201
|
Hussein MR, Sun M, Tuthill RJ, Roggero E, Monti JA, Sudilovsky EC, Wood GS, Sudilovsky O. Comprehensive analysis of 112 melanocytic skin lesions demonstrates microsatellite instability in melanomas and dysplastic nevi, but not in benign nevi. J Cutan Pathol 2001; 28:343-50. [PMID: 11437939 DOI: 10.1034/j.1600-0560.2001.280702.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION the length of DNA repetitive sequences (microsatellite instability (MSI)) represent distinct tumorigenic pathways associated with several familial and sporadic tumors. MATERIAL AND METHODS To investigate the prevalence and frequency of MSI in melanocytic lesions, the polymerase chain reaction (PCR)-based microsatellite assay was used to examine formalin-fixed, paraffin-embedded tissues of 30 benign melanocytic nevi, 60 melanocytic dysplastic nevi (MDN), and 22 primary vertical growth phase cutaneous malignant melanomas (CMM). Twenty-four microsatellite markers at the 1p, 2p, 3p, 4q and 9p chromosomal regions were used. RESULTS MSI was found at 1p and 9p in MDN and CMM but not in benign melanocytic nevi. The overall prevalence of MSI was 17/60 (28%) in MDN and 7/22 (31%) in CMM. The frequency of MSI ranged from 2/24 (9%) to 4/24 (17%) and was most commonly found at D9S162. There was a statistically significant correlation between degree of atypia and frequency of MSI (p<0.001) in MDN. There were two MSI banding patterns: band shifts and additional bands. CONCLUSIONS The data presented revealed the presence of low-frequency MSI (MSI-L) at the 1p and 9p regions in both MDN and CMM. Whether the MSI-L pattern reflects a defect in mismatch repair genes is still to be determined.
Collapse
Affiliation(s)
- M R Hussein
- Institute of Pathology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Amin NS, Nguyen MN, Oh S, Kolodner RD. exo1-Dependent mutator mutations: model system for studying functional interactions in mismatch repair. Mol Cell Biol 2001; 21:5142-55. [PMID: 11438669 PMCID: PMC87239 DOI: 10.1128/mcb.21.15.5142-5155.2001] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Accepted: 04/20/2001] [Indexed: 12/24/2022] Open
Abstract
EXO1 interacts with MSH2 and MLH1 and has been proposed to be a redundant exonuclease that functions in mismatch repair (MMR). To better understand the role of EXO1 in mismatch repair, a genetic screen was performed to identify mutations that increase the mutation rates caused by weak mutator mutations such as exo1Delta and pms1-A130V mutations. In a screen starting with an exo1 mutation, exo1-dependent mutator mutations were obtained in MLH1, PMS1, MSH2, MSH3, POL30 (PCNA), POL32, and RNR1, whereas starting with the weak pms1 allele pms1-A130V, pms1-dependent mutator mutations were identified in MLH1, MSH2, MSH3, MSH6, and EXO1. These mutations only cause weak MMR defects as single mutants but cause strong MMR defects when combined with each other. Most of the mutations obtained caused amino acid substitutions in MLH1 or PMS1, and these clustered in either the ATP-binding region or the MLH1-PMS1 interaction regions of these proteins. The mutations showed two other types of interactions: specific pairs of mutations showed unlinked noncomplementation in diploid strains, and the defect caused by pairs of mutations could be suppressed by high-copy-number expression of a third gene, an effect that showed allele and overexpressed gene specificity. These results support a model in which EXO1 plays a structural role in MMR and stabilizes multiprotein complexes containing a number of MMR proteins. A similar role is proposed for PCNA based on the data presented.
Collapse
Affiliation(s)
- N S Amin
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, California 92093-0660, USA
| | | | | | | |
Collapse
|
203
|
Thykjaer T, Christensen M, Clark AB, Hansen LR, Kunkel TA, Ørntoft TF. Functional analysis of the mismatch repair system in bladder cancer. Br J Cancer 2001; 85:568-75. [PMID: 11506498 PMCID: PMC2364098 DOI: 10.1054/bjoc.2001.1949] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In bladder cancer the observed microsatellite instability indicates that mismatch repair deficiency could be a frequently involved factor in bladder cancer progression. To investigate this hypothesis we analysed extracts of seven bladder cancer cell lines and, as a novel approach, five clinical cancer samples for mismatch repair activity. We found that one cell line (T24) and three of the clinical samples had a reduced repair capacity, measured to approximately 20% or less. The T24 cell extract was unable to repair a G-G mismatch and showed reduced repair of a 2-base loop, consistent with diminished function of the MSH2-MSH6 heterodimer. The functional assay was combined with measurement for mutation frequency, microsatellite analysis, sequencing, MTT assay, immunohistochemical analysis and RT-PCR analysis of the mismatch repair genes MSH2, MSH3, MSH6, PMS1, PMS2 and MLH1. A >7-fold relative increase in mutation frequency was observed for T24 compared to a bladder cancer cell line with a fully functional mismatch repair system. Neither microsatellite instability, loss of repair nor mismatch repair gene mutations were detected. However, RT-PCR analysis of mRNA levels did detect changes in the ratio of expression of the Mut S and Mut L homologues. The T24 cell line had the lowest MSH6 expression level of the cell lines tested. Identical RT-PCR analysis of seventeen clinical samples (normal urothelium, 7; pTa low stage, 5; and pT1-4 high stage, 5) indicated a significant change in the expression ratio between MSH3/MSH6 (P< 0.004), MSH2/MSH3 (P< 0.012) and PMS2/MLH1 P< 0.005, in high stage bladder tumours compared to normal urothelium and low stage tumours. Collectively, the data suggest that imbalanced expression of mismatch repair genes could lead to partial loss of mismatch repair activity that is associated with invasive bladder cancer.
Collapse
Affiliation(s)
- T Thykjaer
- Department of Clinical Biochemistry, Skejby University Hospital, 8200 Aarhus N, Denmark
| | | | | | | | | | | |
Collapse
|
204
|
Hussein MR, Roggero E, Sudilovsky EC, Tuthill RJ, Wood GS, Sudilovsky O. Alterations of mismatch repair protein expression in benign melanocytic nevi, melanocytic dysplastic nevi, and cutaneous malignant melanomas. Am J Dermatopathol 2001; 23:308-14. [PMID: 11481522 DOI: 10.1097/00000372-200108000-00006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Immunoperoxidase-staining methods were used to examine the expression of hMLH1, hMSH2, and hMSH6 mismatch repair (MMR) proteins in 50 melanocytic lesions. Microsatellite instability (MSI), screened previously in these lesions by polymerase chain reaction-based microsatellite assay, showed low-level microsatellite instability (MSI-L) in 11 of 22 melanocytic dysplastic nevi (MDN) and two of nine primary cutaneous malignant melanomas (CMMs) but not in the benign melanocytic nevi (BN). Mismatch repair proteins were widely expressed in the epidermis and adnexal structures. All lesions showed positive immunoreactivity with a gradual decrease in the MMR staining values during the progression from BN to MDN to CMMs. The average percentage of positively (PP) stained cells for hMLH1, hMSH2, and hMSH6 in BN was 85.50 +/- 1.95, 77.90 +/- 4.50, and 87.11 +/- 1.85, respectively. The PP cell values in CMMs were significantly reduced as compared with BN (75.22 +/- 3.57, p= 0.01; 56.11 +/- 8.73, p= 0.02; 65.22 +/- 6.47, p = 0.0002 for hMLH1, hMSH2, and hMSH6, respectively). No comparable significant difference was found between microsatellite stable and MSI-L lesions (p = 0.173, p = 0.458, and p = 0.385), suggesting a lack of correlation between MMR expression and MMR function. There was a direct correlation between PP cell values of hMSH2 and hMSH6 (R = 0.39, p = 0.008), implying that their expression could be regulated by a common mechanism. Thus, an important finding of these studies was the reduction of MMR protein levels in CMMs; whether this reflects underlying genetic or epigenetic mechanisms is still to be determined.
Collapse
Affiliation(s)
- M R Hussein
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
205
|
Yeh CC, Lee C, Dahiya R. DNA mismatch repair enzyme activity and gene expression in prostate cancer. Biochem Biophys Res Commun 2001; 285:409-13. [PMID: 11444857 DOI: 10.1006/bbrc.2001.5187] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microsatellite instability (MSI) of short repetitive sequences in human chromosomal DNA can result from defective DNA mismatch repair function in tumor cells. We hypothesize that DNA mismatch repair (MMR) activity is down-regulated during prostatic carcinogenesis. To test this hypothesis, MMR activities and mismatch repair-related genes were analyzed in five different prostate cancer cell lines. Our results demonstrate that MMR activities were decreased as compared to MMR proficient HeLa cells. Interestingly, LNCaP, PC-3 and DU145 had much lower MMR activities as compared to DUPro and TSUPr1. The MMR-related genes (hMLH1, hPMS1, hPMS2, hMSH2, hMSH3, hMSH6) showed mRNA transcripts in all prostate cancer cell lines. However, Western blotting showed decreased or absent hMLH1 protein expression in PC-3, DU145, DUPro and TSUPr1 cells. Similarly, the hMSH2 protein expression was low or absent in DU145 and LNCaP cells. This is the first report that demonstrates decreased MMR activities is associated with low expression of hMLH1, hMSH2 and other MMR-related proteins in prostate cancer.
