201
|
Takekawa M, Posas F, Saito H. A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediates stress-induced activation of the p38 and JNK pathways. EMBO J 1997; 16:4973-82. [PMID: 9305639 PMCID: PMC1170132 DOI: 10.1093/emboj/16.16.4973] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A human homolog of the yeast Ssk2 and Ssk22 mitogen-activated protein kinase kinase kinases (MAPKKK) was cloned by functional complementation of the osmosensitivity of the yeast ssk2delta ssk22delta sho1delta triple mutant. This kinase, termed MTK1 (MAP Three Kinase 1), is 1607 amino acids long and is structurally highly similar to the yeast Ssk2 and Ssk22 MAPKKKs. In mammalian cells (COS-7 and HeLa), MTK1 overexpression stimulated both the p38 and JNK MAP kinase pathways, but not the ERK pathway. MTK1 overexpression also activated the MKK3, MKK6 and SEK1 MAPKKs, but not the MEK1 MAPKK. Furthermore, MTK1 phosphorylated and activated MKK6 and SEK1 in vitro. Overexpression of a dominant-negative MTK1 mutant [MTK1(K/R)] strongly inhibited the activation of the p38 pathway by environmental stresses (osmotic shock, UV and anisomycin), but not the p38 activation by the cytokine TNF-alpha. The dominant-negative MTK1(K/R) had no effect on the activation of the JNK pathway or the ERK pathway. These results indicate that MTK1 is a major mediator of environmental stresses that activate the p38 MAPK pathway, and is also a minor mediator of the JNK pathway.
Collapse
Affiliation(s)
- M Takekawa
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
202
|
Ma S, Wozniak DJ, Ohman DE. Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator algB. J Biol Chem 1997; 272:17952-60. [PMID: 9218420 DOI: 10.1074/jbc.272.29.17952] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The exopolysaccharide alginate is an important virulence factor in chronic lung infections caused by the bacterium Pseudomonas aeruginosa. Two positive activators for alginate synthesis, algB and algR, are members of a superfamily of response regulators of the two-component regulatory system. AlgB belongs to the NtrC subfamily of response regulators and is required for high-level production of alginate. In this study, an open reading frame encoding a polypeptide of 66 kDa, designated kinB, was identified immediately downstream of algB. The sequence of KinB is homologous to the histidine protein kinase members of two-component regulatory systems. Western blot analysis of a P. aeruginosa strain carrying a kinB-lacZ protein fusion and studies of kinB-phoA fusions indicate that KinB localizes to the inner membrane and has a NH2-terminal periplasmic domain. A KinB derivative containing the COOH terminus of KinB was generated and purified. In the presence of [gamma-32P]ATP, the purified COOH-terminal KinB protein was observed to undergo progressive autophosphorylation in vitro. Moreover, the phosphoryl label of KinB could be rapidly transferred to purified AlgB. Substitutions of the residues conserved among histidine protein kinases abolished KinB autophosphorylation. These results provide evidence that kinB encodes the AlgB cognate histidine protein kinase.
Collapse
Affiliation(s)
- S Ma
- Department of Microbiology and Immunology, University of Tennessee and the Veterans Administration Medical Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
203
|
Jacoby T, Flanagan H, Faykin A, Seto AG, Mattison C, Ota I. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. J Biol Chem 1997; 272:17749-55. [PMID: 9211927 DOI: 10.1074/jbc.272.28.17749] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein phosphatases inactivate mitogen-activated protein kinase (MAPK) signaling pathways by dephosphorylating components of the MAPK cascade. Two genes encoding protein-tyrosine phosphatases, PTP2, and a new phosphatase, PTP3, have been isolated in a genetic selection for negative regulators of an osmotic stress response pathway called HOG, for high osmolarity glycerol, in budding yeast. PTP2 and PTP3 were isolated as multicopy suppressors of a severe growth defect due to hyperactivation of the HOG pathway. Phosphatase activity is required for suppression since mutation of the catalytic Cys residue in Ptp2 and Ptp3, destroys suppressor function and biochemical activity. The substrate of these phosphatases is likely to be the MAPK, Hog1. Catalytically inactive Ptp2 and Ptp3 coprecipitate with Hog1 from yeast extracts. In addition, strains lacking PTP2 and PTP3 do not dephosphorylate Hog1-phosphotyrosine as well as wild type. The latter suggests that PTP2 and PTP3 play a role in adaptation. Consistent with this role, osmotic stress induces expression of PTP2 and PTP3 transcripts in a Hog1-dependent manner. Thus Ptp2 and Ptp3 likely act in a negative feedback loop to inactivate Hog1.
