201
|
Graham RS, Larson RG. Coarse-Grained Brownian Dynamics Simulations of Electrophoresis of DNA Molecules from Generalized Reptation Models. Macromolecules 2007. [DOI: 10.1021/ma061912+] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
202
|
Hogg JS, Hu FZ, Janto B, Boissy R, Hayes J, Keefe R, Post JC, Ehrlich GD. Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol 2007; 8:R103. [PMID: 17550610 PMCID: PMC2394751 DOI: 10.1186/gb-2007-8-6-r103] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/17/2007] [Accepted: 06/05/2007] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The distributed genome hypothesis (DGH) posits that chronic bacterial pathogens utilize polyclonal infection and reassortment of genic characters to ensure persistence in the face of adaptive host defenses. Studies based on random sequencing of multiple strain libraries suggested that free-living bacterial species possess a supragenome that is much larger than the genome of any single bacterium. RESULTS We derived high depth genomic coverage of nine nontypeable Haemophilus influenzae (NTHi) clinical isolates, bringing to 13 the number of sequenced NTHi genomes. Clustering identified 2,786 genes, of which 1,461 were common to all strains, with each of the remaining 1,328 found in a subset of strains; the number of clusters ranged from 1,686 to 1,878 per strain. Genic differences of between 96 and 585 were identified per strain pair. Comparisons of each of the NTHi strains with the Rd strain revealed between 107 and 158 insertions and 100 and 213 deletions per genome. The mean insertion and deletion sizes were 1,356 and 1,020 base-pairs, respectively, with mean maximum insertions and deletions of 26,977 and 37,299 base-pairs. This relatively large number of small rearrangements among strains is in keeping with what is known about the transformation mechanisms in this naturally competent pathogen. CONCLUSION A finite supragenome model was developed to explain the distribution of genes among strains. The model predicts that the NTHi supragenome contains between 4,425 and 6,052 genes with most uncertainty regarding the number of rare genes, those that have a frequency of <0.1 among strains; collectively, these results support the DGH.
Collapse
Affiliation(s)
- Justin S Hogg
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
- Joint Carnegie Mellon University - University of Pittsburgh Ph.D. Program in Computational Biology. 3064 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Fen Z Hu
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| | - Benjamin Janto
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| | - Robert Boissy
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| | - Jay Hayes
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| | - Randy Keefe
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| | - J Christopher Post
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| | - Garth D Ehrlich
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania 15212, USA
| |
Collapse
|
203
|
Xiao M, Phong A, Ha C, Chan TF, Cai D, Leung L, Wan E, Kistler AL, DeRisi JL, Selvin PR, Kwok PY. Rapid DNA mapping by fluorescent single molecule detection. Nucleic Acids Res 2006; 35:e16. [PMID: 17175538 PMCID: PMC1807959 DOI: 10.1093/nar/gkl1044] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA mapping is an important analytical tool in genomic sequencing, medical diagnostics and pathogen identification. Here we report an optical DNA mapping strategy based on direct imaging of individual DNA molecules and localization of multiple sequence motifs on the molecules. Individual genomic DNA molecules were labeled with fluorescent dyes at specific sequence motifs by the action of nicking endonuclease followed by the incorporation of dye terminators with DNA polymerase. The labeled DNA molecules were then stretched into linear form on a modified glass surface and imaged using total internal reflection fluorescence (TIRF) microscopy. By determining the positions of the fluorescent labels with respect to the DNA backbone, the distribution of the sequence motif recognized by the nicking endonuclease can be established with good accuracy, in a manner similar to reading a barcode. With this approach, we constructed a specific sequence motif map of lambda-DNA. We further demonstrated the capability of this approach to rapidly type a human adenovirus and several strains of human rhinovirus.
Collapse
Affiliation(s)
- Ming Xiao
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
- To whom correspondence should be addressed at: 513, Parnassus Avenue, HSW-901A, San Francisco, CA 94143, USA. Tel: +1 41 551 43876; Fax: +1 41 547 62956;
| | - Angie Phong
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Connie Ha
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Ting-Fung Chan
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Dongmei Cai
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Lucinda Leung
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Eunice Wan
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Amy L. Kistler
- Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, CA 94115, USA
| | - Paul R. Selvin
- Department of Physics and Center of Biophysics, University of Illinois at Urbana-ChampaignUrbana, IL 61801, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute and Center for Human Genetics, University of CaliforniaSan Francisco, CA 94115, USA
- Department of Dermatology, University of CaliforniaSan Francisco, CA 94115, USA
| |
Collapse
|
204
|
Rhee M, Burns MA. Nanopore sequencing technology: research trends and applications. Trends Biotechnol 2006; 24:580-6. [PMID: 17055093 DOI: 10.1016/j.tibtech.2006.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/04/2006] [Accepted: 10/11/2006] [Indexed: 11/15/2022]
Abstract
Nanopore sequencing is one of the most promising technologies being developed as a cheap and fast alternative to the conventional Sanger sequencing method. Protein or synthetic nanopores have been used to detect DNA or RNA molecules. Although none of the technologies to date has shown single-base resolution for de novo DNA sequencing, there have been several reports of alpha-hemolysin protein nanopores being used for basic DNA analyses, and various synthetic nanopores have been fabricated. This review will examine current nanopore sequencing technologies, including recent developments of new applications.
Collapse
Affiliation(s)
- Minsoung Rhee
- Departments of Chemical Engineering and Biomedical Engineering, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
205
|
Wu T, Schwartz DC. Transchip: single-molecule detection of transcriptional elongation complexes. Anal Biochem 2006; 361:31-46. [PMID: 17187751 PMCID: PMC1945215 DOI: 10.1016/j.ab.2006.10.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 11/24/2022]
Abstract
A new single-molecule system, Transchip, was developed for analysis of transcription products at their genomic origins. The bacteriophage T7 RNA polymerase and its promoters were used in a model system, and resultant RNAs were imaged and detected at their positions along single template DNA molecules. The Transchip system has drawn from critical aspects of Optical Mapping, a single-molecule system that enables the construction of high-resolution ordered restriction maps of whole genomes from single DNA molecules. Through statistical analysis of hundreds of single-molecule template/transcript complexes, Transchip enables analysis of the locations and strength of promoters, the direction and processivity of transcription reactions, and the termination of transcription. These novel results suggest that the new system may serve as a high-throughput platform to investigate transcriptional events on a large genome-wide scale.
Collapse
Affiliation(s)
- Tian Wu
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
206
|
Dukkipati VR, Kim JH, Pang SW, Larson RG. Protein-assisted stretching and immobilization of DNA molecules in a microchannel. NANO LETTERS 2006; 6:2499-504. [PMID: 17090080 DOI: 10.1021/nl0617484] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We demonstrate a novel technique we call "protein-assisted DNA immobilization" (PADI), to immobilize and stretch, but not overstretch, DNA molecules inside a micro/nanochannel with limited surface interactions while maintaining continuous hydration at physiological pH. The biological activity of the immobilized DNA molecules is confirmed by digesting the DNA with restriction enzymes in the microchannel. Single-molecule transcription, which has stringent requirements on the immobilized DNA with respect to surface interactions and stretched lengths, is also successfully demonstrated on DNA molecules immobilized by PADI. In addition to arraying DNA molecules for study of DNA-protein interactions, the immobilization method could be used to construct DNA-templated nanoelectronic devices.