Collapse
Affiliation(s)
- C C Yeh
- Department of Urology, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | |
Collapse
|
206
|
Abstract
DNA mismatch repair (MMR) safeguards the integrity of the genome. In its role in postreplicative repair, this repair pathway corrects base-base and insertion/deletion (I/D) mismatches that have escaped the proofreading function of replicative polymerases. In its absence, cells assume a mutator phenotype in which the rate of spontaneous mutation is greatly elevated. The discovery that defects in mismatch repair segregate with certain cancer predisposition syndromes highlights its essential role in mutation avoidance. Recently, three-dimensional structures of MutS, a key repair protein that recognizes mismatches, have been determined by X-ray crystallography. This article provides an overview of the structural features of MutS proteins and discusses how the structural data together with biochemical and genetic studies reveal new insights into the molecular mechanisms of mismatch repair.
Collapse
Affiliation(s)
- P Hsieh
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10 Rm. 9D06, 10 Center Dr. MSC 1810, Bethesda, MD 20892-1810, USA.
| |
Collapse
|
207
|
Ohmiya N, Matsumoto S, Yamamoto H, Baranovskaya S, Malkhosyan SR, Perucho M. Germline and somatic mutations in hMSH6 and hMSH3 in gastrointestinal cancers of the microsatellite mutator phenotype. Gene 2001; 272:301-13. [PMID: 11470537 DOI: 10.1016/s0378-1119(01)00517-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hereditary and sporadic gastrointestinal cancer of the microsatellite mutator phenotype (MMP) is characterized by a remarkable genomic instability at simple repeated sequences. The genomic instability is often caused by germline and somatic mutations in DNA mismatch repair (MMR) genes hMSH2 and hMLH1. The MMP can be also caused by epigenetic inactivation of hMLH1. The MMP generates many somatic frameshift mutations in genes containing mononucleotide repeats. We previously reported that in MMP tumors the hMSH6 and hMSH3 MMR genes often carry frameshift mutations in their (C)(8) and (A)(8) tracks, respectively. We proposed that these 'secondary mutator mutations' contribute to a gradual manifestation of the MMP. Here we report the detection of other frameshift, nonsense, and missense mutations in these genes in colon and gastric cancers of the MMP. A germline frameshift mutation was found in hMSH6 in a colon tumor harboring another somatic frameshift mutation. Several germline sequence variants and somatic missense mutations at conserved residues were detected in hMSH6 and only one was detected in hMSH3. Of the three hMSH6 germline variants in conserved residues, one coexisted with a somatic mutation at the (C)(8) track and another had a somatic missense mutation. We suggest that some of these germline and somatic missense variants are pathogenic. While biallelic hMSH6 and hMSH3 frameshift mutations were found in some tumors, many tumors seemed to contain only monoallelic mutations. In some tumors, these somatic monoallelic frameshift mutations at the (C)(8) and (A)(8) tracks were found to coexist with other somatic mutations in the other allele, supporting their functionality during tumorigenesis. However, the low incidence of these additional somatic mutations in hMSH6 and hMSH3 leaves many tumors with only monoallelic mutations. The impact of the frameshift mutations in gene expression was studied by comparative analysis of RNA and protein expression in different tumor cell clones with different genotypes. The results show that the hMSH6 (C)(8) frameshift mutation abolishes protein expression, ruling out a dominant negative effect by a truncated protein. We suggest the functionality of these secondary monoallelic mutator mutations in the context of an accumulative haploinsufficiency model.
Collapse
Affiliation(s)
- N Ohmiya
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
208
|
Augusto-Pinto L, Bartholomeu DC, Teixeira SM, Pena SD, Machado CR. Molecular cloning and characterization of the DNA mismatch repair gene class 2 from the Trypanosoma cruzi. Gene 2001; 272:323-33. [PMID: 11470539 DOI: 10.1016/s0378-1119(01)00549-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Genes with homology to the bacterial mutS gene, which encodes a protein involved in post-replication DNA mismatch repair, are known in several organisms. Using a degenerate PCR strategy, we cloned a Trypanosoma cruzi genomic DNA fragment homologous to the mutS gene class two (MSH2). This fragment was used as a probe to select the corresponding cDNAs from a T. cruzi cDNA library. The complete sequence of the gene (3304 bp), denominated TcMSH2, was obtained. The sequence contained an open reading frame of 2889 bp coding for a putative protein of 962 amino acids. Computational analyses of the amino acid sequence showed 36% identity with MSH2 proteins from other eukaryotes and revealed the presence of all functional domains of MutS proteins. Hybridization analyses indicated that the TcMSH2 gene is present as a single copy gene that is expressed in all forms of the T. cruzi life cycle. The role of the product of the TcMSH2 gene in mismatch repair was investigated by negative dominance phenotype analyses in Escherichia coli. When eukaryotic muts genes are expressed in a prokaryotic system, they increase the bacterial mutation rate. The same phenomenon was observed with the TcMSH2 cDNA, indicating that T. cruzi MSH2 interferes with the bacterial mismatch system. Phylogenetic analyses showed that the T. cruzi gene grouped with the MSH2 clade confirming the nature of the gene isolated in this work.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Developmental
- Molecular Sequence Data
- MutS Homolog 2 Protein
- Phylogeny
- Protozoan Proteins
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Trypanosoma cruzi/genetics
- Trypanosoma cruzi/growth & development
Collapse
Affiliation(s)
- L Augusto-Pinto
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
209
|
Warnick CT, Dabbas B, Ford CD, Strait KA. Identification of a p53 Response Element in the Promoter Region of the hMSH2 Gene Required for Expression in A2780 Ovarian Cancer Cells. J Biol Chem 2001; 276:27363-70. [PMID: 11350971 DOI: 10.1074/jbc.m103088200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defects in the human MSH2 mismatch repair system have been implicated in cellular mutagenesis, tumorigenesis, and chemotherapeutic resistance. The current studies characterized the 5' upstream proximal promoter region of the hMSH2 gene using transient transfection of A2780 ovarian cancer cells. Serial deletions of a 1.88-kb fragment of the proximal promoter region of the hMSH2 gene revealed that promoter activity was restricted to the first -281 bp. Targeted deletions within this -281 bp region coupled with specific sequence mutagenesis identified a response element for the p53 tumor suppressor protein located between -242 and -222 bp. The -242 hMSH2 p53 element is configured as a direct tandem repeat palindrome with 80% homology to the p53 consensus binding sequence. Co-transfection of an hMSH2 reporter and p53 expression vector into the p53-null cell line SK-OV-3 produced 10-fold enhanced transcription, which was lost when the -242 to -222 p53 binding site was mutated. These results clearly demonstrate the presence of a previously unidentified p53 response element in the hMSH2 proximal promoter. Its location at -242 bp upstream of the start site of transcription is distinct from two previously reported p53 sites at -447 and -416, which transactivate in Saos-2 cells (Scherer, S. J., Maier, S. M., Seifert, M., Hanselmann, R. G., Zang, K. D., Muller-Hermelink, H. K., Angel, P., Welter, C., and Schartl, M. (2000) J. Biol. Chem. 275, 37469-37473). Finally, in sharp contrast to their activity in Saos-2 cells, deletion of the -447 and -416 sites in A2780 cells had no effect on hMSH2 promoter activity. Thus, it appears that p53 regulates hMSH2 expression through multiple cell type-specific DNA response elements.
Collapse
Affiliation(s)
- C T Warnick
- Departments of Medicine and Pathology, Cancer Research Laboratory, LDS Hospital, Salt Lake City, Utah 84143, USA
| | | | | | | |
Collapse
|
210
|
Yeh CC, Lee C, Huang MC, Dahiya R. Loss of mismatch repair activity in simian virus 40 large T antigen-immortalized BPH-1 human prostatic epithelial cell line. Mol Carcinog 2001; 31:145-51. [PMID: 11479923 DOI: 10.1002/mc.1049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Simian virus 40 large T antigen (SVLTAg) has been used to immortalize cells; however, the mechanism leading to immortalization is still unclear. We hypothesize that DNA mismatch repair (MMR) activity is important during SVLTAg-induced immortalization. To test this hypothesis, we used the SVLTAg-immortalized cell line BPH-1 derived from human benign prostate epithelial cells to analyze MMR activity and the expression of MMR genes (hMLH1, hPMS1, hPMS2, hMSH2, hMSH3, and hMSH6). The results demonstrated that BPH-1 cells were deficient in repairing G:T, A:C, and G:G mispairs in bacteriophage M13mp2. Reverse-transcription polymerase chain reaction experiments indicated MMR genes (hMSH3, hMSH6, and hPMS1) were expressed at a low level in BPH-1 cells. In contrast, all six MMR genes were expressed in human benign prostate hyperplasia tissues. Downregulation of hMSH3, hMSH6, and hPMS1 genes is not a result of the hypermethylation mechanism because demethylation with 5-aza-2'-deoxycytidine did not restore expression of these genes. Although the hMLH1 gene is expressed in BPH-1 cells, western blotting and exon analyses demonstrated that hMLH1 was mutated and/or deleted in BPH-1 cells.