Collapse
Affiliation(s)
- T Jacoby
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | | | | | | | |
Collapse
|
204
|
Cohen DM. Mitogen-activated protein kinase cascades and the signaling of hyperosmotic stress to immediate early genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 117:291-9. [PMID: 9172385 DOI: 10.1016/s0300-9629(96)00266-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among prokaryotes and lower eukaryotes, the threat of exposure to hyperosmotic stress is ubiquitous. Among higher eukaryotes, in contrast, only specific tissues are routinely exposed to marked hypertonicity. The mammalian renal medulla, the prototypical example, is continually subjected to an elevated solute concentration as a consequence of the renal concentrating mechanism. Until recently, the investigative focus has concerned the effects of diverse solutes on the regulation of genes essential for the adaptive accumulation of osmotically active organic solutes. Recent and sweeping developments elucidating the molecular mechanisms underlying stress signaling to the nucleus have focused interest on earlier events in the response to hyperosmotic stress. Such events include the transcriptional activation and post-translational modification of transcriptional activating proteins, a large subset of which represent the protein products of so-called immediate early genes. This review highlights developments in the understanding of stress signaling in general and hypertonic stress signaling in particular in both yeast and higher eukaryotic models. The relationship between hyperosmotic stress signaling and the transcription and activation of immediate-early gene transcription factors is explored.
Collapse
Affiliation(s)
- D M Cohen
- Division of Nephrology, Oregon Health Sciences University, Portland 97201, USA.
| |
Collapse
|
205
|
Medzihradszky KF, Phillipps NJ, Senderowicz L, Wang P, Turck CW. Synthesis and characterization of histidine-phosphorylated peptides. Protein Sci 1997; 6:1405-11. [PMID: 9232641 PMCID: PMC2143754 DOI: 10.1002/pro.5560060704] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Posttranslational phosphorylation of proteins is an important event in many cellular processes. Whereas phosphoesters of serine, threonine, and tyrosine have been studied extensively, only limited information is available for other amino acids modified by a phosphate group. The formation of phosphohistidine residues in proteins was discovered originally in prokaryotic organisms, but also has been found recently in eukaryotic cells. We describe methods for the synthesis and analysis of phosphohistidine-containing peptides, a prerequisite for the investigation of the role of this posttranslational modification in cellular processes.
Collapse
Affiliation(s)
- K F Medzihradszky
- Department of Pharmaceutical Chemistry, University of California San Francisco 94143-0446, USA
| | | | | | | | | |
Collapse
|
206
|
Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 1997; 89:1133-44. [PMID: 9215635 DOI: 10.1016/s0092-8674(00)80300-1] [Citation(s) in RCA: 594] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in the Arabidopsis ETHYLENE-INSENSITIVE3 (EIN3) gene severely limit a plant's response to the gaseous hormone ethylene. ein3 mutants show a loss of ethylene-mediated effects including gene expression, the triple response, cell growth inhibition, and accelerated senescence. EIN3 acts downstream of the histidine kinase ethylene receptor, ETR1, and the Raf-like kinase, CTR1. The EIN3 gene encodes a novel nuclear-localized protein that shares sequence similarity, structural features, and genetic function with three EIN3-LIKE (EIL) proteins. In addition to EIN3, EIL1 orEIL2 were able to complement ein3, suggesting their participation in the ethylene signaling pathway. Overexpression of EIN3 or EIL1 in wild-type or ethylene-insensitive2 plants conferred constitutive ethylene phenotypes, indicating their sufficiency for activation of the pathway in the absence of ethylene.