Collapse
Affiliation(s)
- Venkat Ram Dukkipati
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
207
|
Valouev A, Schwartz DC, Zhou S, Waterman MS. An algorithm for assembly of ordered restriction maps from single DNA molecules. Proc Natl Acad Sci U S A 2006; 103:15770-5. [PMID: 17043225 PMCID: PMC1635078 DOI: 10.1073/pnas.0604040103] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Indexed: 11/18/2022] Open
Abstract
The restriction mapping of a massive number of individual DNA molecules by optical mapping enables assembly of physical maps spanning mammalian and plant genomes; however, not through computational means permitting completely de novo assembly. Existing algorithms are not practical for genomes larger than lower eukaryotes due to their high time and space complexity. In many ways, sequence assembly parallels map assembly, so that the overlap-layout-consensus strategy, recently shown effective in assembling very large genomes in feasible time, sheds new light on solving map construction issues associated with single molecule substrates. Accordingly, we report an adaptation of this approach as the formal basis for de novo optical map assembly and demonstrate its computational feasibility for assembly of very large genomes. As such, we discuss assembly results for a series of genomes: human, plant, lower eukaryote and bacterial. Unlike sequence assembly, the optical map assembly problem is actually more complex because restriction maps from single molecules are constructed, manifesting errors stemming from: missing cuts, false cuts, and high variance of estimated fragment sizes; chimeric maps resulting from artifactually merged molecules; and true overlap scores that are "in the noise" or "slightly above the noise." We address these problems, fundamental to many single molecule measurements, by an effective error correction method using global overlap information to eliminate spurious overlaps and chimeric maps that are otherwise difficult to identify.
Collapse
Affiliation(s)
- Anton Valouev
- Department of Mathematics, University of Southern California, 3620 South Vermont Avenue, KAP 108, Los Angeles, CA 90089-2532, USA.
| | | | | | | |
Collapse
|
208
|
Chan TF, Ha C, Phong A, Cai D, Wan E, Leung L, Kwok PY, Xiao M. A simple DNA stretching method for fluorescence imaging of single DNA molecules. Nucleic Acids Res 2006; 34:e113. [PMID: 16971459 PMCID: PMC1635263 DOI: 10.1093/nar/gkl593] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stretching or aligning DNA molecules onto a surface by means of molecular combing techniques is one of the critical steps in single DNA molecule analysis. However, many of the current studies have focused on λ-DNA, or other large DNA molecules. There are very few studies on stretching methodologies for DNA molecules generated via PCR (typically smaller than 20 kb). Here we describe a simple method of stretching DNA molecules up to 18 kb in size on a modified glass surface. The very low background fluorescence allows efficient detection of single fluorescent dye labels incorporated into the stretched DNA molecules.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ming Xiao
- To whom correspondence should be addressed. 513 Parnassus Avenue, HSW-901A, San Francisco, CA 94143, USA. Tel: +1 4155143876; Fax: +1 4154762956;
| |
Collapse
|
209
|
Biver T, Pulzonetti M, Secco F, Venturini M, Yarmoluk S. A kinetic analysis of cyanine selectivity: CCyan2 and Cyan40 intercalation into poly(dA-dT) x poly(dA-dT) and poly(dG-dC) x poly(dG-dC). Arch Biochem Biophys 2006; 451:103-11. [PMID: 16781658 DOI: 10.1016/j.abb.2006.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 04/20/2006] [Accepted: 04/30/2006] [Indexed: 11/20/2022]
Abstract
A T-jump investigation of the binding of Cyan40 [3-methyl-2-(1,2,6-trimethyl-4(1H)pyridinylidenmethyl)-benzothiazolium ion] and CCyan2 [3-methyl-2-[2-methyl-3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-benzothiazolium ion] with poly(dA-dT) x poly(dA-dT) and poly(dG-dC) x poly(dG-dC) is performed at I = 0.1M (NaCl), 25 degrees C and pH 7. Two kinetic effects are observed for both systems. The binding process is discussed in terms of the sequence D + P <==> P,D <==> PD(I) <==> PD(II), which leads first to fast formation of a precursor complex P,D and then to a partially intercalated complex PD(I) which converts to the fully intercalate complex PD(II). Concerning CCyan2 the rate parameters depend on the polymer nature and their analysis shows that in the case of poly(dG-dC) x poly(dG-dC) the most stable bound form is the fully intercalated complex PD(II), whereas in the case of poly(dA-dT) x poly(dA-dT) the partially intercalated complex PD(I) is the most stable species. Concerning Cyan40, the rate parameters remain unchanged on going from A-T to G-C indicating that this dye is unselective.
Collapse
Affiliation(s)
- Tarita Biver
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|
210
|
Randall GC, Schultz KM, Doyle PS. Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices. LAB ON A CHIP 2006; 6:516-25. [PMID: 16572214 DOI: 10.1039/b515326c] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The ability to controllably and continuously stretch large DNA molecules in a microfluidic format is important for gene mapping technologies such as Direct Linear Analysis (DLA). We have recently shown that electric field gradients can be readily generated in a microfluidic device and the resulting field is purely elongational. We present a single molecule fluorescence microscopy analysis of T4 DNA (169 kbp) stretching in the electric field gradients in a hyperbolic contraction microchannel. In addition, we are able to selectively pattern a crosslinked gel anywhere inside the microchannel. With an applied electric field, DNA molecules are forced to reptate through the gel and they moderately stretch as they exit the gel. By placing a gel immediately in front of the hyperbolic contraction, we bypass "molecular individualism" and achieve highly uniform and complete stretching of T4 DNA.
Collapse
Affiliation(s)
- Greg C Randall
- Department of Chemical Engineering, Massachusetts Institute of Technology, MIT Room 66-456, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | | | |
Collapse
|
211
|
|
212
|
Riehn R, Lu M, Wang YM, Lim SF, Cox EC, Austin RH. Restriction mapping in nanofluidic devices. Proc Natl Acad Sci U S A 2005; 102:10012-6. [PMID: 16000405 PMCID: PMC1172226 DOI: 10.1073/pnas.0503809102] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have performed restriction mapping of DNA molecules using restriction endonucleases in nanochannels with diameters of 100-200 nm. The location of the restriction reaction within the device is controlled by electrophoresis and diffusion of Mg2+ and EDTA. We have successfully used the restriction enzymes SmaI, SacI, and PacI, and have been able to measure the positions of restriction sites with a precision of approximately 1.5 kbp in 1 min using single DNA molecules.