Collapse
Affiliation(s)
- C C Yeh
- Department of Urology, Veterans Affairs Medical Center and University of California, San Francisco, California, USA
| | | | | | | |
Collapse
|
211
|
Abstract
Cisplatin is a widely used chemotherapeutic agent. It reacts with nucleophilic bases in DNA and forms 1,2-d(ApG), 1,2-d(GpG) and 1,3-d(GpTpG) intrastrand crosslinks, interstrand crosslinks and monofunctional adducts. The presence of these adducts in DNA is through to be responsible for the therapeutic efficacy of cisplatin. The exact signal transduction pathway that leads to cell cycle arrest and cell death following treatment with the drug is not known but cell death is believed to be mediated by the recognition of the adducts by cellular proteins. Here we describe the structural information available for cisplatin and related platinum adducts, the interactions of the adducts with cellular proteins and the implications of these interactions for cell survival.
Collapse
Affiliation(s)
- M Kartalou
- Department of Chemistry, Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
212
|
Drummond JT, Bellacosa A. Human DNA mismatch repair in vitro operates independently of methylation status at CpG sites. Nucleic Acids Res 2001; 29:2234-43. [PMID: 11376141 PMCID: PMC55720 DOI: 10.1093/nar/29.11.2234] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Whereas in Escherichia coli DNA mismatch repair is directed to the newly synthesized strand due to its transient lack of adenine methylation, the molecular determinants of strand discrimination in eukaryotes are presently unknown. In mammalian cells, cytosine methylation within CpG sites may represent an analogous and mechanistically plausible means of targeting mismatch correction. Using HeLa nuclear extracts, we conducted a systematic analysis in vitro to determine whether cytosine methylation participates in human DNA mismatch repair. We prepared a set of A.C heteroduplex molecules that were either unmethylated, hemimethylated or fully methylated at CpG sequences and found that the methylation status persisted under the assay conditions. However, no effect on either the time course or the magnitude of mismatch repair events was evident; only strand discontinuities contributed to strand bias. By western analysis we demonstrated that the HeLa extract contained MED1 protein, which interacts with MLH1 and binds to CpG-methylated DNA; supplementation with purified MED1 protein was without effect. In summary, human DNA mismatch repair operates independently of CpG methylation status, and we found no evidence supporting a role for CpG hemimethylation as a strand discrimination signal.
Collapse
Affiliation(s)
- J T Drummond
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
213
|
Lari SU, Day RS, Dobler K, Paterson MC. Initiation of strand incision at G:T and O(6)-methylguanine:T base mismatches in DNA by human cell extracts. Nucleic Acids Res 2001; 29:2409-17. [PMID: 11376160 PMCID: PMC55701 DOI: 10.1093/nar/29.11.2409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Extracts of the human glioma cell line A1235 (lacking O(6)-methylguanine-DNA methyltransferase) are known to restore a G:T mismatch to a normal G:C pair in a G:T-containing model (45 bp) DNA substrate. Herein we demonstrate that substitution of G:T with O(6)-methylguanine:T (m6G:T) results in extract-induced intra-strand incision in the DNA at an efficiency comparable to that of complete repair of the G:T-containing substrate, although the m6G:T mispair serves as a poor substrate for later repair steps (e.g. gap filling, as judged by defective DNA repair synthesis). The A1235 extract, when supplemented with ATP and the four normal dNTPs, incises 5' to the mismatched T, as inferred by the generation of a single-stranded 20mer fragment. Unlike its parental (A1235) counterpart, an extract of the alkylation-tolerant derivative cell line A1235-MR4 produces no 20mer fragment, even when thymine-DNA glycosylase (TDG) is added to the reaction mixture. In contrast, the A1235 extract, when augmented with TDG, catalyzes enhanced incision at m6G:T in the 45 bp DNA, yielding 5-10-fold greater 20mer than that of either extract or TDG alone. Interestingly, the absence of m6G:T incision activity in the A1235-MR4 extract is similar to that seen for extracts of several known mismatch repair-deficient cell lines of colon tumor origin. Together these results suggest that derivative A1235-MR4 cells are defective in m6G:T incision activity and that the efficiency of this activity in the parental (A1235) cells may depend on the presence of several ill-defined mismatch repair recognition proteins along with TDG and ATP.
Collapse
Affiliation(s)
- S U Lari
- Department of Biological and Medical Research (MBC 03), King Faisal Specialist Hospital and Research Center, PO Box 3354, Riyadh 11211, Saudi Arabia.
| | | | | | | |
Collapse
|
214
|
Marra G, D'Atri S, Corti C, Bonmassar L, Cattaruzza MS, Schweizer P, Heinimann K, Bartosova Z, Nyström-Lahti M, Jiricny J. Tolerance of human MSH2+/- lymphoblastoid cells to the methylating agent temozolomide. Proc Natl Acad Sci U S A 2001; 98:7164-9. [PMID: 11416201 PMCID: PMC34640 DOI: 10.1073/pnas.121136498] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Members of hereditary nonpolyposis colon cancer (HNPCC) families harboring heterozygous germline mutations in the DNA mismatch repair genes hMSH2 or hMLH1 present with tumors generally two to three decades earlier than individuals with nonfamilial sporadic colon cancer. We searched for phenotypic features that might predispose heterozygous cells from HNPCC kindreds to malignant transformation. hMSH2(+/-) lymphoblastoid cell lines were found to be on average about 4-fold more tolerant than wild-type cells to killing by the methylating agent temozolomide, a phenotype that is invariably linked with impairment of the mismatch repair system. This finding was associated with an average 2-fold decrease of the steady-state level of hMSH2 protein in hMSH2(+/-) cell lines. In contrast, hMLH1(+/-) heterozygous cells were indistinguishable from normal controls in these assays. Thus, despite the fact that HNPCC families harboring mutations in hMSH2 or hMLH1 cannot be distinguished clinically, the early stages of the carcinogenic process in hMSH2 and hMLH1 mutation carriers may be different. Should hMSH2(+/-) colonocytes and lymphoblasts harbor a similar phenotype, the increased tolerance of the former to DNA-damaging agents present in the human colon may play a key role in the initiation of the carcinogenic process.
Collapse
Affiliation(s)
- G Marra
- Institute of Medical Radiobiology of the University of Zürich, August Forel-Strasse 7, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Jäger AC, Rasmussen M, Bisgaard HC, Singh KK, Nielsen FC, Rasmussen LJ. HNPCC mutations in the human DNA mismatch repair gene hMLH1 influence assembly of hMutLalpha and hMLH1-hEXO1 complexes. Oncogene 2001; 20:3590-5. [PMID: 11429708 DOI: 10.1038/sj.onc.1204467] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Revised: 01/18/2001] [Accepted: 03/15/2001] [Indexed: 12/25/2022]
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) is a common inherited form of neoplasia caused by germline mutations in DNA mismatch repair (MMR) genes. MMR proteins have been reported to associate with several proteins, including the human exonuclease 1 (hEXO1). We report here novel HNPCC-hMLH1 mutant proteins (T117M, Q426X and 1813insA) in Danish HNPCC patients. We demonstrate that these mutant HNPCC-hMLH1 proteins are unable to form complexes with hEXO1 and hPMS2 in vivo. The results indicate that mutations found in HNPCC gene carriers disrupt hMLH1-hEXO1 complex formation and hMutLalpha heterodimer assembly essential for MMR activity.
Collapse
Affiliation(s)
- A C Jäger
- Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
216
|
Miyafuji Y, Zhong X, Uchida I, Koi M, Hemmi H. Growth inhibition due to complementation of transforming growth factor-beta receptor type II-defect by human chromosome 3 transfer in human colorectal carcinoma cells. J Cell Physiol 2001; 187:356-64. [PMID: 11319759 DOI: 10.1002/jcp.1084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The transforming growth-beta receptor type II (TGF-beta RII) gene is one of the target genes of the DNA mismatch repair (MMR) defect. The human colorectal carcinoma cell line HCT116 has mutations in the hMLH1 gene and in the microsatellite region of the TGF-beta RII gene, both located on the short arm of chromosome 3. Introduction of the wild-type hMLH1 gene on transferred human chromosome 3 restores many characteristics of MMR-deficiency in HCT116. In this study, we determined whether transfer of chromosome 3 into HCT116 also complements the TGF-beta RII gene defect. We compared in vitro growth characteristics between HCT116 and HCT116 with a transferred chromosome 3 (HCT116 + ch3). The growth was suppressed in HCT116 + ch3 compared with parental HCT116. This suppression was abolished by frequent replacement with fresh medium, suggesting that the autocrine TGF-beta-TGF-beta RII system may be responsible for growth suppression. To explore this possibility, we determined several characteristics essential for the autocrine system. We found that HCT116 + ch3 expresses wild-type as well as mutated TGF-beta RII mRNA. In addition, phosphorylation of TGF-beta RI and growth inhibition were observed in HCT116 + ch3 but not in HCT116 by exposure to exogenous TGF-beta. The amount of TGF-beta1 in HCT116 + ch3 cultures was remarkably less than that in the HCT116, suggesting that TGF-beta produced by HCT116 + ch3 cells may be consumed by the cells. The conditioned medium from HCT116 cultures inhibits HCT116 + ch3 growth. This inhibition was neutralized by the anti-TGF-beta antibody. Taken together, these results strongly suggest that the TGF-beta RII gene defect in HCT116 is complemented by a wild-type gene on the transferred chromosome 3 and that HCT116 + ch3 gained the ability to respond to TGF-beta. Simultaneous complementation of defects of a responsible gene and a major target gene by the chromosome transfer is useful to prove the inactivated phenotypes acquired during colorectal tumorigenesis.
