201
|
Abstract
Piwis are a germline-specific subclass of the Argonaute family of RNA interference (RNAi) effector proteins that are associated with a recently discovered group of small RNAs (piRNAs). Recent studies in Drosophila and zebrafish directly implicate Piwi proteins in piRNA biogenesis to maintain transposon silencing in the germline genome (Brennecke et al., 2007; Gunawardane et al., 2007; Houwing et al., 2007). This function may be conserved in mice as loss of Miwi2, a mouse Piwi homolog, leads to germline stem cell and meiotic defects correlated with increased transposon activity (Carmell et al., 2007).
Collapse
Affiliation(s)
- Kathryn A O'Donnell
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
202
|
Abstract
Overlapping epigenetic mechanisms have evolved in eukaryotic cells to silence the expression and mobility of transposable elements (TEs). Owing to their ability to recruit the silencing machinery, TEs have served as building blocks for epigenetic phenomena, both at the level of single genes and across larger chromosomal regions. Important progress has been made recently in understanding these silencing mechanisms. In addition, new insights have been gained into how this silencing has been co-opted to serve essential functions in 'host' cells, highlighting the importance of TEs in the epigenetic regulation of the genome.
Collapse
Affiliation(s)
- R Keith Slotkin
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
203
|
Zhu J, Kapoor A, Sridhar VV, Agius F, Zhu JK. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr Biol 2007; 17:54-9. [PMID: 17208187 DOI: 10.1016/j.cub.2006.10.059] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/17/2006] [Accepted: 10/30/2006] [Indexed: 12/17/2022]
Abstract
The Arabidopsis DNA glycosylase/lyase ROS1 participates in active DNA demethylation by a base-excision pathway. ROS1 has been shown to be required for demethylating a transgene promoter. To determine the function of ROS1 in demethylating endogenous loci, we carried out bisulfite-sequencing analysis of several transposons and other genes in the ros1 mutant. In the wild-type, although CpG sites at the majority of these loci are heavily methylated, many of the CpXpG and CpXpX sites have low levels of methylation or are not at all methylated. However, these CpXpG and CpXpX sites become heavily methylated in the ros1 mutant. Associated with this increased DNA methylation, these loci show decreased expression in the ros1 mutant. Our results suggest that active DNA demethylation is important in pruning the methylation patterns of the genome, and even the normally "silent" transposons are under dynamic control by both methylation and demethylation. This dynamic control may be important in keeping the plant epigenome plastic so that it can efficiently respond to developmental and environmental cues.
Collapse
Affiliation(s)
- Jianhua Zhu
- Center for Plant Cell Biology, Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
204
|
Blödner C, Goebel C, Feussner I, Gatz C, Polle A. Warm and cold parental reproductive environments affect seed properties, fitness, and cold responsiveness in Arabidopsis thaliana progenies. PLANT, CELL & ENVIRONMENT 2007; 30:165-75. [PMID: 17238908 DOI: 10.1111/j.1365-3040.2006.01615.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Conditions in the parental environment during reproduction can affect the performance of the progenies. The goals of this study were to investigate whether warm or cold temperatures in the parental environment during flowering and seed development affect Arabidopsis thaliana seed properties, growth performance, reproduction and stress tolerance of the progenies, and to find candidate genes for progeny-related differences in stress responsiveness. Parental plants were raised at 20 degrees C and maintained from bolting to seed maturity at warm (25 degrees C) or cold (15 degrees C) temperatures. Analysis of seed properties revealed significant increases in nitrogen in seeds from warm temperature and significant increases in lipids and in the ratio of alpha-linolenic to oleic acid in seeds from the cold parental environment. Progenies of the warm parental environment showed faster germination rates, faster root elongation growth, higher leaf biomass and increased seed production at various temperatures compared with those from the cold parental environment. This indicates that under stable environmental conditions, progenies from warm parental environments had a clear adaptive advantage over those from cold parental environments. This parental effect was presumably transmitted by the higher nitrogen content of the seeds developed in warm conditions. When offspring from parents grown at different temperatures were exposed to chilling or freezing stress, photosynthetic yield recovered faster in progenies originating from cold parental environments. Cold acclimation involved up-regulation of transcripts of flavanone 3-hydroxylase (F3H) and pseudo response regulator 9 (PRR9) and down-regulation of growth-associated transcription factors (TFs) NAP and AP2domain containing RAP2.3. NAP, a regulator of senescence, and PRR9, a temperature-sensitive modulator of the circadian clock, were probably involved in mediating parent-of-origin effects, because they showed progeny-related expression differences under chilling. Because low temperatures also delay senescence, cold responsiveness of NAP suggests that this factor is linked with the regulatory network that is important for environmental acclimation of plants.
Collapse
Affiliation(s)
- C Blödner
- Institut für Forstbotanik, Georg-August Universität, Göttingen, Germany
| | | | | | | | | |
Collapse
|
205
|
Soltani BM, Ehlting J, Douglas CJ. Genetic analysis and epigenetic silencing of At4CL1 and At4CL2 expression in transgenic Arabidopsis. Biotechnol J 2007; 1:1124-36. [PMID: 17004303 DOI: 10.1002/biot.200600140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
4-coumarate::CoA ligase (4CL) gene family members are involved in channeling carbon flow into branch pathways of phenylpropanoid metabolism. Transgenic Arabidopsis plants containing the At4CL1 or At4CL2 promoter fused to the beta-glucuronidase (GUS) reporter gene show developmentally regulated GUS expression in the xylem tissues of the root and shoot. To identify regulatory genes involved in the developmental regulation of At4CL and other phenylpropanoid-specific genes, we generated ethyl methyl sulfate mutagenized populations of At4CL1::GUS and At4CL2::GUS transgenic lines and screened approximately 16,000 progeny for reduced or altered GUS expression. Several lines with reproducible patterns of reduced GUS expression were identified. However, the GUS-expression phenotype segregated in a non-Mendelian manner in all of the identified lines. Also, GUS expression was restored by 5-azacytidine (aza) treatment, suggesting inhibitory DNA methylation of the transgene. Southern analysis confirmed DNA methylation of the proximal promoter sequences of the transgene only in the mutant lines. In addition, retransformation of At4CL::GUS lines with further At4CL promoter constructs enhanced the GUS-silencing phenotype. Taken together, these results suggest that the isolated mutants are epimutants. Apparently, two different modes of silencing were engaged in the At4CL1::GUS and At4CL2::GUS silenced lines. While silencing in the seedlings of the At4CL1::GUS lines was root specific in seedlings, it affected all organs in the At4CL2::GUS lines. Also, At4CL1::GUS transgene silencing was confined to the transgene but At4CL2::GUS silencing extended to the endogenous At4CL2 gene. Organ-specific silencing of the At4CL1::GUS transgene cannot be explained by current models in the literature.
Collapse
Affiliation(s)
- Bahram M Soltani
- Genetics Graduate Program, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
206
|
Xiao W, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL. Regulation of seed size by hypomethylation of maternal and paternal genomes. PLANT PHYSIOLOGY 2006; 142:1160-8. [PMID: 17012404 PMCID: PMC1630758 DOI: 10.1104/pp.106.088849] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DNA methylation is an epigenetic modification of cytosine that is important for silencing gene transcription and transposons, gene imprinting, development, and seed viability. DNA METHYLTRANSFERASE1 (MET1) is the primary maintenance DNA methyltransferase in Arabidopsis (Arabidopsis thaliana). Reciprocal crosses between antisense MET1 transgenic and wild-type plants show that DNA hypomethylation has a parent-of-origin effect on seed size. However, due to the dominant nature of the antisense MET1 transgene, the parent with a hypomethylated genome, its gametophyte, and both the maternal and paternal genomes of the F(1) seed become hypomethylated. Thus, the distinct role played by hypomethylation at each generation is not known. To address this issue, we examined F(1) seed from reciprocal crosses using a loss-of-function recessive null allele, met1-6. Crosses between wild-type and homozygous met1-6 parents show that hypomethylated maternal and paternal genomes result in significantly larger and smaller F(1) seeds, respectively. Our analysis of crosses between wild-type and heterozygous MET1/met1-6 parents revealed that hypomethylation in the female or male gametophytic generation was sufficient to influence F(1) seed size. A recessive mutation in another gene that dramatically reduces DNA methylation, DECREASE IN DNA METHYLATION1, also causes parent-of-origin effects on F(1) seed size. By contrast, recessive mutations in genes that regulate a smaller subset of DNA methylation (CHROMOMETHYLASE3 and DOMAINS REARRANGED METHYLTRANSFERASES1 and 2) had little effect on seed size. Collectively, these results show that maternal and paternal genomes play distinct roles in the regulation of seed size in Arabidopsis.
