) lesions harbour different D310 sequences compared with their matched normal control. Specific D310 sequences were more frequently identified in tumour samples (77.1% of DCIS and 75.5% of IDC) compared with normal tissues (35.3% of normal; P<0.0001). No difference was identified between DCIS lesions with synchronous IDC and those from pure DCIS cases. In five cases, histologically normal tissue adjacent to tumour was found to share D310 sequences with the tumour, while normal tissue taken further away did not. Conclusion: Although D310 alterations do not seem to be related to DCIS progression, they were found in histologically normal cells adjacent to tumour. This suggests a field of genetically altered cells, thus D310 mutations could represent a potential marker for the clonal expansion of premalignant breast cancer cells.
Collapse
|
217
|
Ding C, Li R, Wang P, Jin P, Li S, Guo Z. Identification of sequence polymorphisms in the D-loop region of mitochondrial DNA as a risk factor for lung cancer. ACTA ACUST UNITED AC 2012; 23:251-4. [PMID: 22708867 DOI: 10.3109/19401736.2012.674120] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) may be associated with an increased cancer risk. We investigated the lung cancer risk profile of D-loop SNPs in a case-controlled study. The minor alleles of nucleotides 235A/G and 324A/G were associated with an increased risk for lung cancer patients. The minor alleles of the nucleotides 151C/T, 200A/G, 524C/CA, and 16274G/A were specifically associated with the cancer risk of squamous cell carcinoma, whereas the minor allele of nucleotide 16298T/C was specifically associated with the risk of small cell lung cancer. In conclusion, SNPs in mtDNA are potential modifiers of lung cancer risk. The analysis of genetic polymorphisms in the mitochondrial D-loop can help identify subgroups of patients who are at a high risk of developing lung cancer.
Collapse
Affiliation(s)
- Cuimin Ding
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
| | | | | | | | | | | |
Collapse
|
218
|
Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis. Exp Cell Res 2012; 318:2215-25. [PMID: 22705584 DOI: 10.1016/j.yexcr.2012.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 11/20/2022]
Abstract
We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-κB (NF-κB) is a key transcription factor for production of MMPs. An inhibitor of NF-κB activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-κB in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids.
Collapse
|
219
|
Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell Mol Life Sci 2012; 69:3341-3350. [PMID: 22689099 DOI: 10.1007/s00018-012-1027-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/23/2012] [Accepted: 05/07/2012] [Indexed: 01/02/2023]
Abstract
Lung cancer is the leading cause of cancer death for both men and women worldwide. Since most of the symptoms found for lung cancer are nonspecific, diagnosis is mostly done at late and progressed stage with the consecutive poor therapy outcome. Effective early detection techniques are sorely needed. The emerging field of salivary diagnostics could provide scientifically credible, easy-to-use, non-invasive and cost-effective detection methods. Recent advances have allowed us to develop discriminatory salivary biomarkers for a variety of diseases from oral to systematic diseases. In this study, salivary transcriptomes of lung cancer patients were profiled and led to the discovery and pre-validation of seven highly discriminatory transcriptomic salivary biomarkers (BRAF, CCNI, EGRF, FGF19, FRS2, GREB1, and LZTS1). The logistic regression model combining five of the mRNA biomarkers (CCNI, EGFR, FGF19, FRS2, and GREB1) could differentiate lung cancer patients from normal control subjects, yielding AUC value of 0.925 with 93.75 % sensitivity and 82.81 % specificity in the pre-validation sample set. These salivary mRNA biomarkers possess the discriminatory power for the detection of lung cancer. This report provides the proof of concept of salivary biomarkers for the non-invasive detection of the systematic disease. These results poised the salivary biomarkers for the initiation of a multi-center validation in a definitive clinical context.
Collapse
|
220
|
Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development. Proc Natl Acad Sci U S A 2012; 109:10528-33. [PMID: 22689997 DOI: 10.1073/pnas.1202367109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It has been hypothesized that respiration defects caused by accumulation of pathogenic mitochondrial DNA (mtDNA) mutations and the resultant overproduction of reactive oxygen species (ROS) or lactates are responsible for aging and age-associated disorders, including diabetes and tumor development. However, there is no direct evidence to prove the involvement of mtDNA mutations in these processes, because it is difficult to exclude the possible involvement of nuclear DNA mutations. Our previous studies resolved this issue by using an mtDNA exchange technology and showed that a G13997A mtDNA mutation found in mouse tumor cells induces metastasis via ROS overproduction. Here, using transmitochondrial mice (mito-mice), which we had generated previously by introducing G13997A mtDNA from mouse tumor cells into mouse embryonic stem cells, we provide convincing evidence supporting part of the abovementioned hypothesis by showing that G13997A mtDNA regulates diabetes development, lymphoma formation, and metastasis--but not aging--in this model.
Collapse
|
221
|
Guney AI, Ergec DS, Tavukcu HH, Koc G, Kirac D, Ulucan K, Javadova D, Turkeri L. Detection of mitochondrial DNA mutations in nonmuscle invasive bladder cancer. Genet Test Mol Biomarkers 2012; 16:672-8. [PMID: 22533676 DOI: 10.1089/gtmb.2011.0227] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) mutations have been recently described in various tumors; however, data focusing on bladder cancer are scarce. To understand the significance of mtDNA mutations in bladder cancer development, we investigated the mtDNA alterations in bladder cancer cases. METHODS We studied the mtDNA in 38 bladder tumors and 21 microdissected normal bladder tissue samples. Mitochondrial genes ATPase6, CytB, ND1, and D310 region were amplified by polymerase chain reaction and then sequenced. RESULTS We detected 40 mutations in our patient population. Our findings indicate that G8697A, G14905A, C15452A, and A15607G mutations are frequent in bladder cancers (p<0.05). In addition, the incidence of A3480G, T4216C, T14798C, and G9055A mutations were higher in patients with bladder tumors. CONCLUSIONS In conclusion, the high incidence of mtDNA mutations in bladder cancer suggests that mitochondria could play an important role in carcinogenesis and mtDNA could be a valuable marker for early bladder cancer diagnosis.
