201
|
Liao S, Song F, Feng W, Ding X, Yao J, Song H, Liu Y, Ma S, Wang Z, Lin X, Xu J, Zhao J, Liu Q. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. J Cell Physiol 2019; 234:17600-17611. [PMID: 30854667 DOI: 10.1002/jcp.28384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 01/25/2023]
Abstract
Prosthesis loosening is a highly troublesome clinical problem following total joint arthroplasty. Wear-particle-induced osteoclastogenesis has been shown to be the primary cause of periprosthetic osteolysis that eventually leads to aseptic prosthesis loosening. Therefore, inhibiting osteoclastogenesis is a promising strategy to control periprosthetic osteolysis. The possible mechanism of action of rhoifolin on osteoclastogenesis and titanium particle-induced calvarial osteolysis was examined in this study. The in vitro study showed that rhoifolin could strongly suppress the receptor activators of nuclear factor-κB (NF-κB) ligand-stimulated osteoclastogenesis, hydroxyapatite resorption, F-actin formation, and the gene expression of osteoclast-related genes. Western blot analysis illustrated that rhoifolin could attenuate the NF-κB and mitogen-activated protein kinase pathways, and the expression of transcriptional factors nuclear factor of activated T cells 1 (NFATc1) and c-Fos. Further studies indicated that rhoifolin inhibited p65 translocation to the nucleus and the activity of NFATc1 and NF-κB rhoifolin could decrease the number of tartrate-resistant acid phosphate-positive osteoclasts and titanium particle-induced C57 mouse calvarial bone loss in vivo. In conclusion, our results suggest that rhoifolin can ameliorate the osteoclasts-stimulated osteolysis, and may be a potential agent for the treatment of prosthesis loosening.
Collapse
Affiliation(s)
- Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Fangmin Song
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Wenyu Feng
- Department of Trauma Orthopedic and Hand Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaofei Ding
- Department of Trauma Orthopedic and Hand Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Yao
- Department of Trauma Orthopedic and Hand Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Huijie Song
- Departments of Anesthesiology, The First Affliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yun Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shiting Ma
- Department of Trauma Orthopedic and Hand Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Xixi Lin
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jinmin Zhao
- Department of Trauma Orthopedic and Hand Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
202
|
Han SY, Kim YK. Berberine Suppresses RANKL-Induced Osteoclast Differentiation by Inhibiting c-Fos and NFATc1 Expression. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:439-455. [PMID: 30827151 DOI: 10.1142/s0192415x19500228] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Osteoporosis is a common disorder of bone remodeling, marked by excessive osteoclast formation. Recent studies indicated that berberine (BBR) is a potential natural drug for the treatment of various bone diseases. However, it still needs to be further studied for the treatment of osteoporosis. The current study investigated the inhibitory effects of BBR on receptor activator of nuclear factor- κ B ligand (RANKL)-induced osteoclast differentiation in vitro and in vivo. Cell-based assays were performed using osteoclasts generated in cultures of murine bone marrow-derived macrophages (BMMs) treated with RANKL and M-CSF. The effects of BBR on in vivo lipopolysaccharide (LPS)-mediated bone loss were evaluated using ICR mice. BBR significantly inhibited TRAP-positive osteoclast formation induced by RANKL. BBR also inhibited RANKL-induced Akt, p38 and ERK phosphorylation and I κ B degradation, and suppressed RANKL-induced expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which is a key transcription factors for osteoclast formation. BBR reduced the mRNA levels of osteoclast markers, including TRAP, osteoclast-associated receptor (OSCAR), cathepsin K, and ATPase H + transporting V0 subunit d2 (ATP6v0d2). Moreover, BBR prevented LPS-mediated bone loss in vivo. We suggest BBR as a natural compound that can be a potential therapeutic agent for osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Sang-Yong Han
- 1 Department of Herbal Medicine, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Korea.,2 Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Korea
| | - Yun-Kyung Kim
- 1 Department of Herbal Medicine, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Korea.,2 Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Korea
| |
Collapse
|
203
|
Feng W, Guo J, Li M. RANKL-independent modulation of osteoclastogenesis. J Oral Biosci 2019; 61:16-21. [DOI: 10.1016/j.job.2019.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
|
204
|
Pang M, Rodríguez-Gonzalez M, Hernandez M, Recinos CC, Seldeen KL, Troen BR. AP-1 and Mitf interact with NFATc1 to stimulate cathepsin K promoter activity in osteoclast precursors. J Cell Biochem 2019; 120:12382-12392. [PMID: 30816596 DOI: 10.1002/jcb.28504] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 11/08/2022]
Abstract
Cathepsin K (CTSK) is a secreted protease that plays an essential role in osteoclastic bone resorption and osteoporotic bone loss. We have previously shown that activator protein 1 (AP-1) stimulates CTSK promoter activity and that proximal nuclear factor of activated T cells cytoplasmic 1 (NFATc1)-binding sites play a major role in the stimulation of CTSK gene expression by receptor activator of NFκB ligand (RANKL). In the present study, we have extended these observations and further dissected the effects of transcription factors involved in the regulation of CTSK gene expression. Our aim was to investigate the cooperative interplay among transcription factors AP-1, microphthalmia-associated transcription factor (Mitf), and NFATc1, and the consequent regulatory effects on CTSK transcription. Experiments were carried out in RAW 264.7 cells, which can be readily differentiated to osteoclasts upon RANKL stimulation. Our data show that AP-1, Mitf, and NFATc1 are capable of independently stimulating CTSK promoter activity. A combination of any two factors further enhances CTSK promoter activity, with the combination of AP-1 (c-fos/c-jun) and NFATc1 inducing the largest increase. We further identify a synergistic effect when all three factors cooperate intimately at the proximal promoter region, yielding maximal transcriptional upregulation of the CTSK promoter. RANKL induces temporal localization of AP-1 and NFATc1 to the CTSK promoter. These results suggest that the interaction of multiple transcription factors mediate a maximal response to RANKL-induced CTSK gene expression.
Collapse
Affiliation(s)
- Manhui Pang
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System Research Service, Buffalo, New York
| | - Maria Rodríguez-Gonzalez
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System Research Service, Buffalo, New York
| | - Mireya Hernandez
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System Research Service, Buffalo, New York
| | - Claudia Carolina Recinos
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System Research Service, Buffalo, New York
| | - Kenneth Ladd Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System Research Service, Buffalo, New York
| | - Bruce Robert Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System Research Service, Buffalo, New York
| |
Collapse
|
205
|
Jiang J, Jia Y, Lu X, Zhang T, Zhao K, Fu Z, Pang C, Qian Y. Vitexin suppresses RANKL-induced osteoclastogenesis and prevents lipopolysaccharide (LPS)-induced osteolysis. J Cell Physiol 2019; 234:17549-17560. [PMID: 30793311 DOI: 10.1002/jcp.28378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/10/2023]
Abstract
Osteolytic diseases are characterized by an increase in the number and/or activity of bone-resorbing osteoclasts. Identification of natural compounds that can suppress osteoclast formation and function is crucial for the prevention and treatment of osteolytic diseases. Vitexin, a naturally-derived flavonoid extracted from various medicinal plant species, demonstrates a broad range of pharmacological properties including anticancer and anti-inflammatory effects. Here in this study, we showed that vitexin exerts antiosteoclastogenic effects by directly inhibiting receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and bone resorption in vitro and protected against lipopolysaccharide (LPS)-induced inflammatory osteolysis in vivo. Vitexin suppressed the early activation of ERK and p38 MAPK pathways in response to RANKL thereby attenuating the downstream induction of c-Fos and NFATc1, and abrogating the expression of osteoclast marker genes. Collectively, these results provide evidence for the therapeutic application of vitexin in the treatment of osteoclast-mediated bone lytic diseases.
Collapse
Affiliation(s)
- Jiawei Jiang
- Department of Orthopaedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China.,Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.,Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yewei Jia
- Department of Orthopaedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China.,Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.,Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuanyuan Lu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Kangxian Zhao
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Ziyuan Fu
- Department of Orthopaedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China.,Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.,Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cong Pang
- Department of Orthopaedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China.,Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
206
|
Liu X, Gao X, Liu Y, Liang D, Fu T, Song Y, Zhao C, Dong B, Han W. Daphnetin inhibits RANKL-induced osteoclastogenesis in vitro. J Cell Biochem 2019; 120:2304-2312. [PMID: 30206967 DOI: 10.1002/jcb.27555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 01/24/2023]
Abstract
Osteoporosis is a common orthopedic disease which is associated with hyper-activated osteoclastogenesis. Daphnetin is a natural coumarin derivative isolated from Genus Daphne, which possesses antiarthritis effect. However, the role of daphnetin in osteoclastogenesis has not been illustrated. This study aimed to investigate the effects of daphnetin on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis in vitro. Our results showed that the osteoclast formation was significantly suppressed by daphnetin treatment in bone marrow-derived macrophages (BMMs), which was illustrated by reduced number of tartrate-resistant acid phosphatase positive multinucleated osteoclasts and decreased expression levels of tumor necrosis factor receptor-associated factors (TRAF6), c-Fos, nuclear factor of activated T cells c1, and cathepsin K. RANKL caused significant induction effects in reactive oxygen species (ROS) generation and nicotinamide adenine dinucleotide phosphate oxidase activity, whereas the induction was dramatically reduced after pretreatment with daphnetin. In addition, daphnetin prevented the RANKL-induced activation of NF-κB and Akt/GSK-3β pathways in BMMs. These findings indicated that daphnetin exhibited an inhibitory effect on RANKL-induced osteoclastogenesis in vitro. The effect of daphnetin might be mediated by inhibiting ROS signal transduction, as well as preventing the activation of NF-κB and Akt/GSK-3β signaling pathways. These findings indicated that daphnetin might be considered as a new therapeutic approach for the osteoporosis treatment.
Collapse
Affiliation(s)
- Xifang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Nerve & Spine Ward, Rehabilitation Center for TCM Orthopedics, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaohang Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuanxin Liu
- Department of Health Science, Xi'an Physical Education University, Xi'an, China
| | - Dongsheng Liang
- Nerve & Spine Ward, Rehabilitation Center for TCM Orthopedics, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ting Fu
- Nerve & Spine Ward, Rehabilitation Center for TCM Orthopedics, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yixin Song
- Nerve & Spine Ward, Rehabilitation Center for TCM Orthopedics, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Congzhe Zhao
- Nerve & Spine Ward, Rehabilitation Center for TCM Orthopedics, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bo Dong
- Nerve & Spine Ward, Rehabilitation Center for TCM Orthopedics, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weihua Han
- Nerve & Spine Ward, Rehabilitation Center for TCM Orthopedics, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
207
|
Tao SC, Guo SC. Extracellular vesicles in bone: "dogrobbers" in the "eternal battle field". Cell Commun Signal 2019; 17:6. [PMID: 30658653 PMCID: PMC6339294 DOI: 10.1186/s12964-019-0319-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Throughout human life, bone is constantly in a delicate dynamic equilibrium of synthesis and resorption, hosting finely-tuned bone mineral metabolic processes for bone homeostasis by collaboration or symphony among several cell types including osteoclasts (OCs), osteoblasts (OBs), osteocytes (OYs), vascular endothelial cells (ECs) and their precursors. Beyond these connections, a substantial level of communication seems to occur between bone and other tissues, and together, they form an organic unit linked to human health and disease. However, the current hypothesis, which includes growth factors, hormones and specific protein secretion, incompletely explains the close connections among bone cells or between bone and other tissues. Extracellular vesicles (EVs) are widely-distributed membrane structures consisting of lipid bilayers, membrane proteins and intravesicular cargo (including proteins and nucleic acids), ranging from 30 nm to 1000 nm in diameter, and their characters have been highly conserved throughout evolution. EVs have targeting abilities and the potential to transmit multidimensional, abundant and complicated information, as powerful and substantial "dogrobbers" mediating intercellular communications. As research has progressed, EVs have gradually become thought of as "dogrobbers" in bone tissue-the "eternal battle field" -in a delicate dynamic balance of destruction and reconstruction. In the current review, we give a brief description of the major constituent cells in bone tissues and explore the progress of current research on bone-derived EVs. In addition, this review also discusses in depth not only potential directions for future research to breakthrough in this area but also problems existing in current research that need to be solved for a better understanding of bone tissues.