Collapse
Affiliation(s)
- Wenyan Xiao
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
207
|
Young CA, Felitti S, Shields K, Spangenberg G, Johnson RD, Bryan GT, Saikia S, Scott B. A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 2006; 43:679-93. [PMID: 16765617 DOI: 10.1016/j.fgb.2006.04.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 04/18/2006] [Accepted: 04/20/2006] [Indexed: 11/23/2022]
Abstract
Lolitrems are a structurally diverse group of indole-diterpene mycotoxins synthesized by Epichloë/Neotyphodium endophytes in association with Pooid grasses. Using suppression subtractive hybridization combined with chromosome walking, two clusters of genes for lolitrem biosynthesis were isolated from Neotyphodium lolii, a mutualistic endophyte of perennial ryegrass. The first cluster contains five genes, ltmP, ltmQ, ltmF, ltmC, and ltmB, four of which appear to be orthologues of functionally characterized genes from Penicillium paxilli. The second cluster contains two genes, ltmE and ltmJ, that appear to be unique to lolitrem biosynthesis. The two clusters are separated by a 16 kb AT-rich sequence that includes two imperfect direct repeats. A previously isolated ltm cluster composed of ltmG, ltmM, and ltmK, is linked to these two new clusters by 35 kb of AT-rich retrotransposon relic sequence. All 10 genes at this complex LTM locus were highly expressed in planta but expression was very low or undetectable in mycelia. ltmM and ltmC were shown to be functional orthologues of P. paxilli paxM and paxC, respectively. This work provides a genetic foundation for elucidating the metabolic grid responsible for the diversity of indole-diterpenes synthesized by N. lolii.
Collapse
Affiliation(s)
- Carolyn A Young
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Ordway JM, Bedell JA, Citek RW, Nunberg A, Garrido A, Kendall R, Stevens JR, Cao D, Doerge RW, Korshunova Y, Holemon H, McPherson JD, Lakey N, Leon J, Martienssen RA, Jeddeloh JA. Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis 2006; 27:2409-23. [PMID: 16952911 DOI: 10.1093/carcin/bgl161] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using a unique microarray platform for cytosine methylation profiling, the DNA methylation landscape of the human genome was monitored at more than 21,000 sites, including 79% of the annotated transcriptional start sites (TSS). Analysis of an oligodendroglioma derived cell line LN-18 revealed more than 4000 methylated TSS. The gene-centric analysis indicated a complex pattern of DNA methylation exists along each autosome, with a trend of increasing density approaching the telomeres. Remarkably, 2% of CpG islands (CGI) were densely methylated, and 17% had significant levels of 5 mC, whether or not they corresponded to a TSS. Substantial independent verification, obtained from 95 loci, suggested that this approach is capable of large scale detection of cytosine methylation with an accuracy approaching 90%. In addition, we detected large genomic domains that are also susceptible to DNA methylation reinforced inactivation, such as the HOX cluster on chromosome 7 (CH7). Extrapolation from the data suggests that more than 2000 genomic loci may be susceptible to methylation and associated inactivation, and most have yet to be identified. Finally, we report six new targets of epigenetic inactivation (IRX3, WNT10A, WNT6, RARalpha, BMP7 and ZGPAT). These targets displayed cell line and tumor specific differential methylation when compared with normal brain samples, suggesting they may have utility as biomarkers. Uniquely, hypermethylation of the CGI within an IRX3 exon was correlated with over-expression of IRX3 in tumor tissues and cell lines relative to normal brain samples.
Collapse
|
209
|
Zhao T, Palotta M, Langridge P, Prasad M, Graner A, Schulze-Lefert P, Koprek T. Mapped Ds/T-DNA launch pads for functional genomics in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:811-26. [PMID: 16889649 DOI: 10.1111/j.1365-313x.2006.02831.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A system for targeted gene tagging and local saturation mutagenesis based on maize transposable elements (Ac/Ds) was developed in barley (Hordeum vulgare L.). We generated large numbers of transgenic barley lines carrying a single copy of the non-autonomous maize Ds element at defined positions in the genome. Independent Ds lines were either generated by activating Ds elements in existing single-copy lines after crossing with AcTPase-expressing plants or by Agrobacterium-mediated transformation. Genomic DNA flanking Ds and T-DNA insertion sites from over 200 independent lines was isolated and sequenced, and was used for a sequence based mapping strategy in a barley reference population. More than 100 independent Ds insertion sites were mapped and can be used as launch pads for future targeted tagging of genes in the vicinity of the insertion sites. Sequence analysis of Ds and T-DNA flanking regions revealed a sevenfold preference of both mutagens for insertion into non-redundant, gene-containing regions of the barley genome. However, whilst transposed Ds elements preferentially inserted adjacent to regions with a high number of predicted and experimentally validated matrix attachment regions (nuclear MARs), this was not the case for T-DNA integration sites. These findings and an observed high transposition frequency from mapped launch pads demonstrate the future potential of gene tagging for functional genomics and gene discovery in barley.
Collapse
Affiliation(s)
- Tiehan Zhao
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
210
|
Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 2006; 38:948-52. [PMID: 16832354 DOI: 10.1038/ng1841] [Citation(s) in RCA: 787] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 06/07/2006] [Indexed: 11/09/2022]
Abstract
A major component in the regulatory network controlling fruit ripening is likely to be the gene at the tomato Colorless non-ripening (Cnr) locus. The Cnr mutation results in colorless fruits with a substantial loss of cell-to-cell adhesion. The nature of the mutation and the identity of the Cnr gene were previously unknown. Using positional cloning and virus-induced gene silencing, here we demonstrate that an SBP-box (SQUAMOSA promoter binding protein-like) gene resides at the Cnr locus. Furthermore, the Cnr phenotype results from a spontaneous epigenetic change in the SBP-box promoter. The discovery that Cnr is an epimutation was unexpected, as very few spontaneous epimutations have been described in plants. This study demonstrates that an SBP-box gene is critical for normal ripening and highlights the likely importance of epialleles in plant development and the generation of natural variation.
Collapse
Affiliation(s)
- Kenneth Manning
- Warwick Horticulture Research International (HRI), University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | | | | | | | | | | | | | | |
Collapse
|
211
|
|
212
|
Cheng C, Daigen M, Hirochika H. Epigenetic regulation of the rice retrotransposon Tos17. Mol Genet Genomics 2006; 276:378-90. [PMID: 16821043 DOI: 10.1007/s00438-006-0141-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
Transposable elements are major components of plant genomes. Their activity seems to be epigenetically regulated by gene silencing systems. Here we report epigenetic variation in the retrotransposon Tos17 activity in rice varieties. Of the two copies of Tos17 present in chromosome 7 (Tos17 (chr.7)) and chromosome 10 (Tos17 (chr.10)), Tos17 (chr.7) is strongly activated by tissue culture in most varieties including Nipponbare except for Moritawase, despite the identity of the DNA sequences in Moritawase and Nipponbare. Tos17 (chr.7) activity correlated with its methylation status, and Tos17 (chr.7 )in Moritawase was heavily methylated and activated by treatment of 5-azacytidine (5-azaC), a DNA methylation inhibitor. Although the original copies of Tos17 are methylated to some extent in all varieties examined, the transposed copies in calli mostly are not methylated. When plants were regenerated from calli, the degree of methylation of the Tos17 DNA increased gradually with the growth of plants, and a significant progress of DNA methylation occurred in the next generation after a completed reproductive cycle. With increasing DNA methylation, the transcription of transposed and original Tos17 copies driven by its own as well as by a flanking gene promoter were suppressed. We conclude that Tos17 DNA methylation controls the transpositional activity of Tos17, and modulates the activity of neighboring genes. Based on the analysis of the inactive Tos17 (chr.10), we propose that another mechanism, called transcriptional interference, is involved in the control of Tos17 activity.