Collapse
Affiliation(s)
- Q Chao
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia 19104-6018, USA
| | | | | | | | | | | |
Collapse
|
207
|
Kehoe DM, Grossman AR. New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system. J Bacteriol 1997; 179:3914-21. [PMID: 9190806 PMCID: PMC179199 DOI: 10.1128/jb.179.12.3914-3921.1997] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Complementary chromatic adaptation appears to be controlled by a complex regulatory system with similarity to four-step phosphorelays. Such pathways utilize two histidine and two aspartate residues for signal transduction. Previous studies of the signaling system controlling complementary chromatic adaptation have uncovered two elements of this pathway, a putative sensor, RcaE, and a response regulator, RcaC. In this work, we describe a second response regulator controlling complementary chromatic adaptation, RcaF, and identify putative DNA binding and histidine phosphoacceptor domains within RcaC. RcaF is a small response regulator with similarity to SpoOF of Bacillus subtilis; the latter functions in the four-step phosphorelay system controlling sporulation. We have also determined that within this phosphorelay pathway, RcaE precedes RcaF, and RcaC is probably downstream of RcaE and RcaF. This signal transduction pathway is novel because it appears to use at least five, instead of four, phosphoacceptor domains in the phosphorelay circuit.
Collapse
Affiliation(s)
- D M Kehoe
- Department of Plant Biology, The Carnegie Institution of Washington, Stanford, California 94305, USA.
| | | |
Collapse
|
208
|
Fassler JS, Gray WM, Malone CL, Tao W, Lin H, Deschenes RJ. Activated alleles of yeast SLN1 increase Mcm1-dependent reporter gene expression and diminish signaling through the Hog1 osmosensing pathway. J Biol Chem 1997; 272:13365-71. [PMID: 9148959 DOI: 10.1074/jbc.272.20.13365] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two-component signal transduction systems involving histidine autophosphorylation and phosphotransfer to an aspartate residue on a receiver molecule have only recently been discovered in eukaryotes, although they are well studied in prokaryotes. The Sln1 protein of Saccharomyces cerevisiae is a two-component regulator involved in osmotolerance. Phosphorylation of Sln1p leads to inhibition of the Hog1 mitogen-activated protein kinase osmosensing pathway. We have discovered a second function of Sln1p by identifying recessive activated alleles (designated nrp2) that regulate the essential transcription factor Mcm1. nrp2 alleles cause a 5-fold increase in the activity of an Mcm1-dependent reporter, whereas deletion of SLN1 causes a 10-fold decrease in reporter activity and a corresponding decrease in expression of Mcm1-dependent genes. In addition to activating Mcm1p, nrp2 mutants exhibit reduced phosphorylation of Hog1p and increased osmosensitivity suggesting that nrp2 mutations shift the Sln1p equilibrium toward the phosphorylated state. Two nrp2 mutations map to conserved residues in the receiver domain (P1148S and P1196L) and correspond to residues implicated in bacterial receivers to control receiver phosphorylation state. Thus, it appears that increased Sln1p phosphorylation both stimulates Mcm1p activity and diminishes signaling through the Hog1 osmosensing pathway.
Collapse
Affiliation(s)
- J S Fassler
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
209
|
Kültz D, Garcia-Perez A, Ferraris JD, Burg MB. Distinct regulation of osmoprotective genes in yeast and mammals. Aldose reductase osmotic response element is induced independent of p38 and stress-activated protein kinase/Jun N-terminal kinase in rabbit kidney cells. J Biol Chem 1997; 272:13165-70. [PMID: 9148932 DOI: 10.1074/jbc.272.20.13165] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In yeast glycerol-3-phosphate dehydrogenase 1 is essential for synthesis of the osmoprotectant glycerol and is osmotically regulated via the high osmolarity glycerol (HOG1) kinase pathway. Homologous protein kinases, p38, and stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK) are hyperosmotically activated in some mammalian cell lines and complement HOG1 in yeast. In the present study we asked whether p38 or SAPK/JNK signal synthesis of the osmoprotectant sorbitol in rabbit renal medullary cells (PAP-HT25), analogous to the glycerol system in yeast. Sorbitol synthesis is catalyzed by aldose reductase (AR). Hyperosmolality increases AR transcription through an osmotic response element (ORE) in the 5'-flanking region of the AR gene, resulting in elevated sorbitol. We tested if AR-ORE is targeted by p38 or SAPK/JNK pathways in PAP-HT25 cells. Hyperosmolality (adding 150 mM NaCl) strongly induces phosphorylation of p38 and of c-Jun, a specific target of SAPK/JNK. Transient lipofection of a dominant negative mutant of SAPK kinase, SEK1-AL, into PAP-HT25 cells specifically inhibits hyperosmotically induced c-Jun phosphorylation. Transient lipofection of a dominant negative p38 kinase mutant, MKK3-AL, into PAP-HT25 cells specifically suppresses hyperosmotic induction of p38 phosphorylation. We cotransfected either one of these mutants or their empty vector with an AR-ORE luciferase reporter construct and compared the hyperosmotically induced increase in luciferase activity with that in cells lipofected with only the AR-ORE luciferase construct. Hyperosmolality increased luciferase activity equally (5-7-fold) under all conditions. We conclude that hyperosmolality induces p38 and SAPK/JNK cascades in mammalian renal cells, analogous to inducing the HOG1 cascade in yeast. However, activation of p38 or SAPK/JNK pathways is not necessary for transcriptional regulation of AR through the ORE. This finding stands in contrast to the requirement for the HOG1 pathway for hyperosmotically induced activation of yeast GPD1.