Collapse
MESH Headings
- Activin Receptors, Type I
- Antibodies/pharmacology
- Autocrine Communication/physiology
- Cell Division/drug effects
- Cell Division/genetics
- Chromosomes, Human, Pair 3/genetics
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/therapy
- Culture Media, Conditioned/metabolism
- Gene Expression
- Gene Transfer Techniques
- Humans
- Phosphorylation
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Transforming Growth Factor beta/deficiency
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta1
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Miyafuji
- Department of Molecular Biology, Toho University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
217
|
Kato R, Kataoka M, Kamikubo H, Kuramitsu S. Direct observation of three conformations of MutS protein regulated by adenine nucleotides. J Mol Biol 2001; 309:227-38. [PMID: 11491292 DOI: 10.1006/jmbi.2001.4752] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mismatched base-pairs, which are caused by either DNA replication errors, DNA damage or genetic recombination, are repaired by the mismatch-repair system. The MutS protein, a component of the mismatch-repair system, recognizes mismatched base-pairs in DNA, and its DNA-binding activity is affected by ATP and ADP. Here, we show that the MutS protein from Thermus thermophilus HB8 can have three different conformations in solution, based on direct observations made by small-angle X-ray scattering. The conformation of MutS in solution is drastically influenced by the presence of ADP and ATP; the ATP-bound form has the most compact conformation, the ADP-bound form the most stretched, and the nucleotide-free form has a conformation intermediate between the two. Based on these findings, we conclude that the DNA-binding activity of MutS may depend on conformational changes triggered by both the binding and hydrolysis of ATP.
Collapse
Affiliation(s)
- R Kato
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | | | | | |
Collapse
|
218
|
Chan TL, Yuen ST, Ho JW, Chan AS, Kwan K, Chung LP, Lam PW, Tse CW, Leung SY. A novel germline 1.8-kb deletion of hMLH1 mimicking alternative splicing: a founder mutation in the Chinese population. Oncogene 2001; 20:2976-81. [PMID: 11420710 DOI: 10.1038/sj.onc.1204376] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2000] [Revised: 01/24/2001] [Accepted: 02/12/2001] [Indexed: 12/24/2022]
Abstract
We have previously reported that there is a high incidence of microsatellite instability (MSI) and germline mismatch repair gene mutation in colorectal cancer arising from young Hong Kong Chinese. Most of the germline mutations involve hMSH2, which is different from the mutation spectrum in the Western population. It is well known that alternative splicing is common in hMLH1, which complicates RNA based mutation detection methods. In contrast, large deletions in hMLH1, commonly observed in some ethnic groups, tend to escape detection by exon-by-exon direct DNA sequencing. Here we report the detection of a novel germline 1.8 kb deletion involving exon 11 of hMLH1 in a local hereditary non-polyposis colorectal cancer family. This mutation generates a mRNA transcript with deletion of exons 10-11, which is indistinguishable from one of the most common and predominant hMLH1 splice variants. A diagnostic test based on PCR of the breakpoint region led to the identification of an additional young colorectal cancer patient with this mutation. Haplotype analysis suggests that they may share a common ancestral mutation. Our results caution investigators in the interpretation of alternative splicing and have important implications for the design of hMLH1 mutation detection strategy in the Chinese population.
Collapse
Affiliation(s)
- T L Chan
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Aquilina G, Bignami M. Mismatch repair in correction of replication errors and processing of DNA damage. J Cell Physiol 2001; 187:145-54. [PMID: 11267994 DOI: 10.1002/jcp.1067] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The primary role of mismatch repair (MMR) is to maintain genomic stability by removing replication errors from DNA. This repair pathway was originally implicated in human cancer through an association between microsatellite instability in colorectal tumors in hereditary nonpolyposis colon cancer (HNPCC) kindreds. Microsatellites are short repetitive sequences which are often copied incorrectly by DNA polymerases because the template and daughter strands in these regions are particularly prone to misalignment. These replication-dependent events create loops of extrahelical bases which would produce frameshift mutations unless reversed by MMR. One consequence of MMR loss is a widespread expansion and contraction of these repeated sequences that affects the whole genome. Defective MMR is therefore associated with a mutator phenotype. Since the same pathway is also responsible for repairing base:base mismatches, defective cells also experience large increases in the frequency of spontaneous transition and transversion mutations. Three different approaches have been used to investigate the function of individual components of the MMR pathway. The first is based on the biochemical characterization of the purified protein complexes using synthetic DNA substrates containing loops or single mismatches. In the second, the biological consequences of MMR loss are inferred from the phenotype of cell lines established from repair-deficient human tumors, from tolerant cells or from mice defective in single MMR genes. In particular, molecular analysis of the mutations in endogenous or reporter genes helped to identify the DNA substrates for MMR. Finally, mice bearing single inactive MMR genes have helped to define the involvement of MMR in cancer prevention.
Collapse
Affiliation(s)
- G Aquilina
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanita', Rome, Italy
| | | |
Collapse
|
220
|
Bill CA, Taghian DG, Duran WA, Nickoloff JA. Repair bias of large loop mismatches during recombination in mammalian cells depends on loop length and structure. Mutat Res 2001; 485:255-65. [PMID: 11267836 DOI: 10.1016/s0921-8777(01)00065-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Repair of loop mismatches was investigated in wild-type and mismatch binding-defective Chinese hamster ovary (CHO) cells. Loop mismatches were formed in vivo during extrachromosomal recombination between heteroallelic plasmid substrates. Recombination was expected to occur primarily by single-strand annealing (SSA), yielding 12- or 26-base nonpalindromic loop mismatches, and 12-, 26-, or 40-base palindromic loop mismatches. Nonpalindromic loops were repaired efficiently and with bias toward loop loss. In contrast, the 12-base palindromic loop was repaired with bias toward loop retention, indicating that repair bias depends on loop structure. Among the palindromic loops, repair bias was dependent on loop length, with bias shifting from loop retention to loop loss with increasing loop size. For both palindromic and nonpalindromic loops, repair efficiencies and biases were independent of the general (MSH/MLH) mismatch repair pathway. These results are discussed with respect to the maintenance of large nonpalindromic insertions, and of small and large palindromes, in eukaryotic genomes.
Collapse
Affiliation(s)
- C A Bill
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
221
|
Elliott B, Jasin M. Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol Cell Biol 2001; 21:2671-82. [PMID: 11283247 PMCID: PMC86898 DOI: 10.1128/mcb.21.8.2671-2682.2001] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chromosomal double-strand breaks (DSBs) stimulate homologous recombination by several orders of magnitude in mammalian cells, including murine embryonic stem (ES) cells, but the efficiency of recombination decreases as the heterology between the repair substrates increases (B. Elliott, C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin, Mol. Cell. Biol. 18:93-101, 1998). We have now examined homologous recombination in mismatch repair (MMR)-defective ES cells to investigate both the frequency of recombination and the outcome of events. Using cells with a targeted mutation in the msh2 gene, we found that the barrier to recombination between diverged substrates is relaxed for both gene targeting and intrachromosomal recombination. Thus, substrates with 1.5% divergence are 10-fold more likely to undergo DSB-promoted recombination in Msh2(-/-) cells than in wild-type cells. Although mutant cells can repair DSBs efficiently, examination of gene conversion tracts in recombinants demonstrates that they cannot efficiently correct mismatched heteroduplex DNA (hDNA) that is formed adjacent to the DSB. As a result, >20-fold more of the recombinants derived from mutant cells have uncorrected tracts compared with recombinants from wild-type cells. The results indicate that gene conversion repair of DSBs in mammalian cells frequently involves mismatch correction of hDNA rather than double-strand gap formation. In cells with MMR defects, therefore, aberrant recombinational repair may be an additional mechanism that contributes to genomic instability and possibly tumorigenesis.
Collapse
Affiliation(s)
- B Elliott
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
222
|
Larson ED, Drummond JT. Human mismatch repair and G*T mismatch binding by hMutSalpha in vitro is inhibited by adriamycin, actinomycin D, and nogalamycin. J Biol Chem 2001; 276:9775-83. [PMID: 11134041 DOI: 10.1074/jbc.m006390200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of the human DNA mismatch repair pathway confers cross-resistance to structurally unrelated anticancer drugs. Examples include cisplatin, doxorubicin (adriamycin), and specific alkylating agents. We focused on defining the molecular events that link adriamycin to mismatch repair-dependent drug resistance because adriamycin, unlike drugs that covalently modify DNA, can interact reversibly with DNA. We found that adriamycin, nogalamycin, and actinomycin D comprise a class of drugs that reversibly inhibits human mismatch repair in vitro at low micromolar concentrations. The substrate DNA was not covalently modified by adriamycin treatment in a way that prevents repair, and the inhibition was independent of the number of intercalation sites separating the mismatch and the DNA nick used to direct repair, from 10 to 808 base pairs. Over the broad concentration range tested, there was no evidence for recognition of intercalated adriamycin by MutSalpha as if it were an insertion mismatch. Inhibition apparently results from the ability of the intercalated drug to prevent mismatch binding, shown using a defined mobility shift assay, which occurs at drug concentrations that inhibit repair. These data suggest that adriamycin interacts with the mismatch repair pathway through a mechanism distinct from the manner by which covalent DNA lesions are processed.