Collapse
Affiliation(s)
- Chaoyang Cheng
- Molecular Genetics Department, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | |
Collapse
|
213
|
Dong ZY, Wang YM, Zhang ZJ, Shen Y, Lin XY, Ou XF, Han FP, Liu B. Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:196-205. [PMID: 16791687 DOI: 10.1007/s00122-006-0286-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 03/31/2006] [Indexed: 05/04/2023]
Abstract
We have reported previously that introgression by Zizania latifolia resulted in extensive DNA methylation changes in the recipient rice genome, as detected by a set of pre-selected DNA segments. In this study, using the methylation-sensitive amplified polymorphism (MSAP) method, we globally assessed the extent and pattern of cytosine methylation alterations in three typical introgression lines relative to their rice parent at approximately 2,700 unbiased genomic loci each representing a recognition site cleaved by one or both of the isoschizomers, HpaII/MspI. Based on differential digestion by the isoschizomers, it is estimated that 15.9% of CCGG sites are either fully methylated at the internal Cs and/or hemi-methylated at the external Cs in the rice parental cultivar Matsumae. In comparison, a statistically significant increase in the overall level of both methylation types was detected in all three studied introgression lines (19.2, 18.6, 19.6%, respectively). Based on comparisons of MSAP profiles between the isoschizomers within the rice parent and between parent and the introgression lines, four major groups of MSAP banding patterns are recognized, which can be further divided into various subgroups as a result of inheritance of, or variation in, parental methylation patterns. The altered methylation patterns include hyper- and hypomethylation changes, as well as inter-conversion of hemi- to full-methylation, or vice versa, at the relevant CCGG site(s). Most alterations revealed by MSAP in low-copy loci can be validated by DNA gel blot analysis. The changed methylation patterns are uniform among randomly selected individuals for a given introgression line within or among selfed generations. Sequencing on 31 isolated fragments that showed different changing patterns in the introgression line(s) allowed their mapping onto variable regions on one or more of the 12 rice chromosomes. These segments include protein-coding genes, transposon/retrotransposons and sequences with no homology. Possible causes for the introgression-induced methylation changes and their implications for genome evolution and crop breeding are discussed.
Collapse
Affiliation(s)
- Z Y Dong
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Han FP, Liu ZL, Tan M, Hao S, Fedak G, Liu B. Mobilized retrotransposon Tos17 of rice by alien DNA introgression transposes into genes and causes structural and methylation alterations of a flanking genomic region. Hereditas 2006; 141:243-51. [PMID: 15703040 DOI: 10.1111/j.1601-5223.2004.01808.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Tos17 is a copia-like endogenous retrotransposon of rice, which can be activated by various stresses such as tissue culture and alien DNA introgression. To confirm element mobilization by introgression and to study possible structural and epigenetic effects of Tos17 insertion on its target sequences, we isolated all flanking regions of Tos17 in an introgressed rice line (Tong35) that contains minute amount of genomic DNA from wild rice (Zizania latifolia). It was found that there has been apparent but limited mobilization of Tos17 in this introgression line, as being reflected by increased but stable copy number of the element in progeny of the line. Three of the five activated copies of the element have transposed into genes. Based on sequence analysis and Southern blot hybridization with several double-enzyme digests, no structural change in Tos17 could be inferred in the introgression line. Cytosine methylation status at all seven CCGG sites within Tos17 was also identical between the introgression line and its rice parent (Matsumae)-all sites being heavily methylated. In contrast, changes in structure and cytosine methylation patterns were detected in one of the three low-copy genomic regions that flank newly transposed Tos17, and all changes are stably inherited through selfed generations.
Collapse
Affiliation(s)
- F P Han
- Laboratory of Molecular Epigenetics, Institute of Genetics & Cytology, Northeast Normal University, Changchun, PR China
| | | | | | | | | | | |
Collapse
|
215
|
Klenov MS, Gvozdev VA. Heterochromatin formation: role of short RNAs and DNA methylation. BIOCHEMISTRY (MOSCOW) 2006; 70:1187-98. [PMID: 16336177 DOI: 10.1007/s10541-005-0247-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The role of small double-stranded RNAs is considered in formation of silent chromatin structure. Small RNAs are implicated in the regulation of individual gene transcription, suppression of transposon expression, and in maintaining functional structure of extended heterochromatic regions. Interrelations between short RNA-dependent gene silencing, histone modifications, and DNA methylation are discussed. Specific features of RNA-induced chromatin repression in various eucaryotes are also described.
Collapse
Affiliation(s)
- M S Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
216
|
Pavet V, Quintero C, Cecchini NM, Rosa AL, Alvarez ME. Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:577-87. [PMID: 16776291 DOI: 10.1094/mpmi-19-0577] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant tissues display major alterations upon the perception of microbial pathogens. Changes of cytoplasmic and apoplastic components that sense and transduce plant defenses have been extensively characterized. In contrast, less information is available about modifications affecting the plant nuclear genome under these circumstances. Here, we investigated whether the Arabidopsis thaliana DNA methylation status is altered in tissues responding to the attack of Pseudomonas syringae pv. tomato DC3000. We applied amplified fragment length polymorphism analysis to monitor cytosine methylation at anonymous 5'-CCGG-3' and 5'-GATC-3' sites in naive and infected samples. Plant genomic fragments reducing methylation upon infection, including peri/centromeric repeats such as the 180-bp unit, Athila retrotansposon, and a portion of the nuclear insertion of mitochondrial DNA, were isolated and characterized. P. syringae pv. tomato-induced hypomethylation was detected by high-performance liquid chromatography assays and at the molecular level it did not seem to equally affect all 5-methyl cytosine (5-mC) residues. Nuclei from challenged tissues displayed structural chromatin alterations, including loosening of chromocenters, which also were stimulated by avirulent P. syringae pv. tomato, but not by the P. syringae pv. tomato hrpL- mutant. Finally, P. syringae pv. tomato-induced hypomethylation was found to occur in the absence of DNA replication, suggesting that it involves an active demethylation mechanism. All these responses occurred at 1 day postinfection, largely preceding massive plant cell death generated by pathogen attack.
Collapse
Affiliation(s)
- Valeria Pavet
- CIQUIBIC-Departamento de Quimica Biológica, Facultad de Ciencias Quimicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
217
|
Sgaramella V, Salamini F. Gene paucity, genome instability, clonal development: has an individual genome the potential to encode for more than one brain? DNA Repair (Amst) 2006; 5:531-3. [PMID: 16621729 DOI: 10.1016/j.dnarep.2006.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/07/2006] [Indexed: 11/26/2022]
|
218
|
Zickler D. From early homologue recognition to synaptonemal complex formation. Chromosoma 2006; 115:158-74. [PMID: 16570189 DOI: 10.1007/s00412-006-0048-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 10/24/2022]
Abstract
This review focuses on various aspects of chromosome homology searching and their relationship to meiotic and vegetative pairing and to the silencing of unpaired copies of genes. Chromosome recognition and pairing is a prominent characteristic of meiosis; however, for some organisms, this association (complete or partial) is also a normal part of nuclear organization. The multiple mechanisms suggested to contribute to homologous pairing are analyzed. Recognition of DNA/DNA homology also plays an important role in detecting DNA segments that are present in inappropriate number of copies before and during meiosis. In this context, the mechanisms of methylation induced premeiotically, repeat-induced point mutation, meiotic silencing by unpaired DNA, and meiotic sex chromosome inactivation will be discussed. Homologue juxtaposition during meiotic prophase can be divided into three mechanistically distinct steps, namely, recognition, presynaptic alignment, and synapsis by the synaptonemal complex (SC). In most organisms, these three steps are distinguished by their dependence on DNA double-strand breaks (DSBs). The coupling of SC initiation to (and downstream effects of) DSB formation and the exceptions to this dependency are discussed. Finally, this review addresses the specific factors that appear to promote chromosome movement at various stages of meiotic prophase, most particularly at the bouquet stage, and on their significance for homologue pairing and/or achieving a final pachytene configuration.
Collapse
Affiliation(s)
- Denise Zickler
- Université Paris-Sud, Institut de Génétique et Microbiologie, 91405, Orsay, France.
| |
Collapse
|
219
|
Irish EE, McMurray D. Rejuvenation by shoot apex culture recapitulates the developmental increase of methylation at the maize gene Pl-Blotched. PLANT MOLECULAR BIOLOGY 2006; 60:747-58. [PMID: 16649110 DOI: 10.1007/s11103-005-5620-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 12/02/2005] [Indexed: 05/08/2023]
Abstract
Cytosine methylation provides an attractive epigenetic modification for the global maintenance of phases in plant development; however, there are few known examples of specific genes whose methylation status changes in a developmentally regulated manner. Pl-Blotched, an allele of purple plant1 (pl1), which encodes a myb-like transcription factor that regulates anthocyanin production in maize, is one such gene: certain cytosines at the 3' end of this allele are hypomethylated in seedlings, become hypermethylated in organs formed in the adult phase, and are hypomethylated again in the next generation. We tested whether this developmental pattern of low juvenile cytosine methylation followed by higher methylation in adult tissues could also be observed in plants "rejuvenated" via shoot apex culture. We found that cytosine methylation patterns at Pl-Blotched were indeed recapitulated in culture-rejuvenated plants, showing hypomethylation in leaves with juvenile patterns of differentiation (even though they were made by an old meristem) followed by hypermethylation in later-formed leaves. Our results show that methylation status at that locus is determined by the developmental phase of the shoot, rather than by the age of the meristem forming it. These results support the hypothesis that DNA methylation is employed by the plant to maintain an epigenetic state.