Collapse
Affiliation(s)
- D Kültz
- Laboratory of Kidney and Electrolyte Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-0951, USA.
| | | | | | | |
Collapse
|
210
|
Loomis WF, Shaulsky G, Wang N. Histidine kinases in signal transduction pathways of eukaryotes. J Cell Sci 1997; 110 ( Pt 10):1141-5. [PMID: 9191038 DOI: 10.1242/jcs.110.10.1141] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autophosphorylating histidine kinases are an ancient conserved family of enzymes that are found in eubacteria, archaebacteria and eukaryotes. They are activated by a wide range of extracellular signals and transfer phosphate moieties to aspartates found in response regulators. Recent studies have shown that such two-component signal transduction pathways mediate osmoregulation in Saccharomyces cerevisiae, Dictyostelium discoideum and Neurospora crassa. Moreover, they play pivotal roles in responses of Arabidopsis thaliana to ethylene and cytokinin. A transmembrane histidine kinase encoded by dhkA accumulates when Dictyostelium cells aggregate during development. Activation of DhkA results in the inhibition of its response regulator, RegA, which is a cAMP phosphodiesterase that regulates the cAMP dependent protein kinase PKA. When PKA is activated late in the differentiation of prespore cells, they encapsulate into spores. There is evidence that this two-component system participates in a feedback loop linked to PKA in prestalk cells such that the signal to initiate encapsulation is rapidly amplified. Such signal transduction pathways can be expected to be found in a variety of eukaryotic differentiations since they are rapidly reversible and can integrate disparate signals.
Collapse
Affiliation(s)
- W F Loomis
- Department of Biology, University of California San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
211
|
Ryazanov AG, Ward MD, Mendola CE, Pavur KS, Dorovkov MV, Wiedmann M, Erdjument-Bromage H, Tempst P, Parmer TG, Prostko CR, Germino FJ, Hait WN. Identification of a new class of protein kinases represented by eukaryotic elongation factor-2 kinase. Proc Natl Acad Sci U S A 1997; 94:4884-9. [PMID: 9144159 PMCID: PMC24600 DOI: 10.1073/pnas.94.10.4884] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The several hundred members of the eukaryotic protein kinase superfamily characterized to date share a similar catalytic domain structure, consisting of 12 conserved subdomains. Here we report the existence and wide occurrence in eukaryotes of a protein kinase with a completely different structure. We cloned and sequenced the human, mouse, rat, and Caenorhabditis elegans eukaryotic elongation factor-2 kinase (eEF-2 kinase) and found that with the exception of the ATP-binding site, they do not contain any sequence motifs characteristic of the eukaryotic protein kinase superfamily. Comparison of different eEF-2 kinase sequences reveals a highly conserved region of approximately 200 amino acids which was found to be homologous to the catalytic domain of the recently described myosin heavy chain kinase A (MHCK A) from Dictyostelium. This suggests that eEF-2 kinase and MHCK A are members of a new class of protein kinases with a novel catalytic domain structure.