Collapse
Affiliation(s)
- Ahmet Ilter Guney
- Department of Medical Genetics, Faculty of Medicine, Marmara University, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Kennedy SR, Loeb LA, Herr AJ. Somatic mutations in aging, cancer and neurodegeneration. Mech Ageing Dev 2012; 133:118-26. [PMID: 22079405 PMCID: PMC3325357 DOI: 10.1016/j.mad.2011.10.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/05/2011] [Accepted: 10/22/2011] [Indexed: 10/15/2022]
Abstract
The somatic mutation theory of aging posits that the accumulation of mutations in the genetic material of somatic cells as a function of time results in a decrease in cellular function. In particular, the accumulation of random mutations may inactivate genes that are important for the functioning of the somatic cells of various organ systems of the adult, result in a decrease in organ function. When the organ function decreases below a critical level, death occurs. A significant amount of research has shown that somatic mutations play an important role in aging and a number of age related pathologies. In this review, we explore evidence for increases in somatic nuclear mutation burden with age and the consequences for aging, cancer, and neurodegeneration. We then review evidence for increases in mitochondrial mutation burden and the consequences for dysfunction in the disease processes.
Collapse
Affiliation(s)
- Scott R. Kennedy
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, 98195-7705
| | - Lawrence A. Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, 98195-7705
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, 98195-7705
| | - Alan J. Herr
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, 98195-7705
| |
Collapse
|
223
|
Abstract
Accumulating data indicate that clinically available abdominal imaging tests such as EUS and MRI/MRCP can detect asymptomatic precursor benign (IPMN, PanIN) and invasive malignant pancreatic neoplasms, such as ductal adenocarcinoma, in individuals with an inherited predisposition. These asymptomatic FPCs detected have been more likely to be resectable, compared to symptomatic tumors. The most challenging part of screening high-risk individuals is the selection of individuals with high-grade precursor neoplasms for preventive treatment (ie, surgical resection before development of invasive cancer). Ongoing and future research should focus on formulating and validating a model for FPC risk and neoplastic progression using patient characteristics, imaging, and biomarkers. The comparative cost and effectiveness of various approaches for screening and surveillance of high-risk individuals also deserves study. For now, screening is best performed in high-risk individuals within the research protocols in academic centers with multidisciplinary teams with expertise in genetics, gastroenterology, radiology, surgery, and pathology.
Collapse
|
224
|
The use of next generation sequencing technology to study the effect of radiation therapy on mitochondrial DNA mutation. Mutat Res 2012; 744:154-60. [PMID: 22387842 DOI: 10.1016/j.mrgentox.2012.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 01/12/2023]
Abstract
The human mitochondrial genome has an exclusively maternal mode of inheritance. Mitochondrial DNA (mtDNA) is particularly vulnerable to environmental insults due in part to an underdeveloped DNA repair system, limited to base excision and homologous recombination repair. Radiation exposure to the ovaries may cause mtDNA mutations in oocytes, which may in turn be transmitted to offspring. We hypothesized that the children of female cancer survivors who received radiation therapy may have an increased rate of mtDNA heteroplasmy mutations, which conceivably could increase their risk of developing cancer and other diseases. We evaluated 44 DNA blood samples from 17 Danish and 1 Finnish families (18 mothers and 26 children). All mothers had been treated for cancer as children and radiation doses to their ovaries were determined based on medical records and computational models. DNA samples were sequenced for the entire mitochondrial genome using the Illumina GAII system. Mother's age at sample collection was positively correlated with mtDNA heteroplasmy mutations. There was evidence of heteroplasmy inheritance in that 9 of the 18 families had at least one child who inherited at least one heteroplasmy site from his or her mother. No significant difference in single nucleotide polymorphisms between mother and offspring, however, was observed. Radiation therapy dose to ovaries also was not significantly associated with the heteroplasmy mutation rate among mothers and children. No evidence was found that radiotherapy for pediatric cancer is associated with the mitochondrial genome mutation rate in female cancer survivors and their children.
Collapse
|
225
|
Ding C, Li R, Wang P, Fan H, Guo Z. Sequence polymorphisms of the mitochondrial displacement loop and outcome of non-small cell lung cancer. Exp Ther Med 2012; 3:861-864. [PMID: 22969982 DOI: 10.3892/etm.2012.490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/10/2012] [Indexed: 11/06/2022] Open
Abstract
Accumulation of single-nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) may be associated with disease outcome. Our team investigated the prediction power of D-loop SNPs in non-small cell lung cancer (NSCLC) outcome. In an overall multivariate analysis, allele 16390 was identified as an independent predictor for NSCLC outcome. The length of survival of patients with allele 16390A was significantly shorter than that of patients with allele 16390G (relative risk, 0.323; 95% CI, 0.109-0.951; p=0.040). The analysis of genetic polymorphisms in the mitochondrial D-loop can help identify NSCLC patient subgroups at a high risk for a poor disease outcome.