Collapse
Affiliation(s)
- E D Larson
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
223
|
Kleczkowska HE, Marra G, Lettieri T, Jiricny J. hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev 2001; 15:724-36. [PMID: 11274057 PMCID: PMC312660 DOI: 10.1101/gad.191201] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) has been implicated in eukaryotic postreplicative mismatch correction, but the nature of its interaction with the repair machinery remained enigmatic. We now show that PCNA binds to the human mismatch binding factors hMutSalpha and hMutSbeta via their hMSH6 and hMSH3 subunits, respectively. The N-terminal domains of both proteins contain the highly conserved PCNA-binding motif Qxx[LI]xx[FF]. A variant of hMutSalpha, lacking this motif because of deletion of 77 N-terminal residues of the hMSH6 subunit, no longer was able to interact with PCNA in vitro and failed to restore mismatch repair in hMSH6-deficient cells. Colocalization of PCNA and hMSH6 or hMSH3 to replication foci implies an intimate link between replication and mismatch correction. We postulate that PCNA plays a role in repair initiation by guiding the mismatch repair proteins to free termini in the newly replicated DNA strands.
Collapse
Affiliation(s)
- H E Kleczkowska
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer Institute, CH-8008 Zürich, Switzerland
| | | | | | | |
Collapse
|
224
|
Krynetski EY, Krynetskaia NF, Gallo AE, Murti KG, Evans WE. A novel protein complex distinct from mismatch repair binds thioguanylated DNA. Mol Pharmacol 2001; 59:367-74. [PMID: 11160874 DOI: 10.1124/mol.59.2.367] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To elucidate molecular mechanism(s) of cellular response to mercaptopurine, a widely used antileukemic agent, we assessed mercaptopurine (MP) sensitivity in mismatch repair (MMR) proficient and MMR deficient human acute lymphoblastic leukemia (ALL) cells. Sensitivity to thiopurine cytotoxicity was not dependent on MMR (i.e., MutSalpha) competence among six cell lines tested. Using electrophoretic mobility shift assay analysis, we found that the incubation of nuclear extracts from ALL cells with synthetic 34-mer DNA duplexes containing deoxythioguanosine (G(S)) within either G(S).T or G(S).C pairs, resulted in formation of a DNA-protein complex distinct from the DNA-MutSalpha complex and unaffected by ATP. Isolation and sequence analysis of proteins involved in this DNA-protein complex identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a component. Western blot analysis of nuclear extracts from a panel of human lymphoblastic leukemia cell lines revealed markedly different basal levels of GAPDH in nuclei, which was significantly related to thiopurine sensitivity (p = 0.001). Confocal analysis revealed markedly different intracellular distribution of GAPDH between nucleus and cytosol in six human ALL cell lines. Redistribution of GAPDH from cytosol to nucleus was evident after MP treatment. These findings indicate that a new DNA-protein complex containing GAPDH and distinct from known MMR protein-DNA complexes binds directly to thioguanylated DNA, suggesting that this may act as a sensor of structural alterations in DNA and serve as an interface between these DNA modifications and apoptosis.
Collapse
Affiliation(s)
- E Y Krynetski
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
225
|
Maehara Y, Oda S, Sugimachi K. The instability within: problems in current analyses of microsatellite instability. Mutat Res 2001; 461:249-63. [PMID: 11104901 DOI: 10.1016/s0921-8777(00)00061-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microsatellite instability is regarded as one of the phenotypes of defective DNA mismatch repair and, consequently, as a marker of high risk for cancer. Despite numerous studies, the reported rates for positive microsatellite instability differ widely in each human malignancy. These discrepancies may relate to problems in the methods used. To establish a methodology for an accurate microsatellite instability analysis, technical requirements for a precise assay and biological conditions required for positive microsatellite instability were discussed. First, to describe microsatellite changes in detail, a sensitive detection system with linear detection characteristics and electrophoresis with standardised migration and minimised migration errors are considered to be necessary. Therefore, systems using fluorescent labelling and laser scanning are recommended. For reproducible polymerase chain reactions, it is essential to control the terminal deoxynucleotidyl transferase activity in Taq polymerase. Second, as a biological condition for positive microsatellite instability, feasible selection and combination of microsatellite markers, mutations in specific DNA mismatch repair genes and existence of monoclonal populations enriched sufficiently in a sample are essential. Finally, one possible diagnostic criterion for positive microsatellite instability is proposed, that is the existence of one of the patterns shown in the panel (see Fig. 6) at one or more loci in a set of more than five microsatellite markers.
Collapse
Affiliation(s)
- Y Maehara
- Cancer Center, Kyushu University Hospital, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
226
|
Tachiki H, Kato R, Kuramitsu S. DNA binding and protein-protein interaction sites in MutS, a mismatched DNA recognition protein from Thermus thermophilus HB8. J Biol Chem 2000; 275:40703-9. [PMID: 11024056 DOI: 10.1074/jbc.m007124200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mismatch repair system repairs mismatched base pairs, which are caused by either DNA replication errors, DNA damage, or genetic recombination. Mismatch repair begins with the recognition of mismatched base pairs in DNA by MutS. Protein denaturation and limited proteolysis experiments suggest that Thermus thermophilus MutS can be divided into three structural domains as follows: A (N-terminal domain), B (central domain), and C (C-terminal domain) (Tachiki, H., Kato, R., Masui, R., Hasegawa, K., Itakura, H., Fukuyama, K., and Kuramitsu, S. (1998) Nucleic Acids Res. 26, 4153-4159). To investigate the functions of each domain in detail, truncated genes corresponding to the domains were designed. The gene products were overproduced in Escherichia coli, purified, and assayed for various activities. The MutS-MutS protein interaction site was determined by size-exclusion chromatography to be located in the B domain. The B domain was also found to possess nonspecific double-stranded DNA-binding ability. The C domain, which contains a Walker's A-type nucleotide-binding motif, demonstrated ATPase activity and specific DNA recognition of mismatched base pairs. These ATPase and specific DNA binding activities were found to be dependent upon C domain dimerization.
Collapse
Affiliation(s)
- H Tachiki
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
227
|
Scherer SJ, Maier SM, Seifert M, Hanselmann RG, Zang KD, Muller-Hermelink HK, Angel P, Welter C, Schartl M. p53 and c-Jun functionally synergize in the regulation of the DNA repair gene hMSH2 in response to UV. J Biol Chem 2000; 275:37469-73. [PMID: 10984493 DOI: 10.1074/jbc.m006990200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppresser protein p53 is critical for guarding the genome from incorporation of damaged DNA (Lane, D. P. (1992) Nature 358, 15-16). A relevant stress that activates p53 function is UV light (Noda, A., Toma-Aiba, Y., and Fujiwara, Y. (2000) Oncogene 19, 21-31). Another well known component of the mammalian UV response is the transcription factor c-Jun (Angel, P., and Karin, M. (1991) Biochim. Biophys. Acta 1072, 129-157). We show here that upon UV irradiation p53 activates transcription of the human mismatch repair gene MSH2. Interestingly, this up-regulation critically depends on functional interaction with c-Jun. Hence, the synergistic interaction of a proto-oncogene with a tumor suppresser gene is required for the regulation of the mammalian stress response through activation of expression of MSH2.
Collapse
Affiliation(s)
- S J Scherer
- Department of Human Genetics, University of Saarland, Geb. 68, D-66421 Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Dufner P, Marra G, Räschle M, Jiricny J. Mismatch recognition and DNA-dependent stimulation of the ATPase activity of hMutSalpha is abolished by a single mutation in the hMSH6 subunit. J Biol Chem 2000; 275:36550-5. [PMID: 10938287 DOI: 10.1074/jbc.m005987200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The most abundant mismatch binding factor in human cells, hMutSalpha, is a heterodimer of hMSH2 and hMSH6, two homologues of the bacterial MutS protein. The C-terminal portions of all MutS homologues contain an ATP binding motif and are highly conserved throughout evolution. Although the N termini are generally divergent, they too contain short conserved sequence elements. A phenylalanine --> alanine substitution within one such motif, GXFY(X)(5)DA, has been shown to abolish the mismatch binding activity of the MutS protein of Thermus aquaticus (Malkov, V. A., Biswas, I., Camerini-Otero, R. D., and Hsieh, P. (1997) J. Biol. Chem. 272, 23811-23817). We introduced an identical mutation into one or both subunits of hMutSalpha. The Phe --> Ala substitution in hMSH2 had no effect on the biological activity of the heterodimer. In contrast, the in vitro mismatch binding and mismatch repair functions of hMutSalpha were severely attenuated when the hMSH6 subunit was mutated. Moreover, this variant heterodimer also displayed a general DNA binding defect. Correspondingly, its ATPase activity could not be stimulated by either heteroduplex or homoduplex DNA. Thus the N-terminal portion of hMSH6 appears to impart on hMutSalpha not only the specificity for recognition and binding of mismatched substrates but also the ability to bind to homoduplex DNA.
Collapse
Affiliation(s)
- P Dufner
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer Institute, August Forel-Strasse 7, Zürich 8008, Switzerland
| | | | | | | |
Collapse
|
229
|
Christmann M, Kaina B. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents. J Biol Chem 2000; 275:36256-62. [PMID: 10954713 DOI: 10.1074/jbc.m005377200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian mismatch repair has been implicated in mismatch correction, the prevention of mutagenesis and cancer, and the induction of genotoxicity and apoptosis. Here, we show that treatment of cells specifically with agents inducing O(6)-methylguanine in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea, elevates the level of MSH2 and MSH6 and increases GT mismatch binding activity in the nucleus. This inducible response occurs immediately after alkylation, is long-lasting and dose-dependent, and results from translocation of the preformed MutSalpha complex (composed of MSH2 and MSH6) from the cytoplasm into the nucleus. It is not caused by an increase in MSH2 gene activity. Cells expressing the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT), thus having the ability to repair O(6)-methylguanine, showed no translocation of MutSalpha, whereas inhibition of MGMT by O(6)-benzylguanine provoked the translocation. The results demonstrate that O(6)-methylguanine lesions are involved in triggering nuclear accumulation of MSH2 and MSH6. The finding that treatment of cells with O(6)-methylguanine-generating mutagens results in an increase of MutSalpha and GT binding activity in the nucleus indicates a novel type of genotoxic stress response.