Collapse
Affiliation(s)
- A G Ryazanov
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Shieh JC, Wilkinson MG, Buck V, Morgan BA, Makino K, Millar JB. The Mcs4 response regulator coordinately controls the stress-activated Wak1-Wis1-Sty1 MAP kinase pathway and fission yeast cell cycle. Genes Dev 1997; 11:1008-22. [PMID: 9136929 DOI: 10.1101/gad.11.8.1008] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The fission yeast Sty1 MAP kinase is required for cell cycle control, initiation of sexual differentiation, and protection against cellular stress. Like the mammalian JNK/SAPK and p38/CSBP1 MAP kinases, Sty1 is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, menadione, heat shock, and the protein synthesis inhibitor anisomycin. We have identified an upstream regulator that mediates activation of the Sty1 MAP kinase by multiple environmental stresses as the product of the mitotic catastrophe suppressor, mcs4. Mcs4 is structurally and functionally homologous to the budding yeast SSK1 response regulator, suggesting that the eukaryotic stress-activated MAP kinase pathway is controlled by a conserved two-component system. Mcs4 acts upstream of Wak1, a homolog of the SSK2 and SSK22 MEK kinases, which transmits the stress signal to the Wis1 MEK. We show that the Wis1 MEK is controlled by an additional pathway that is independent of both Mcs4 and the Wak1 MEK kinase. Furthermore, we demonstrate that Mcs4 is required for the correct timing of mitotic initiation by mechanisms both dependent and independent on Sty1, indicating that Mcs4 coordinately controls cell cycle progression with the cellular response to environmental stress.
Collapse
Affiliation(s)
- J C Shieh
- Division of Yeast Genetics, National Institute for Medical Research, The Ridgeway, London, UK
| | | | | | | | | | | |
Collapse
|
213
|
Wilde A, Churin Y, Schubert H, Börner T. Disruption of a Synechocystis sp. PCC 6803 gene with partial similarity to phytochrome genes alters growth under changing light qualities. FEBS Lett 1997; 406:89-92. [PMID: 9109392 DOI: 10.1016/s0014-5793(97)00248-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A gene that may encode a novel light sensing histidine protein kinase, designated plpA (phytochrome-like protein), was isolated from the cyanobacterium Synechocystis sp. PCC 6803. The 200 COOH-terminal amino acids of the gene product show homology with conserved domains of several bacterial histidine kinases and the ethylene response gene etr1 of Arabidopsis, whereas its central region is similar to the chromophore attachment site of plant phytochromes. Interruption or partial deletion of plpA yielded mutants unable to grow under blue light.
Collapse
Affiliation(s)
- A Wilde
- Institut für Biologie, Humboldt-Universität Berlin, Germany
| | | | | | | |
Collapse
|
214
|
Zouari N, Roche B, Seegers JFML, Séror SJ. Purification of two Bacillus subtilis proteins which cross-react with antibodies directed against eukaryotic protein kinase C, the His HPr kinase and trigger factor. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 4):1151-1161. [PMID: 9141678 DOI: 10.1099/00221287-143-4-1151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As in eukaryotes, phosphorylation of Ser residues in proteins appears to be common phenomenon in bacteria. Surprisingly, however, very few Ser/Thr protein kinases have been identified and in this study antibodies directed against mammalian protein kinase C (PKC) have been used in attempts to isolate conserved Ser/Thr protein kinases. Using the mAb M7 against rat brain PKC, a single 70 kDa band was identified in total cell extracts of Bacillus subtilis by Western blotting after SDS-PAGE, whilst using polyclonal antibody alpha-PKC1p against Saccharomyces cerevisiae PKC a single 67 kDa band was identified by the same procedure. The two proteins were purified independently on the basis of antibody recognition employing two-dimensional gel electrophoresis as a final step, which allowed subsequent microsequencing. The 70 kDa band was thus identified as the phosphoenolpyruvate-dependent His HPr kinase, Enzyme 1 of the phosphotransferase system. This identity was confirmed using a mutant deleted for ptsl, encoding Enzyme 1. The 67 kDa protein was identified as a previously unknown B. subtilis 'trigger factor', homologous to an Escherichia coli protein-folding enzyme, peptidylprolyl cis-trans-isomerase implicated in cell division.