Collapse
Affiliation(s)
- Shi-Cong Tao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Shang-Chun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
208
|
Kim EJ, Kim HJ, Baik SW, Kim KH, Ryu SJ, Kim CH, Shin SW. Propofol promotes osteoclastic bone resorption by increasing DC-STAMP expression. J Dent Anesth Pain Med 2019; 18:349-359. [PMID: 30637345 PMCID: PMC6323039 DOI: 10.17245/jdapm.2018.18.6.349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/15/2022] Open
Abstract
Background Propofol is an intravenous anesthetic which has antioxidant effects due to its similarity in molecular structure to α-tocopherol. It has been reported that α-tocopherol increases osteoclast fusion and bone resorption. Here, we investigated the effects of propofol on signaling pathways of osteoclastogenic gene expression, as well as osteoclastogenesis and bone resorption using bone marrow-derived macrophages (BMMs). Methods BMMs were cultured with macrophage colony-stimulating factor (M-CSF) alone or M-CSF plus receptor activator of nuclear factor kappa B ligand (RANKL) in the presence of propofol (0-50 µM) for 4 days. Mature osteoclasts were stained for tartrate-resistant acid phosphatase (TRAP) and the numbers of TRAP-positive multinucleated osteoclasts were counted. To examine the resorption activities of osteoclasts, a bone resorption assay was performed. To identify the mechanism of action of propofol on the formation of multinucleated osteoclasts, we focused on dendritic cell-specific transmembrane protein (DC-STAMP), a protein essential for pre-osteoclastic cell fusion. Results Propofol increased the formation of TRAP-positive multinucleated osteoclasts. In addition, the bone resorption assay revealed that propofol increased the bone resorption area on dentin discs. The mRNA expression of DC-STAMP was upregulated most strongly in the presence of both RANKL and propofol. However, SB203580, a p38 inhibitor, significantly suppressed the propofol/RANKL-induced increase in mRNA expression of DC-STAMP. Conclusion We have demonstrated that propofol enhances osteoclast differentiation and maturation, and subsequently increases bone resorption. Additionally, we identified the regulatory pathway underlying osteoclast cell-cell fusion, which was enhanced by propofol through p38-mediated DC-STAMP expression.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Seong Wan Baik
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Kyung-Hoon Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sie Jeong Ryu
- Department of Anesthesia and Pain Medicine, College of Medicine, Kosin University, Busan, Korea
| | - Cheul-Hong Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Sang-Wook Shin
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
209
|
Xiao Y, Li K, Wang Z, Fu F, Shao S, Song F, Zhao J, Chen W, Liu Q, Xu J. Pectolinarigenin prevents bone loss in ovariectomized mice and inhibits RANKL-induced osteoclastogenesis via blocking activation of MAPK and NFATc1 signaling. J Cell Physiol 2019; 234:13959-13968. [PMID: 30633330 DOI: 10.1002/jcp.28079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
Osteoporosis (OP) is a metabolic disease caused by multiple factors, which is characterized by a reduction of bone mass per unit volume and destruction of bone microstructure. Aberrant osteoclast function is the main cause of OP, therefore, regulating the differentiation and function of osteoclast is one of the treatment strategies for OP. Pectolinarigenin (PEC) is a medicinal implant isolated from Fragrant Eupatorium. Our experimental data showed that PEC was able to inhibit receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in vitro, by tartrate-resistant acid phosphatase (TRAcP) staining, Fibrous actin ring formation, and hydroxyapatite resorption assays. In terms of mechanism, PEC inhibited the expression of the osteoclastogenesis-related gene, including cathepsin K (Ctsk), matrix metalloproteinase 9 (Mmp9), and TRAcP (Acp5). Western blot analysis demonstrated that PEC could significantly block the activation of RANKL-induced mitogen-activated protein kinase signaling cascades and was able to suppress the protein expression of nuclear factor of activated T-cells and c-Fos. Meanwhile, the intracellular reactive oxygen species levels were also reduced by PEC in a concentration-dependent manner. Further, PEC could prevent the ovariectomy-induced bone loss in vivo. Summarizing all, our data suggested that PEC inhibits osteoclast formation and function and RANKL signaling pathways, and thus could potentially be used in the treatment the osteoclast-related bone loss diseases.
Collapse
Affiliation(s)
- Yu Xiao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kai Li
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ziyi Wang
- School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Fangsheng Fu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Siyuan Shao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, Australia
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liu
- Department of Trauma Orthopedic and Hand Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
210
|
Abstract
Bone is a crucial element of the skeletal-locomotor system, but also functions as an immunological organ that harbors hematopoietic stem cells (HSCs) and immune progenitor cells. Additionally, the skeletal and immune systems share a number of regulatory molecules, including cytokines and signaling molecules. Osteoimmunology was created as an interdisciplinary field to explore the shared molecules and interactions between the skeletal and immune systems. In particular, the importance of an inseparable link between the two systems has been highlighted by studies on the pathogenesis of rheumatoid arthritis (RA), in which pathogenic helper T cells induce the progressive destruction of multiple joints through aberrant expression of receptor activator of nuclear factor (NF)-κB ligand (RANKL). The conceptual bridge of osteoimmunology provides not only a novel framework for understanding these biological systems but also a molecular basis for the development of therapeutic approaches for diseases of bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
211
|
Abstract
Bone tissue is comprised of a collagen-rich matrix containing non-collagenous organic compounds, strengthened by mineral crystals. Bone strength reflects the amount and structure of bone, as well as its quality. These qualities are determined and maintained by osteoblasts (bone-forming cells) and osteoclasts (bone-resorbing cells) on the surface of the bone and osteocytes embedded within the bone matrix. Bone development and growth also involves cartilage cells (chondrocytes). These cells do not act in isolation, but function in a coordinated manner, including co-ordination within each lineage, between the cells of bone, and between these cells and other cell types within the bone microenvironment. This chapter will briefly outline the cells of bone, their major functions, and some communication pathways responsible for controlling bone development and remodeling.
Collapse
Affiliation(s)
- Niloufar Ansari
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Natalie A Sims
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
212
|
Kang IS, Kim C. Taurine Chloramine Inhibits Osteoclastic Differentiation and Osteoclast Marker Expression in RAW 264.7 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:61-70. [PMID: 31468386 DOI: 10.1007/978-981-13-8023-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Taurine is an abundant sulfur-containing amino acid in myeloid cells. It undergoes halogenation in activated phagocytes and is converted to taurine chloramine (TauCl) and taurine bromamine. Bone homeostasis is mediated by the balance between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoclasts are bone-resorbing multinucleated cells differentiated from monocyte/macrophage precursor cells in response to receptor activator of NF-κB ligand (RANKL). In this study, we investigated the effect of TauCl on RANKL-induced osteoclastogenesis from RAW 264.7 macrophages. TauCl inhibited the formation of multi-nucleated osteoclast and the activity of tartrate-resistant acid phosphatase (TRAP). TauCl decreased the mRNA expression of osteoclast markers, such as TRAP, cathepsin K, and calcitonin receptor. TauCl also inhibited expression of the transcription factors, c-Fos and nuclear factor of activated T cells, which are important for osteoclast differentiation. These results suggest that TauCl might be used as a therapeutic agent to treat bone diseases associated with excessive bone resorption.
Collapse
Affiliation(s)
- In Soon Kang
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon, South Korea
| | - Chaekyun Kim
- Laboratory of Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon, South Korea.
| |
Collapse
|
213
|
Scutellarein inhibits RANKL‐induced osteoclast formation in vitro and prevents LPS‐induced bone loss in vivo. J Cell Physiol 2018; 234:11951-11959. [DOI: 10.1002/jcp.27888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/12/2018] [Indexed: 11/07/2022]
|
214
|
Kim SH, Kim KJ, Kang HJ, Son YJ, Choi SW, Lee MJ. The Dual Role of Oat Bran Water Extract in Bone Homeostasis Through the Regulation of Osteoclastogenesis and Osteoblast Differentiation. Molecules 2018; 23:E3119. [PMID: 30487443 PMCID: PMC6320902 DOI: 10.3390/molecules23123119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
The number of patients with bone metabolic disorders including osteoporosis is increasing worldwide. These disorders often facilitate bone fractures, which seriously impact the patient's quality of life and could lead to further health complications. Bone homeostasis is tightly regulated to balance bone resorption and formation. However, many anti-osteoporotic agents are broadly categorized as either bone forming or anti-resorptive, and their therapeutic use is often limited due to unwanted side effects. Therefore, safe and effective therapeutic agents are needed for osteoporosis. This study aims to clarify the bone protecting effects of oat bran water extract (OBWE) and its mode of action. OBWE inhibited RANKL (receptor activator of nuclear factor-κB ligand)-induced osteoclast differentiation by blocking c-Fos/NFATc1 through the alteration of I-κB. Furthermore, we found that OBWE enhanced BMP-2-stimulated osteoblast differentiation by the induction of Runx2 via Smad signaling molecules. In addition, the anti-osteoporotic activity of OBWE was also evaluated using an in vivo model. OBWE significantly restored ovariectomy-induced bone loss. These in vitro and in vivo results showed that OBWE has the potential to prevent and treat bone metabolic disorders including osteoporosis.
Collapse
Affiliation(s)
- Shin-Hye Kim
- Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Korea.
- Department of Biological Sciences, College of Natural Science, Chonbuk National University, Jeonju 54896, Korea.
| | - Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, Suncheon, Jeonnam 57922, Korea.
| | - Hyeon Jung Kang
- Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Korea.
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon, Jeonnam 57922, Korea.
| | - Sik-Won Choi
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFS), Jinju, Gyeongnam 52817, Korea.
| | - Mi-Ja Lee
- Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Korea.
| |
Collapse
|
215
|
Jia Y, Jiang J, Lu X, Zhang T, Zhao K, Han W, Yang W, Qian Y. Garcinol suppresses RANKL-induced osteoclastogenesis and its underlying mechanism. J Cell Physiol 2018; 234:7498-7509. [PMID: 30471112 DOI: 10.1002/jcp.27511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/10/2018] [Indexed: 01/13/2023]
Abstract
Osteoclasts (OCs) are multinuclear giant cells responsible for bone resorption, and an excessive bone resorption by OCs plays an important role in osteoporosis. Commonly used drugs for the treatment of osteoporosis have severe side effects. As such, identification of alternative treatments is essential. Garcinol, a polyisoprenylated benzophenone extracted from the fruit of Garcinia indica, has shown a strong antitumor effect through the nuclear factor-κB (NF-κB) and mitogen-associated protein kinases (MAPK) signaling pathways. However, the role of garcinol in the osteoclastogenesis is still unclear. Here, we demonstrated that garcinol can inhibit the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis, osteoclastogenesis-related gene expression, the f-actin ring, and resorption pit formation. In addition, garcinol abrogated RANKL-induced osteoclastogenesis by attenuating the degradation of the MAPK, NF-κB, and PI3K-AKT signaling pathway as well as downstream factors c-jun, c-fos, and NFATC1. In vivo, suppression of osteoclastogenesis by garcinol was evidenced by marked inhibition of lipopolysaccharide-induced bone resorption. In conclusion, our data demonstrated that garcinol inhibited the RANKL-induced osteoclastogenesis by suppressing the MAPK, NF-κB, and PI3K-AKT signaling pathways and thus has potential as a novel therapeutic option for osteolytic bone diseases.