Collapse
Affiliation(s)
- Robert Riehn
- Departments of Physics, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | | | | | |
Collapse
|
213
|
Biver T, De Biasi A, Secco F, Venturini M, Yarmoluk S. Cyanine dyes as intercalating agents: kinetic and thermodynamic studies on the DNA/Cyan40 and DNA/CCyan2 systems. Biophys J 2005; 89:374-83. [PMID: 15863482 PMCID: PMC1366537 DOI: 10.1529/biophysj.105.059790] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 04/20/2005] [Indexed: 11/18/2022] Open
Abstract
The interaction of cyanines with nucleic acids is accompanied by intense changes of their optical properties. Consequently these molecules find numerous applications in biology and medicine. Since no detailed information on the binding mechanism of DNA/cyanine systems is available, a T-jump investigation of the kinetics and equilibria of binding of the cyanines Cyan40 [3-methyl-2-(1,2,6-trimethyl-4(1H)pyridinylidenmethyl)-benzothiazolium ion] and CCyan2 [3-methyl-2-[2-methyl-3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-benzothiazolium ion] with CT-DNA is performed at 25 degrees C, pH 7 and various ionic strengths. Bathochromic shifts of the dye absorption band upon DNA addition, polymer melting point displacement (DeltaT = 8-10 degrees C), site size determination (n = 2), and stepwise kinetics concur in suggesting that the investigated cyanines bind to CT-DNA primary by intercalation. Measurements with poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC) reveal fair selectivity of CCyan2 toward G-C basepairs. T-jump experiments show two kinetic effects for both systems. The binding process is discussed in terms of the sequence D + S left arrow over right arrow D,S left arrow over right arrow DS(I) left arrow over right arrow DS(II), which leads first to fast formation of an external complex D,S and then to a partially intercalated complex DS(I) which, in turn, converts to DS(II), a more stable intercalate. Absorption spectra reveal that both dyes tend to self-aggregate; the kinetics of CCyan2 self-aggregation is studied by T-jump relaxation and the results are interpreted in terms of dimer formation.
Collapse
Affiliation(s)
- Tarita Biver
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
214
|
Ferris MM, Habbersett RC, Wolinsky M, Jett JH, Yoshida TM, Keller RA. Statistics of single-molecule measurements: applications in flow-cytometry sizing of DNA fragments. Cytometry A 2005; 60:41-52. [PMID: 15229856 DOI: 10.1002/cyto.a.20000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The measurement of physical properties from single molecules has been demonstrated. However, the majority of single-molecule studies report values based on relatively large data sets (e.g., N > 50). While there are studies that report physical quantities based on small sample sets, there has not been a detailed statistical analysis relating sample size to the reliability of derived parameters. METHODS Monte Carlo simulations and multinomial analysis, dependent on quantifiable experimental parameters, were used to determine the minimum number of single-molecule measurements required to produce an accurate estimate of a population mean. Simulation results were applied to the fluorescence-based sizing of DNA fragments by ultrasensitive flow cytometry (FCM). RESULTS Our simulations show, for an analytical technique with a 10% CV, that the average of as few as five single-molecule measurements would provide a mean value within one SD of the population mean. Additional simulations determined the number of measurements required to obtain the desired number of replicates for each subpopulation within a mixture. Application of these results to flow cytometry data for lambda/HindIII and S. aureus Mu50/SmaI DNA digests produced accurate DNA fingerprints from as few as 98 single-molecule measurements. CONCLUSIONS A surprisingly small number of single-molecule measurements are required to obtain a mean measurement descriptive of a normally-distributed parent population.
Collapse
Affiliation(s)
- Matthew M Ferris
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | |
Collapse
|
215
|
Laib S, Rankl M, Ruckstuhl T, Seeger S. Sizing of single fluorescently stained DNA fragments by scanning microscopy. Nucleic Acids Res 2004; 31:e138. [PMID: 14602931 PMCID: PMC275575 DOI: 10.1093/nar/gng138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe an approach to determine DNA fragment sizes based on the fluorescence detection of single adsorbed fragments on specifically coated glass cover slips. The brightness of single fragments stained with the DNA bisintercalation dye TOTO-1 is determined by scanning the surface with a confocal microscope. The brightness of adsorbed fragments is found to be proportional to the fragment length. The method needs only minute amount of DNA, beyond inexpensive and easily available surface coatings, like poly-L-lysine, 3-aminoproyltriethoxysilane and polyornithine, are utilizable. We performed DNA-sizing of fragment lengths between 2 and 14 kb. Further, we resolved the size distribution before and after an enzymatic restriction digest. At this a separation of buffers or enzymes was unnecessary. DNA sizes were determined within an uncertainty of 7-14%. The proposed method is straightforward and can be applied to standardized microtiter plates.
Collapse
Affiliation(s)
- Stephan Laib
- Institute for Physical Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
216
|
Abstract
A conventional method of DNA sequencing can determine up to 1000 base pairs at one time. Therefore, long DNA should be cut into many short fragments that are suitable for DNA sequencing. Those fragments, however, lose their order information. If the fragments are prepared from the terminus of the long DNA, the reorganization process can be omitted. This process consists of following unit operations; manipulation of genomic DNA, fixation with a stretched form, cutting from the terminus, recovery and amplification. In these unit operations, manipulation and cutting of DNA are focused in this report. Globular transformation suppresses break down of long genome DNA and permits manipulation of large DNA. Because globular transition is reversible, the coiled DNA can be sequentially spun from the globular DNA like a spindle. Thespun DNA was successfully fixed on a glass surface in an arbitrary pattern. To prepare fragments from the stretched DNA molecule, a method to cut DNA moleculen was developed. Since most restriction enzyme requires magnesium ion for their activation, the restriction enzyme was successfully activated only when magnesium ion was electrochemically supplied.
Collapse
Affiliation(s)
- A Mizuno
- Department of Ecological Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 Japan
| | | |
Collapse
|
217
|
Koch SJ, Shundrovsky A, Jantzen BC, Wang MD. Probing protein-DNA interactions by unzipping a single DNA double helix. Biophys J 2002; 83:1098-105. [PMID: 12124289 PMCID: PMC1302211 DOI: 10.1016/s0006-3495(02)75233-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We present unzipping force analysis of protein association (UFAPA) as a novel and versatile method for detection of the position and dynamic nature of protein-DNA interactions. A single DNA double helix was unzipped in the presence of DNA-binding proteins using a feedback-enhanced optical trap. When the unzipping fork in a DNA reached a bound protein molecule we observed a dramatic increase in the tension in the DNA, followed by a sudden tension reduction. Analysis of the unzipping force throughout an unbinding "event" revealed information about the spatial location and dynamic nature of the protein-DNA complex. The capacity of UFAPA to spatially locate protein-DNA interactions is demonstrated by noncatalytic restriction mapping on a 4-kb DNA with three restriction enzymes (BsoBI, XhoI, and EcoRI). A restriction map for a given restriction enzyme was generated with an accuracy of approximately 25 bp. UFAPA also allows direct determination of the site-specific equilibrium association constant (K(A)) for a DNA-binding protein. This capability is demonstrated by measuring the cation concentration dependence of K(A) for EcoRI binding. The measured values are in good agreement with previous measurements of K(A) over an intermediate range of cation concentration. These results demonstrate the potential utility of UFAPA for future studies of site-specific protein-DNA interactions.