Collapse
Affiliation(s)
- Naïla Zouari
- Institut de Génétique et Microbiologic, URA 2225, University Paris XI, Bâtiment 409, 91405 Orsay cedex, France
| | - Benoît Roche
- Institut de Génétique et Microbiologic, URA 2225, University Paris XI, Bâtiment 409, 91405 Orsay cedex, France
| | - Jos F M L Seegers
- Institut de Génétique et Microbiologic, URA 2225, University Paris XI, Bâtiment 409, 91405 Orsay cedex, France
| | - Simone J Séror
- Institut de Génétique et Microbiologic, URA 2225, University Paris XI, Bâtiment 409, 91405 Orsay cedex, France
| |
Collapse
|
215
|
Kato M, Mizuno T, Shimizu T, Hakoshima T. Insights into multistep phosphorelay from the crystal structure of the C-terminal HPt domain of ArcB. Cell 1997; 88:717-23. [PMID: 9054511 DOI: 10.1016/s0092-8674(00)81914-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The histidine-containing phosphotransfer (HPt) domain is a novel protein module with an active histidine residue that mediates phosphotransfer reactions in the two-component signaling systems. A multistep phosphorelay involving the HPt domain has been suggested for these signaling pathways. The crystal structure of the HPt domain of the anaerobic sensor kinase ArcB has been determined at 2.06 A resolution. The domain consists of six alpha helices containing a four-helix bundle-folding. The pattern of sequence similarity of the HPt domains of ArcB and components in other signaling systems can be interpreted in light of the three-dimensional structure and supports the conclusion that the HPt domains have a common structural motif both in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- M Kato
- Department of Molecular Biology, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | |
Collapse
|
216
|
Shiozaki K, Shiozaki M, Russell P. Mcs4 mitotic catastrophe suppressor regulates the fission yeast cell cycle through the Wik1-Wis1-Spc1 kinase cascade. Mol Biol Cell 1997; 8:409-19. [PMID: 9188094 PMCID: PMC276093 DOI: 10.1091/mbc.8.3.409] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Spc1 in Schizosaccharomyces pombe is a member of the stress-activated protein kinase family, an evolutionary conserved subfamily of mitogen-activated protein kinases (MAPKs). Spc1 is activated by a MAPK kinase homologue, Wis1, and negatively regulated by Pyp1 and Pyp2 tyrosine phosphatases. Mutations in the spc1+ and wis1+ genes cause a G2 cell cycle delay that is exacerbated during stress. Herein, we describe two upstream regulators of the Wis1-Spc1 cascade. wik1+ (Wis1 kinase) was identified from its homology to budding yeast SSK2, which encodes a MAPKK kinase that regulates the HOG1 osmosensing pathway. Delta wik1 cells are impaired in stress-induced activation of Spc1 and show a G2 cell cycle delay and osmosensitive growth. Moreover, overproduction of a constitutively active form of Wik1 induces hyperactivation of Spc1 in wis1(+)-dependent manner, suggesting that Wik1 regulates Spc1 through activation of Wis1. A mutation of mcs4+ (mitotic catastrophe suppressor) was originally isolated as a suppressor of the mitotic catastrophe phenotype of a cdc2-3w wee1-50 double mutant. We have found that mcs4- cells are defective at activation of Spc1 in response to various forms of stress. Epistasis analysis has placed Mcs4-upstream of Wik1 in the Spc1 activation cascade. These results indicate that Mcs4 is part of a sensor system for multiple environmental signals that modulates the timing of entry into mitosis by regulating the Wik1-Wis1-Spc1 kinase cascade. Inactivation of the sensor system delays the onset of mitosis and rescues lethal premature mitosis in cdc2-3w wee1-50 cells.