Collapse
Affiliation(s)
- M Christmann
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | | |
Collapse
|
230
|
Gamper HB, Parekh H, Rice MC, Bruner M, Youkey H, Kmiec EB. The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts. Nucleic Acids Res 2000; 28:4332-9. [PMID: 11058133 PMCID: PMC113138 DOI: 10.1093/nar/28.21.4332] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Revised: 09/08/2000] [Accepted: 09/08/2000] [Indexed: 11/13/2022] Open
Abstract
Chimeric oligonucleotides (chimeras), consisting of RNA and DNA bases folded by complementarity into a double hairpin conformation, have been shown to alter or repair single bases in plant and animal genomes. An uninterrupted stretch of DNA bases within the chimera is known to be active in the sequence alteration while RNA residues aid in complex stability. In this study, the two strands were separated in the hope of defining the role each plays in conversion. Using a series of single-stranded oligonucleotides, comprised of all RNA or DNA residues and various mixtures, several new structures have emerged as viable molecules in nucleotide conversion. When extracts from mammalian and plant cells and a genetic readout assay in bacteria are used, single-stranded oligonucleotides, containing a defined number of thioate backbone modifications, were found to be more active than the original chimera structure in the process of gene repair. Single-stranded oligonucleotides containing fully modified backbones were found to have low repair activity and in fact induce mutation. Molecules containing various lengths of modified RNA bases (2'-O-methyl) were also found to possess low activity. Taken together, these results confirm the directionality of nucleotide conversion by the DNA strand of the chimera and further present a novel, modified single-stranded DNA molecule that directs conversion in plant and animal cell-free extracts.
Collapse
Affiliation(s)
- H B Gamper
- Department of Biological Sciences, University of Delaware, 105 Wolf Hall, Newark, DE 19716, USA
| | | | | | | | | | | |
Collapse
|
231
|
Anwar S, Hall C, White J, Deakin M, Farrell W, Elder JB. Hereditary non-polyposis colorectal cancer: an updated review. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2000; 26:635-45. [PMID: 11078609 DOI: 10.1053/ejso.2000.0974] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Colorectal cancer is the commonest cause of death due to malignancy in non-smokers in the western countries. The two main hereditary types of colorectal cancer are familial adenomatous polyposis (FAP) and hereditary non-polyposis colorectal cancer (HNPCC), constituting approximately 10% of all cases of colorectal cancer. The main aim of this review is to reappraise the current advances in the genetics and diagnosis of HNPCC. METHODS A Medline search was carried out to identify papers published from 1970 to 1999 on HNPCC. Embase and Cochrane databases were also searched. Reference lists of retrieved articles were carefully searched for additional articles. RESULTS AND CONCLUSIONS Recent technological advances in the genetics of HNPCC have refined the criteria for diagnosis and management of HNPCC, however current policies regarding the testing of pedigrees are not clearly established. We believe that with the rapid development in this area definitive clinical guidelines will need to be available in future for the management of HNPCC.
Collapse
Affiliation(s)
- S Anwar
- Department of Surgery, North Manchester General Hospital, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
232
|
Tran PT, Liskay RM. Functional studies on the candidate ATPase domains of Saccharomyces cerevisiae MutLalpha. Mol Cell Biol 2000; 20:6390-8. [PMID: 10938116 PMCID: PMC86114 DOI: 10.1128/mcb.20.17.6390-6398.2000] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae MutL homologues Mlh1p and Pms1p form a heterodimer, termed MutLalpha, that is required for DNA mismatch repair after mismatch binding by MutS homologues. Recent sequence and structural studies have placed the NH(2) termini of MutL homologues in a new family of ATPases. To address the functional significance of this putative ATPase activity in MutLalpha, we mutated conserved motifs for ATP hydrolysis and ATP binding in both Mlh1p and Pms1p and found that these changes disrupted DNA mismatch repair in vivo. Limited proteolysis with purified recombinant MutLalpha demonstrated that the NH(2) terminus of MutLalpha undergoes conformational changes in the presence of ATP and nonhydrolyzable ATP analogs. Furthermore, two-hybrid analysis suggested that these ATP-binding-induced conformational changes promote an interaction between the NH(2) termini of Mlh1p and Pms1p. Surprisingly, analysis of specific mutants suggested differential requirements for the ATPase motifs of Mlh1p and Pms1p during DNA mismatch repair. Taken together, these results suggest that MutLalpha undergoes ATP-dependent conformational changes that may serve to coordinate downstream events during yeast DNA mismatch repair.
Collapse
Affiliation(s)
- P T Tran
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
233
|
Andrew SE, Xu XS, Baross-Francis A, Narayanan L, Milhausen K, Liskay R, Jirik FR, Glazer PM. Mutagenesis in PMS2- and MSH2-deficient mice indicates differential protection from transversions and frameshifts. Carcinogenesis 2000. [DOI: 10.1093/carcin/21.7.1291] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
234
|
Marshall B, Isidro G, Carvalhas R, Boavida M. Germline versus somatic mutations of the APC gene: evidence for mechanistic differences. Hum Mutat 2000; 9:286-8. [PMID: 9090536 DOI: 10.1002/(sici)1098-1004(1997)9:3<286::aid-humu14>3.0.co;2-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
235
|
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) is inherited as a dominant disorder caused by germline defects in one of at least four mismatch repair (MMR) genes. Two of these genes, hMSH2 and hMLH1, account for the vast majority of the germline mutations in HNPCC kindreds, whereas hPMS1 and hPMS2 are mutated in only few families. MMR genes also are susceptible to somatic mutations in sporadic tumors. The mutational spectrum of the MMR genes shows no predominant type of mutation. Furthermore, the mutations are spread throughout the length of the genes, with no significant hot spots. Identification of MMR genes as the cause of HNPCC made presymptomatic diagnosis a reality. However, the presence of multiple genes and the heterogeneity of mutations present challenges to the development of diagnostic tests for this disease.
Collapse
Affiliation(s)
- N Papadopoulos
- Johns Hopkins Oncology Center, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
236
|
Chang DK, Ricciardiello L, Goel A, Chang CL, Boland CR. Steady-state regulation of the human DNA mismatch repair system. J Biol Chem 2000; 275:18424-31. [PMID: 10747992 DOI: 10.1074/jbc.m001140200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Steady-state levels of human DNA mismatch repair (MMR) transcripts and proteins were measured in MMR-proficient and -deficient cell lines by the newly developed competitive quantitative reverse transcription- polymerase chain reaction and Western analysis normalized with purified proteins. In MMR-proficient cells, hMSH2 is the most abundant MMR protein and is expressed 3 to 5 times more than hMLH1. The hMLH1 protein was expressed 1.5 to 2.5 times more than hPMS2. Steady-state levels of mRNA expression correlated well with protein expression. hMSH2-mutated LoVo cells did not express detectable hMSH3 or hMSH6 proteins. Similarly, hMLH1-mutated HCT116 cells did not express detectable hMLH1 or hPMS2 protein, whereas in hMLH1-restored HCT116+ch3 cells, hPMS2 protein was re-expressed. In hMSH6-mutated HCT15 cells, both hMSH3 protein and mRNA were increased. In SV40-transformed lung fibroblasts, all MMR mRNAs and proteins examined were expressed at levels 1.5-5-fold higher than in their nontransformed counterpart. The steady-state levels of MMR proteins indicate that substantially more hMutS proteins, which are involved in DNA mismatch recognition, are present in comparison with the hMutL proteins. Stability of hMSH3 and hMSH6 proteins appears to depend upon the presence of the hMSH2 protein, and, similarly, the stability of the hPMS2 protein depends upon hMLH1. When the hMSH6 is mutationally inactivated, hMSH3 increases by both transcriptional up-regulation and enhanced protein stability. A balanced up-regulation of all of the components was seen after viral transformation in a fibroblast model. Quantitative changes of the MMR components are a potential mechanism to modify the DNA MMR capabilities of a cell.