Collapse
|
226
|
Mass spectrometry-based salivary proteomics for the discovery of head and neck squamous cell carcinoma. Pathol Oncol Res 2012; 18:623-8. [PMID: 22350791 DOI: 10.1007/s12253-011-9486-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 12/01/2011] [Indexed: 12/31/2022]
Abstract
The 5-year survival rates for cases of head and neck squamous cell carcinoma (HNSCC) are only some 60%, mainly because 20%-40% of the patients develop a local relapse in the same or an adjacent anatomic region, even when the surgical margins are histologically tumour-free. Tumours are often discovered in an advanced stage because of the lack of specific symptoms and the diagnostic difficulties. The more advanced the stage of the tumour, the more invasive the diagnostic and treatment interventions needed. An early molecular diagnosis is therefore of vital importance in order to increase the survival rate. The aim of this study was to develop an efficient rapid and sensitive mass spectrometric method for the detection of differentially expressed proteins as tumour-specific biomarkers in saliva from HNSCC patients. Whole saliva samples were collected from patients with HNSCC and from healthy subjects. The proteins were profiled by using SDS PAGE, MALDI TOF/TOF mass spectrometry and the Mascot database search engine. Several potential tumour markers were identified, including annexin A1, beta- and gamma-actin, cytokeratin 4 and 13, zinc finger proteins and P53 pathway proteins. All of these proteins play a proven role in tumour genesis, and have not been detected previously in saliva. Salivary proteomics is a non-invasive specific method for cancer diagnosis and follow-up treatment. It provides facilities for the readily reproducible and reliable detection of tumours in early stages.
Collapse
|
227
|
Pereira L, Soares P, Máximo V, Samuels DC. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors. BMC Cancer 2012; 12:53. [PMID: 22299657 PMCID: PMC3342922 DOI: 10.1186/1471-2407-12-53] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/02/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The presence of somatic mitochondrial DNA (mtDNA) mutations in cancer cells has been interpreted in controversial ways, ranging from random neutral accumulation of mutations, to positive selection for high pathogenicity, or conversely to purifying selection against high pathogenicity variants as occurs at the population level. METHODS Here we evaluated the predicted pathogenicity of somatic mtDNA mutations described in cancer and compare these to the distribution of variations observed in the global human population and all possible protein variations that could occur in human mtDNA. We focus on oncocytic tumors, which are clearly associated with mitochondrial dysfunction. The protein variant pathogenicity was predicted using two computational methods, MutPred and SNPs&GO. RESULTS The pathogenicity score of the somatic mtDNA variants were significantly higher in oncocytic tumors compared to non-oncocytic tumors. Variations in subunits of Complex I of the electron transfer chain were significantly more common in tumors with the oncocytic phenotype, while variations in Complex V subunits were significantly more common in non-oncocytic tumors. CONCLUSIONS Our results show that the somatic mtDNA mutations reported over all tumors are indistinguishable from a random selection from the set of all possible amino acid variations, and have therefore escaped the effects of purifying selection that act strongly at the population level. We show that the pathogenicity of somatic mtDNA mutations is a determining factor for the oncocytic phenotype. The opposite associations of the Complex I and Complex V variants with the oncocytic and non-oncocytic tumors implies that low mitochondrial membrane potential may play an important role in determining the oncocytic phenotype.
Collapse
Affiliation(s)
- Luísa Pereira
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
228
|
Scott TA, Arnold RS, Petros JA. Mitochondrial Cytochrome c Oxidase subunit 1 Sequence Variation in Prostate Cancer. SCIENTIFICA 2012; 2012:701810. [PMID: 24124627 PMCID: PMC3795349 DOI: 10.6064/2012/701810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/03/2012] [Indexed: 06/02/2023]
Abstract
PURPOSE Mitochondrial DNA (mtDNA) gene mutations have been described in nearly every adult solid neoplasm including prostate cancer. There are marked racial differences in specific inherited mutations within the cytochrome c oxidase subunit 1 (COI) gene in individuals with prostate cancer (PCa). The purpose of this study was to identify the variation in COI gene sequence in prostate cancer patients and to compare the mutations in African and Caucasian Americans. MATERIALS AND METHODS We sequenced the COI gene in DNA derived from peripheral blood in 482 prostate cancer patients and 189 controls. All bases that differed from the revised Cambridge Reference Sequence (rCRS) were classified as either silent (non-amino acid altering) or missense (amino acid altering) and the compiled alterations were then compared between races and published reports of mutations in this gene in both Caucasian and African-Americans. RESULTS AND CONCLUSIONS We found inherited mtDNA COI missense variants in 8.8% of Caucasian prostate cancer patients (vs. 0.0% controls) and 72.8 % of African-American prostate cancer patients (vs. 64.3% controls) A total of 144 COI variants were identified, of which 30 were missense mutations. Of 482 PCa patients, 116 (24.1%) had one or more missense mutations. Further evaluation of this gene and these mutations may allow for the identification of genetically at-risk populations. The high rate of COI mutations in African-Americans may account for some of the racial disparity observed in prostate cancer.