Collapse
Affiliation(s)
- K Shiozaki
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
217
|
Wurgler-Murphy SM, Maeda T, Witten EA, Saito H. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol 1997; 17:1289-97. [PMID: 9032256 PMCID: PMC231854 DOI: 10.1128/mcb.17.3.1289] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In response to increases in extracellular osmolarity, Saccharomyces cerevisiae activates the HOG1 mitogen-activated protein kinase (MAPK) cascade, which is composed of a pair of redundant MAPK kinase kinases, namely, Ssk2p and Ssk22p, the MAPK kinase Pbs2p, and the MAPK Hog1p. Hog1p is activated by Pbs2p through phosphorylation of specific threonine and tyrosine residues. Activated Hog1p is essential for survival of yeast cells at high osmolarity. However, expression of constitutively active mutant kinases, such as those encoded by SSK2deltaN and PBS2(DD), is toxic and results in a lethal level of Hog1p activation. Overexpression of the protein tyrosine phosphatase Ptp2p suppresses the lethality of these mutations by dephosphorylating Hog1p. A catalytically inactive Cys-to-Ser Ptp2p mutant (Ptp2(C/S)p) is tightly bound to tyrosine-phosphorylated Hog1p in vivo. Disruption of PTP2 leads to elevated levels of tyrosine-phosphorylated Hog1p following exposure of cells to high osmolarity. Disruption of both PTP2 and another protein tyrosine phosphatase gene, PTP3, results in constitutive Hog1p tyrosine phosphorylation even in the absence of increased osmolarity. Thus, Ptp2p and Ptp3p are the major phosphatases responsible for the tyrosine dephosphorylation of Hog1p. When catalytically inactive Hog1(K/N)p is expressed in hog1delta cells, it is constitutively tyrosine phosphorylated. In contrast, Hog1(K/N)p, expressed together with wild-type Hog1p, is tyrosine phosphorylated only when cells are exposed to high osmolarity. Thus, the kinase activity of Hog1p is required for its own tyrosine dephosphorylation. Northern blot analyses suggest that Hog1p regulates Ptp2p and/or Ptp3p activity at the posttranscriptional level.
Collapse
Affiliation(s)
- S M Wurgler-Murphy
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
218
|
Egger LA, Inouye M. Purification and characterization of the periplasmic domain of EnvZ osmosensor in Escherichia coli. Biochem Biophys Res Commun 1997; 231:68-72. [PMID: 9070221 DOI: 10.1006/bbrc.1996.6007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The EnvZ-OmpR histidyl-aspartyl phosphorelay system in E. coli responds to osmolarity by differentially modulating the expression of the major outer membrane porins OmpF and OmpC. To date, the natural ligand that activates EnvZ, a transmembrane histidine kinase, has not been identified and the role of the periplasmic domain of EnvZ is unclear. We now report on the purification and characterization of the periplasmic domain of EnvZ (Lys48-Arg162) which has been expressed as a soluble protein in fusion with the maltose-binding protein. Overexpression of the fusion protein did not compete for a signal that activates EnvZ. By amylose affinity chromatography and affinity blotting, interacting proteins could not be detected. The periplasmic domain was released by factor Xa and purified to homogeneity. From circular dichroism analysis, the periplasmic domain was estimated to consist of 35% alpha-helices and 16% beta-sheets.
Collapse
Affiliation(s)
- L A Egger
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
219
|
Cozzone AJ. Diversity and specificity of protein-phosphorylating systems in bacteria. Folia Microbiol (Praha) 1997; 42:165-70. [PMID: 9246757 DOI: 10.1007/bf02818973] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacteria harbor three different protein-phosphorylating systems which regulate distinct physiological processes: first, the nucleotide-dependent system which modifies hydroxyl groups of amino acids in protein substrates; second, the two-component system which involves both sensor kinase and response regulator; third, the phosphoenolpyruvate-dependent phosphotransferase system. These systems share a number of structural and functional similarities with the protein-phosphorylating systems of eukaryotes.
Collapse
Affiliation(s)
- A J Cozzone
- Institut de Biologie et Chimie des Protéines, CNRS, Lyon, France
| |
Collapse
|
220
|
Lu Q, Park H, Egger LA, Inouye M. Nucleoside-diphosphate kinase-mediated signal transduction via histidyl-aspartyl phosphorelay systems in Escherichia coli. J Biol Chem 1996; 271:32886-93. [PMID: 8955129 DOI: 10.1074/jbc.271.51.32886] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nucleoside-diphosphate kinase (NDP kinase), a key enzyme in nucleotide metabolism, is also known to be involved in growth and developmental control and tumor metastasis suppression. Interestingly, we find that coexpression of NDP kinase with Taz1, a Tar/EnvZ chimera, in the absence of its native signal, can activate a porin gene ompC-lacZ expression in Escherichia coli. Further studies show that NDP kinase can act as a protein kinase to phosphorylate histidine protein kinases such as EnvZ and CheA which are members of the His-Asp phosphorelay signal transduction systems in E. coli. Instead of ATP, the exclusive phosphodonor for histidine kinases, GTP can be utilized in vitro in the presence of NDP kinase to phosphorylate EnvZ and CheA, which then transfer the phosphoryl group to OmpR and CheY, the respective response regulators. The direct involvement of GTP for the phosphorylation of EnvZ through NDP kinase was further demonstrated by the use of a mutant EnvZ, which lost ability to be autophosphorylated with ATP. Phospho-OmpR thus formed can bind specifically to an ompF promoter sequence. These results suggest that NDP kinase may play a physiological role in signal transduction.