Collapse
Affiliation(s)
- Erin E Irish
- Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
220
|
Abstract
Polyploidy is produced by multiplication of a single genome (autopolyploid) or combination of two or more divergent genomes (allopolyploid). The available data obtained from the study of synthetic (newly created or human-made) plant allopolyploids have documented dynamic and stochastic changes in genomic organization and gene expression, including sequence elimination, inter-chromosomal exchanges, cytosine methylation, gene repression, novel activation, genetic dominance, subfunctionalization and transposon activation. The underlying mechanisms for these alterations are poorly understood. To promote a better understanding of genomic and gene expression changes in polyploidy, we briefly review origins and forms of polyploidy and summarize what has been learned from genome-wide gene expression analyses in newly synthesized auto-and allopolyploids. We show transcriptome divergence between the progenitors and in the newly formed allopolyploids. We propose models for transcriptional regulation, chromatin modification and RNA-mediated pathways in establishing locus-specific expression of orthologous and homoeologous genes during allopolyploid formation and evolution.
Collapse
Affiliation(s)
- Z Jeffrey Chen
- Molecular Cell and Developmental Biology, University of Texas, Austin, 78714, USA.
| | | |
Collapse
|
221
|
Abstract
DNA in plants is highly methylated, containing 5-methylcytosine (m5C) and N6-methyladenine (m6A); m5C is located mainly in symmetrical CG and CNG sequences but it may occur also in other non-symmetrical contexts. m6A but not m5C was found in plant mitochondrial DNA. DNA methylation in plants is species-, tissue-, organelle- and age-specific. It is controlled by phytohormones and changes on seed germination, flowering and under the influence of various pathogens (viral, bacterial, fungal). DNA methylation controls plant growth and development, with particular involvement in regulation of gene expression and DNA replication. DNA replication is accompanied by the appearance of under-methylated, newly formed DNA strands including Okazaki fragments; asymmetry of strand DNA methylation disappears until the end of the cell cycle. A model for regulation of DNA replication by methylation is suggested. Cytosine DNA methylation in plants is more rich and diverse compared with animals. It is carried out by the families of specific enzymes that belong to at least three classes of DNA methyltransferases. Open reading frames (ORF) for adenine DNA methyltransferases are found in plant and animal genomes, and a first eukaryotic (plant) adenine DNA methyltransferase (wadmtase) is described; the enzyme seems to be involved in regulation of the mitochondria replication. Like in animals, DNA methylation in plants is closely associated with histone modifications and it affects binding of specific proteins to DNA and formation of respective transcription complexes in chromatin. The same gene (DRM2) in Arabidopsis thaliana is methylated both at cytosine and adenine residues; thus, at least two different, and probably interdependent, systems of DNA modification are present in plants. Plants seem to have a restriction-modification (R-M) system. RNA-directed DNA methylation has been observed in plants; it involves de novo methylation of almost all cytosine residues in a region of siRNA-DNA sequence identity; therefore, it is mainly associated with CNG and non-symmetrical methylations (rare in animals) in coding and promoter regions of silenced genes. Cytoplasmic viral RNA can affect methylation of homologous nuclear sequences and it maybe one of the feedback mechanisms between the cytoplasm and the nucleus to control gene expression.
Collapse
Affiliation(s)
- B F Vanyushin
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Russia.
| |
Collapse
|
222
|
Long L, Lin X, Zhai J, Kou H, Yang W, Liu B. Heritable alteration in DNA methylation pattern occurred specifically at mobile elements in rice plants following hydrostatic pressurization. Biochem Biophys Res Commun 2006; 340:369-76. [PMID: 16364243 DOI: 10.1016/j.bbrc.2005.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Accepted: 12/04/2005] [Indexed: 12/31/2022]
Abstract
Intrinsic DNA methylation pattern is an integral component of the epigenetic network in many eukaryotes. Exploring the extent to which DNA methylation patterns can be altered under a specific condition is important for elucidating the biological functions of this epigenetic modification. This is of added significance in plants wherein the newly acquired methylation patterns can be inherited through organismal generations. We report here that DNA methylation patterns of mobile elements but not of cellular genes were specifically altered in rice plants following hydrostatic pressurization. This was evidenced by methylation-sensitive gel-blot analysis, which showed that 10 out of 10 studied low-copy transposons and retrotransposons manifested methylation alteration in at least one of the 8 randomly chosen pressure-treated plants, whereas none of the 16 studied low-copy cellular genes showed any change. Both gel-blotting and genome-wide fingerprinting indicated that the methylation alteration in mobile elements was not accompanied by a general genetic instability. Progeny analysis indicated retention of the altered methylation patterns in most progeny plants, underscoring early occurrence of the alterations, and their faithful epigenetic inheritance.
Collapse
Affiliation(s)
- Likun Long
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | |
Collapse
|
223
|
Rabinowicz PD, Citek R, Budiman MA, Nunberg A, Bedell JA, Lakey N, O'Shaughnessy AL, Nascimento LU, McCombie WR, Martienssen RA. Differential methylation of genes and repeats in land plants. Genome Res 2006; 15:1431-40. [PMID: 16204196 PMCID: PMC1240086 DOI: 10.1101/gr.4100405] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hypomethylated fraction of plant genomes is usually enriched in genes and can be selectively cloned using methylation filtration (MF). Therefore, MF has been used as a gene enrichment technology in sorghum and maize, where gene enrichment was proportional to genome size. Here we apply MF to a broad variety of plant species spanning a wide range of genome sizes. Differential methylation of genic and non-genic sequences was observed in all species tested, from non-vascular to vascular plants, but in some cases, such as wheat and pine, a lower than expected level of enrichment was observed. Remarkably, hexaploid wheat and pine show a dramatically large number of gene-like sequences relative to other plants. In hexaploid wheat, this apparent excess of genes may reflect an abundance of methylated pseudogenes, which may thus be more prevalent in recent polyploids.
Collapse
|
224
|
Salmon A, Ainouche ML, Wendel JF. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 2006; 14:1163-75. [PMID: 15773943 DOI: 10.1111/j.1365-294x.2005.02488.x] [Citation(s) in RCA: 276] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To study the consequences of hybridization and genome duplication on polyploid genome evolution and adaptation, we used independently formed hybrids (Spartina x townsendii and Spartina x neyrautii) that originated from natural crosses between Spartina alterniflora, an American introduced species, and the European native Spartina maritima. The hybrid from England, S. x townsendii, gave rise to the invasive allopolyploid, salt-marsh species, Spartina anglica. Recent studies indicated that allopolyploid speciation may be associated with rapid genetic and epigenetic changes. To assess this in Spartina, we performed AFLP (amplified fragment length polymorphism) and MSAP (methylation sensitive amplification polymorphism) on young hybrids and the allopolyploid. By comparing the subgenomes in the hybrids and the allopolyploid to the parental species, we inferred structural changes that arose repeatedly in the two independently formed hybrids. Surprisingly, 30% of the parental methylation patterns are altered in the hybrids and the allopolyploid. This high level of epigenetic regulation might explain the morphological plasticity of Spartina anglica and its larger ecological amplitude. Hybridization rather than genome doubling seems to have triggered most of the methylation changes observed in Spartina anglica.
Collapse
Affiliation(s)
- Armel Salmon
- UMR 118 INRA-Agrocampus Rennes, Amélioration des Plantes et Biotechnologies Végétales, Station de Génétique et Amélioration des Plantes, F-35653 Le Rheu, France
| | | | | |
Collapse
|
225
|
Abstract
Cytosine methylation is a common form of post-replicative DNA modification seen in both bacteria and eukaryotes. Modified cytosines have long been known to act as hotspots for mutations due to the high rate of spontaneous deamination of this base to thymine, resulting in a G/T mismatch. This will be fixed as a C-->T transition after replication if not repaired by the base excision repair (BER) pathway or specific repair enzymes dedicated to this purpose. This hypermutability has led to depletion of the target dinucleotide CpG outside of special CpG islands in mammals, which are normally unmethylated. We review the importance of C-->T transitions at non-island CpGs in human disease: When these occur in the germline, they are a common cause of inherited diseases such as epidermolysis bullosa and mucopolysaccharidosis, while in the soma they are frequently found in the genes for tumor suppressors such as p53 and the retinoblastoma protein, causing cancer. We also examine the specific repair enzymes involved, namely the endonuclease Vsr in Escherichia coli and two members of the uracil DNA glycosylase (UDG) superfamily in mammals, TDG and MBD4. Repair brings its own problems, since it will require remethylation of the replacement cytosine, presumably coupling repair to methylation by either the maintenance methylase Dnmt1 or a de novo enzyme such as Dnmt3a. Uncoupling of methylation from repair may be one way to remove methylation from DNA. We also look at the possible role of specific cytosine deaminases such as Aid and Apobec in accelerating deamination of methylcytosine and consequent DNA demethylation.