Collapse
Affiliation(s)
- Yewei Jia
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Jiawei Jiang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Xuanyuan Lu
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kangxian Zhao
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| |
Collapse
|
216
|
Wang S, Heng BC, Qiu S, Deng J, Shun Pan Cheung G, Jin L, Zhao B, Zhang C. Lipoteichoic acid of Enterococcus faecalis inhibits osteoclastogenesis via transcription factor RBP-J. Innate Immun 2018; 25:13-21. [PMID: 30463464 PMCID: PMC6830893 DOI: 10.1177/1753425918812646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lipoteichoic acid (LTA) of Enterococcus faecalis is a potent
stimulator of inflammatory responses, but the effects of E.
faecalis LTA on osteoclastogenesis remains far from well
understood. This study showed that E. faecalis LTA
significantly inhibited osteoclastogenesis of wild type murine bone
marrow-derived macrophages (BMMs) in the presence of a high dose of RANKL, while
the inhibition of osteoclastogenesis by E. faecalis LTA was
significantly removed in BMMs with deficient expression of the transcription
factor RBP-J. In addition, a few small osteoclasts were generated in BMMs with
only E. faecalis LTA stimulation, presumably due to the
production of TNF-α and IL-6. Furthermore, both p38 and ERK1/2 MAPK signaling
pathways were activated after 24 h of E. faecalis LTA
treatment, but these signaling pathways were not activated after 6 d of
treatment with RANKL in mature osteoclasts. In conclusion, E.
faecalis LTA, which induces inflammatory response, could inhibit
RANKL-induced osteoclastogenesis via RBP-J in BMMs.
Collapse
Affiliation(s)
- Shuai Wang
- 1 Department of Stomatology, The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, China.,2 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,3 HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Boon Chin Heng
- 2 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shuqi Qiu
- 4 Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT hospital, Shenzhen, China
| | - Jing Deng
- 1 Department of Stomatology, The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, China
| | - Gary Shun Pan Cheung
- 2 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- 5 Periodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Baohong Zhao
- 6 Arthritis and Tissue Degeneration Program, and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, USA.,7 Department of Medicine, Weill Cornell Medical College, New York, USA
| | - Chengfei Zhang
- 2 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,3 HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
217
|
Jin H, Yao L, Chen K, Liu Y, Wang Q, Wang Z, Liu Q, Cao Z, Kenny J, Tickner J, Wang X, Xu J. Evodiamine inhibits RANKL-induced osteoclastogenesis and prevents ovariectomy-induced bone loss in mice. J Cell Mol Med 2018; 23:522-534. [PMID: 30451360 PMCID: PMC6307789 DOI: 10.1111/jcmm.13955] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/14/2018] [Indexed: 11/29/2022] Open
Abstract
Postmenopausal osteoporosis (PMO) is a progressive bone disease characterized by the over‐production and activation of osteoclasts in elderly women. In our study, we investigated the anti‐osteoclastogenic effect of evodiamine (EVO) in vivo and in vitro, as well as the underlying mechanism. By using an in vitro bone marrow macrophage (BMM)‐derived osteoclast culture system, we found that EVO inhibited osteoclast formation, hydroxyapatite resorption and receptor activator of NF‐κB ligand (RANKL)‐induced osteoclast marker gene and protein expression. Mechanistically, we found that EVO inhibited the degradation and RANKL‐induced transcriptional activity of IκBα. RANKL‐induced Ca2+ oscillations were also abrogated by EVO. In vivo, an ovariectomized (OVX) mouse model was established to mimic PMO, and OVX mice received oral administration of either EVO (10 mg/kg) or saline every other day. We found that EVO can attenuate bone loss in OVX mice by inhibiting osteoclastogenesis. Taken together, our findings suggest that EVO suppresses RANKL‐induced osteoclastogenesis through NF‐κB and calcium signalling pathways and has potential value as a therapeutic agent for PMO.
Collapse
Affiliation(s)
- Haiming Jin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western, Australia
| | - Lingya Yao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Chen
- School of Biomedical Sciences, The University of Western Australia, Perth, Western, Australia
| | - Yuhao Liu
- The Lab of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, Western, Australia
| | - Qian Liu
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Zhen Cao
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Jacob Kenny
- School of Biomedical Sciences, The University of Western Australia, Perth, Western, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, Western, Australia
| | - Xiangyang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western, Australia
| |
Collapse
|
218
|
Yeom M, Kim EY, Kim JH, Jung HS, Sohn Y. High Doses of Bupleurum falcatum Partially Prevents Estrogen Deficiency-Induced Bone Loss With Anti-osteoclastogenic Activity Due to Enhanced iNOS/NO Signaling. Front Pharmacol 2018; 9:1314. [PMID: 30524278 PMCID: PMC6262412 DOI: 10.3389/fphar.2018.01314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/29/2018] [Indexed: 01/06/2023] Open
Abstract
Background and Objective:Bupleurum falcatum (BF) extract, a natural product with anti-inflammatory properties, has been traditionally used to treat menopausal symptoms, but its role in osteoporosis, another serious health concern of menopausal women, remains unknown. Here we investigated whether and how BF prevents estrogen deficiency-induced bone loss using both in vitro and in vivo models. Methods: Female Sprague-Dawley rats were ovariectomized (OVX) and subjected to oral BF treatment daily for 8 weeks. Additionally, pre-osteoclastic RAW 264.7 cells were employed to evaluate the effects of BF and its underlying mechanism on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast formation in vitro. Results: A high dose of BF partially prevented ovariectomy (OVX)-induced bone loss and reduced the levels of tartrate-resistant acid phosphatase (TRAP) in serum and osteoclast numbers in femurs of OVX rats. Furthermore, BF clearly inhibited RANKL-induced osteoclast differentiation and bone resorption activity in RAW 264.7 cells. BF also inhibited the osteoclastogenic transcription factors c-Fos and nuclear factor of activated T cells c1 (NFATc1) and, consequently, downregulated the expression of osteoclast marker genes. Moreover, BF upregulated interferon-β (IFN-β)/inducible nitric oxide synthase (iNOS)/nitric oxide (NO) signaling, even though it had no impact on mitogen-activated protein kinases (MAPK) or NF-κB. The inhibition of osteoclast formation by BF was abrogated by iNOS-specific inhibitors. Consistent with cellular studies, BF upregulated iNOS protein expression in femurs from OVX rats. Conclusion: Taken together, our results indicate that BF partially prevented estrogen deficiency-induced bone loss with anti-osteoclastogenic activity potentially due to enhanced iNOS/NO signaling.
Collapse
Affiliation(s)
- Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
219
|
Zhang X, Li X, Fang J, Hou X, Fang H, Guo F, Li F, Chen A, Huang S. (2R,3R)Dihydromyricetin inhibits osteoclastogenesis and bone loss through scavenging LPS-induced oxidative stress and NF-κB and MAPKs pathways activating. J Cell Biochem 2018; 119:8981-8995. [PMID: 30076654 DOI: 10.1002/jcb.27154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
Osteolysis is a serious complication of several chronic inflammatory diseases and is closely associated with a local chronic inflammatory reaction with a variety of causes. However, similarities exist in the mechanisms of their pathological processes. Inflammatory factors and oxidative stress-induced nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways play a center role in bone erosion. Dihydromyricetin (DMY) is a natural compound with anti-inflammatory and antioxidative effect, which are commonly used in chronic pharyngitis and alcohol use disorders. In the current study, we identified that DMY attenuated lipopolysaccharide (LPS)-induced oxidative stress through inhibiting the production of reactive oxygen species (ROS) and nitric oxide (NO), downregulated COX-2 and iNOS, and promoted the activity of the antioxidative system by activating superoxide dismutase (SOD) and Nrf2/HO-1 pathway. To further investigate the underlying mechanism, we found that DMY inhibits osteoclast (OC) differentiation and bone resorption activity through blocking the RANKL-induced activation of the NF-κB and MAPKs signaling pathways and then downregulated c-Fos and NFATc1, which is essential for OC differentiation. Furthermore, DMY inhibited LPS-induced osteolysis in vivo. Collectively, these results indicate that DMY might be a promising prophylactic antiosteoclastic/resorptive agent in preventing or treating bone lysis diseases.
Collapse
Affiliation(s)
- Xuejun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo Fang
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolong Hou
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shilong Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
220
|
Das P, Veazey KJ, Van HT, Kaushik S, Lin K, Lu Y, Ishii M, Kikuta J, Ge K, Nussenzweig A, Santos MA. Histone methylation regulator PTIP is required to maintain normal and leukemic bone marrow niches. Proc Natl Acad Sci U S A 2018; 115:E10137-E10146. [PMID: 30297393 PMCID: PMC6205459 DOI: 10.1073/pnas.1806019115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The bone is essential for locomotion, calcium storage, and harboring the hematopoietic stem cells (HSCs) that supply the body with mature blood cells throughout life. HSCs reside at the interface of the bone and bone marrow (BM), where active bone remodeling takes place. Although the cellular components of the BM niche have been characterized, little is known about its epigenetic regulation. Here we find that the histone methylation regulator PTIP (Pax interaction with transcription-activation domain protein-1) is required to maintain the integrity of the BM niche by promoting osteoclast differentiation. PTIP directly promotes chromatin changes required for the expression of Pparγ (peroxisome proliferator-activated receptor-γ), a transcription factor essential for osteoclastogenesis. PTIP deletion leads to a drastic reduction of HSCs in the BM and induces extramedullary hematopoiesis. Furthermore, exposure of acute myeloid leukemia cells to a PTIP-deficient BM microenvironment leads to a reduction in leukemia-initiating cells and increased survival upon transplantation. Taken together, our data identify PTIP as an epigenetic regulator of osteoclastogenesis that is required for the integrity of the BM niche to sustain both normal hematopoiesis and leukemia.