Collapse
Affiliation(s)
- Steven J Koch
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
218
|
Kaji N, Ueda M, Baba Y. Molecular stretching of long DNA in agarose gel using alternating current electric fields. Biophys J 2002; 82:335-44. [PMID: 11751320 PMCID: PMC1302473 DOI: 10.1016/s0006-3495(02)75398-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We demonstrate a novel method for stretching a long DNA molecule in agarose gel with alternating current (AC) electric fields. The molecular motion of a long DNA (T4 DNA; 165.6 kb) in agarose gel was studied using fluorescence microscopy. The effects of a wide range of field frequencies, field strengths, and gel concentrations were investigated. Stretching was only observed in the AC field when a frequency of approximately 10 Hz was used. The maximal length of the stretched DNA had the longest value when a field strength of 200 to 400 V/cm was used. Stretching was not sensitive to a range of agarose gel concentrations from 0.5 to 3%. Together, these experiments indicate that the optimal conditions for stretching long DNA in an AC electric field are a frequency of 10 Hz with a field strength of 200 V/cm and a gel concentration of 1% agarose. Using these conditions, we were able to successfully stretch Saccharomyces cerevisiae chromosomal DNA molecules (225-2,200 kb). These results may aid in the development of a novel method to stretch much longer DNA, such as human chromosomal DNA, and may contribute to the analysis of a single chromosomal DNA from a single cell.
Collapse
Affiliation(s)
- Noritada Kaji
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, CREST, Japan Science and Technology Corporation, Tokushima 770-8505, Japan.
| | | | | |
Collapse
|
219
|
Serwer P, Hayes SJ. Partially condensed DNA conformations observed by single molecule fluorescence microscopy. Biophys J 2001; 81:3398-408. [PMID: 11721002 PMCID: PMC1301796 DOI: 10.1016/s0006-3495(01)75972-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To detect partially condensed conformations of a double-stranded DNA molecule, single molecule fluorescence microscopy is performed here. The single DNA molecules are ethidium stained, 670 kilobase pair bacteriophage G genomes that are observed both during and after expulsion from capsids. Expulsion occurs in an agarose gel. Just after expulsion, the entire G DNA molecule typically has a partially condensed conformation not previously described (called a balloon). A balloon subsequently extrudes a filamentous segment of DNA. The filamentous segment becomes gently elongated via diffusion into the network that forms the agarose gel. The elongated DNA molecule usually has bright spots that undergo both appearance/disappearance and apparent motion. These spots are called dynamic spots. A dynamic spot is assumed to be the image of a zone of partially condensed DNA segments (globule). The positions of globules along an elongated DNA molecule 1) are restricted primarily to time-stable regions with comparatively high thermal motion-induced, micrometer-scale bending of the DNA molecule and 2) move within a given region on a time scale smaller than the time scale of recording. Less mobile globules are observed when either magnesium cation or ethanol is added before gel-embedding DNA molecules. These observations are explained by globules induced at equilibrium by a bending-dependent, inter-DNA segment force. Theory has previously predicted that globules are induced by electrostatic forces along an electrically charged polymer at equilibrium. The hypothesis is proposed that intracellular DNA globules assist action-at-a-distance during DNA metabolism.
Collapse
Affiliation(s)
- P Serwer
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA.
| | | |
Collapse
|
220
|
Weinel C, Tümmler B, Hilbert H, Nelson KE, Kiewitz C. General method of rapid Smith/Birnstiel mapping adds for gap closure in shotgun microbial genome sequencing projects: application to Pseudomonas putida KT2440. Nucleic Acids Res 2001; 29:E110. [PMID: 11713330 PMCID: PMC92575 DOI: 10.1093/nar/29.22.e110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A physical mapping strategy has been developed to verify and accelerate the assembly and gap closure phase of a microbial genome shotgun-sequencing project. The protocol was worked out during the ongoing Pseudomonas putida KT2440 genome project. A macro-restriction map was constructed by linking probe hybridisation of SwaI- or I-CeuI-restricted chromosomes to serve as a backbone for the quick quality control of sequence and contig assemblies. The library of PCR-generated SwaI linking probes was derived from the sequence assembly after 3- and 6-fold genome coverage. In order to support gap closure in regions with ambiguous assemblies such as the repetitive sequence of the seven ribosomal operons, high-resolution Smith/Birnstiel maps were generated by Southern hybridisation of pulsed-field gel electrophoresis-separated rare-cutter complete/frequent-cutter partial digestions with rare-cutter fragment end probes. Overall 1.5 Mb of the 6.1 Mb P.putida KT2440 genome has been subjected to high-resolution physical mapping in order to align assemblies generated from shotgun sequencing.
Collapse
Affiliation(s)
- C Weinel
- Klinische Forschergruppe OE 6711, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | | | | | | | | |
Collapse
|
221
|
Abstract
To build a foundation for the single-molecule fluorescence microscopy of protein complexes, the present study achieved fluorescence microscopy of single, nucleic acid-free protein capsids of bacteriophage T7. The capsids were stained with Alexa 488 (green emission). Manipulation of the capsids' thermal motion was achieved in three dimensions. The procedure for manipulation included embedding the capsids in an agarose gel. The data indicate that the thermal motion of capsids is reduced by the sieving of the gel. The thermal motion can be reduced to any desired level. A semilogarithmic plot of an effective diffusion constant as a function of gel concentration is linear. Single, diffusing T7 capsids were also visualized in the presence of single DNA molecules that had been both stretched and immobilized by gel-embedding. The DNA molecules were stained with ethidium (orange emission). This study shows that single-molecule (protein and DNA) analysis is possible for both packaging of DNA in a bacteriophage capsid and other events of DNA metabolism. The major problem is the maintenance of biochemical activity.
Collapse
Affiliation(s)
- S Huang
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
222
|
Karp RM, Pe'er I, Shamir R. An algorithm combining discrete and continuous methods for optical mapping. J Comput Biol 2001; 7:745-60. [PMID: 11153097 DOI: 10.1089/106652701446189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Optical mapping is a novel technique for generating the restriction map of a DNA molecule by observing many single, partially digested copies of it, using fluorescence microscopy. The real-life problem is complicated by numerous factors: false positive and false negative cut observations, inaccurate location measurements, unknown orientations, and faulty molecules. We present an algorithm for solving the real-life problem. The algorithm combines continuous optimization and combinatorial algorithms applied to a nonuniform discretization of the data. We present encouraging results on real experimental data and on simulated data.
Collapse
Affiliation(s)
- R M Karp
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720-1776, USA.
| | | | | |
Collapse
|
223
|
Abstract
Optical mapping is a new technique to generate restriction maps of DNA easily and quickly. DNA restriction maps can be aligned by comparing corresponding restriction fragment lengths. To relate, organize, and analyse these maps it is necessary to rapidly compare maps. The issue of the statistical significance of approximately matching maps then becomes central, as in BLAST with sequence scoring. In this paper, we study the approximation to the distribution of counts of matched regions of specified length when comparing two DNA restriction maps. Distributional results are given to enable us to computep-values and hence to determine whether or not the two restriction maps are related. The key tool used is the Chen-Stein method of Poisson approximation. Certain open problems are described.