Collapse
Affiliation(s)
- C P Walsh
- Centre for Molecular Biosciences, School of Biomedical Sciences, University of Ulster, Northern Ireland
| | | |
Collapse
|
226
|
Chen J, Henny RJ, Devanand PS, Chao CT. AFLP analysis of nephthytis (Syngonium podophyllum Schott) selected from somaclonal variants. PLANT CELL REPORTS 2006; 24:743-9. [PMID: 16133347 DOI: 10.1007/s00299-005-0032-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 06/13/2005] [Accepted: 06/18/2005] [Indexed: 05/04/2023]
Abstract
This study analyzed genetic differences of 19 cultivars selected from somaclonal variants of Syngonium podophyllum Schott along with their parents as well as seven additional Syngonium species and six other aroids using amplified fragment length polymorphism (AFLP) markers generated by 12 primer sets. Among the 19 somaclonal cultivars, 'Pink Allusion' was selected from 'White Butterfly'. Tissue culture of 'Pink Allusion' through organogenesis resulted in the development of 13 additional cultivars. Self-pollination of 'Pink Allusion' obtained a cultivar, 'Regina Red Allusion', and tissue culture propagation of 'Regina Red Allusion' led to the release of five other cultivars. The 12 primer sets generated a total of 1,583 scorable fragments from all accessions, of which 1,284 were polymorphic (81.9%). The percentages of polymorphic fragments within 'White Butterfly' and 'Regina Red Allusion' groups, however, were only 1.2% and 0.4%, respectively. Jaccard's similarity coefficients among somaclonal cultivars derived from 'White Butterfly' and 'Regina Red Allusion', on average, were 0.98 and 0.99, respectively. Seven out of the 15 cultivars from the 'White Butterfly' group and three out of six from the 'Regina Red Allusion' group were clearly distinguished by AFLP analysis as unique fragments were associated with respective cultivars. The unsuccessful attempt to distinguish the remaining eight cultivars from the 'White Butterfly' group and three from the 'Regina Red Allusion' group was not attributed to experimental errors or the number of primer sets used; rather it is hypothesized to be caused by DNA methylation and/or some rare mutations. This study also calls for increased genetic diversity of cultivated Syngonium as they are largely derived from somaclonal variants.
Collapse
Affiliation(s)
- J Chen
- Environmental Horticulture Department and Mid-Florida Research and Education Center, University of Florida, IFAS, 2725 Binion Road, Apopka, FL 32703-8504, USA.
| | | | | | | |
Collapse
|
227
|
Abstract
The sequence of the first plant genome was completed and published at the end of 2000. This spawned a series of large-scale projects aimed at discovering the functions of the 25,000+ genes identified in Arabidopsis thaliana (Arabidopsis). This review summarizes progress made in the past five years and speculates about future developments in Arabidopsis research and its implications for crop science. The provision of large populations of gene disruption lines to the research community has greatly accelerated the impact of genomics on many areas of plant science. The tools and community organization required for plant integrative and systems biology approaches are now ready to accomplish the next big step in plant biology--the integration of knowledge and modeling of biological processes. In the future, plant science will continue to be enriched by the alignment of high-quality basic research (generally conducted in Arabidopsis), with strategic objectives in crop plants. The sequence and analysis of an increasing number of crop plant genomes enhance this alignment and provide new insights into genome evolution and crop plant domestication.
Collapse
Affiliation(s)
- Michael Bevan
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UJ, United Kingdom.
| | | |
Collapse
|
228
|
Neves N, Delgado M, Silva M, Caperta A, Morais-Cecílio L, Viegas W. Ribosomal DNA heterochromatin in plants. Cytogenet Genome Res 2005; 109:104-11. [PMID: 15753565 DOI: 10.1159/000082388] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 02/19/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to integrate earlier results and recent findings to present the current state-of-the-art vision concerning the dynamic behavior of the ribosomal DNA (rDNA) fraction in plants. The global organization and behavioral features of rDNA make it a most useful system to analyse the relationship between chromatin topology and gene expression patterns. Correlations between several heterochromatin fractions and rDNA arrays demonstrate the heterochromatic nature of the rDNA and reveal the importance of the genomic environment and of developmental controls in modulating its dynamics.
Collapse
Affiliation(s)
- N Neves
- Secção de Genética, Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
229
|
Ma XF, Gustafson JP. Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res 2005; 109:236-49. [PMID: 15753583 DOI: 10.1159/000082406] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 03/09/2004] [Indexed: 11/19/2022] Open
Abstract
Allopolyploidy is a prominent mode of speciation in higher plants. Due to the coexistence of closely related genomes, a successful allopolyploid must have the ability to invoke and maintain diploid-like behavior, both cytologically and genetically. Recent studies on natural and synthetic allopolyploids have raised many discrepancies. Most species have displayed non-Mendelian behavior in the allopolyploids, but others have not. Some species have demonstrated rapid genome changes following allopolyploid formation, while others have conserved progenitor genomes. Some have displayed directed, non-random genome changes, whereas others have shown random changes. Some of the genomic changes have appeared in the F1 hybrids, which have been attributed to the union of gametes from different progenitors, while other changes have occurred during or after genome doubling. Although these observations provide significant novel insights into the evolution of allopolyploids, the overall mechanisms of the event are still elusive. It appears that both genetic and epigenetic operations are involved in the diploidization process of allopolyploids. Overall, genetic and epigenetic variations are often associated with the activities of repetitive sequences and transposon elements. Specifically, genomic sequence elimination and chromosome rearrangement are probably the major forces guiding cytological diploidization. Gene non-functionalization, sub-functionalization, neo-functionalization, as well as other kinds of epigenetic modifications, are likely the leading factors promoting genetic diploidization.
Collapse
Affiliation(s)
- X-F Ma
- Department of Agronomy, University of Missouri-Columbia, MO 65211, USA
| | | |
Collapse
|
230
|
Medstrand P, van de Lagemaat LN, Dunn CA, Landry JR, Svenback D, Mager DL. Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet Genome Res 2005; 110:342-52. [PMID: 16093686 DOI: 10.1159/000084966] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 01/07/2004] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are present in all organisms and nearly half of the human and mouse genome is derived from ancient transpositions. This fact alone suggests that TEs have played a major role in genome organization and evolution. Studies undertaken over the last two decades or so clearly show that TEs of various kinds have played an important role in organism evolution. Here we review the impact TEs have on the evolution of gene regulation and gene function with an emphasis on humans. Understanding the mechanisms resulting in genomic change is central to our understanding of gene regulation, genetic disease and genome evolution. Full comprehension of these biological processes is not possible without an in depth knowledge of how TEs impact upon the genome.
Collapse
Affiliation(s)
- P Medstrand
- Department of Cell and Molecular Biology, Biomedical Centre, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
231
|
Takeda S, Paszkowski J. DNA methylation and epigenetic inheritance during plant gametogenesis. Chromosoma 2005; 115:27-35. [PMID: 16249938 DOI: 10.1007/s00412-005-0031-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 09/17/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
In plants, newly acquired epigenetic states of transcriptional gene activity are readily transmitted to the progeny. This is in contrast to mammals, where only rare cases of transgenerational inheritance of new epigenetic traits have been reported (FASEB J 12:949-957, 1998; Nat Genet 23:314-318, 1999; Proc Natl Acad Sci U S A 100:2538-2543, 2003). Epigenetic inheritance in plants seems to rely on cytosine methylation maintained through meiosis and postmeiotic mitoses, giving rise to gametophytes. In particular, maintenance of CpG methylation ((m)CpG) appears to play a central role, guiding the distribution of other epigenetic signals such as histone H3 methylation and non-CpG DNA methylation. The evolutionarily conserved DNA methyltransferase MET1 is responsible for copying (m)CpG patterns through DNA replication in the gametophytic phase. The importance of gametophytic MET1 activity is illustrated by the phenotypes of met1 mutants that are severely compromised in the accuracy of epigenetic inheritance during gametogenesis. This includes elimination of imprinting at paternally silent loci such as FWA or MEDEA (MEA). The importance of DNA methylation in gametophytic imprinting has been reinforced by the discovery of DEMETER (DME), encoding putative DNA glycosylase involved in the removal of (m)C. DME opposes transcriptional silencing associated with imprinting activities of the MEA/FIE polycomb group complex.