Collapse
Affiliation(s)
- Prosun Das
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kylee J Veazey
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Hieu T Van
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Saakshi Kaushik
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Margarida A Santos
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030;
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
221
|
Harshan S, Dey P, Ragunathan S. Effects of rheumatoid arthritis associated transcriptional changes on osteoclast differentiation network in the synovium. PeerJ 2018; 6:e5743. [PMID: 30324023 PMCID: PMC6186409 DOI: 10.7717/peerj.5743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Background Osteoclast differentiation in the inflamed synovium of rheumatoid arthritis (RA) affected joints leads to the formation of bone lesions. Reconstruction and analysis of protein interaction networks underlying specific disease phenotypes are essential for designing therapeutic interventions. In this study, we have created a network that captures signal flow leading to osteoclast differentiation. Based on transcriptome analysis, we have indicated the potential mechanisms responsible for the phenotype in the RA affected synovium. Method We collected information on gene expression, pathways and protein interactions related to RA from literature and databases namely Gene Expression Omnibus, Kyoto Encyclopedia of Genes and Genomes pathway and STRING. Based on these information, we created a network for the differentiation of osteoclasts. We identified the differentially regulated network genes and reported the signaling that are responsible for the process in the RA affected synovium. Result Our network reveals the mechanisms underlying the activation of the neutrophil cytosolic factor complex in connection to osteoclastogenesis in RA. Additionally, the study reports the predominance of the canonical pathway of NF-κB activation in the diseased synovium. The network also confirms that the upregulation of T cell receptor signaling and downregulation of transforming growth factor beta signaling pathway favor osteoclastogenesis in RA. To the best of our knowledge, this is the first comprehensive protein–protein interaction network describing RA driven osteoclastogenesis in the synovium. Discussion This study provides information that can be used to build models of the signal flow involved in the process of osteoclast differentiation. The models can further be used to design therapies to ameliorate bone destruction in the RA affected joints.
Collapse
Affiliation(s)
- Shilpa Harshan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Poulami Dey
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srivatsan Ragunathan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| |
Collapse
|
222
|
Lee K, Seo I, Choi MH, Jeong D. Roles of Mitogen-Activated Protein Kinases in Osteoclast Biology. Int J Mol Sci 2018; 19:ijms19103004. [PMID: 30275408 PMCID: PMC6213329 DOI: 10.3390/ijms19103004] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 01/20/2023] Open
Abstract
Bone undergoes continuous remodeling, which is homeostatically regulated by concerted communication between bone-forming osteoblasts and bone-degrading osteoclasts. Multinucleated giant osteoclasts are the only specialized cells that degrade or resorb the organic and inorganic bone components. They secrete proteases (e.g., cathepsin K) that degrade the organic collagenous matrix and establish localized acidosis at the bone-resorbing site through proton-pumping to facilitate the dissolution of inorganic mineral. Osteoporosis, the most common bone disease, is caused by excessive bone resorption, highlighting the crucial role of osteoclasts in intact bone remodeling. Signaling mediated by mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, has been recognized to be critical for normal osteoclast differentiation and activation. Various exogenous (e.g., toll-like receptor agonists) and endogenous (e.g., growth factors and inflammatory cytokines) stimuli contribute to determining whether MAPKs positively or negatively regulate osteoclast adhesion, migration, fusion and survival, and osteoclastic bone resorption. In this review, we delineate the unique roles of MAPKs in osteoclast metabolism and provide an overview of the upstream regulators that activate or inhibit MAPKs and their downstream targets. Furthermore, we discuss the current knowledge about the differential kinetics of ERK, JNK, and p38, and the crosstalk between MAPKs in osteoclast metabolism.
Collapse
Affiliation(s)
- Kyunghee Lee
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea.
| | - Incheol Seo
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea.
| | - Mun Hwan Choi
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea.
| | - Daewon Jeong
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea.
| |
Collapse
|
223
|
Kim EJ, Lee H, Kim MH, Yang WM. Inhibition of RANKL-stimulated osteoclast differentiation by Schisandra chinensis through down-regulation of NFATc1 and c-fos expression. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:270. [PMID: 30285722 PMCID: PMC6167898 DOI: 10.1186/s12906-018-2331-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 09/20/2018] [Indexed: 01/28/2023]
Abstract
Background Schisandra chinenesis (SC) has been reported to have ameliorative effect on osteoporosis. However, the mechanisms underlying the anti-osteoporosis activity of SC have not been clearly elucidated. In the present study, we determined the effects of SC on The receptor activator of NF-kB ligand (RANKL)-induced osteoclastogenesis and its potential mechanism. Methods Raw 264.7 cells were treated with 0.6, 6 and 60 μg/mL SC in the presence of 100 ng/mL RANKL for 7 days. RANKL-induced osteoclast formation was analyzed by tartrate resistant acid phosphatase (TRAP) staining. The osteoclast differentiation-related factors were confirmed along with TNF-α. Results SC inhibits the RANKL-induced osteoclast differentiation in dose-dependent manner within non-toxic concentrations. The supernatant concentrations of TNF-α were significantly decreased by SC treatment. In addition, osteoclastogenesis-related factors, TRAP6 and NF-κB, were markedly decreased by SC in RANKL-induced osteoclasts. Mechanistically, SC reduced the RANKL-triggered NFATc1 and c-fos expressions. Conclusions Taken together, our data suggest that SC can modulate bone metabolism by suppressing RANKL-induced osteoclast differentiation. Electronic supplementary material The online version of this article (10.1186/s12906-018-2331-5) contains supplementary material, which is available to authorized users.
Collapse
|
224
|
Lee J, Son HS, Lee HI, Lee GR, Jo YJ, Hong SE, Kim N, Kwon M, Kim NY, Kim HJ, Lee YJ, Seo EK, Jeong W. Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling. FASEB J 2018; 33:2026-2036. [PMID: 30216110 DOI: 10.1096/fj.201800866rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many bone diseases, such as osteoporosis and rheumatoid arthritis, are attributed to an increase in osteoclast number or activity; therefore, control of osteoclasts has significant clinical implications. This study shows how skullcapflavone II (SFII), a flavonoid with anti-inflammatory activity, regulates osteoclast differentiation, survival, and function. SFII inhibited osteoclastogenesis with decreased activation of MAPKs, Src, and cAMP response element-binding protein (CREB), which have been known to be redox sensitive. SFII decreased reactive oxygen species by scavenging them or activating nuclear factor-erythroid 2-related factor 2 (Nrf2), and its effects were partially reversed by hydrogen peroxide cotreatment or Nrf2 deficiency. In addition, SFII attenuated survival, migration, and bone resorption, with a decrease in the expression of integrin β3, Src, and p130 Crk-associated substrate, and the activation of RhoA and Rac1 in differentiated osteoclasts. Furthermore, SFII inhibited osteoclast formation and bone loss in an inflammation- or ovariectomy-induced osteolytic mouse model. These findings suggest that SFII inhibits osteoclastogenesis through redox regulation of MAPKs, Src, and CREB and attenuates the survival and resorption function by modulating the integrin pathway in osteoclasts. SFII has therapeutic potential in the treatment and prevention of bone diseases caused by excessive osteoclast activity.-Lee, J., Son, H. S., Lee, H. I., Lee, G.-R., Jo, Y.-J., Hong, S.-E., Kim, N., Kwon, M., Kim, N. Y., Kim, H. J., Lee, Y. J., Seo, E. K., Jeong, W. Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling.
Collapse
Affiliation(s)
- Jiae Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Han Saem Son
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hye In Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Gong-Rak Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - You-Jin Jo
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Seong-Eun Hong
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Narae Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Minjeong Kwon
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Nam Young Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hyun Jin Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Yoo Jin Lee
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Woojin Jeong
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
225
|
PRMT1 mediates RANKL-induced osteoclastogenesis and contributes to bone loss in ovariectomized mice. Exp Mol Med 2018; 50:1-15. [PMID: 30154485 PMCID: PMC6113271 DOI: 10.1038/s12276-018-0134-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
Protein arginine methylation is a novel form of posttranslational modification mediated by protein arginine methyltransferase (PRMTs). PRMT1, a major isoform of the PRMT family, is responsible for various biological functions, including cellular differentiation. Although the important function that PRMT1 plays in various tissues is being increasingly recognized, its role in receptor activation of NF-κB ligand (RANKL)-induced osteoclastogenesis or osteoporosis has not yet been described. Here, we show that PRMT1 is essential for RANKL-induced osteoclastogenesis in vitro and for bone loss in vivo. RANKL treatment increased the expression of PRMT1 and its nuclear localization in bone marrow-derived macrophages (BMDMs) in a c-Jun N-terminal kinase (JNK)-dependent manner. Silencing PRMT1 attenuated RANKL-induced osteoclastogenesis by decreasing tartrate-resistant acid phosphatase (TRAP)-positive cells and inhibiting F-actin ring formation and bone resorption, which was confirmed in a separate experiment using haploinsufficient cells from PRMT1+/- mice. Our results also revealed that PRMT1 regulates the transcription activity of NF-κB by directly interacting with it in RANKL-treated BMDMs. An in vivo study showed that the haploinsufficiency of PRMT1 reduced the enzyme activity of TRAP and increased the bone mineral density in the metaphysis of ovariectomized (OVX) mice. Finally, treatment with estrogen (E2) downregulated the RANKL-induced expression of PRMT1, suggesting that estrogen may exert an inhibitory effect on osteoclastogenesis by suppressing PRMT1 expression. Our results suggest that PRMT1 plays an important role in the progression of osteoporosis and that it might be a good therapeutic target for postmenopausal osteoporosis. A protein that helps trigger bone loss in postmenopausal osteoporosis could be a potential therapeutic target. After the menopause, decreases in estrogen hormone levels can lead to bone diseases including osteoporosis. Osteoporosis occurs when the bone remodeling process breaks down, and bone resorption by cells called osteoclasts outweighs bone formation. In a mouse model of postmenopausal osteoporosis, Jong-Hwan Park at Chonnam National University, Gwangju, South Korea and co-workers identified key players in the progression of the disease. The team focused on factors influencing the RANKL protein, a known controller of bone remodeling. They found that RANKL triggers the formation of osteoclasts via interaction with another protein, PRMT1. Suppression of PRMT1 by estrogen appears to inhibit excessive osteoclast formation, suggesting it could be a potential therapeutic target for treating osteoporosis.
Collapse
|
226
|
He L, Hong G, Zhou L, Zhang J, Fang J, He W, Tickner J, Han X, Zhao L, Xu J. Asiaticoside, a component of Centella asiatica attenuates RANKL-induced osteoclastogenesis via NFATc1 and NF-κB signaling pathways. J Cell Physiol 2018; 234:4267-4276. [PMID: 30146787 DOI: 10.1002/jcp.27195] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Abstract
Identification of natural compounds that inhibit osteoclastogenesis will facilitate the development of antiresorptive treatment of osteolytic bone diseases. Asiaticoside is a triterpenoid derivative isolated from Centella asiatica, which exhibits varying biological effects like angiogenesis, anti-inflammation, wound healing, and osteogenic differentiation. However, its role in osteoclastogenesis remains unknown. Here, we show that Asiaticoside can suppress RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner. Asiaticoside attenuated the expression of osteoclast marker genes including Ctsk, Atp6v0d2, Nfatc1, Acp5, and Dc-stamp. Furthermore, Asiaticoside inhibited RANKL-mediated NF-κB and NFATc1 activities, and RANKL-induced calcium oscillation. Collectively, this study demonstrates that Asiaticoside inhibited osteoclast formation and function through attenuating RANKL-induced key signaling pathways, which may indicate that Asiaticoside is a potential antiresorptive agent against osteoclast-related osteolytic bone diseases.