Collapse
Affiliation(s)
- D K Chang
- Department of Medicine and Cancer Center, University of California, San Diego, California 92093, USA
| | | | | | | | | |
Collapse
|
237
|
Tang LY, Zhang J. The cellular mismatch repair system is able to repair mismatches within MLV retroviral double-stranded DNA at a low frequency. Nucleic Acids Res 2000; 28:2302-6. [PMID: 10871360 PMCID: PMC102723 DOI: 10.1093/nar/28.12.2302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic cells possess several distinct mismatch repair pathways. A mismatch can be introduced in retroviral double-stranded DNA by a pre-existing mutation within the primer binding site (PBS) of the viral RNA genome. In order to evaluate mismatch repair of retroviral double-stranded DNA, Moloney leukemia virus (MLV)-based vectors with a mutation in their PBS were used to infect mismatch repair-competent as well as mismatch repair-deficient cell lines. If the target cells were capable of repairing the mismatch before an infected cell divided, the mismatch within the PBS could be repaired to the wild-type or mutant PBS. If the target cells were unable to repair the mismatch, half the cells in the colony should contain the mutant PBS while the other half should contain the wild-type PBS. To evaluate these predictions, individual colonies were isolated and analyzed by PCR. Almost all mismatch-deficient cell colonies analyzed (cell lines HCT 116 and PMS2-/-) contained both the wild-type and mutated PBS, therefore, mismatches within retroviral double-strand DNA could not be repaired by the mismatch-deficient cells. In contrast, mismatches in approximately 25% of the mismatch repair-competent cell clones analyzed (cell lines HeLa and PMS2+/+) were repaired, while 75% were not. Therefore, the cellular mismatch repair system is able to repair mismatches within viral double-stranded DNA, but at a low frequency.
Collapse
Affiliation(s)
- L Y Tang
- Department of Microbiology and Immunology and Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0096, USA
| | | |
Collapse
|
238
|
Matton N, Simonetti J, Williams K. Identification of mismatch repair protein complexes in HeLa nuclear extracts and their interaction with heteroduplex DNA. J Biol Chem 2000; 275:17808-13. [PMID: 10748159 DOI: 10.1074/jbc.m909794199] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiencies in DNA mismatch repair (MMR) have been found in hereditary colon cancers (hereditary non-polyposis colon cancer, HNPCC) as well as in sporadic cancers, illustrating the importance of MMR in maintaining genomic integrity. We have examined the interactions of specific mismatch repair proteins in human nuclear extracts. Western blot and co-immunoprecipitation studies indicate two complexes as follows: one consisting of hMSH2, hMSH6, hMLH1, and hPMS2 and the other consisting of hMSH2, hMSH6, hMLH1, and hPMS1. These interactions occur without the addition of ATP. Furthermore, the protein complexes specifically bind to mismatched DNA and not to a similar homoduplex oligonucleotide. The protein complex-DNA interactions occur primarily through hMSH6, although hMSH2 can also become cross-linked to the mismatched substrate when not participating in the MMR protein complex. In the presence of ATP the binding of hMSH6 to mismatched DNA is decreased. In addition, hMLH1, hPMS2, and hPMS1 no longer interact with each other or with the hMutSalpha complex (hMSH2 and hMSH6). However, the ability of hMLH1 to co-immunoprecipitate mismatched DNA increases in the presence of ATP. This interaction is dependent on the presence of the mismatch and does not appear to involve a direct binding of hMLH1 to the DNA.
Collapse
Affiliation(s)
- N Matton
- Department of Biological Sciences/Biomedical Program, University of Alaska, Anchorage, Alaska 99508, USA
| | | | | |
Collapse
|
239
|
Tomita-Mitchell A, Kat AG, Marcelino LA, Li-Sucholeiki XC, Goodluck-Griffith J, Thilly WG. Mismatch repair deficient human cells: spontaneous and MNNG-induced mutational spectra in the HPRT gene. Mutat Res 2000; 450:125-38. [PMID: 10838138 DOI: 10.1016/s0027-5107(00)00020-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have determined both the spontaneous and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced mutational spectra in the HPRT gene of human cells (MT1) defective in the mismatch repair gene hMSH6 (GTBP). Eight of nine exons and nine of sixteen intronic flanking sequences were scanned, encompassing >900 bp of the HPRT gene. Mutant hotspots were detected and separated by differences in their melting temperatures using constant denaturant capillary electrophoresis (CDCE) or denaturing gradient gel electrophoresis (DGGE).A key finding of this work is that a high proportion of all HPRT inactivating mutations is represented by a small number of hotspots distributed over the exons and mRNA splice sites. Thirteen spontaneous hotspots and sixteen MNNG-induced hotspots accounted for 55% and 48% of all 6TG(R) point mutations, respectively. MNNG-induced hotspots were predominantly G:C-->A:T transitions. The spontaneous spectrum of cells deficient in hMSH6 contained transversions (A:T-->T:A, G:C-->T:A, A:T-->C:G), transitions (A:T-->G:C), a plus-one insertion, and a minus-one deletion. Curiously, G:C-->A:T transitions, which dominate human germinal and somatic point mutations were absent from the spontaneous hMSH6 spectra.
Collapse
Affiliation(s)
- A Tomita-Mitchell
- Division of Bioengineering and Environmental Health, Center for Environmental Health Sciences, 21 Ames Street, Room 16-743, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
240
|
|
241
|
Ma AH, Xia L, Littman SJ, Swinler S, Lader G, Polinkovsky A, Olechnowicz J, Kasturi L, Lutterbaugh J, Modrich P, Veigl ML, Markowitz SD, Sedwick WD. Somatic mutation of hPMS2 as a possible cause of sporadic human colon cancer with microsatellite instability. Oncogene 2000; 19:2249-56. [PMID: 10822375 DOI: 10.1038/sj.onc.1203568] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inactivation of DNA-mismatch repair underlies the genesis of microsatellite unstable (MSI) colon cancers. hPMS2 is one of several genes encoding components of the DNA-mismatch repair complex, and germline hPMS2 mutations have been found in a few kindreds with hereditary nonpolyposis colorectal carcinoma (HNPCC), in whom hereditary MSI colon cancers develop. However, mice bearing null hPMS2 genes do not develop colon cancers and hPMS2 mutations in sporadic human colon cancers have not been described. Here we report that in Vaco481 colon cancer the hPMS2 gene is inactivated by somatic mutations of both hPMS2 alleles. The cell line derived from this tumor is functionally deficient in DNA mismatch repair. This deficiency can be biochemically complemented by addition of a purified hMLH1-hPMS2 (hMutLalpha) complex. The hPMS2 deficient Vaco481 cancer cell line demonstrates microsatellite instability, an elevated HPRT gene mutation rate, and resistance to the cytotoxicity of the alkylator MNNG. We conclude that somatic inactivation of hPMS2 can play a role in development of sporadic MSI colon cancer expressing the full range of cancer phenotypes associated with inactivation of the mismatch repair system.
Collapse
Affiliation(s)
- A H Ma
- Ireland Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Abstract
DNA mismatch repair (MMR) is one of multiple replication, repair, and recombination processes that are required to maintain genomic stability in prokaryotes and eukaryotes. In the wake of the discoveries that hereditary nonpolyposis colorectal cancer (HNPCC) and other human cancers are associated with mutations in MMR genes, intensive efforts are under way to elucidate the biochemical functions of mammalian MutS and MutL homologs, and the consequences of defects in these genes. Genetic studies in cultured mammalian cells and mice are proving to be instrumental in defining the relationship between the functions of MMR in mutation and tumor avoidance. Furthermore, these approaches have raised awareness that MMR homologs contribute to DNA damage surveillance, transcription-coupled repair, and recombinogenic and meiotic processes.
Collapse
Affiliation(s)
- A B Buermeyer
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | |
Collapse
|
243
|
Drotschmann K, Shcherbakova PV, Kunkel TA. Mutator phenotype due to loss of heterozygosity in diploid yeast strains with mutations in MSH2 and MLH1. Toxicol Lett 2000; 112-113:239-44. [PMID: 10720737 DOI: 10.1016/s0378-4274(99)00276-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in mismatch repair (MMR) genes predispose humans to cancer. Particularly prevalent are frameshift and point mutations in MSH2 and MLH1, two genes whose products are required for the early steps in MMR. In normal tissues of persons predisposed to hereditary non-polyposis colon cancer (HNPCC), these mutations are usually present in only one allele. In tumor cells of these patients, the second, wild type allele is typically found to be deleted or inactivated by point mutation. This suggests that loss of heterozygosity (LOH) results in a strong mutator phenotype that could eventually lead to the onset of disease. Here we demonstrate that diploid yeast strains that are heterozygous for MSH2 and MLH1 alleles have an elevated mutation rate. We further show that this effect results not from saturation of the MMR capacity of all cells in the population, but rather from loss of the wild type allele in a subpopulation of heterozygous cells. These results have implications for understanding the mechanisms of carcinogenesis in humans.
Collapse
Affiliation(s)
- K Drotschmann
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | |
Collapse
|
244
|
Zhang J, Tang LY, Li T, Ma Y, Sapp CM. Most retroviral recombinations occur during minus-strand DNA synthesis. J Virol 2000; 74:2313-22. [PMID: 10666262 PMCID: PMC111713 DOI: 10.1128/jvi.74.5.2313-2322.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral RNA molecules are plus, or sense in polarity, equivalent to mRNA. During reverse transcription, the first strand of the DNA molecule synthesized is minus-strand DNA. After the minus strand is polymerized, the plus-strand DNA is synthesized using the minus-strand DNA as the template. In this study, a helper cell line that contains two proviruses with two different mutated gfp genes was constructed. Recombination between the two frameshift mutant genes resulted in a functional gfp. If recombination occurs during minus-strand DNA synthesis, the plus-strand DNA will also contain the functional sequence. After the cell divides, all of its offspring will be green. However, if recombination occurs during plus-strand DNA synthesis, then only the plus-strand DNA will contain the wild-type gfp sequence and the minus-strand DNA will still carry the frameshift mutation. The double-stranded DNA containing this mismatch was subsequently integrated into the host chromosomal DNA of D17 cells, which were unable to repair the majority of mismatches within the retroviral double-strand DNA. After the cell divided, one daughter cell contained the wild-type gfp sequence and the other daughter cell contained the frameshift mutation in the gfp sequence. Under fluorescence microscopy, half the cells in the offspring were green and the other half of the cells were colorless or clear. Thus, we demonstrated that more than 98%, if not all, retroviral recombinations occurred during minus-strand DNA synthesis.