Collapse
Affiliation(s)
- Shin Takeda
- Laboratory of Plant Genetics, University of Geneva, Science III, Switzerland.
| | | |
Collapse
|
232
|
Tran RK, Zilberman D, de Bustos C, Ditt RF, Henikoff JG, Lindroth AM, Delrow J, Boyle T, Kwong S, Bryson TD, Jacobsen SE, Henikoff S. Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis. Genome Biol 2005; 6:R90. [PMID: 16277745 PMCID: PMC1297646 DOI: 10.1186/gb-2005-6-11-r90] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 08/26/2005] [Accepted: 09/21/2005] [Indexed: 11/16/2022] Open
Abstract
Microarray-based profiling of the involvement of two DNA methyltransferases (CMT3 and DRM), a histone H3 lysine-9 methyltransferase (KYP) and an Argonaute-related siRNA silencing component (AGO4) in methylating target loci in Arabidopsis reveals that transposable elements are the targets of both DNA methylation and histone H3K9 methylation pathways, irrespective of element type and position. Background DNA methylation occurs at preferred sites in eukaryotes. In Arabidopsis, DNA cytosine methylation is maintained by three subfamilies of methyltransferases with distinct substrate specificities and different modes of action. Targeting of cytosine methylation at selected loci has been found to sometimes involve histone H3 methylation and small interfering (si)RNAs. However, the relationship between different cytosine methylation pathways and their preferred targets is not known. Results We used a microarray-based profiling method to explore the involvement of Arabidopsis CMT3 and DRM DNA methyltransferases, a histone H3 lysine-9 methyltransferase (KYP) and an Argonaute-related siRNA silencing component (AGO4) in methylating target loci. We found that KYP targets are also CMT3 targets, suggesting that histone methylation maintains CNG methylation genome-wide. CMT3 and KYP targets show similar proximal distributions that correspond to the overall distribution of transposable elements of all types, whereas DRM targets are distributed more distally along the chromosome. We find an inverse relationship between element size and loss of methylation in ago4 and drm mutants. Conclusion We conclude that the targets of both DNA methylation and histone H3K9 methylation pathways are transposable elements genome-wide, irrespective of element type and position. Our findings also suggest that RNA-directed DNA methylation is required to silence isolated elements that may be too small to be maintained in a silent state by a chromatin-based mechanism alone. Thus, parallel pathways would be needed to maintain silencing of transposable elements.
Collapse
Affiliation(s)
- Robert K Tran
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Daniel Zilberman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Cecilia de Bustos
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, 751 85 Sweden
| | - Renata F Ditt
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Jorja G Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Anders M Lindroth
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey Delrow
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Tom Boyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Samson Kwong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Terri D Bryson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| |
Collapse
|
233
|
Gendrel AV, Lippman Z, Martienssen R, Colot V. Profiling histone modification patterns in plants using genomic tiling microarrays. Nat Methods 2005; 2:213-8. [PMID: 16163802 DOI: 10.1038/nmeth0305-213] [Citation(s) in RCA: 405] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anne-Valérie Gendrel
- Unité de Recherche en Génomique Végétale (URGV), INRA/CNRS/UEVE, 2 Rue Gaston Crémieux, 91057 Evry Cedex, France
| | | | | | | |
Collapse
|
234
|
Kapoor A, Agius F, Zhu JK. Preventing transcriptional gene silencing by active DNA demethylation. FEBS Lett 2005; 579:5889-98. [PMID: 16162337 DOI: 10.1016/j.febslet.2005.08.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/23/2005] [Accepted: 08/23/2005] [Indexed: 11/18/2022]
Abstract
DNA methylation is important for stable transcriptional gene silencing. DNA methyltransferases for de novo as well as maintenance methylation have been well characterized. However, enzymes responsible for active DNA demethylation have been elusive and several reported mechanisms of active demethylation have been controversial. There has been a critical need for genetic analysis in order to firmly establish an in vivo role for putative DNA demethylases. Mutations in the bifunctional DNA glycosylase/lyase ROS1 in Arabidopsis cause DNA hypermethylation and transcriptional silencing of specific genes. Recombinant ROS1 protein has DNA glycosylase/lyase activity on methylated but not unmethylated DNA substrates. Therefore, there is now strong genetic evidence supporting a base excision repair mechanism for active DNA demethylation. DNA demethylases may be critical factors for genome wide hypomethylation seen in cancers and possibly important for epigenetic reprogramming during somatic cell cloning and stem cell function.
Collapse
Affiliation(s)
- Avnish Kapoor
- Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|
235
|
Auerkari EI. Methylation of tumor suppressor genes p16(INK4a), p27(Kip1) and E-cadherin in carcinogenesis. Oral Oncol 2005; 42:5-13. [PMID: 15978859 DOI: 10.1016/j.oraloncology.2005.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 03/10/2005] [Indexed: 01/14/2023]
Abstract
Not only genomic mutations but also abnormal epigenetic methylation can significantly contribute to gene silencing and carcinogenesis. Methylation is particularly often observed in the CpG islands of the promoter regions in the regulatory genes. However, there are considerable differences in the incidence of methylation e.g. in the tumor suppressor genes, so that aberrant methylation of p16(INK4a) is relatively frequently observed in tumors, p27(Kip1) methylation is rare, and the incidence of E-cadherin methylation occurs at an intermediate rate. Although true genomic defects are generally much less common than methylation, parallel tendencies for both are often observed, probably reflecting the different levels of evolutionary advantage for tumor cells from inactivation of different genes. This also suggests that loss of p27 expression could be more a consequence of carcinogenesis, while lost p16 expression is a true oncogenic event. Due to the role of p27 in maintaining cellular quiescence, however, loss of its expression can still be a useful partial indicator of the aggressiveness of cancer. Loss of E-cadherin or its catenin partners of cellular adhesion will result in increasing invasiveness and metastatic potential of neoplastic cells but, because of several alternative routes to the same effect, incidence of lost expression for one component gene like E-cadherin does not need to be very high. Similarly, there must be a relatively high number of genes with modest or low incidence of aberrant silencing by methylation, to reflect multiple alternatives for the multistep process of carcinogenesis. Nevertheless, methylation of different genes also shows characteristic differences between different cancer and tumor types, and the epigenetic methylation patterns therefore have considerable diagnostic and prognostic potential. Realising this potential requires efficient methods for profiling the status of methylation. Such profiling methods have only recently become available and are still under relatively rapid development.
Collapse
Affiliation(s)
- Elza Ibrahim Auerkari
- Section of Molecular Embryology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
236
|
Chan SWL, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 2005; 6:351-60. [PMID: 15861207 DOI: 10.1038/nrg1601] [Citation(s) in RCA: 587] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA methylation has two essential roles in plants and animals - defending the genome against transposons and regulating gene expression. Recent experiments in Arabidopsis thaliana have begun to address crucial questions about how DNA methylation is established and maintained. One cardinal insight has been the discovery that DNA methylation can be guided by small RNAs produced through RNA-interference pathways. Plants and mammals use a similar suite of DNA methyltransferases to propagate DNA methylation, but plants have also developed a glycosylase-based mechanism for removing DNA methylation, and there are hints that similar processes function in other organisms.
Collapse
Affiliation(s)
- Simon W-L Chan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
237
|
Yamada H, Tanabe K, Nishimoto SI. Cleavage at 5-methylcytosine in DNA by photosensitized oxidation with 2-methyl-1,4-naphthoquinone tethered oligodeoxynucleotides. Bioorg Med Chem Lett 2005; 15:665-8. [PMID: 15664833 DOI: 10.1016/j.bmcl.2004.11.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 11/12/2004] [Accepted: 11/15/2004] [Indexed: 11/18/2022]
Abstract
Photosensitized one-electron oxidation of 5-methylcytosine in DNA by 2-methyl-1,4-naphthoquinone, attached to 5'-end of an oligodeoxynucleotide strand, produced 5-formylcytosine and led to selective DNA strand cleavage at the original 5-methylcytosine configuration. This specified photoreaction is useful for positive display of 5-methylcytosine in DNA on a sequencing gel.
Collapse
Affiliation(s)
- Hisatsugu Yamada
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
238
|
Inoue S, Oishi M. Effects of methylation of non-CpG sequence in the promoter region on the expression of human synaptotagmin XI (syt11). Gene 2005; 348:123-34. [PMID: 15777718 DOI: 10.1016/j.gene.2004.12.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 11/26/2004] [Accepted: 12/27/2004] [Indexed: 10/25/2022]
Abstract
We have studied the effects of methylation of the promoter region on the expression of human synaptotagmin XI (syt11), a gene implicated in the onset of schizophrenia. Sequence analysis showed that cytosine residues not in the CpG sequence, but still within the promoter region of the gene, are partially methylated. The methylated cytosine residues are located in the mRNA-coding (minus) strand of the promoter region (mCmCTTmCTTmCmC). Gel mobility shift assays showed that when the cytosine residues are methylated, the binding activity of an Sp family protein, a transcription factor, to the region is significantly reduced. Furthermore, transient transcription assays using artificially methylated promoter sequences showed that methylation did reduce the expression of the reporter gene. The biological significance of the finding is discussed in respect to the effect of methylation of non-CpG sequences in promoter regions on gene expression.