Collapse
Affiliation(s)
- Lilei He
- Department of Orthopaedics, Affiliated Foshan Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China.,The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Guoju Hong
- National Key Discipline and Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Orthopedic Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin Zhou
- Department of Rheumatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianguo Zhang
- The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian Fang
- The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei He
- National Key Discipline and Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Xiaorui Han
- Department of Radiography, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong, China
| | - Lilian Zhao
- The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiake Xu
- National Key Discipline and Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
227
|
Thu HE, Hussain Z, Mohamed IN, Shuid AN. Eurycoma longifolia, a promising suppressor of RANKL-induced differentiation and activation of osteoclasts: An in vitro mechanistic evaluation. J Ayurveda Integr Med 2018; 10:102-110. [PMID: 30120052 PMCID: PMC6598823 DOI: 10.1016/j.jaim.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background Eurycoma longifolia (E. longifolia) has gained remarkable recognition due to its promising efficacy of stimulating bone formation in androgen-deficient osteoporosis. Numerous in vivo studies have explored the effects of E. longifolia on osteoporosis; however, the in vitro cellular mechanism was not discovered yet. Objectives The present study was aimed to investigate the effect of E. longifolia on the proliferation, differentiation and maturation of osteoclasts and the translational mechanism of inhibition of osteoclastogenesis using RAW 264.7 cells as an in vitro osteoclastic model. Materials and methods Having assessed cytotoxicity, the cell viability, cell proliferation rate and osteoclastic differentiation capacity of E. longifolia was investigated by evaluating the tartrate-resistant acid phosphatase (TRAP) activity in receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclasts. Taken together, the time-mannered expression of osteoclast-related protein biomarkers such as matrix metallopeptidase-9 (MMP-9), cathepsin-K, TRAP, nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), superoxide (free radicals) generation and superoxide dismutase activity were also measured to comprehend the mechanism of osteoclastogenesis. Results E. longifolia did not show significant effects on cytotoxicity and cell proliferation of RAW 264.7 cells; however, a significant inhibition of cells differentiation and maturation of osteoclasts was observed. Moreover, a significant down-regulation of RANKL-induced TRAP activity and expression of MMP-9, cathepsin-K, TRAP, NFATc1 and generation of superoxide and enhanced superoxide dismutase activity was observed in E. longifolia treated cell cultures. Conclusion We anticipated that E. longifolia that enhances bone regeneration on the one hand and suppresses osteoclast’s maturation on the other hand may have great therapeutic value in treating osteoporosis and other bone-erosive diseases such as rheumatoid arthritis and metastasis associated with bone loss.
Collapse
Affiliation(s)
- Hnin Ei Thu
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (The National University of Malaysia), Jalan Yaacob Latif 56000, Cheras, Malaysia
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (The National University of Malaysia), Jalan Yaacob Latif 56000, Cheras, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (The National University of Malaysia), Jalan Yaacob Latif 56000, Cheras, Malaysia.
| |
Collapse
|
228
|
Rab GTPases in Osteoclastic Endomembrane Systems. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4541538. [PMID: 30186859 PMCID: PMC6114073 DOI: 10.1155/2018/4541538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
Osteoclasts (OCs) are bone-resorbing cells that maintain bone homeostasis. OC differentiation, survival, and activity are regulated by numerous small GTPases, including those of the Rab family, which are involved in plasma membrane delivery and lysosomal and autophagic degradation pathways. In resorbing OCs, polarized vesicular trafficking pathways also result in formation of the ruffled membrane, the resorbing organelle, and in transcytosis.
Collapse
|
229
|
Chen G, Huang L, Wu X, Liu X, Xu Q, Li F, Dai M, Zhang B. Adiponectin inhibits osteoclastogenesis by suppressing NF-κB and p38 signaling pathways. Biochem Biophys Res Commun 2018; 503:2075-2082. [PMID: 30107914 DOI: 10.1016/j.bbrc.2018.07.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/26/2022]
Abstract
Adiponectin (APN) has been shown to play a key role in regulating bone mineral density (BMD). Nevertheless, the effects of APN on receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation and mechanism of regulation are not entirely clear. The study, therefore, aimed to evaluate the effect of APN on osteoclastogenesis. Our results showed that APN inhibits osteoclastogenesis and resorption function in vitro by suppressing nuclear factor-κB (NF-κB) and p38 signaling pathways, which is essential for osteoclast formation. Moreover, APN blocked the formation of F-actin rings and attenuated osteoclast-mediated bone resorptive function. Therefore, we concluded that APN may provide a potential treatment for osteoclast-related diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Guiping Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China; Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, 330006, China.
| | - Leitao Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China; Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, 330006, China.
| | - Xia Wu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, 330006, China.
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China; Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, 330006, China.
| | - Qiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China; Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, 330006, China.
| | - Fan Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China; Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, 330006, China.
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China; Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, 330006, China.
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China; Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi province, 330006, China.
| |
Collapse
|
230
|
Kim H, Kim BK, Ohk B, Yoon H, Kang WY, Cho S, Seong SJ, Lee HW, Yoon Y. Estrogen‐related receptor γ negatively regulates osteoclastogenesis and protects against inflammatory bone loss. J Cell Physiol 2018; 234:1659-1670. [DOI: 10.1002/jcp.27035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Hyun‐Ju Kim
- Department of Molecular Medicine Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University Daegu Republic of Korea
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Bo Kyung Kim
- Department of Molecular Medicine Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University Daegu Republic of Korea
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Boram Ohk
- Department of Molecular Medicine Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University Daegu Republic of Korea
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Hye‐Jin Yoon
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Woo Youl Kang
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Seungil Cho
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Sook Jin Seong
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Hae Won Lee
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| | - Young‐Ran Yoon
- Department of Molecular Medicine Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University Daegu Republic of Korea
- Clinical Trial Center, Kyungpook National University Hospital Daegu Republic of Korea
| |
Collapse
|
231
|
Ng AY, Tu C, Shen S, Xu D, Oursler MJ, Qu J, Yang S. Comparative Characterization of Osteoclasts Derived From Murine Bone Marrow Macrophages and RAW 264.7 Cells Using Quantitative Proteomics. JBMR Plus 2018; 2:328-340. [PMID: 30460336 PMCID: PMC6237207 DOI: 10.1002/jbm4.10058] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 12/29/2022] Open
Abstract
Osteoclasts are bone-resorbing cells differentiated from macrophage/monocyte precursors in response to macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). In vitro models are principally based on primary bone marrow macrophages (BMMs), but RAW 264.7 cells are frequently used because they are widely available, easy to culture, and more amenable to genetic manipulation than primary cells. Increasing evidence, however, has shown that the vastly different origins of these two cell types may have important effects on cell behavior. In particular, M-CSF is a prerequisite for the differentiation of BMMs, by promoting survival and proliferation and priming the cells for RANKL induction. RAW 264.7 cells readily form osteoclasts in the presence of RANKL, but M-CSF is not required. Based on these key differences, we sought to understand their functional implications and how it might affect osteoclast differentiation and related signaling pathways. Using a robust and high-throughput proteomics strategy, we quantified the global protein changes in osteoclasts derived from BMMs and RAW 264.7 cells at 1, 3, and 5 days of differentiation. Data are available via ProteomeXchange with the identifier PXD009610. Correlation analysis of the proteomes demonstrated low concordance between the two cell types (R2 ≈ 0.13). Bioinformatics analysis indicate that RANKL-dependent signaling was intact in RAW 264.7 cells, but biological processes known to be dependent on M-CSF were significantly different, including cell cycle control, cytoskeletal organization, and apoptosis. RAW 264.7 cells exhibited constitutive activation of Erk and Akt that was dependent on the activity of Abelson tyrosine kinase, and the timing of Erk and Akt activation was significantly different between BMMs and RAW 264.7 cells. Our findings provide the first evidence for major discrepancies between BMMs and RAW 264.7 cells, indicating that careful consideration is needed when using the RAW 264.7 cell line for studying M-CSF-dependent signaling and functions. © 2018 American Society for Bone and Mineral Research. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Andrew Yh Ng
- Department of Anatomy and Cell Biology School of Dental Medicine University of Pennsylvania Philadelphia PA USA.,Department of Oral Biology School of Dental Medicine University at Buffalo Buffalo NY USA.,New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo NY USA
| | - Chengjian Tu
- New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo NY USA.,Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences University at Buffalo NY USA
| | - Shichen Shen
- New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo NY USA.,Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences University at Buffalo NY USA
| | - Ding Xu
- Department of Oral Biology School of Dental Medicine University at Buffalo Buffalo NY USA
| | - Merry J Oursler
- Division of Endocrinology Metabolism, Nutrition, and Diabetes Mayo Clinic Rochester MN USA
| | - Jun Qu
- New York State Center of Excellence in Bioinformatics and Life Sciences Buffalo NY USA.,Department of Pharmaceutical Sciences School of Pharmacy and Pharmaceutical Sciences University at Buffalo NY USA
| | - Shuying Yang
- Department of Anatomy and Cell Biology School of Dental Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
232
|
Park-Min KH. Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol Life Sci 2018; 75:2519-2528. [PMID: 29670999 PMCID: PMC9809143 DOI: 10.1007/s00018-018-2817-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/29/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023]
Abstract
Osteoclasts are bone-resorbing cells that play an essential role in bone remodeling. Defects in osteoclasts result in unbalanced bone remodeling and are linked to many bone diseases including osteoporosis, rheumatoid arthritis, primary bone cancer, and skeletal metastases. Receptor activator of NF-kappaB ligand (RANKL) is a classical inducer of osteoclast formation. In the presence of macrophage-colony-stimulating factor, RANKL and co-stimulatory signals synergistically regulate osteoclastogenesis. However, recent discoveries of alternative pathways for RANKL-independent osteoclastogenesis have led to a reassessment of the traditional mechanisms that regulate osteoclast formation. In this review, we provide an overview of signaling pathways and other regulatory elements governing osteoclastogenesis. We also identify how osteoclastogenesis is altered in pathological conditions and discuss therapeutic targets in osteoclasts for the treatment of skeletal diseases.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 East 70th Street, New York, 10021, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, 10065, NY, USA.
| |
Collapse
|
233
|
Tang M, Tian L, Luo G, Yu X. Interferon-Gamma-Mediated Osteoimmunology. Front Immunol 2018; 9:1508. [PMID: 30008722 PMCID: PMC6033972 DOI: 10.3389/fimmu.2018.01508] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 02/05/2023] Open
Abstract
Osteoimmunology is the interdiscipline that focuses on the relationship between the skeletal and immune systems. They are interconnected by shared signal pathways and cytokines. Interferon-gamma (IFN-γ) plays important roles in immune responses and bone metabolism. IFN-γ enhances macrophage activation and antigen presentation. It regulates antiviral and antibacterial immunity as well as signal transduction. IFN-γ can promote osteoblast differentiation and inhibit bone marrow adipocyte formation. IFN-γ plays dual role in osteoclasts depending on its stage. Furthermore, IFN-γ is an important pathogenetic factor in some immune-mediated bone diseases including rheumatoid arthritis, postmenopausal osteoporosis, and acquired immunodeficiency syndrome. This review will discuss the contradictory findings of IFN-γ in osteoimmunology and its clinical application potential.