Collapse
|
224
|
Frengen E, Zhao B, Howe S, Weichenhan D, Osoegawa K, Gjernes E, Jessee J, Prydz H, Huxley C, de Jong PJ. Modular bacterial artificial chromosome vectors for transfer of large inserts into mammalian cells. Genomics 2000; 68:118-26. [PMID: 10964509 DOI: 10.1006/geno.2000.6286] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To facilitate the use of large-insert bacterial clones for functional analysis, we have constructed new bacterial artificial chromosome vectors, pPAC4 and pBACe4. These vectors contain two genetic elements that enable stable maintenance of the clones in mammalian cells: (1) The Epstein-Barr virus replicon, oriP, is included to ensure stable episomal propagation of the large insert clones upon transfection into mammalian cells. (2) The blasticidin deaminase gene is placed in a eukaryotic expression cassette to enable selection for the desired mammalian clones by using the nucleoside antibiotic blasticidin. Sequences important to select for loxP-specific genome targeting in mammalian chromosomes are also present. In addition, we demonstrate that the attTn7 sequence present on the vectors permits specific addition of selected features to the library clones. Unique sites have also been included in the vector to enable linearization of the large-insert clones, e. g., for optical mapping studies. The pPAC4 vector has been used to generate libraries from the human, mouse, and rat genomes. We believe that clones from these libraries would serve as an important reagent in functional experiments, including the identification or validation of candidate disease genes, by transferring a particular clone containing the relevant wildtype gene into mutant cells or transgenic or knock-out animals.
Collapse
Affiliation(s)
- E Frengen
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Sun HB, Smith GN, Hasty KA, Yokota H. Atomic force microscopy-based detection of binding and cleavage site of matrix metalloproteinase on individual type II collagen helices. Anal Biochem 2000; 283:153-8. [PMID: 10906235 DOI: 10.1006/abio.2000.4629] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type II tropocollagen molecules were reacted with matrix metalloproteinase 8 (MMP-8) and the binding sites as well as the cleavage site of MMP-8 were detected on individual molecules using atomic force microscopy (AFM). Approximately 300-nm-long coiled-coil tropocollagen molecules were straightened and immobilized on an atomically flat surface for detection by AFM. The direct visualization of individual collagen molecules revealed heterogeneous characteristics of MMP-8:collagen complexes. We observed that there existed multiple MMP-8 nonspecific binding sites on the collagen molecules, but cleavage always took place at a unique site. When collagen molecules, straightened and immobilized on the surface, were reacted with MMP-8, a site of cleavage appeared as a gap in stretched molecules. This is the first report to visually show direct collagenase:collagen interactions using AFM. The described AFM-based analysis has potential as a protein analysis tool for understanding a complex mechanism of enzyme:substrate interactions.
Collapse
Affiliation(s)
- H B Sun
- Biomedical Engineering Program, Department of Anatomy and Cell Biology, Rheumatology Division, Indiana University-Purdue University at Indianapolis, Indiana University School of Medicine, Indiana, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
226
|
Petty JT, Bordelon JA, Robertson ME. Thermodynamic Characterization of the Association of Cyanine Dyes with DNA. J Phys Chem B 2000. [DOI: 10.1021/jp000916s] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeffrey T. Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613
| | - Jason A. Bordelon
- Department of Chemistry, Furman University, Greenville, South Carolina 29613
| | - Mary E. Robertson
- Department of Chemistry, Furman University, Greenville, South Carolina 29613
| |
Collapse
|
227
|
Abstract
Optical mapping is a novel technique for determining the restriction sites on a DNA molecule by directly observing a number of partially digested copies of the molecule under a light microscope. The problem is complicated by uncertainty as to the orientation of the molecules and by erroneous detection of cuts. In this paper we study the problem of constructing a restriction map based on optical mapping data. We give several variants of a polynomial reconstruction algorithm, as well as an algorithm that is exponential in the number of cut sites, and hence is appropriate only for small number of cut sites. We give a simple probabilistic model for data generation and for the errors and prove probabilistic upper and lower bounds on the number of molecules needed by each algorithm in order to obtain a correct map, expressed as a function of the number of cut sites and the error parameters. To the best of our knowledge, this is the first probabilistic analysis of algorithms for the problem. We also provide experimental results confirming that our algorithms are highly effective on simulated data.
Collapse
Affiliation(s)
- R M Karp
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley 94720, USA.
| | | |
Collapse
|
228
|
Abstract
Handling large DNA molecules, such as chromosomal DNA, has become necessary due to recent developments in genome science. However, large DNA molecules are fragile and easily broken by shear stress accompanying flow in solution. This fragility causes difficulties in the preparation and handling of large DNA molecules. This study demonstrates the transition of DNA from a coiled to a globular form, which is highly condensed. This state suppresses DNA fragmentation due to shear stress in solution. The transition enables large DNA molecules to undergo mechanical manipulation. We confirmed that the fluorescence intensity of stained globular DNA increases with increasing length, suggesting that the resistance of globular DNA to shear stress is the factor that allows analysis of large DNA by flow cytometry.
Collapse
Affiliation(s)
- S Katsura
- Department of Ecological Engineering, Toyohashi University of Technology, Aichi, Japan.
| | | | | | | | | |
Collapse
|
229
|
Winfree E. Algorithmic Self-Assembly of DNA: Theoretical Motivations and 2D Assembly Experiments. J Biomol Struct Dyn 2000; 17 Suppl 1:263-70. [DOI: 10.1080/07391102.2000.10506630] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
230
|
Abstract
The rate of detection and sizing of individual fluorescently labeled DNA fragments in conventional single-molecule flow cytometry (SMFC) is limited by optical saturation, photon-counting statistics, and fragment overlap to approximately 100 fragments/s. We have increased the detection rate for DNA fragment sizing in SMFC to approximately 2000 fragments/s by parallel imaging of the fluorescence from individual DNA molecules, stained with a fluorescent intercalating dye, as they passed through a planar sheet of excitation laser light, resulting in order of magnitude improvements in the measurement speed and the sample throughput compared to conventional SMFC. Fluorescence bursts were measured from a fM solution of DNA fragments ranging in size from 7 to 154 kilobase pairs. A data acquisition time of only a few seconds was sufficient to determine the DNA fragment size distribution. A linear relationship between the number of detected photons per burst and the DNA fragment size was confirmed. Application of this parallel fluorescence imaging method will lead to improvements in the speed, throughput, and sensitivity of other types of flow-based analyses involving the study of single molecules, chromosomes, cells, etc.
Collapse
Affiliation(s)
- A Van Orden
- Bioscience Division, Los Alamos National Laboratory, New Mexico 87545, USA
| | | | | |
Collapse
|
231
|
Ueda M. Dynamics of long DNA confined by linear polymers. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1999; 41:153-65. [PMID: 10626773 DOI: 10.1016/s0165-022x(99)00045-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the electrophoretic behavior of long DNA molecules in a linear polymer [polyacrylamide (PA)] solution through direct observation by means of fluorescence microscopy. DNA migrates in an I-shaped conformation in concentrated polymer solutions under steady electric fields, but it is not stretched up to its natural contour length in this I-shaped conformation under such fields. The stretching of DNA is induced under alternating current fields through the entanglement effect between DNA and host polymers. We experimentally investigated the conditions required for this stretching phenomenon and found that DNA can be stretched at a concentration of around 7% PA, under a field of around 10 Hz. These conditions do not depend on the length of the DNA chains. It is expected that DNA stretching will be useful in the optical mapping of specific sites along an individual DNA chain.