Collapse
Affiliation(s)
- Shinichi Inoue
- Kazusa Research Institute, 2-6-7, Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan.
| | | |
Collapse
|
239
|
Barra JL, Holmes AM, Grégoire A, Rossignol JL, Faugeron G. Novel relationships among DNA methylation, histone modifications and gene expression in Ascobolus. Mol Microbiol 2005; 57:180-95. [PMID: 15948959 DOI: 10.1111/j.1365-2958.2005.04665.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
By studying Ascobolus strains methylated in various portions of the native met2 gene or of the hph transgene, we generalized our previous observation that methylation of the downstream portion of a gene promotes its stable silencing and triggers the production of truncated transcripts which rarely extend through the methylated region. In contrast, methylation of the promoter region does not promote efficient gene silencing. The chromatin state of met2 methylated strains was investigated after partial micrococcal nuclease (MNase) digestion. We show that MNase sensitive sites present along the unmethylated regions are no longer observed along the methylated ones. These chromatin changes are not resulting from the absence of transcription. They are associated, in both met2 and hph, with modifications of core histones corresponding, on the N terminus of histone H3, to an increase of dimethylation of lysine 9 and a decrease of dimethylation of lysine 4. Contrary to other organisms, these changes are independent of the transcriptional state of the genes, and furthermore, no decrease in acetylation of histone H4 is observed in silenced genes.
Collapse
Affiliation(s)
- José L Barra
- Institut Jacques Monod, UMR 7592 CNRS/Université Paris 7/Université Paris 6, Tour 43, 2 Place Jussieu, 75251 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
240
|
Abstract
Closely related RNA silencing phenomena such as posttranscriptional and transcriptional gene silencing (PTGS and TGS), quelling and RNA interference (RNAi) represent different forms of a conserved ancestral process. The biological relevance of these RNA-directed mechanisms of silencing in gene regulation, genome defence and chromosomal structure is rapidly being unravelled. Here, we review the recent developments in the field of RNA silencing in relation to other epigenetic phenomena and discuss the significance of this process and its targets in the regulation of modern eukaryotic genomes.
Collapse
Affiliation(s)
- Ricardo Almeida
- Wellcome Trust Centre for Cell Biology, 6.34 Swann Building, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
241
|
Prouteau M, Colot V. [Epigenetic control, development and natural genetic variation in plants]. Med Sci (Paris) 2005; 21:422-7. [PMID: 15811308 DOI: 10.1051/medsci/2005214422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plant life strategies differ radically from those of most animals. Plants are not motile, and can only face stress by developing appropriate physiological responses. In addition, many developmental decisions take place during post-embryonic life in plants, whereas vertebrate and invertebrate development is nearly complete by the time of birth. For instance, while the germ line is typically set aside early during embryogenesis in animals, plants produce gametes from stem cell populations that were previously used for the vegetative growth of shoots. Nevertheless, plants and animals have similar nuclear organization, chromatin constitution and gene content, which raises the question as to whether or not fundamental differences in the use of genetic information underlie their distinct life strategies. More specifically, we would like to know if chromatin and the epigenetically defined, heritable cell fates that it can confer play comparable roles in plants and animals. Here we review our current knowledge on chromatin-mediated epigenetic processes in plants. Based on available evidence, we argue that epigenetic regulation of gene expression plays a relatively minor role in plants compared to mammals. Conversely, plants appear to be more prone than other multicellular organisms to the induction of chromatin-based, epigenetically modified gene activity states that can be transmitted over many generations. These so-called "epimutations" may therefore represent a significant proportion of the natural genetic variation seen in plants. In humans, epimutations are frequently observed in cancers, and given their metastable nature, they could also play an important role in familial disorders that do not demonstrate clear Mendelian inheritance.
Collapse
Affiliation(s)
- Manoël Prouteau
- Unité de Recherche en Génomique végétale, UMR INRA 1165-CNRS 8114-UEVE, 2, rue Gaston-Crémieux, 91057 Evry Cedex, France
| | | |
Collapse
|
242
|
Gendrel AV, Colot V. Arabidopsis epigenetics: when RNA meets chromatin. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:142-7. [PMID: 15752993 DOI: 10.1016/j.pbi.2005.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recent work in plants and other eukaryotes has uncovered a major role for RNA interference in silent chromatin formation. The heritability of the silent state through multiple cell division cycles and, in some instances, through meiosis is assured by epigenetic marks. In plants, transposable elements and transgenes provide striking examples of the stable inheritance of repressed states, and are characterized by dense DNA methylation and heterochromatin histone modifications. Arabidopsis is a useful higher eukaryotes model with which to explore the crossroads between silent chromatin and RNA interference both during development and in the genome-wide control of repeat elements.
Collapse
Affiliation(s)
- Anne-Valérie Gendrel
- Unité de Recherche en Génomique Végétale, INRA/CNRS/UEVE, 2 rue Gaston Crémieux, 91057 Evry Cedex, France
| | | |
Collapse
|
243
|
Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T, Reuter G. Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J 2005; 24:1418-29. [PMID: 15775980 PMCID: PMC1142535 DOI: 10.1038/sj.emboj.7600604] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 02/08/2005] [Indexed: 01/16/2023] Open
Abstract
SU(VAR)3-9 like histone methyltransferases control heterochromatic domains in eukaryotes. In Arabidopsis, 10 SUVH genes encode SU(VAR)3-9 homologues where SUVH1, SUVH2 and SUVH4 (KRYPTONITE) represent distinct subgroups of SUVH genes. Loss of SUVH1 and SUVH4 causes weak reduction of heterochromatic histone H3K9 dimethylation, whereas in SUVH2 null plants mono- and dimethyl H3K9, mono- and dimethyl H3K27, and monomethyl H4K20, the histone methylation marks of Arabidopsis heterochromatin are significantly reduced. Like animal SU(VAR)3-9 proteins SUVH2 displays strong dosage-dependent effects. Loss of function suppresses, whereas overexpression enhances, gene silencing, causes ectopic heterochromatization and significant growth defects. Furthermore, modification of transgene silencing by SUVH2 is partially transmitted to the offspring plants. This epigenetic stability correlates with heritable changes in DNA methylation. Mutational dissection of SUVH2 indicates an implication of its N-terminus and YDG domain in directing DNA methylation to target sequences, a prerequisite for consecutive histone methylation. Gene silencing by SUVH2 depends on MET1 and DDM1, but not CMT3. In Arabidopsis, SUVH2 with its histone H3K9 and H4K20 methylation activity has a central role in heterochromatic gene silencing.
Collapse
Affiliation(s)
- Kathrin Naumann
- Institute of Genetics, Biologicum, Martin Luther University Halle, Halle, Germany
| | - Andreas Fischer
- Institute of Genetics, Biologicum, Martin Luther University Halle, Halle, Germany
| | - Ingo Hofmann
- Institute of Genetics, Biologicum, Martin Luther University Halle, Halle, Germany
| | - Veiko Krauss
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | - Sameer Phalke
- Institute of Genetics, Biologicum, Martin Luther University Halle, Halle, Germany
| | - Kristina Irmler
- Institute of Genetics, Biologicum, Martin Luther University Halle, Halle, Germany
| | - Gerd Hause
- Biocenter, Martin Luther University Halle, Halle, Germany
| | - Anne-Cathleen Aurich
- Institute of Genetics, Biologicum, Martin Luther University Halle, Halle, Germany
| | - Rainer Dorn
- Institute of Genetics, Biologicum, Martin Luther University Halle, Halle, Germany
| | - Thomas Jenuwein
- Research Institute of Molecular Pathology, The Vienna Biocenter, Vienna, Austria
| | - Gunter Reuter
- Institute of Genetics, Biologicum, Martin Luther University Halle, Halle, Germany
- Institute of Genetics, Biologicum, Martin Luther University, Weinbergweg 10, 06120 Halle, Germany. Tel.: +49 345 552 6300/303; Fax: +49 345 552 7294; E-mail:
| |
Collapse
|
244
|
Nolan T, Braccini L, Azzalin G, De Toni A, Macino G, Cogoni C. The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotransposon in Neurospora crassa. Nucleic Acids Res 2005; 33:1564-73. [PMID: 15767281 PMCID: PMC1065258 DOI: 10.1093/nar/gki300] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Post-transcriptional gene silencing (PTGS) involving small interfering RNA (siRNA)-directed degradation of RNA transcripts and transcriptional silencing via DNA methylation have each been proposed as mechanisms of genome defence against invading nucleic acids, such as transposons and viruses. Furthermore, recent data from plants indicates that many transposons are silenced via a combination of the two mechanisms, and siRNAs can direct methylation of transposon sequences. We investigated the contribution of DNA methylation and the PTGS pathway to transposon control in the filamentous fungus Neurospora crassa. We found that repression of the LINE1-like transposon, Tad, requires the Argonaute protein QDE2 and Dicer, each of which are required for transgene-induced PTGS (quelling) in N.crassa. Interestingly, unlike quelling, the RNA-dependent RNA polymerase QDE1 and the RecQ DNA helicase QDE3 were not required for Tad control, suggesting the existence of specialized silencing pathways for diverse kinds of repetitive elements. In contrast, Tad elements were not significantly methylated and the DIM2 DNA methyltransferase, responsible for all known DNA methylation in Neurospora, had no effect on Tad control. Thus, an RNAi-related transposon silencing mechanism operates during the vegetative phase of N.crassa that is independent of DNA methylation, highlighting a major difference between this organism and other methylation-proficient species.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlo Cogoni
- To whom correspondence should be addressed. Tel and Fax: +39064457731;
| |
Collapse
|
245
|
Stenøien HK, Pedersen B. Mutation and epimutation load in haploid and diploid life forms. J Theor Biol 2005; 233:119-26. [PMID: 15615625 DOI: 10.1016/j.jtbi.2004.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2004] [Revised: 09/03/2004] [Accepted: 09/23/2004] [Indexed: 11/29/2022]
Abstract
Epigenetic differentiation is the potentially heritable changes in levels of gene expression not caused by DNA sequence changes. Here, a classification scheme of mutations and epimutations is introduced, enabling a simple analysis of mutation and epimutation load in haploid and diploid organisms. It is found that the deleterious effect of epimutations is mainly determined by epimutation rate and degree of reversibility. Inherited epimutations have the same fitness consequences as inherited mutations. With complete reversibility and no inheritance, then epimutations have the same fitness consequences as somatic mutations. It is argued that organisms with somatic inheritance may experience more genetic load than organisms without somatic inheritance due to inherited epimutations in the former. This may partly explain the maintenance of soma/germ differentiation in many life forms. It is also argued that masking of deleterious somatic mutations may not necessarily explain the evolution of diploidy in life forms with inherited epimutations.