Collapse
Affiliation(s)
| | | | | | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
234
|
Thummuri D, Guntuku L, Challa VS, Ramavat RN, Naidu VGM. Abietic acid attenuates RANKL induced osteoclastogenesis and inflammation associated osteolysis by inhibiting the NF‐KB and MAPK signaling. J Cell Physiol 2018; 234:443-453. [PMID: 29932225 DOI: 10.1002/jcp.26575] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Dinesh Thummuri
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research‐HyderabadBalanagarHyderabadAndhra PradeshIndia
| | - Lalita Guntuku
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research‐HyderabadBalanagarHyderabadAndhra PradeshIndia
| | - Veerabhadra Swamy Challa
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research‐HyderabadBalanagarHyderabadAndhra PradeshIndia
| | - Ravinder Naik Ramavat
- National Institute of NutritionNational Centre for Laboratory Animal SciencesHyderabadTelanganaIndia
| | - Vegi Ganga Modi Naidu
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research‐GuwahatiGuwahatiAssamIndia
| |
Collapse
|
235
|
MacroH2A1.2 inhibits prostate cancer-induced osteoclastogenesis through cooperation with HP1α and H1.2. Oncogene 2018; 37:5749-5765. [PMID: 29925860 PMCID: PMC6309402 DOI: 10.1038/s41388-018-0356-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 05/13/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022]
Abstract
Osteoclasts are multinuclear bone-resorbing cells that differentiate from hematopoietic precursor cells. Prostate cancer cells frequently spread to bone and secrete soluble signaling factors to accelerate osteoclast differentiation and bone resorption. However, processes and mechanisms that govern the expression of osteoclastogenic soluble factors secreted by prostate cancer cells are largely unknown. MacroH2A (mH2A) is a histone variant that replaces canonical H2A at designated genomic loci and establishes functionally distinct chromatin regions. Here we report that mH2A1.2, one of the mH2A isoforms, attenuates prostate cancer-induced osteoclastogenesis by maintaining the inactive state of genes encoding soluble factors in prostate cancer cells. Our functional analyses of soluble factors identify lymphotoxin beta (LTβ) as a major stimulator of osteoclastogenesis and an essential mH2A1.2 target for its anti-osteoclastogenic activity. Mechanistically, mH2A1.2 directly interacts with HP1α and H1.2 and requires them to inactivate LTβ gene in prostate cancer cells. Consistently, HP1α and H1.2 have an intrinsic ability to inhibit osteoclast differentiation in a mH2A1.2-dependent manner. Together, our data uncover a new and specific role for mH2A1.2 in modulating osteoclastogenic potential of prostate cancer cells and demonstrate how this signaling pathway can be exploited to treat osteolytic bone metastases at the molecular level.
Collapse
|
236
|
Alfonso-Gonzalez C, Riesgo-Escovar JR. Fos metamorphoses: Lessons from mutants in model organisms. Mech Dev 2018; 154:73-81. [PMID: 29753813 DOI: 10.1016/j.mod.2018.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
The Fos oncogene gene family is evolutionarily conserved throughout Eukarya. Fos proteins characteristically have a leucine zipper and a basic region with a helix-turn-helix motif that binds DNA. In vertebrates, there are several Fos homologs. They can homo- or hetero-dimerize via the leucine zipper domain. Fos homologs coupled with other transcription factors, like Jun oncoproteins, constitute the Activator Protein 1 (AP-1) complex. From its original inception as an oncogene, the subsequent finding that they act as transcription factors binding DNA sequences known as TRE, to the realization that they are activated in many different scenarios, and to loss-of-function analysis, the Fos proteins have traversed a multifarious path in development and physiology. They are instrumental in 'immediate early genes' responses, and activated by a seemingly myriad assemblage of different stimuli. Yet, the majority of these studies were basically gain-of-function studies, since it was thought that Fos genes would be cell lethal. Loss-of-function mutations in vertebrates were recovered later, and were not cell lethal. In fact, c-fos null mutations are viable with developmental defects (osteopetrosis and myeloid lineage abnormalities). It was then hypothesized that vertebrate genomes exhibit partial redundancy, explaining the 'mild' phenotypes, and complicating assessment of complete loss-of-function phenotypes. Due to its promiscuous activation, fos genes (especially c-fos) are now commonly used as markers for cellular responses to stimuli. fos homologs high sequence conservation (including Drosophila) is advantageous as it allows critical assessment of fos genes functions in this genetic model. Drosophila melanogaster contains only one fos homolog, the gene kayak. kayak mutations are lethal, and allow study of all the processes where fos is required. The kayak locus encodes several different isoforms, and is a pleiotropic gene variously required for development involving cell shape changes. In general, fos genes seem to primarily activate programs involved in cellular architectural rearrangements and cell shape changes.
Collapse
Affiliation(s)
- Carlos Alfonso-Gonzalez
- Developmental Neurobiology and Neurophysiology Department, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro c.p.76230, Mexico; Maestría en Bioquímica y Biología Molecular, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Juan Rafael Riesgo-Escovar
- Developmental Neurobiology and Neurophysiology Department, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro c.p.76230, Mexico.
| |
Collapse
|
237
|
Sakaguchi Y, Nishikawa K, Seno S, Matsuda H, Takayanagi H, Ishii M. Roles of Enhancer RNAs in RANKL-induced Osteoclast Differentiation Identified by Genome-wide Cap-analysis of Gene Expression using CRISPR/Cas9. Sci Rep 2018; 8:7504. [PMID: 29760402 PMCID: PMC5951944 DOI: 10.1038/s41598-018-25748-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Bidirectional transcription has been proposed to play a role associated with enhancer activity. Transcripts called enhancer RNAs (eRNAs) play important roles in gene regulation; however, their roles in osteoclasts are unknown. To analyse eRNAs in osteoclasts comprehensively, we used cap-analysis of gene expression (CAGE) to detect adjacent transcription start sites (TSSs) that were distant from promoters for protein-coding gene expression. When comparing bidirectional TSSs between osteoclast precursors and osteoclasts, we found that bidirectional TSSs were located in the 5′-flanking regions of the Nrp2 and Dcstamp genes. We also detected bidirectional TSSs in the intron region of the Nfatc1 gene. To investigate the role of bidirectional transcription in osteoclasts, we performed loss of function analyses using the CRISPR/Cas9 system. Targeted deletion of the DNA regions between the bidirectional TSSs led to decreased expression of the bidirectional transcripts, as well as the protein-coding RNAs of Nrp2, Dcstamp, and Nfatc1, suggesting that these transcripts act as eRNAs. Furthermore, osteoclast differentiation was impaired by targeted deletion of bidirectional eRNA regions. The combined results show that eRNAs play important roles in osteoclastogenic gene regulation, and may therefore provide novel insights to elucidate the transcriptional mechanisms that control osteoclast differentiation.
Collapse
Affiliation(s)
- Yukako Sakaguchi
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Japan Science and Technology Agency, CREST, 5 Sanban-cho, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Keizo Nishikawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Japan Science and Technology Agency, CREST, 5 Sanban-cho, Chiyoda-ku, Tokyo, 102-0075, Japan.
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Japan Science and Technology Agency, CREST, 5 Sanban-cho, Chiyoda-ku, Tokyo, 102-0075, Japan.
| |
Collapse
|
238
|
Doonan J, Lumb FE, Pineda MA, Tarafdar A, Crowe J, Khan AM, Suckling CJ, Harnett MM, Harnett W. Protection Against Arthritis by the Parasitic Worm Product ES-62, and Its Drug-Like Small Molecule Analogues, Is Associated With Inhibition of Osteoclastogenesis. Front Immunol 2018; 9:1016. [PMID: 29867986 PMCID: PMC5967578 DOI: 10.3389/fimmu.2018.01016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
The immunomodulatory actions of parasitic helminth excretory-secretory (ES) products that serendipitously protect against development of chronic inflammatory disorders are well established: however, knowledge of the interaction between ES products and the host musculoskeletal system in such diseases is limited. In this study, we have focused on ES-62, a glycoprotein secreted by the rodent filarial nematode Acanthocheilonema viteae that is immunomodulatory by virtue of covalently attached phosphorylcholine (PC) moieties, and also two synthetic drug-like PC-based small molecule analogues (SMAs) that mimic ES-62's immunomodulatory activity. We have previously shown that each of these molecules prevents development of pathology in collagen-induced arthritis (CIA), a model of the musculoskeletal disease rheumatoid arthritis (RA) and reflecting this, we now report that ES-62 and its SMAs, modify bone remodeling by altering bone marrow progenitors and thus impacting on osteoclastogenesis. Consistent with this, we find that these molecules inhibit functional osteoclast differentiation in vitro. Furthermore, this appears to be achieved by induction of anti-oxidant response gene expression, thereby resulting in reduction of the reactive oxygen species production that is necessary for the increased osteoclastogenesis witnessed in musculoskeletal diseases like RA.
Collapse
Affiliation(s)
- James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Felicity E. Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Miguel A. Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anuradha Tarafdar
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Aneesah M. Khan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
239
|
Wijekoon HMS, Bwalya EC, Fang J, Kim S, Hosoya K, Okumura M. Inhibitory effects of sodium pentosan polysulfate on formation and function of osteoclasts derived from canine bone marrow. BMC Vet Res 2018; 14:152. [PMID: 29720166 PMCID: PMC5930774 DOI: 10.1186/s12917-018-1466-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/20/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Sodium pentosan polysulfate (NaPPS) was testified as a chondroprotective drug in with a detailed rationale of the disease-modifying activity. This study was undertaken to determine whether anti-osteoarthritis drug, NaPPS inhibited osteoclasts (OC) differentiation and function. Canine bone marrow mononuclear cells (n = 6) were differentiated to OC by maintaining with receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) for up to 7 days with the treatment of NaPPS at concentration of 0, 0.2, 1 and 5 μg/mL. Differentiation and function of OC were accessed using tartrate-resistant acid phosphate (TRAP) staining and bone resorption assay, while monitoring actin ring formation. Invasion and colocalization patterns of fluorescence-labeled NaPPS with transcribed gene in OC were monitored. Gene expression of OC for cathepsin K (CTK), matrix metallopeptidase-9 (MMP-9), nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, activator protein-1(AP-1) and carbonic anhydrase II was examined using real-time PCR. RESULTS Significant inhibition of OC differentiation was evident at NaPPS concentration of 1 and 5 μg/mL (p < 0.05). In the presence of 0.2 to 5 μg/mL NaPPS, bone resorption was attenuated (p < 0.05), while 1 and 5 μg/mL NaPPS achieved significant reduction of actin ring formation. Intriguingly, fluorescence-labeled NaPPS invaded in to cytoplasm and nucleus while colocalizing with actively transcribed gene. Gene expression of CTK, MMP-9 and NFATc1 were significantly inhibited at 1 and 5 μg/mL (p < 0.05) of NaPPS whereas inhibition of c-Fos and AP-1 was identified only at concentration of 5 μg/mL (p < 0.05). CONCLUSIONS Taken together, all the results suggest that NaPPS is a novel inhibitor of RANKL and M-CSF-induced CTK, MMP-9, NFATc1, c-Fos, AP-1 upregulation, OC differentiation and bone resorption which might be a beneficial for treatment of inflammatory joint diseases and other bone diseases associated with excessive bone resorption.