Collapse
Affiliation(s)
- M Ueda
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Japan.
| |
Collapse
|
232
|
Herrick J, Bensimon A. Imaging of single DNA molecule: applications to high-resolution genomic studies. Chromosome Res 1999; 7:409-23. [PMID: 10560964 DOI: 10.1023/a:1009276210892] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Single molecule analysis of DNA has revealed new insights into its structural and physical properties. The application of new methods for manipulating and visualizing DNA has resulted in important advances in high-resolution physical mapping of the genome and quantitative cytogenetic studies of genomic abnormalities (Lichter 1997). Studies of single molecules of DNA have employed a variety of approaches including electron microscopy, atomic force microscopy, scanning-tunneling microscopy and fluorescence microscopy. A number of new technologies have recently been developed to exploit fluorescence microscopy's full potential for genomic analysis and the fine mapping of subtle genetic alterations. In the case of the latter application, particular emphasis has been placed on developing new methods for stretching DNA for high-resolution fluorescence in-situ hybridization studies. We have recently described a process called molecular combing according to which single DNA molecules bound by their extremities to a solid surface are uniformly stretched and aligned by a receding air/water interface (Bensimon et al. 1994). In the following, we will review recent developments concerning molecular combing and discuss its current and potential applications for the high-resolution mapping of the human genome, the detection and quantification of subtle genomic imbalances and the positional cloning of disease-related genes.
Collapse
Affiliation(s)
- J Herrick
- Département des Biotechnologies, Institut Pasteur, Paris, France
| | | |
Collapse
|
233
|
Oana H, Ueda M, Washizu M. Visualization of a specific sequence on a single large DNA molecule using fluorescence microscopy based on a new DNA-stretching method. Biochem Biophys Res Commun 1999; 265:140-3. [PMID: 10548504 DOI: 10.1006/bbrc.1999.1614] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A method for analyzing large DNA which makes it possible to obtain spatial information on the positions of specific sequences along a DNA molecule has been developed. Making use of the fact that large DNA molecules are stably elongated under an alternating-current field in a concentrated linear polymer solution, the direct observation of elongated individual lambda DNA molecules with fluorescence probes was carried out using fluorescence microscopy. The spatial positions of the fluorescent spots of the probe (fluorescence-labeled restriction endonuclease EcoRI) on DNA molecules were determined by image analysis. As expected, fluorescent spots of EcoRI were observed at certain positions on lambda DNA, where sequences to which EcoRI binds are located. Finally, the potential application of single large DNA molecule analysis using this DNA-stretching method is discussed.
Collapse
Affiliation(s)
- H Oana
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | | | | |
Collapse
|
234
|
Yokota H, Sunwoo J, Sarikaya M, van den Engh G, Aebersold R. Spin-stretching of DNA and protein molecules for detection by fluorescence and atomic force microscopy. Anal Chem 1999; 71:4418-22. [PMID: 10660441 DOI: 10.1021/ac9902695] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a rapid and efficient way of stretching DNA and denatured protein molecules for detection by fluorescence microscopy and atomic force microscopy (AFM). In the described method, a viscous drag created by transient rotational flow stretches randomly coiled DNA molecules or denatured proteins. Stretching is achieved by dispensing a droplet of sample solution containing DNA or denatured protein on a MgCl2-soaked mica surface. We present fluorescent images of straightened lambdaDNA molecules and AFM images of stress-shared, reduced von Willebrand factor as well as straightened lambdaDNA. The described quick and reliable spin-stretching technique will find wide applications in the analysis of single biopolymer molecules.
Collapse
Affiliation(s)
- H Yokota
- Department of Molecular, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
235
|
Lin J, Qi R, Aston C, Jing J, Anantharaman TS, Mishra B, White O, Daly MJ, Minton KW, Venter JC, Schwartz DC. Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science 1999; 285:1558-62. [PMID: 10477518 DOI: 10.1126/science.285.5433.1558] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A whole-genome restriction map of Deinococcus radiodurans, a radiation-resistant bacterium able to survive up to 15,000 grays of ionizing radiation, was constructed without using DNA libraries, the polymerase chain reaction, or electrophoresis. Very large, randomly sheared, genomic DNA fragments were used to construct maps from individual DNA molecules that were assembled into two circular overlapping maps (2.6 and 0.415 megabases), without gaps. A third smaller chromosome (176 kilobases) was identified and characterized. Aberrant nonlinear DNA structures that may define chromosome structure and organization, as well as intermediates in DNA repair, were directly visualized by optical mapping techniques after gamma irradiation.
Collapse
Affiliation(s)
- J Lin
- W. M. Keck Laboratory for Biomolecular Imaging, Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Sun M, Louie D, Serwer P. Single-event analysis of the packaging of bacteriophage T7 DNA concatemers in vitro. Biophys J 1999; 77:1627-37. [PMID: 10465774 PMCID: PMC1300451 DOI: 10.1016/s0006-3495(99)77011-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Bacteriophage T7 packages its double-stranded DNA genome in a preformed protein capsid (procapsid). The DNA substrate for packaging is a head-to-tail multimer (concatemer) of the mature 40-kilobase pair genome. Mature genomes are cleaved from the concatemer during packaging. In the present study, fluorescence microscopy is used to observe T7 concatemeric DNA packaging at the level of a single (microscopic) event. Metabolism-dependent cleavage to form several fragments is observed when T7 concatemers are incubated in an extract of T7-infected Escherichia coli (in vitro). The following observations indicate that the fragment-producing metabolic event is DNA packaging: 1) most fragments have the hydrodynamic radius (R(H)) of bacteriophage particles (+/-3%) when R(H) is determined by analysis of Brownian motion; 2) the fragments also have the fluorescence intensity (I) of bacteriophage particles (+/-6%); 3) as a fragment forms, a progressive decrease occurs in both R(H) and I. The decrease in I follows a pattern expected for intracapsid steric restriction of 4',6-diamidino-2-phenylindole (DAPI) binding to packaged DNA. The observed in vitro packaging of a concatemer's genomes always occurs in a synchronized cluster. Therefore, the following hypothesis is proposed: the observed packaging of concatemer-associated T7 genomes is cooperative.
Collapse
Affiliation(s)
- M Sun
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78284-7760 USA
| | | | | |
Collapse
|
237
|
Aston C, Mishra B, Schwartz DC. Optical mapping and its potential for large-scale sequencing projects. Trends Biotechnol 1999; 17:297-302. [PMID: 10370237 DOI: 10.1016/s0167-7799(99)01326-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Physical mapping has been rediscovered as an important component of large-scale sequencing projects. Restriction maps provide landmark sequences at defined intervals, and high-resolution restriction maps can be assembled from ensembles of single molecules by optical means. Such optical maps can be constructed from both large-insert clones and genomic DNA, and are used as a scaffold for accurately aligning sequence contigs generated by shotgun sequencing.