Collapse
Affiliation(s)
- Hans K Stenøien
- Plant Ecology/Department of Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Villav. 14, Uppsala, SE-752 36, Sweden.
| | | |
Collapse
|
246
|
Riddle NC, Richards EJ. Genetic variation in epigenetic inheritance of ribosomal RNA gene methylation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:524-32. [PMID: 15686517 DOI: 10.1111/j.1365-313x.2004.02317.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We investigated the fidelity of epigenetic inheritance in crosses between three accessions of the flowering plant Arabidopsis thaliana (Canary Islands, Cape Verde Islands, and Columbia). Specifically, we examined the cytosine methylation content of the ribosomal RNA genes at the two nucleolus organizer regions (NOR2 and NOR4) in F1 and F2 hybrid individuals derived from reciprocal crosses between the high NOR methylation strain, Columbia, and the two other accessions, both of which have less NOR methylation. In crosses between the Columbia and Cape Verde Islands strains, the cytosine methylation content segregated as an additive Mendelian trait: the high NOR methylation state was tightly associated with the inheritance of the two Columbia-derived NOR loci. First-generation hybrid individuals between the Canary Islands and Columbia strains also showed a cytosine methylation content at the NORs intermediate between the parental values, consistent with the epigenetic inheritance of parental methylation patterns. Interestingly, mapping data from F2 individuals derived from a Canary Islands x Columbia cross revealed that NOR2 accounted for nearly all of the NOR methylation variation segregating in the population. NOR4 retains a significant effect on total NOR methylation content only through a complex epistatic interaction with NOR2. Our results indicate that the inheritance of differential cytosine methylation states at NOR loci can be modified by their genetic context, opening up the possibility of genetic dissection of epigenetic inheritance.
Collapse
Affiliation(s)
- Nicole C Riddle
- Department of Biology, Washington University, One Brookings Drive, St Louis, MO 63130, USA
| | | |
Collapse
|
247
|
Rojas MR, Hagen C, Lucas WJ, Gilbertson RL. Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:361-94. [PMID: 16078889 DOI: 10.1146/annurev.phyto.43.040204.135939] [Citation(s) in RCA: 365] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The majority of plant-infecting viruses utilize an RNA genome, suggesting that plants have imposed strict constraints on the evolution of DNA viruses. The geminiviruses represent a family of DNA viruses that has circumvented these impediments to emerge as one of the most successful viral pathogens, causing severe economic losses to agricultural production worldwide. The genetic diversity reflected in present-day geminiviruses provides important insights into the evolution and biology of these pathogens. To maximize replication of their DNA genome, these viruses acquired and evolved mechanisms to manipulate the plant cell cycle machinery for DNA replication, and to optimize the number of cells available for infection. In addition, several strategies for cell-to-cell and long-distance movement of the infectious viral DNA were evolved and refined to be compatible with the constraints imposed by the host endogenous macromolecular trafficking machinery. Mechanisms also evolved to circumvent the host antiviral defense systems. Effectively combatting diseases caused by geminiviruses represents a major challenge and opportunity for biotechnology.
Collapse
Affiliation(s)
- Maria R Rojas
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
248
|
Abstract
During the development of a multicellular organism, cell differentiation involves activation and repression of transcription programs that must be stably maintained during subsequent cell divisions. Chromatin remodeling plays a crucial role in regulating chromatin states that conserve transcription programs and provide a mechanism for chromatin states to be maintained as cells proliferate, a process referred to as epigenetic inheritance. A large number of factors and protein complexes are now known to be involved in regulating the dynamic states of chromatin structure. Their biological functions and molecular mechanisms are beginning to be revealed.
Collapse
Affiliation(s)
- Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA.
| | | |
Collapse
|
249
|
Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 2004; 7:653-62. [PMID: 15525527 DOI: 10.1016/j.devcel.2004.10.003] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2003] [Revised: 07/24/2004] [Accepted: 09/14/2004] [Indexed: 10/26/2022]
Abstract
Dominant mutations in the Arabidopsis PHABULOSA (PHB) and PHAVOLUTA (PHV) transcription factor genes cause transformation of abaxial to adaxial leaf fates by altering a microRNA complementary site present in processed PHB and PHV mRNAs but not in the corresponding genomic DNA. phb-1d mutants accumulate excess PHB transcript throughout the leaf primordium, indicating defective regulation of PHB transcript synthesis and/or stability. We show that PHB and PHV coding sequences are heavily methylated downstream of the microRNA complementary site in most wild-type plant cells and that methylation is reduced in phb-1d and phv-1d mutants. Decreased methylation is limited to the chromosome bearing the dominant mutant allele in phb-1d heterozygotes. Low levels of methylation are detected in wt PHB DNA isolated from undifferentiated tissues. These results suggest a model in which the microRNA interacts with nascent, newly processed PHB mRNA to alter chromatin of the corresponding PHB template DNA predominantly in differentiated cells.
Collapse
MESH Headings
- Alleles
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- Binding Sites
- Chromosome Mapping
- Chromosomes, Plant
- CpG Islands
- DNA Methylation
- DNA, Plant/drug effects
- Exons
- Genes, Dominant
- Genes, Plant
- Heterozygote
- MicroRNAs/chemistry
- MicroRNAs/metabolism
- Models, Biological
- Molecular Sequence Data
- Mutation
- RNA, Messenger/classification
- RNA, Messenger/metabolism
- RNA, Plant/chemistry
- RNA, Plant/isolation & purification
- RNA, Plant/metabolism
- Sequence Homology, Nucleic Acid
- Sulfites/toxicity
- Templates, Genetic
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Ning Bao
- Program in Plant Breeding and Plant Genetics, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
250
|
Schramke V, Allshire R. Those interfering little RNAs! Silencing and eliminating chromatin. Curr Opin Genet Dev 2004; 14:174-80. [PMID: 15196464 DOI: 10.1016/j.gde.2004.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RNA interference (RNAi) is widely used for knocking down expression of genes of interest and in systematic screens for desired phenotypes. In post-transcriptional gene silencing, double-stranded RNA triggers are processed to small interfering RNAs, which act to seek out and destroy homologous transcripts. A variety of organisms utilise the RNAi pathway to silence expression of potentially harmful endogenous mobile elements and to eliminate unnecessary sequences. In plants and fission yeast, RNAi can also mediate chromatin-based silencing resulting in transcriptional shutdown of homologous transcription units (transcriptional gene silencing) and the formation of centromeric heterochromatin. In metazoans, the expression of non-coding RNAs is often associated with the formation of silent chromatin domains but it remains to be determined if RNAi is involved.
Collapse
Affiliation(s)
- Vera Schramke
- Wellcome Trust Centre for Cell Biology, 6.34 Swann Building, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | |
Collapse
|