Collapse
Affiliation(s)
- H. M. Suranji Wijekoon
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Surgery, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| | - Eugene C. Bwalya
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Surgery, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| | - Jing Fang
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Surgery, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| | - Sangho Kim
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Surgery, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| | - Kenji Hosoya
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Surgery, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| | - Masahiro Okumura
- Department of Veterinary Clinical Sciences, Laboratory of Veterinary Surgery, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| |
Collapse
|
240
|
Shi L, Zhao S, Chen Q, Wu Y, Zhang J, Li N. Crocin inhibits RANKL‑induced osteoclastogenesis by regulating JNK and NF‑κB signaling pathways. Mol Med Rep 2018; 17:7947-7951. [PMID: 29620194 DOI: 10.3892/mmr.2018.8835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/23/2017] [Indexed: 11/06/2022] Open
Abstract
Receptor activator of nuclear factor‑κB ligand (RANKL), a member of the tumor necrosis factor receptor-ligand family, is a crucial factor involved in osteoclast differentiation. Crocin, a pharmacologically active component of Crocus sativus L., has been reported to attenuate ovariectomy‑induced osteoporosis in rats. However, the molecular mechanism underlying the effect of crocin on osteoclast formation remains to be determined. The present study aimed to investigate the effect of crocin on RANKL‑induced osteoclastogenesis and its underlying molecular mechanism. Results demonstrated that crocin decreased osteoclastogenesis in bone marrow‑derived macrophages (BMMs). In addition, the expression levels of osteoclast marker proteins were downregulated by crocin. Mechanistically, crocin inhibited RANKL‑induced activation of nuclear factor‑κB (NF‑κB) by suppressing inhibitor of κBα degradation and preventing NF‑κB p65 subunit nuclear translocation, and by activating c‑Jun N‑terminal kinase (JNK) in BMMs. In summary, the results of the present study suggested that crocin downregulates osteoclast differentiation via inhibition of JNK and NF‑κB signaling pathways. Thus, crocin may be a potential therapeutic agent for the treatment of osteoclast‑associated diseases, including osteoporosis.
Collapse
Affiliation(s)
- Liping Shi
- Department II of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Suping Zhao
- Department II of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Qian Chen
- Department II of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Youwei Wu
- Department II of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jian Zhang
- Department II of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Na Li
- Department II of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
241
|
Zhao D, Li X, Zhao Y, Qiao P, Tang D, Chen Y, Xue C, Li C, Liu S, Wang J, Lu S, Shi Q, Zhang Y, Dong Y, Wang Y, Shu B, Feng X. Oleanolic acid exerts bone protective effects in ovariectomized mice by inhibiting osteoclastogenesis. J Pharmacol Sci 2018; 137:76-85. [PMID: 29703642 DOI: 10.1016/j.jphs.2018.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/24/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Postmenopausal osteoporosis (POP) is quite prevalent and many new drugs are under development to obtain better therapeutic outcomes. Oleanolic acid (OA) has been reported to prevent bone loss in ovariectomized (OVX) rats by stimulating osteoblastogenesis. One previous study has demonstrated that acetate of OA suppressed lipopolysaccharides (LPS)-induced bone loss in mice. However, the role of OA in the receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated osteoclastogenesis is still not elucidated. Here we show that OA dose-dependently inhibits RANKL-mediated osteoclastogenesis and the formation of functional osteoclasts without impairing the viability and osteoclastic potential in bone marrow macrophages (BMMs). Moreover, OA administration attenuates bone loss in OVX mice by inhibiting osteoclast's densities. Mechanistically, OA does not affect RANKL-induced activation of the NF-кB, JNK, p38, ERK and Akt pathways, but inhibits the expression of the nuclear factor of activated T-cells c1(NFATc1) and c-Fos. Moreover, OA significantly suppresses the expression of RANKL-activated osteoclast genes encoding matrix metalloproteinase 9 (MMP9), Cathepsin K(Ctsk), tartrate-resistant acid phosphatase (TRAP) and carbonic anhydrase II (Car2). This work has elucidated the molecular mechanism of OA in RANKL-mediated osteoclastogenesis and revealed the promising potential of OA to be further developed as a new drug to prevent and treat POP.
Collapse
Affiliation(s)
- Dongfeng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaofeng Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Ping Qiao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Dezhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Yan Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chunchun Xue
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chenguang Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Shufen Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Sheng Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Yan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
| | - Yufeng Dong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Department of Orthopedics, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China.
| | - Xu Feng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
242
|
Carey HA, Hildreth BE, Geisler JA, Nickel MC, Cabrera J, Ghosh S, Jiang Y, Yan J, Lee J, Makam S, Young NA, Valiente GR, Jarjour WN, Huang K, Rosol TJ, Toribio RE, Charles JF, Ostrowski MC, Sharma SM. Enhancer variants reveal a conserved transcription factor network governed by PU.1 during osteoclast differentiation. Bone Res 2018; 6:8. [PMID: 29619268 PMCID: PMC5874256 DOI: 10.1038/s41413-018-0011-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/12/2018] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWASs) have been instrumental in understanding complex phenotypic traits. However, they have rarely been used to understand lineage-specific pathways and functions that contribute to the trait. In this study, by integrating lineage-specific enhancers from mesenchymal and myeloid compartments with bone mineral density loci, we were able to segregate osteoblast- and osteoclast (OC)-specific functions. Specifically, in OCs, a PU.1-dependent transcription factor (TF) network was revealed. Deletion of PU.1 in OCs in mice resulted in severe osteopetrosis. Functional genomic analysis indicated PU.1 and MITF orchestrated a TF network essential for OC differentiation. Several of these TFs were regulated by cooperative binding of PU.1 with BRD4 to form superenhancers. Further, PU.1 is essential for conformational changes in the superenhancer region of Nfatc1. In summary, our study demonstrates that combining GWASs with genome-wide binding studies and model organisms could decipher lineage-specific pathways contributing to complex disease states. Genetic variation in non-coding regions of DNA could raise osteoporosis risk by affecting osteoclast differentiation. Osteoporosis occurs when the normal process of bone remodeling by osteoblasts and osteoclasts falls out of balance. Genome-wide association studies (GWAS) have identified numerous single nucleotide polymorphisms (SNPs) associated with osteoporosis, but how these affect specific cell types was unclear. Sudarshana Sharma and Michael Ostrowski at the Medical University of South Carolina and colleagues wondered if variations in non-coding ‘enhancer’ regions of DNA, might shed light on the molecular underpinnings of osteoporosis. So, they overlaid SNPs associated with reduced bone mineral density onto enhancers in mesenchymal and myeloid cells—the precursors of osteoblasts and osteoclasts—identifying a transcription factor network in myeloid cells that drives the differentiation of osteoclasts. When this was disrupted in mice, severe defects in osteoclast differentiation and function resulted.
Collapse
Affiliation(s)
- Heather A Carey
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Blake E Hildreth
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.,2College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA.,3Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Jennifer A Geisler
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.,2College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Mara C Nickel
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Jennifer Cabrera
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Sankha Ghosh
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Yue Jiang
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Jing Yan
- 4Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA
| | - James Lee
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Sandeep Makam
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Nicholas A Young
- 5Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Giancarlo R Valiente
- 5Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Wael N Jarjour
- 5Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Kun Huang
- 6Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA
| | - Thomas J Rosol
- 2College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Ramiro E Toribio
- 2College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Julia F Charles
- 4Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA USA
| | - Michael C Ostrowski
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.,3Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Sudarshana M Sharma
- 1Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210 USA.,3Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 USA
| |
Collapse
|
243
|
Funaki Y, Hasegawa Y, Okazaki R, Yamasaki A, Sueda Y, Yamamoto A, Yanai M, Fukushima T, Harada T, Makino H, Shimizu E. Resolvin E1 Inhibits Osteoclastogenesis and Bone Resorption by Suppressing IL-17-induced RANKL Expression in Osteoblasts and RANKL-induced Osteoclast Differentiation. Yonago Acta Med 2018. [PMID: 29599617 DOI: 10.33160/yam.2018.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Resolvin E1 (RvE1) derived from the ω-3 polyunsaturated fatty acid eicosapentaenoic acid is known to be a potent pro-resolving lipid mediator that prevents chronic inflammation and osteoclastogenesis. We investigated the inhibitory effects of RvE1 on osteoclastogenesis and bone resorption to clarify its therapeutic potential for rheumatoid arthritis (RA). Methods Receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation was assessed with tartrate-resistant acid phosphatase staining. RANKL-induced bone resorption was assessed by the measurement of pit formation using calcium phosphate-labeled fluorescent polyanionic molecules in RAW264.7 cells as osteoclast precursors. The effects of RvE1 on the RANKL-induced mRNA expression of osteoclast-specific genes and transcriptional factors such as c-fos and nuclear factor of activated T cells c1 (NFATc1) in RAW264.7 cells were measured by quantitative real-time PCR. The distribution of NFATc1 induced by RANKL was evaluated by immunofluorescence staining in RAW264.7 cells. To analyze the mechanism of the inhibitory effect of RvE1 on osteoclastogenesis, we measured IL-17-induced RANKL mRNA expression in MC3T3-E1 osteoblast cells treated with RvE1 using quantitative real-time PCR and determined the level of prostaglandin E2 (PGE2) production by enzyme-linked immunosorbent assay. Results RvE1 significantly suppressed RANKL-induced osteoclast differentiation and bone resorption. RvE1 inhibited the RANKL-induced mRNA expression of osteoclast-specific genes along with the transcription factors NFATc1 and c-fos. Moreover, NFATc1 translocation from the cytoplasm to the nucleus of RAW264.7 cells was suppressed following RvE1 treatment. RvE1 also inhibited IL-17-induced RANKL mRNA expression and PGE2 production in MC3T3-E1 cells. Conclusion RvE1 inhibited osteoclastogenesis and bone resorption by suppressing RANKL-induced NFATc1 and c-fos expression in osteoclasts and IL-17-induced RANKL expression through the autocrine action of PGE2 in osteoblasts. Our data suggest RvE1 as a new therapeutic target of RA.
Collapse
Affiliation(s)
- Yoshihiro Funaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Yasuyuki Hasegawa
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Ryota Okazaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Akira Yamasaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Yuriko Sueda
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Akihiro Yamamoto
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Masaaki Yanai
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Takehito Fukushima
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Tomoya Harada
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Haruhiko Makino
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Eiji Shimizu
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| |
Collapse
|
244
|
Futakuchi M, Nitanda T, Ando S, Matsumoto H, Yoshimoto E, Fukamachi K, Suzui M. Therapeutic and Preventive Effects of Osteoclastogenesis Inhibitory Factor on Osteolysis, Proliferation of Mammary Tumor Cell and Induction of Cancer Stem Cells in the Bone Microenvironment. Int J Mol Sci 2018; 19:ijms19030888. [PMID: 29547583 PMCID: PMC5877749 DOI: 10.3390/ijms19030888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 11/24/2022] Open
Abstract
Background: We examined the effects of recombinant human osteoclastogenesis inhibitory factor (hOCIF) on osteolysis, proliferation of mammary tumor cells, and induction of cancer stem cells (CSCs) in the tumor-bone and tumor-subcutaneous microenvironments (TB- and TS-microE). Methods: Mouse mammary tumor cells were transplanted onto the calvaria or into a subcutaneous lesion of female mice, creating a TB-microE and a TS-microE, and the mice were then treated with hOCIF. To investigate the preventive effects of hOCIF, mice were treated with hOCIF before tumor cell implantation onto the calvaria (Pre), after (Post), and both before and after (Whole). The number of CSCs and cytokine levels were evaluated by IHC and ELISA assay, respectively. Results: hOCIF suppressed osteolysis, and growth of mammary tumors in the TB-microE, but not in the TS-microE. In the Pre, Post, and Whole groups, hOCIF suppressed osteolysis, and cell proliferation. hOCIF increased mouse osteoprotegrin (mOPG) levels in vivo, which suppressed mammary tumor cell proliferation in vitro. These preventive effects were observed in the dose-dependent. hOCIF did not affect the induction of CSCs in either microenvironment. Conclusion: While receptor activator of NF-κB ligand (RANKL) targeting therapy may not affect the induction of CSCs, RANKL is a potential target for prevention as well as treatment of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Mitsuru Futakuchi
- Department of Pathology, Nagasaki University Hospital, Nagasaki 851-8501, Japan.