Collapse
Affiliation(s)
- Takara A. Scott
- Department of Urology, Emory University, Atlanta, GA 30322, USA
| | - Rebecca S. Arnold
- Department of Urology, Emory University, Atlanta, GA 30322, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - John A. Petros
- Department of Urology, Emory University, Atlanta, GA 30322, USA
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Hematology & Medical Oncology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
229
|
Abstract
Mitochondria are ubiquitous organelles in eukaryotic cells principally responsible for regulating cellular energy metabolism, free radical production, and the execution of apoptotic pathways. Abnormal oxidative phosphorylation (OXPHOS) and aerobic metabolism as a result of mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. In the past decades, numerous somatic mutations in both the coding and control regions of mitochondrial DNA (mtDNA) have been extensively examined in a broad range of primary human cancers, underscoring that accumulation of mtDNA alterations may be a critical factor in eliciting persistent mitochondrial defects and consequently contributing to cancer initiation and progression. However, the roles of these mtDNA mutations in the carcinogenic process remain largely unknown. This review outlines a wide variety of somatic mtDNA mutations identified in common human malignancies and highlights recent advances in understanding the causal roles of mtDNA variations in neoplastic transformation and tumor progression. In addition, it briefly illustrates how mtDNA alterations activate mitochondria-to-nucleus retrograde signaling so as to modulate the expression of relevant nuclear genes or induce epigenetic changes and promote malignant phenotypes in cancer cells. The present state of our knowledge regarding how mutational changes in the mitochondrial genome could be used as a diagnostic biomarker for early detection of cancer and as a potential target in the development of new therapeutic approaches is also discussed. These findings strongly indicate that mtDNA mutations exert a crucial role in the pathogenic mechanisms of tumor development, but continued investigations are definitely required to further elucidate the functional significance of specific mtDNA mutations in the etiology of human cancers.
Collapse
|
230
|
Mitochondrial proteomic approaches for new potential diagnostic and prognostic biomarkers in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:423-40. [PMID: 22399434 DOI: 10.1007/978-94-007-2869-1_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondrial dysfunction and mutations in mitochondrial DNA have been implicated in a wide variety of human diseases, including cancer. In recent years, considerable advances in genomic, proteomic and bioinformatic technologies have made it possible the analysis of mitochondrial proteome, leading to the identification of over 1,000 proteins which have been assigned unambiguously to mitochondria. Defining the mitochondrial proteome is a fundamental step for fully understanding the organelle functions as well as mechanisms underlying mitochondrial pathology. In fact, besides giving information on mitochondrial physiology, by characterizing all the components of this subcellular organelle, the application of proteomic technologies permitted now to study the proteins involved in many crucial properties in cell signaling, cell differentiation and cell death and, in particular, to identify mitochondrial proteins that are aberrantly expressed in cancer cells. An improved understanding of the mitochondrial proteome could be essential to shed light on the connection between mitochondrial dysfunction, deregulation of apoptosis and tumorigenesis and to discovery new therapeutic targets for mitochondria-related diseases.
Collapse
|
231
|
Guo Z, Yang H, Wang C, Liu S. Mitochondrial DNA haplogroup M is associated with late onset of hepatocellular carcinoma. Exp Ther Med 2011; 3:499-502. [PMID: 22969918 DOI: 10.3892/etm.2011.434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/18/2011] [Indexed: 01/08/2023] Open
Abstract
The accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) has been associated with various types of cancer. The association of SNPs with cancer risk and disease outcome has been exhaustively studied. In this study, we investigated the association of age-at-onset and SNPs in the mitochondrial D-loop using a population-based series of hepatocellular carcinoma (HCC) patients. Haplogroup M (489C) and allele 235G were identified for their association with the late onset of HCC by the log-rank test. In an overall multivariate analysis, haplogroup M (489C) was identified as an independent predictive factor for the age-at-onset of HCC at borderline significant levels [relative risk, 1.736; 95% confidence interval (CI), 0.967-3.115; p=0.065]. Genetic polymorphisms in the D-loop are predictive markers for age-at-onset in HCC patients. Accordingly, the analysis of genetic polymorphisms in the mitochondrial D-loop may help to identify HCC patient subgroups at high risk of early onset of the disease.
Collapse
Affiliation(s)
- Zhanjun Guo
- Departments of Gastroenterology and Hepatology, and
| | | | | | | |
Collapse
|
232
|
Lin Y, Du J, Li L, Fu J, Wang M, Zhang Z, Sun X. Mitochondrial D-loop variations in infertile women undergoing a long stimulation protocol. Eur J Obstet Gynecol Reprod Biol 2011; 160:161-5. [PMID: 22177835 DOI: 10.1016/j.ejogrb.2011.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 08/09/2011] [Accepted: 11/06/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study a high frequency of mtDNA D-loop variations in infertile women undergoing a long stimulation protocol and their potential relevance with endpoints of IVF. STUDY DESIGN Peripheral blood was taken from 156 patient ≤ 42 years of age. The entire D-loop region of mtDNA was amplified in three overlapping polymerase chain reaction fragments, and variations were evaluated by direct DNA sequencing methods in 156 infertile women undergoing a long stimulation protocol. RESULTS A total of 48 variations were found at 47 positions in the D-loop of all patients. Median age of the patients was 34.09 years (26-42 years). The incidence of variations was significantly higher in the group of patients aged >34.09 years (P=0.001), especially 16191 C → T (P=0.017) and 199 T → C (P=0.045). In contrast, the incidence of variations was significantly lower on the day of hCG administration in the group of patients with E₂>8037.97 pmol/L (P=0.001). However, variations were not significantly associated with early follicular phase FSH (P=0.262), the number of oocytes retrieved (P=0.191) or the pregnancy rate (P=0.487). CONCLUSION Our data suggest that the increase in mtDNA variations in peripheral blood from infertile women could have a predictive value for the response of infertile women undergoing a long stimulation protocol.