Collapse
Affiliation(s)
- C Aston
- Wyeth-Ayerst Research, CNS Disorders, Princeton, NJ 08543, USA.
| | | | | |
Collapse
|
238
|
Frengen E, Weichenhan D, Zhao B, Osoegawa K, van Geel M, de Jong PJ. A modular, positive selection bacterial artificial chromosome vector with multiple cloning sites. Genomics 1999; 58:250-3. [PMID: 10373322 DOI: 10.1006/geno.1998.5693] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To construct large-insert libraries for the sequencing, mapping, and functional studies of complex genomes, we have constructed a new modular bacterial artificial chromosome (BAC) vector, pBACe3.6 (GenBank Accession No. U80929). This vector contains multiple cloning sites located within the sacB gene, allowing positive selection for recombinant clones on sucrose-containing medium. A recognition site for the PI-SceI nuclease has also been included, which permits linearization of recombinant DNA irrespective of the characteristics of the insert sequences. An attTn7 sequence present in pBACe3.6 permits retrofitting of BAC clones by Tn7-mediated insertion of desirable sequence elements into the vector portion. The ability to retrofit BAC clones will be useful for functional analysis of genes carried on the cloned inserts. The pBACe3.6 vector has been used for the construction of many genomic libraries currently serving as resources for large-scale mapping and sequencing.
Collapse
Affiliation(s)
- E Frengen
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
239
|
Affiliation(s)
- C Aston
- Department of Chemistry, W. M. Keck Laboratory for Biomolecular Imaging, New York University, New York 10003, USA
| | | | | |
Collapse
|
240
|
Yokota H, Fung K, Trask BJ, van den Engh G, Sarikaya M, Aebersold R. Sharp DNA bends as landmarks of protein-binding sites on straightened DNA. Anal Chem 1999; 71:1663-7. [PMID: 10330902 DOI: 10.1021/ac981370x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a fluorescence-based method for mapping single or multiple protein-binding sites on straightened, large-size DNA molecules (> 5 kbp). In the described method, protein-DNA complexes were straightened and immobilized on a flat surface using surface tension. A fraction of the immobilized complexes displayed a sharp DNA bend with two DNA segments extending from the apex. The presence of DNA-binding proteins at the apex was verified by atomic force microscopy. The position of protein binding relative to the ends of the DNA molecule was determined by measuring the length of two DNA segments using fluorescence microscopy. We demonstrate the potential of the fluorescence-based method to localize protein-binding sites on the DNA template and to evaluate relative binding affinity. The proposed protein-binding-site mapping technique is simple and easy to perform. Practical applications include screening for DNA-binding proteins and the localization of protein-binding sites on large segments of DNA.
Collapse
Affiliation(s)
- H Yokota
- Department of Molecular Biotechnology and Material Sciences & Engineering, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | |
Collapse
|
241
|
Abstract
In vitro evolution is a new, important laboratory method to evolve molecules with desired properties. It has been used in a variety of biological studies and drug development. In this paper, we study one important mutagenesis method used in in vitro evolution experiments called DNA shuffling. We construct a mathematical model for DNA shuffling and study the properties of molecules after DNA shuffling experiments based on this model. The model for DNA shuffling consists of two parts. First we apply the Lander-Waterman model for physical mapping by fingerprinting random clones to model the distribution of regions that can be reassembled through DNA shuffling. Then we present a model for recombination between different DNA species with different mutations. We compare our theoretical results with experimental data. Finally we propose novel applications of the theoretical results to the optimal design of DNA shuffling experiments and to physical mapping using DNA shuffling.
Collapse
Affiliation(s)
- F Sun
- Department of Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
242
|
Abstract
Detailed restriction maps of microbial genomes are a valuable resource in genome sequencing studies but are toilsome to construct by contig construction of maps derived from cloned DNA. Analysis of genomic DNA enables large stretches of the genome to be mapped and circumvents library construction and associated cloning artifacts. We used pulsed-field gel electrophoresis purified Plasmodium falciparum chromosome 2 DNA as the starting material for optical mapping, a system for making ordered restriction maps from ensembles of individual DNA molecules. DNA molecules were bound to derivatized glass surfaces, cleaved with NheI or BamHI, and imaged by digital fluorescence microscopy. Large pieces of the chromosome containing ordered DNA restriction fragments were mapped. Maps were assembled from 50 molecules producing an average contig depth of 15 molecules and high-resolution restriction maps covering the entire chromosome. Chromosome 2 was found to be 976 kb by optical mapping withNheI, and 946 kb with BamHI, which compares closely to the published size of 947 kb from large-scale sequencing. The maps were used to further verify assemblies from the plasmid library used for sequencing. Maps generated in silico from the sequence data were compared to the optical mapping data, and good correspondence was found. Such high-resolution restriction maps may become an indispensable resource for large-scale genome sequencing projects.
Collapse
|
243
|
Hu X, Aston C, Schwartz DC. Optical mapping of DNA polymerase I action and products. Biochem Biophys Res Commun 1999; 254:466-73. [PMID: 9918862 DOI: 10.1006/bbrc.1998.9971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single molecule approaches to the characterization of biochemical systems offer an intrinsically simple and direct approach to address difficult, previously unyielding problems. Optically based approaches have recently been used to construct high resolution, ordered restriction maps from a variety of clone types. Advancements in surface technologies have enabled the reliable elongation and fixation of large DNA molecules onto specially derivatized substrates with retention of biochemical accessibility. In this study, the addition of fluorescently labeled nucleotides to surface-mounted DNA molecules by the action of DNA polymerase I is investigated using fluorescence microscopy to image individual template molecules. Molecules undergoing nick translation and containing only a few fluorochromes are readily imaged. These novel results suggest that surface-bound molecules may serve as a substrate for a broad range of enzymatic actions, and may offer new routes to analysis when coupled to advanced imaging techniques.
Collapse
Affiliation(s)
- X Hu
- Laboratory for Biomolecular Imaging, New York University, New York, New York, 10003, USA
| | | | | |
Collapse
|
244
|
Lee JK, Dancík V, Waterman MS. Estimation for restriction sites observed by optical mapping using reversible-jump Markov Chain Monte Carlo. J Comput Biol 1998; 5:505-15. [PMID: 9773346 DOI: 10.1089/cmb.1998.5.505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A fundamentally new molecular-biology approach in constructing restriction maps, Optical Mapping, has been developed by Schwartz et al. (1993). Using this method restriction maps are constructed by measuring the relevant fluorescence intensity and length measurements. However, it is difficult to directly estimate the restriction site locations of single DNA molecules based on these optical mapping data because of the precision of length measurements and the unknown number of true restriction sites in the data. We propose the use of a hierarchical Bayes model based on a mixture model with normals and random noise. In this model we explicitly consider the missing observation structure of the data, such as the orientations of molecules, the allocations of cutting sites to restriction sites, and the indicator variables of whether observed cut sites are true or false. Because of the complexity of the model, the large number of missing data, and the unknown number of restriction sites, we use Reversible-Jump Markov Chain Monte Carlo (MCMC) to estimate the number and the locations of the restriction sites. Since there exists a high multimodality due to unknown orientations of molecules, we also use a combination of our MCMC approach and the flipping algorithm suggested by Dancík and Waterman (1997). The study is highly computer-intensive and the development of an efficient algorithm is required.
Collapse
Affiliation(s)
- J K Lee
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
245
|
Li J, Bai C, Wang C, Zhu C, Lin Z, Li Q, Cao E. A convenient method of aligning large DNA molecules on bare mica surfaces for atomic force microscopy. Nucleic Acids Res 1998; 26:4785-6. [PMID: 9753751 PMCID: PMC147909 DOI: 10.1093/nar/26.20.4785] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Large DNA molecules remain difficult to be imaged by atomic force microscopy (AFM) because of the tendency of aggregation. A method is described to align long DNA fibers in a single direction on unmodified mica to facilitate AFM studies. The clear background, minimal overstretching, high reproducibility and convenience of this aligning procedure make it useful for physical mapping of genome regions and the studies of DNA-protein complexes.