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.
- Department of Molecular Toxicology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Takao Nitanda
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.
| | - Saeko Ando
- Department of Molecular Toxicology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Harutoshi Matsumoto
- Department of Molecular Toxicology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Eri Yoshimoto
- Department of Molecular Toxicology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Katsumi Fukamachi
- Department of Molecular Toxicology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| | - Masumi Suzui
- Department of Molecular Toxicology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan.
| |
Collapse
|
245
|
Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis. Cell Death Dis 2018. [PMID: 29540697 PMCID: PMC5851988 DOI: 10.1038/s41419-018-0433-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease that mainly affects the synovial joints. Although involvement of the fibroblast growth factor (FGF) signaling pathway has been suggested as an important modulator in RA development, no clear evidence has been provided. In this study, we found that synovial fluid basic FGF (bFGF) concentration was significantly higher in RA than in osteoarthritis (OA) patients. bFGF stimulates proliferation and migration of human fibroblast-like synoviocytes (FLSs) by activation of the bFGF-FGF receptor 3 (FGFR3)-ribosomal S6 kinase 2 (RSK2) signaling axis. Moreover, a molecular docking study revealed that kaempferol inhibited FGFR3 activity by binding to the active pocket of the FGFR3 kinase domain. Kaempferol forms hydrogen bonds with the FGFR3 backbone oxygen of Glu555 and Ala558 and the side chain of Lys508. Notably, the inhibition of bFGF-FGFR3-RSK2 signaling by kaempferol suppresses the proliferation and migration of RA FLSs and the release of activated T-cell-mediated inflammatory cytokines, such as IL-17, IL-21, and TNF-α. We further found that activated phospho-FGFR3 and -RSK2 were more highly observed in RA than in OA synovium. The hyperplastic lining and sublining lymphoid aggregate layers of RA synovium showed p-RSK2-expressing CD68+ macrophages with high frequency, while pRSK2-expressing CD4+ T-cells was observed at a lower frequency. Notably, kaempferol administration in collagen-induced arthritis mice relieved the frequency and severity of arthritis. Kaempferol reduced osteoclast differentiation in vitro and in vivo relative to the controls and was associated with the inhibition of osteoclast markers, such as tartrate-resistant acid phosphatase, integrin β3, and MMP9. Conclusively, our data suggest that bFGF-induced FGFR3-RSK2 signaling may play a critical role during the initiation and progression of RA in terms of FLS proliferation and enhanced osteoclastogenesis, and that kaempferol may be effective as a new treatment for RA.
Collapse
|
246
|
Bai BL, Xie ZJ, Weng SJ, Wu ZY, Li H, Tao ZS, Boodhun V, Yan DY, Shen ZJ, Tang JH, Yang L. Chitosan oligosaccharide promotes osteoclast formation by stimulating the activation of MAPK and AKT signaling pathways. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1207-1218. [PMID: 29502489 DOI: 10.1080/09205063.2018.1448336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bing-Li Bai
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhong-Jie Xie
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - She-Ji Weng
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zong-Yi Wu
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hang Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, WuHu, China
| | - Viraj Boodhun
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - De-Yi Yan
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Jian Shen
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Hao Tang
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Yang
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
247
|
Wang Q, Zhao Y, Sha N, Zhang Y, Li C, Zhang H, Tang D, Lu S, Shi Q, Wang Y, Shu B, Zhao D. The systemic bone protective effects of Gushukang granules in ovariectomized mice by inhibiting osteoclastogenesis and stimulating osteoblastogenesis. J Pharmacol Sci 2018; 136:155-164. [DOI: 10.1016/j.jphs.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 01/04/2023] Open
|
248
|
Nakamichi Y, Udagawa N, Suda T, Takahashi N. Mechanisms involved in bone resorption regulated by vitamin D. J Steroid Biochem Mol Biol 2018; 177:70-76. [PMID: 29146302 DOI: 10.1016/j.jsbmb.2017.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/26/2017] [Accepted: 11/12/2017] [Indexed: 12/31/2022]
Abstract
Active forms of vitamin D enhance osteoclastogenesis in vitro and in vivo through the vitamin D receptor (VDR) in osteoblast-lineage cells consisting of osteoblasts and osteocytes. This pro-resorptive activity was evident basically with higher concentrations of active vitamin D than those expected in physiological conditions. Nevertheless, vitamin D compounds have been used in Japan for treating osteoporosis to increase bone mineral density (BMD). Of note, the increase in BMD by long-term treatment with pharmacological (=near-physiological) doses of vitamin D compounds was caused by the suppression of bone resorption. Therefore, whether vitamin D expresses pro-resorptive or anti-resorptive properties seems to be dependent on the treatment protocols. We established osteoblast lineage-specific and osteoclast-specific VDR conditional knockout (cKO) mice using Osterix-Cre transgenic mice and Cathepsin K-Cre knock-in mice, respectively. According to our observation using these cKO mouse lines, neither VDR in osteoblast-lineage cells nor that in osteoclasts played important roles for osteoclastogenesis and bone resorption at homeostasis. However, using our cKO lines, we observed that VDR in osteoblast-lineage cells, but not osteoclasts, was involved in the anti-resorptive properties of pharmacological doses of vitamin D compounds in vivo. Two different osteoblast-lineage VDR cKO mouse lines were reported. One is a VDR cKO mouse line using alpha 1, type I collagen (Col1a1)-Cre transgenic mice (here we call Col1a1-VDR-cKO mice) and the other is that using dentin matrix protein 1 (Dmp1)-Cre transgenic mice (Dmp1-VDR-cKO mice). Col1a1-VDR-cKO mice exhibited slightly increased bone mass due to lowered bone resorption. In contrast, Dmp1-VDR-cKO mice exhibited no difference in BMD in agreement with our results regarding Ob-VDR-cKO mice. Here we discuss contradictory results and multiple modes of actions of vitamin D in bone resorption in detail. (279 words).
Collapse
Affiliation(s)
- Yuko Nakamichi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan.
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | - Tatsuo Suda
- Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| |
Collapse
|
249
|
Ke D, Fu X, Xue Y, Wu H, Zhang Y, Chen X, Hou J. IL-17A regulates the autophagic activity of osteoclast precursors through RANKL-JNK1 signaling during osteoclastogenesis in vitro. Biochem Biophys Res Commun 2018; 497:890-896. [PMID: 29476739 DOI: 10.1016/j.bbrc.2018.02.164] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 02/03/2023]
Abstract
Interleukin-17A(IL-17A), a proinflammatory cytokine, may have effects on osteoclastic resorption in inflammation-mediated bone loss, including postmenopausal osteoporosis. IL-17A could alter autophagic activity among other tissues and cells, thereby causing corresponding lesions. The aim of this study was to clarify how IL-17A influenced osteoclastogenesis by regulating autophagy. The present study showed that IL-17A could facilitate osteoclast precursors (OCPs) autophagy and osteoclastogenesis at a low concentration. Furthermore, suppression of autophagy with chloroquine (CQ) or 3-MA could significantly attenuate the enhanced osteoclastogenesis by a low level of IL-17A. It was also found that a low level of IL-17A couldn't up-regulate OCPs autophagy after removal of RANKL(Receptor Activator for Nuclear Factor-κB Ligand), and JNK(c-Jun N-terminal kinase) inhibitor only inhibited autophagy at a low level of IL-17A. These results suggest that a low concentration of IL-17A is likely to promote autophagic activity via activating RANKL-JNK pathway during osteoclastogenesis.
Collapse
Affiliation(s)
- Dianshan Ke
- Shengli Clinical Medical College of Fujian Medical University, No. 134Dong Jie Road, Fuzhou 350001, China
| | - Xiaomin Fu
- Pediatrics Department, Division of Metabolism and Endocrinology, John Hopkins University, Baltimore, MD, USA
| | - Ying Xue
- Shengli Clinical Medical College of Fujian Medical University, No. 134Dong Jie Road, Fuzhou 350001, China
| | - Haojie Wu
- Shengli Clinical Medical College of Fujian Medical University, No. 134Dong Jie Road, Fuzhou 350001, China
| | - Yang Zhang
- Shengli Clinical Medical College of Fujian Medical University, No. 134Dong Jie Road, Fuzhou 350001, China
| | - Xinwei Chen
- Shengli Clinical Medical College of Fujian Medical University, No. 134Dong Jie Road, Fuzhou 350001, China
| | - Jianming Hou
- Shengli Clinical Medical College of Fujian Medical University, No. 134Dong Jie Road, Fuzhou 350001, China; Endocrinology Department, Fujian Provincial Hospital, No. 134Dong Jie Road, Fuzhou 350001, China.
| |
Collapse
|
250
|
Salamanna F, Borsari V, Brogini S, Giavaresi G, Parrilli A, Cepollaro S, Cadossi M, Martini L, Mazzotti A, Fini M. An in vitro 3D bone metastasis model by using a human bone tissue culture and human sex-related cancer cells. Oncotarget 2018; 7:76966-76983. [PMID: 27765913 PMCID: PMC5363563 DOI: 10.18632/oncotarget.12763] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 09/27/2016] [Indexed: 01/08/2023] Open
Abstract
One of the main limitations, when studying cancer-bone metastasis, is the complex nature of the native bone environment and the lack of reliable, simple, inexpensive models that closely mimic the biological processes occurring in patients and allowing the correct translation of results. To enhance the understanding of the mechanisms underlying human bone metastases and in order to find new therapies, we developed an in vitro three-dimensional (3D) cancer-bone metastasis model by culturing human breast or prostate cancer cells with human bone tissue isolated from female and male patients, respectively. Bone tissue discarded from total hip replacement surgery was cultured in a rolling apparatus system in a normoxic or hypoxic environment. Gene expression profile, protein levels, histological, immunohistochemical and four-dimensional (4D) micro-CT analyses showed a noticeable specificity of breast and prostate cancer cells for bone colonization and ingrowth, thus highlighting the species-specific and sex-specific osteotropism and the need to widen the current knowledge on cancer-bone metastasis spread in human bone tissues. The results of this study support the application of this model in preclinical studies on bone metastases and also follow the 3R principles, the guiding principles, aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes.
Collapse
Affiliation(s)
- Francesca Salamanna
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy.,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Veronica Borsari
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Silvia Brogini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Gianluca Giavaresi
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy.,Laboratory of Tissue Engineering-Innovative Technology Platforms for Tissue Engineering, Rizzoli Orthopedic Institute, Palermo, Italy
| | - Annapaola Parrilli
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Simona Cepollaro
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cadossi
- I Orthopaedics and Trauma Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy.,University of Bologna, Bologna, Italy
| | - Lucia Martini
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy.,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Antonio Mazzotti
- I Orthopaedics and Trauma Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy.,University of Bologna, Bologna, Italy
| | - Milena Fini
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy.,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|