Collapse
Affiliation(s)
- Yue Lin
- Reproductive Medicine Center of the First Affiliated Hospital of Wenzhou Medical College, 2 Fu Xue Lane, 325000 Wenzhou, Zhejiang Province, PR China
| | | | | | | | | | | | | |
Collapse
|
233
|
Greaves LC, Reeve AK, Taylor RW, Turnbull DM. Mitochondrial DNA and disease. J Pathol 2011; 226:274-86. [PMID: 21989606 DOI: 10.1002/path.3028] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/27/2011] [Accepted: 10/05/2011] [Indexed: 12/28/2022]
Abstract
Mitochondrial DNA (mtDNA) defects are a relatively common cause of inherited disease and have been implicated in both ageing and cancer. MtDNA encodes essential subunits of the mitochondrial respiratory chain and defects result in impaired oxidative phosphorylation (OXPHOS). Similar OXPHOS defects have been shown to be present in a number of neurodegenerative conditions, including Parkinson's disease, as well as in normal ageing human tissues. Additionally, a number of tumours have been shown to contain mtDNA mutations and an altered metabolic phenotype. In this review we outline the unique characteristics of mitochondrial genetics before detailing important pathological features of mtDNA diseases, focusing on adult neurological disease as well as the role of mtDNA mutations in neurodegenerative diseases, ageing and cancer.
Collapse
Affiliation(s)
- Laura C Greaves
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, UK.
| | | | | | | |
Collapse
|
234
|
Ramos A, Barbena E, Mateiu L, del Mar González M, Mairal Q, Lima M, Montiel R, Aluja MP, Santos C. Nuclear insertions of mitochondrial origin: Database updating and usefulness in cancer studies. Mitochondrion 2011; 11:946-53. [DOI: 10.1016/j.mito.2011.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/10/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
235
|
A statistical framework for the interpretation of mtDNA mixtures: forensic and medical applications. PLoS One 2011; 6:e26723. [PMID: 22053205 PMCID: PMC3203886 DOI: 10.1371/journal.pone.0026723] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 10/02/2011] [Indexed: 11/19/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) variation is commonly analyzed in a wide range of different biomedical applications. Cases where more than one individual contribute to a stain genotyped from some biological material give rise to a mixture. Most forensic mixture cases are analyzed using autosomal markers. In rape cases, Y-chromosome markers typically add useful information. However, there are important cases where autosomal and Y-chromosome markers fail to provide useful profiles. In some instances, usually involving small amounts or degraded DNA, mtDNA may be the only useful genetic evidence available. Mitochondrial DNA mixtures also arise in studies dealing with the role of mtDNA variation in tumorigenesis. Such mixtures may be generated by the tumor, but they could also originate in vitro due to inadvertent contamination or a sample mix-up. Methods/Principal Findings We present the statistical methods needed for mixture interpretation and emphasize the modifications required for the more well-known methods based on conventional markers to generalize to mtDNA mixtures. Two scenarios are considered. Firstly, only categorical mtDNA data is assumed available, that is, the variants contributing to the mixture. Secondly, quantitative data (peak heights or areas) on the allelic variants are also accessible. In cases where quantitative information is available in addition to allele designation, it is possible to extract more precise information by using regression models. More precisely, using quantitative information may lead to a unique solution in cases where the qualitative approach points to several possibilities. Importantly, these methods also apply to clinical cases where contamination is a potential alternative explanation for the data. Conclusions/Significance We argue that clinical and forensic scientists should give greater consideration to mtDNA for mixture interpretation. The results and examples show that the analysis of mtDNA mixtures contributes substantially to forensic casework and may also clarify erroneous claims made in clinical genetics regarding tumorigenesis.
Collapse
|
236
|
Somatic mutations in the D-loop of mitochondrial DNA in oral squamous cell carcinoma. Eur Arch Otorhinolaryngol 2011; 269:1665-70. [PMID: 22020698 DOI: 10.1007/s00405-011-1806-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|
237
|
|
238
|
Effects of oxidative stress on mitochondrial content and integrity of human anastomotic colorectal dehiscence: a preliminary DNA study. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2011; 25:433-9. [PMID: 21912768 DOI: 10.1155/2011/741073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Anastomotic dehiscence is one of the most severe complications of colorectal surgery. Gaining insight into the molecular mechanisms responsible for the development of anastomotic dehiscence following colorectal surgery is important for the reduction of postoperative complications. OBJECTIVE Based on the close relationship between surgical stress and oxidative stress, the present study aimed to determine whether a correlation exists between increased levels of reactive oxygen species and colorectal anastomotic dehiscence. METHODS Patients who underwent surgical resection for colorectal cancer were divided into three groups: patients with anastomotic dehiscence (group 1); patients without dehiscence who underwent neoadjuvant radiochemotherapy (group 2); and patients without anastomotic dehiscence who did not undergo neoadjuvant radiochemotherapy (group 3). Quantitative polymerase chain reaction and real-time polymerase chain reaction assays were performed to measure nuclear DNA and mitochondrial DNA (mtDNA) content, and possible oxidative damage to nonmalignant colon and rectal tissues adjacent to the anastomoses. RESULTS mtDNA content was reduced in the colon tissue of patients in groups 1 and 2. Rectal mtDNA was found to be more damaged than colonic mtDNAs in all groups. The 4977 bp common deletion was observed in the mtDNA of tissues from both the colon and rectum of all patients. DISCUSSION Patients in groups 1 and 2 were more similar to one another than to group 3, probably due to higher levels of reactive oxygen species in the mitochondria; the greater damage found in the rectum suggests that dehiscence originates primarily from the rectal area. CONCLUSIONS The present study of mtDNA analyses of normal human colon and rectal tissues from patients with colorectal cancer is among the first of its kind.