Collapse
Affiliation(s)
- J Zhang
- Department of Microbiology and Immunology and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA.
| | | | | | | | | |
Collapse
|
245
|
Saeki A, Tamura S, Ito N, Kiso S, Matsuda Y, Yabuuchi I, Kawata S, Matsuzawa Y. Lack of frameshift mutations at coding mononucleotide repeats in hepatocellular carcinoma in Japanese patients. Cancer 2000. [DOI: 10.1002/(sici)1097-0142(20000301)88:5<1025::aid-cncr11>3.0.co;2-u] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
246
|
Pao MM, Liang G, Tsai YC, Xiong Z, Laird PW, Jones PA. DNA methylator and mismatch repair phenotypes are not mutually exclusive in colorectal cancer cell lines. Oncogene 2000; 19:943-52. [PMID: 10702803 DOI: 10.1038/sj.onc.1203414] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1999] [Revised: 12/13/1999] [Accepted: 12/13/1999] [Indexed: 01/02/2023]
Abstract
A potential link between DNA repair and de novo methylation of exogenous sequences in colorectal cancer cell lines suggested that cells deficient in mismatch repair (MMR-) had an increased ability to silence the introduced virus promoter by DNA methylation due to the presence of a methylator phenotype (MET+) (Lengauer et al., 1997a). We explored this relationship in more detail and found that although there was a clear difference in the abilities of MMR+ cells to express the viral promoter compared to their MMR- counterparts, this difference was not consistently explained by levels of methylation in the viral promoter. Furthermore, we were unable to distinguish differences between the levels of methylation of six endogenous known CpG islands or 100 random DNA fragments containing CCGG sites within the cells. No consistent differences between the abilities of the cells to methylate the CpG island in exon 2 of the p16 gene were observed after transient demethylation by 5-aza-2'-deoxycytidine nor in the levels of expression of three human methyltransferase enzymes. Our results do not therefore support the existence of mutually exclusive DNA methylation (MET) and DNA repair (MMR) phenotypes. Oncogene (2000) 19, 943 - 952.
Collapse
Affiliation(s)
- M M Pao
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, MS#73, 1441 Eastlake Ave., Los Angeles, California, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
247
|
Tauchi H, Komatsu K, Ishizaki K, Yatagai F, Kato T. Mutation spectrum of MSH3-deficient HHUA/chr.2 cells reflects in vivo activity of the MSH3 gene product in mismatch repair. Mutat Res 2000; 447:155-64. [PMID: 10751599 DOI: 10.1016/s0027-5107(99)00199-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The endometrial tumor cell line HHUA carries mutations in two mismatch repair (MMR) genes MSH3 and MSH6. We have established an MSH3-deficient HHUA/chr.2 cell line by introducing human chromosome 2, which carries wild-type MSH6 and MSH2 genes, to HHUA cells. Introduction of chromosome 2 to HHUA cells partially restored G:G MMR activity to the cell extract and reduced the frequency of mutation at the hypoxanthine-guanine phosphoribosyltransferase (hprt*) locus to about 3% that of the parental HHUA cells, which is five-fold the frequency in MMR-proficient cells, indicating that the residual mutator activity in HHUA/chr.2 is due to an MSH3-deficiency in these cells. The spectrum of mutations occurring at the HPRT locus of HHUA/chr.2 was determined with 71 spontaneous 6TG(r) clones. Base substitutions and +/-1 bp frameshifts were the major mutational events constituting, respectively, 54% and 42% of the total mutations, and more than 70% of them occurred at A:T sites. A possible explanation for the apparent bias of mutations to A:T sites in HHUA/chr.2 is haploinsufficiency of the MSH6 gene on the transferred chromosome 2. Comparison of the mutation spectra of HHUA/chr.2 with that of the MSH6-deficient HCT-15 cell line [S. Ohzeki, A. Tachibana, K. Tatsumi, T. Kato, Carcinogenesis 18 (1997) 1127-1133.] suggests that in vivo the MutSalpha (MSH2:MSH6) efficiently repairs both mismatch and unpaired extrahelical bases, whereas MutSbeta (MSH2:MSH3) efficiently repairs extrahelical bases and repairs mismatch bases to a limited extent.
Collapse
Affiliation(s)
- H Tauchi
- Department of Radiation Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
248
|
Gradia S, Acharya S, Fishel R. The role of mismatched nucleotides in activating the hMSH2-hMSH6 molecular switch. J Biol Chem 2000; 275:3922-30. [PMID: 10660545 DOI: 10.1074/jbc.275.6.3922] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that hMSH2-hMSH6 contains an intrinsic ATPase which is activated by mismatch-provoked ADP-->ATP exchange that coordinately induces the formation of a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone (1,2). These studies suggested that mismatch repair could be propagated by a signaling event transduced via diffusion of ATP-bound hMSH2-hMSH6 molecular switches to the DNA repair machinery. The Molecular Switch model (Fishel, R. (1998) Genes Dev. 12, 2096-2101) is considerably different than the Hydrolysis-Driven Translocation model (Blackwell, L. J., Martik, D., Bjornson, K. P., Bjornson, E. S., and Modrich, P. (1998) J. Biol. Chem. 273, 32055-32062) and makes additional testable predictions beyond the demonstration of hydrolysis-independent diffusion (Gradia, S., Subramanian, D., Wilson, T., Acharya, S., Makhov, A., Griffith, J., and Fishel, R. (1999) Mol. Cell 3, 255-261): (i) individual mismatch-provoked ADP-->ATP exchange should be unique and rate-limiting, and (ii) the k(cat x DNA) for the DNA-stimulated ATPase activity should decrease with increasing chain length. Here we have examined hMSH2-hMSH6 affinity and ATPase stimulatory activity for several DNA substrates containing mispaired nucleotides as well as the chain length dependence of a defined mismatch under physiological conditions. We find that the results are most consistent with the predictions of the Molecular Switch model.
Collapse
Affiliation(s)
- S Gradia
- Genetics and Molecular Biology Program, Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
249
|
Berg KD, Glaser CL, Thompson RE, Hamilton SR, Griffin CA, Eshleman JR. Detection of microsatellite instability by fluorescence multiplex polymerase chain reaction. J Mol Diagn 2000; 2:20-8. [PMID: 11272898 PMCID: PMC1906892 DOI: 10.1016/s1525-1578(10)60611-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have created a clinical molecular diagnostic assay to test for microsatellite instability (MSI) at multiple loci simultaneously in paraffin-embedded surgical pathology colon resection specimens. This fluorescent multiplex polymerase chain reaction (PCR) assay analyzes the five primary microsatellite loci recommended at the 1997 National Cancer Institute-sponsored conference on MSI for the identification of MSI or replication errors in colorectal cancer: Bat-25, Bat-26, D2S123, D5S346, and D17S250. Amplicon detection is accomplished by capillary electrophoresis using the ABI 310 Genetic Analyzer. Assay validation compared 18 specimens previously assessed by radioactive PCR and polyacrylamide gel electrophoresis detection to results generated by the reported assay. Germline and tumor DNA samples were amplified in separate multiplex PCR reactions, sized in separate capillary electrophoresis runs, and compared directly to identify novel length alleles in tumor tissue. A concordance of 100% between the two modalities was achieved. The multiplex assay routinely detected a subpopulation of 10% tumor alleles in the presence of 90% normal alleles. A novel statistical model was generated that corroborates the validity of using results generated by analysis of five independent microsatellites to achieve a single overall MSI diagnosis. The assay presented is superior to standard radioactive monoplex PCR, polyacrylamide gel electrophoretic analysis, primarily due to the multiplex PCR format.
Collapse
Affiliation(s)
- K D Berg
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
250
|
Abstract
The genetic abnormalities underlying hereditary non-polyposis colorectal cancer (HNPCC) are germline mutations in one of five DNA mismatch repair genes or in the TGFbetaRII gene. The aim of our study was to evaluate the significance of simple tests performed on tumours to select appropriate candidates for germline mutational analysis. We studied three groups of patients, HNPCC kindreds fulfilling the International Collaborative Group (ICG) criteria (n = 10), families in which at least one of the criteria was not satisfied (n = 7) and sporadic colorectal cancer (CRC) diagnosed before the age of 50 (n = 17). We searched for microsatellite instability (MSI), presence of hMSH2 and hMLH1 germline mutations, expression of hMSH2, hMLH1 and p53 proteins in tumoural tissue samples by immunostaining. Fifteen out of 17 (88%) of HNPCC and incomplete HNPCC cases were MSI and eight pathogenic germline mutations in hMSH2 or hMLH1 were detected in these two groups (53%). All the 17 early-onset sporadic cases were MSS and no germline mutations were detected among the seven investigated cases. Thirteen out of 15 (81%) familial cases were MSI and p53 protein-negative, whereas 13/14 (93%) sporadic cases were MSS and strongly p53 protein-positive. This extensive molecular investigation shows that simple tests such as MS study combined with hMSH2 and hMLH1 protein immunostaining performed on tumoural tissues may provide valuable information to distinguish between familial, and probably hereditary, and sporadic CRC cases.
Collapse
|