Collapse
Affiliation(s)
- J Li
- The Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100080, China and The Institute of Biophysics, the Chinese Academy of Sciences, Beijing 100171, China
| | | | | | | | | | | | | |
Collapse
|
246
|
Jing J, Reed J, Huang J, Hu X, Clarke V, Edington J, Housman D, Anantharaman TS, Huff EJ, Mishra B, Porter B, Shenker A, Wolfson E, Hiort C, Kantor R, Aston C, Schwartz DC. Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. Proc Natl Acad Sci U S A 1998; 95:8046-51. [PMID: 9653137 PMCID: PMC20926 DOI: 10.1073/pnas.95.14.8046] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/1998] [Accepted: 04/23/1998] [Indexed: 02/08/2023] Open
Abstract
New mapping approaches construct ordered restriction maps from fluorescence microscope images of individual, endonuclease-digested DNA molecules. In optical mapping, molecules are elongated and fixed onto derivatized glass surfaces, preserving biochemical accessibility and fragment order after enzymatic digestion. Measurements of relative fluorescence intensity and apparent length determine the sizes of restriction fragments, enabling ordered map construction without electrophoretic analysis. The optical mapping system reported here is based on our physical characterization of an effect using fluid flows developed within tiny, evaporating droplets to elongate and fix DNA molecules onto derivatized surfaces. Such evaporation-driven molecular fixation produces well elongated molecules accessible to restriction endonucleases, and notably, DNA polymerase I. We then developed the robotic means to grid DNA spots in well defined arrays that are digested and analyzed in parallel. To effectively harness this effect for high-throughput genome mapping, we developed: (i) machine vision and automatic image acquisition techniques to work with fixed, digested molecules within gridded samples, and (ii) Bayesian inference approaches that are used to analyze machine vision data, automatically producing high-resolution restriction maps from images of individual DNA molecules. The aggregate significance of this work is the development of an integrated system for mapping small insert clones allowing biochemical data obtained from engineered ensembles of individual molecules to be automatically accumulated and analyzed for map construction. These approaches are sufficiently general for varied biochemical analyses of individual molecules using statistically meaningful population sizes.
Collapse
Affiliation(s)
- J Jing
- W. M. Keck Laboratory for Biomolecular Imaging, Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Wang W, Lin J, Schwartz DC. Scanning force microscopy of DNA molecules elongated by convective fluid flow in an evaporating droplet. Biophys J 1998; 75:513-20. [PMID: 9649413 PMCID: PMC1299725 DOI: 10.1016/s0006-3495(98)77540-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Scanning force microscopy (SFM) was used to image intact, nearly fully elongated lambda bacteriophage DNA molecules, fixed onto freshly cleaved mica surfaces. Molecular elongation and fixation were accomplished using a newly characterized fixation technique, termed "fluid fixation." Here convective fluid flows generated within an evaporating droplet of DNA solution efficiently elongate DNA molecules for fixation onto suitably charged surfaces. SFM images of a very large bacteriophage genome, G, showed the presence of double-stranded bubbles. We speculate that these structures may contain putative replication forks. Overall, the experiments presented here demonstrate the viability of using fluid fixation for the preparation of DNA molecules for SFM imaging. The combination of largely automatable optically based techniques with the high-resolution SFM imaging presented here will likely produce a high-throughput system for detailed physical mapping of genomic DNA or clones.
Collapse
Affiliation(s)
- W Wang
- W. M. Keck Laboratory for Biomolecular Imaging, Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
248
|
Reed J, Singer E, Kresbach G, Schwartz DC. A quantitative study of optical mapping surfaces by atomic force microscopy and restriction endonuclease digestion assays. Anal Biochem 1998; 259:80-8. [PMID: 9606147 DOI: 10.1006/abio.1998.2640] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many new techniques in biomolecular chemistry and genomic analysis require the immobilization of molecular reagents on specially prepared surfaces. However, the process of molecular fixation often interferes with or precludes the use of standard in vitro biochemical assays. Optical mapping is an emergent technology for genomic analysis which relies on the biochemical activity of DNA fixed to silanized glass surfaces. Optical mapping surfaces have been shown to be compatible with restriction endonucleases and a variety of DNA polymerases. The essential properties of biochemically active surfaces are poorly understood in most of the current technologies which utilize molecular fixation, including optical mapping. The purpose of this study is to use the powerful technique of atomic force microscopy, in combination with informative enzymatic assays, to correlate biochemical activity with microscopic surface structure. The results presented provide meaningful insight into the effect of surface preparation on the biochemical accessibility of surface-bound molecules. Novel analysis which may facilitate the automation of optical mapping is presented.
Collapse
Affiliation(s)
- J Reed
- Department of Chemistry, W. M. Keck Laboratory for Biomolecular Imaging, New York University, New York 10003, USA
| | | | | | | |
Collapse
|
249
|
Fang Y, Spisz TS, Wiltshire T, D'Costa NP, Bankman IN, Reeves RH, Hoh JH. Solid-state DNA sizing by atomic force microscopy. Anal Chem 1998; 70:2123-9. [PMID: 9608850 DOI: 10.1021/ac971187o] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atomic force microscopy (AFM) allows rapid, accurate, and reproducible visualization of DNA adsorbed onto solid supports. The images reflect the lengths of the DNA molecules in the sample. Here we propose a solid-state DNA sizing (SSDS) method based on AFM as an analytical method for high-throughput applications such as finger-printing, restriction mapping, +/- screening, and genotyping. For this process, the sample is first deposited onto a solid support by adsorption from solution. It is then dried and imaged under ambient conditions by AFM. The resulting images are subjected to automated determination of the lengths of the DNA molecules on the surface. The result is a histogram of sizes that is similar to densitometric scans of DNA samples separated on gels. A direct comparison of SSDS with agarose gel electrophoresis for +/- screening shows that it produces equivalent results. Advantages of SSDS include reduced sample size (i.e., lower reagent costs), rapid analysis of single samples, and potential for full automation using available technology. The high sensitivity of the method also allows the number of polymerase chain reaction cycles to be reduced to 15 or less. Because the high signal-to-noise ratio of the AFM allows for direct visualization of DNA-binding proteins, different DNA conformations, restriction enzymes, and other DNA modifications, there is potential for dramatically improving the information content in this type of analysis.
Collapse
Affiliation(s)
- Y Fang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
250
|
Abstract
High resolution chromatin/DNA fiber fluorescent in situ hybridisation (FISH) is a powerful system for physical mapping and genome research. With direct visualisation of molecular probes along released chromatin or DNA fiber, fiber FISH has become the method of choice to order genes or DNA markers within chromosomal regions of interest. Combined with DNA-protein in situ codetection fiber FISH shall play a more important role for analysis of genome function. In this paper the concept and technical developments of fiber FISH are reviewed with the emphasis of comparison on the various protocols. Future challenges are also discussed along with the highlights of the successful applications achieved by fiber FISH methodology.
Collapse
Affiliation(s)
- H H Heng
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | |
Collapse
|