Collapse
|
239
|
Smith DG, Magwere T, Burchill SA. Oxidative stress and therapeutic opportunities: focus on the Ewing's sarcoma family of tumors. Expert Rev Anticancer Ther 2011; 11:229-49. [PMID: 21342042 DOI: 10.1586/era.10.224] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive by-products of energy production that can have detrimental as well as beneficial effects. Unchecked, high levels of ROS result in an imbalance of cellular redox state and oxidative stress. High levels of ROS have been detected in most cancers, where they promote tumor development and progression. Many anticancer agents work by further increasing cellular levels of ROS, to overcome the antioxidant detoxification capacity of the cancer cell and induce cell death. However, adaptation of the level of cellular antioxidants can lead to drug resistance. The challenge for the design of effective cancer therapeutics exploiting oxidative stress is to tip the cellular redox balance to induce ROS-dependent cell death but without increasing the antioxidant activity of the cancer cell or inducing toxicity in normal cells.
Collapse
Affiliation(s)
- Danielle G Smith
- Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
240
|
Dasgupta S, Shao C, Keane TE, Duberow DP, Mathies RA, Fisher PB, Kiemeney LA, Sidransky D. Detection of mitochondrial deoxyribonucleic acid alterations in urine from urothelial cell carcinoma patients. Int J Cancer 2011; 131:158-64. [PMID: 21826645 DOI: 10.1002/ijc.26357] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/29/2011] [Indexed: 11/09/2022]
Abstract
Our study aims at understanding the timing and nature of mitochondrial deoxyribonucleic acid (mtDNA) alterations in urothelial cell carcinoma (UCC) and their detection in urine sediments. The entire 16.5 kb mitochondrial genome was sequenced in matched normal lymphocytes, tumor and urine sediments from 31 UCC patients and compared to different clinical stages and histological grades. The mtDNA content index was examined in all the specimens. Sixty-five percent (20/31) of the patients harbored at least 1 somatic mtDNA mutation. A total of 25 somatic mtDNA mutations were detected, which were more frequent in the respiratory complex coding regions (Complex I, III, IV and V) of the mtDNA and significantly affected respiratory Complex III compared to the other complexes (p = 0.021-0.039). Compared to Stage Ta, mtDNA mutation was higher in Stage T1 and significantly higher in Stage T2 (p = 0.01) patients. MtDNA mutation was also significantly higher (p = 0.04) in Stage T2 compared to Stage T1 patients. Ninety percent (18/20) of the patients harboring mtDNA mutation in the tumor also had mutation in their urine sediments. Eighty percent (20/25) of the tumor-associated mtDNA mutations was detectable in the urine sediments. Compared to the normal lymphocytes, the mtDNA content increased significantly in the tumor (p = 0.0013) and corresponding urine sediments (p = 0.0025) in 19/25 (76%) patients analyzed. Our results indicate that mtDNA alterations occur frequently in progressive stages of UCC patients and are readily detectable in the urine sediments. MtDNA mutations appear to provide a promising tool for developing early detection and monitoring strategies for UCC patients.
Collapse
Affiliation(s)
- Santanu Dasgupta
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, USA.
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Chen T, He J, Huang Y, Zhao W. The generation of mitochondrial DNA large-scale deletions in human cells. J Hum Genet 2011; 56:689-94. [DOI: 10.1038/jhg.2011.97] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
242
|
Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, Takenaga K, Nakada K, Hayashi JI. Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. PLoS One 2011; 6:e23401. [PMID: 21853128 PMCID: PMC3154938 DOI: 10.1371/journal.pone.0023401] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 07/15/2011] [Indexed: 02/03/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) might contribute to expression of the tumor phenotypes, such as metastatic potential, as well as to aging phenotypes and to clinical phenotypes of mitochondrial diseases by induction of mitochondrial respiration defects and the resultant overproduction of reactive oxygen species (ROS). To test whether mtDNA mutations mediate metastatic pathways in highly metastatic human tumor cells, we used human breast carcinoma MDA-MB-231 cells, which simultaneously expressed a highly metastatic potential, mitochondrial respiration defects, and ROS overproduction. Since mitochondrial respiratory function is controlled by both mtDNA and nuclear DNA, it is possible that nuclear DNA mutations contribute to the mitochondrial respiration defects and the highly metastatic potential found in MDA-MB-231 cells. To examine this possibility, we carried out mtDNA replacement of MDA-MB-231 cells by normal human mtDNA. For the complete mtDNA replacement, first we isolated mtDNA-less (ρ0) MDA-MB-231 cells, and then introduced normal human mtDNA into the ρ0 MDA-MB-231 cells, and isolated trans-mitochondrial cells (cybrids) carrying nuclear DNA from MDA-MB-231 cells and mtDNA from a normal subject. The normal mtDNA transfer simultaneously induced restoration of mitochondrial respiratory function and suppression of the highly metastatic potential expressed in MDA-MB-231 cells, but did not suppress ROS overproduction. These observations suggest that mitochondrial respiration defects observed in MDA-MB-231 cells are caused by mutations in mtDNA but not in nuclear DNA, and are responsible for expression of the high metastatic potential without using ROS-mediated pathways. Thus, human tumor cells possess an mtDNA-mediated metastatic pathway that is required for expression of the highly metastatic potential in the absence of ROS production.
Collapse
Affiliation(s)
- Hirotake Imanishi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keisuke Hattori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Reiko Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaori Ishikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sayaka Fukuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keizo Takenaga
- Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Kazuto Nakada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jun-Ichi Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
243
|
Mitochondrial D-loop polymorphisms and mitochondrial DNA content in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2011; 33:e239-44. [PMID: 21646920 DOI: 10.1097/mph.0b013e31820a5ece] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mitochondrial displacement loop (D-loop) controls mitochondrial expression, with mutations and mitochondrial DNA (mtDNA) content linked to oncogenesis. We investigated D-loop polymorphisms and mtDNA content in childhood acute lymphoblastic leukemia (ALL). The D-loop was sequenced in 251 children: precursor B ALL (n=114), with 76 paired remission/relapse samples; T-ALL (n=24); cord blood controls (n=113). The mtDNA copy number was analyzed using real-time quantitative polymerase chain reaction for 92 controls and 54 ALL patients at diagnosis and remission. Polymorphisms around H-strand replication origin (nucleotides 150 to 199) and conserved sequence block II (nucleotides 299 to 317) were associated with leukemia biology and treatment response. T-ALL patients were more likely to have longer nt303 poly-C tract. T199C polymorphism was associated with increased risk of ALL in Malays; T152C was more frequent in good responders. There was no difference in mtDNA content between diagnostic ALL samples and controls; however, there was significant decrease in mtDNA content after treatment, especially in samples with OH polymorphisms. Somatic mutations were found in 13% (9 of 76) of patients, suggesting a link to leukemogenesis. Our results suggest that polymorphisms impacting transcriptional control could affect mtDNA replication. Decrease in mtDNA content after treatment may confer susceptibility to chemotherapy and be a clue to the good prognosis of childhood ALL.
Collapse
|
244
|
Chiaradonna F, Moresco RM, Airoldi C, Gaglio D, Palorini R, Nicotra F, Messa C, Alberghina L. From cancer metabolism to new biomarkers and drug targets. Biotechnol Adv 2011; 30:30-51. [PMID: 21802503 DOI: 10.1016/j.biotechadv.2011.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/13/2011] [Indexed: 12/14/2022]
Abstract
Great interest is presently given to the analysis of metabolic changes that take place specifically in cancer cells. In this review we summarize the alterations in glycolysis, glutamine utilization, fatty acid synthesis and mitochondrial function that have been reported to occur in cancer cells and in human tumors. We then propose considering cancer as a system-level disease and argue how two hallmarks of cancer, enhanced cell proliferation and evasion from apoptosis, may be evaluated as system-level properties, and how this perspective is going to modify drug discovery. Given the relevance of the analysis of metabolism both for studies on the molecular basis of cancer cell phenotype and for clinical applications, the more relevant technologies for this purpose, from metabolome and metabolic flux analysis in cells by Nuclear Magnetic Resonance and Mass Spectrometry technologies to positron emission tomography on patients, are analyzed. The perspectives offered by specific changes in metabolism for a new drug discovery strategy for cancer are discussed and a survey of the industrial activity already going on in the field is reported.
Collapse
Affiliation(s)
- F Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Kirches E. Mitochondrial and nuclear genes of mitochondrial components in cancer. Curr Genomics 2011; 10:281-93. [PMID: 19949549 PMCID: PMC2709939 DOI: 10.2174/138920209788488517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 11/22/2022] Open
Abstract
Although the observation of aerobic glycolysis of tumor cells by Otto v. Warburg had demonstrated abnormalities of mitochondrial energy metabolism in cancer decades ago, there was no clear evidence for a functional role of mutant mitochondrial proteins in cancer development until the early years of the 21(st) century. In the year 2000, a major breakthrough was achieved by the observation, that several genes coding for subunits of the respiratory chain (ETC) complex II, succinate dehydrogenase (SDH) are tumor suppressor genes in heritable paragangliomas, fulfilling Knudson's classical two-hit hypothesis. A functional inactivation of both alleles by germline mutations and chromosomal losses in the tumor tissue was found in the patients. Later, SDH mutations were also identified in sporadic paragangliomas and pheochromocytomas. Genes of the mitochondrial ATP-synthase and of mitochondrial iron homeostasis have been implicated in cancer development at the level of cell culture and mouse experiments. In contrast to the well established role of some nuclear SDH genes, a functional impact of the mitochondrial genome itself (mtDNA) in cancer development remains unclear. Nevertheless, the extremely high frequency of mtDNA mutations in solid tumors raises the question, whether this small circular genome might be applicable to early cancer detection. This is a meaningful approach, especially in cancers, which tend to spread tumor cells early into bodily fluids or faeces, which can be screened by non-invasive methods.
Collapse
Affiliation(s)
- E Kirches
- Department of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
246
|
Yu M. Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci 2011; 89:65-71. [PMID: 21683715 DOI: 10.1016/j.lfs.2011.05.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/14/2011] [Accepted: 05/23/2011] [Indexed: 12/16/2022]
Abstract
Mitochondria are key organelles in eukaryotic cells principally responsible for multiple cellular functions. In addition to a plethora of somatic mutations as well as polymorphic sequence variations in mitochondrial DNA (mtDNA), the identification of increased or reduced mtDNA copy number has been increasingly reported in a broad range of primary human cancers, underscoring that accumulation of mtDNA content alterations may be a pivotal factor in eliciting persistent mitochondrial deficient activities and eventually contributing to cancer pathogenesis and progression. However, the detailed roles of altered mtDNA amount in driving the tumorigenic process remain largely unknown. This review outlines mtDNA content changes present in various types of common human malignancies and briefly describes the possible causes and their potential connections to the carcinogenic process. The present state of our knowledge regarding how altered mtDNA quantitative levels could be utilized as a diagnostic biomarker for identifying genetically predisposed population that should undergo intensive screening and early surveillance program is also discussed. Taken together, these findings strongly indicate that mtDNA copy number alterations may exert a crucial role in the pathogenic mechanisms of tumor development. Continued insights into the functional significance of altered mtDNA quantities in the etiology of human cancers will hopefully help in establishing novel potential targets for anti-tumor drugs and intervention therapies.
Collapse
Affiliation(s)
- Man Yu
- Division of Applied Molecular Oncology, Princess Margaret Hospital/Ontario Cancer Institute, University of Toronto, Canada.
| |
Collapse
|
247
|
Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:735-45. [DOI: 10.1016/j.bbabio.2011.03.010] [Citation(s) in RCA: 397] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 12/11/2022]
|
248
|
Kassem AM, El-Guendy N, Tantawy M, Abdelhady H, El-Ghor A, Abdel Wahab AH. Mutational hotspots in the mitochondrial D-loop region of cancerous and precancerous colorectal lesions in Egyptian patients. DNA Cell Biol 2011; 30:899-906. [PMID: 21612400 DOI: 10.1089/dna.2010.1186] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in the mitochondrial genome (mtDNA) are associated with different types of cancer, specifically colorectal cancer (CRC). However, few studies have been performed on precancerous lesions, such as ulcerative colitis (UC) lesions and adenomatous polyps (AP). The aim of this study was to identify mtDNA mutations in the cancerous and precancerous lesions of Egyptian patients. An analysis of the mutations found in six regions of the mtDNA genome (ND1, ND5, COI, tRNAser, D-loop 1, and 2) in 80 Egyptian patients (40 CRC, 20 UC, and 20 AP) was performed using polymerase chain reaction-single-strand conformational polymorphism techniques and followed up by direct sequencing. The overall incidence of mutations was 25%, 25%, and 35% in CRC, UC, and AP cases, respectively. Although there was no common mutation pattern within each group, a large number of mutations were detected in the D-loop region in all of the groups. Some mutations (e.g., T414G) were detected repeatedly in precancerous (UC and AP) and cancerous lesions. Mutations detected in patients with CRC were predominantly found in the ND1 gene (40%). Our preliminary study suggests that Egyptian patients with CRC have a large number of mtDNA mutations, especially in the D-loop region, which have not been previously reported. Mutations in the mtDNA of precancerous lesions (i.e., AP and UC) may contribute to transformation events that lead to CRC.
Collapse
Affiliation(s)
- Abdel Meguid Kassem
- Tropical Medicine Department, Faculty of Medicine, Cairo University, New Maadi, Cairo, Egypt.
| | | | | | | | | | | |
Collapse
|
249
|
Abstract
Mitochondria control essential cellular activities including generation of ATP via oxidative phosphorylation. Mitochondrial DNA (mtDNA) mutations in the regulatory D-loop region and somatic mtDNA mutations are common in primary human cancers. The biological impact of a given mutation may vary, depending on the nature of the mutation and the proportion of mutant mtDNAs carried by the cell. Identification of mtDNA mutations in precancerous lesions supports their early contribution to cell transformation and cancer progression. Introduction of mtDNA mutations in transformed cells has been associated with increased ROS production and tumor growth. Studies reveal that increased and altered mtDNA plays a role in the development of cancer but further work is required to establish the functional significance of specific mitochondrial mutations in cancer and disease progression. This review offers some insight into the extent of mtDNA mutations, their functional consequences in tumorigenesis, mitochondrial therapeutics, and future clinical application.
Collapse
Affiliation(s)
- Aditi Chatterjee
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
250
|
Association of mtDNA D-loop polymorphisms with risk of gastric cancer in Chinese population. Pathol Oncol Res 2011; 17:735-42. [PMID: 21461645 DOI: 10.1007/s12253-011-9378-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/02/2011] [Indexed: 02/02/2023]
Abstract
The aim of present study was to evaluate the association of common polymorphisms detected in mitochondrial DNA (mtDNA) D-loop region (mononucleotide repetitive D310, single nucleotide polymorphism (SNP) D16521) with susceptibility to gastric cancer (GC) in northwestern Chinese population. A total of 180 GC patients and 218 healthy controls were investigated by using PCR- denaturing high performance liquid chromatography (DHPLC) assay. Genotype and allele distributions and haplotype construction were analyzed in case-control study. We found D310 and D16521 heteroplasmy were significantly different between GC cases and controls (p < 0.05), and D16521 homoplasmy showed association with histological grade of GC (p < 0.05). Haplotype 7C/T, 8C/C and 9C/C had significant association with GC risk implied from analysis of D310 and D16521. Taken together, these findings suggested that mtDNA D-Loop polymorphisms and haplotypes may contribute to genetic susceptibility to GC in Chinese population.
Collapse
|