Collapse
Affiliation(s)
- Q Lu
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
221
|
Haldimann A, Prahalad MK, Fisher SL, Kim SK, Walsh CT, Wanner BL. Altered recognition mutants of the response regulator PhoB: a new genetic strategy for studying protein-protein interactions. Proc Natl Acad Sci U S A 1996; 93:14361-6. [PMID: 8962056 PMCID: PMC26137 DOI: 10.1073/pnas.93.25.14361] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two-component regulatory systems require highly specific interactions between histidine kinase (transmitter) and response regulator (receiver) proteins. We have developed a novel genetic strategy that is based on tightly regulated synthesis of a given protein to identify domains and residues of an interacting protein that are critical for interactions between them. Using a reporter strain synthesizing the nonpartner kinase VanS under tight arabinose control and carrying a promoter-lacZ fusion activated by phospho-PhoB, we isolated altered recognition (AR) mutants of PhoB showing enhanced activation (phosphorylation) by VanS as arabinose-dependent Lac+ mutants. Changes in the PhoBAR mutants cluster in a "patch" near the proposed helix 4 of PhoB based on the CheY crystal structure (a homolog of the PhoB receiver domain) providing further evidence that helix 4 lies in the kinase-regulator interface. Based on the CheY structure, one mutant has an additional change in a region that may propagate a conformational change to helix 4. The overall genetic strategy described here may also be useful for studying interactions of other components of the vancomycin resistance and P1 signal transduction pathways, other two-component regulatory systems, and other interacting proteins. Conditionally replicative oriRR6K gamma attP "genome targeting" suicide plasmids carrying mutagenized phoB coding regions were integrated into the chromosome of a reporter strain to create mutant libraries; plasmids encoding mutant PhoB proteins were subsequently retrieved by P1-Int-Xis cloning. Finally, the use of similar genome targeting plasmids and P1-Int-Xis cloning should be generally useful for constructing genomic libraries from a wide array of organisms.
Collapse
Affiliation(s)
- A Haldimann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
222
|
Duclos B, Vaganay E, Dadssi M, Cozzone AJ. Pyrophosphate is a source of phosphoryl groups for Escherichia coli protein phosphorylation. FEMS Microbiol Lett 1996; 145:49-54. [PMID: 8931326 DOI: 10.1111/j.1574-6968.1996.tb08555.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pyrophosphate can serve as a source of phosphoryl groups for the phosphorylation of E. coli proteins. The main target of such phosphorylation is a 49-kDa protein which is covalently modified at serine. The same phosphorylation pattern is obtained in the presence of ATP, which suggests that pyrophosphate can substitute for ATP for bacterial protein phosphorylation.
Collapse
Affiliation(s)
- B Duclos
- Institut de Biologie et Chimie des Protéines, Centre National de la Recherche Scientifique, Lyon, France
| | | | | | | |
Collapse
|
223
|
Abstract
Although cytokinin plays a central role in plant development, little is known about cytokinin signal transduction. Five Arabidopsis thaliana mutants that exhibit typical cytokinin responses, including rapid cell division and shoot formation in tissue culture in the absence of exogenous cytokinin, were isolated by activation transferred DNA tagging. A gene, CKI1, which was tagged in four of the five mutants and induced typical cytokinin responses after introduction and overexpression in plants, was cloned. CKI1 encodes a protein similar to the two-component regulators. These results suggest that CKI1 is involved in cytokinin signal transduction, possibly as a cytokinin receptor.
Collapse
Affiliation(s)
- T Kakimoto
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560, Japan
| |
Collapse
|
224
|
Grigoryev S, Stewart AE, Kwon YT, Arfin SM, Bradshaw RA, Jenkins NA, Copeland NG, Varshavsky A. A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway. J Biol Chem 1996; 271:28521-32. [PMID: 8910481 DOI: 10.1074/jbc.271.45.28521] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In both fungi and mammals, the tertiary destabilizing N-terminal residues asparagine and glutamine function through their conversion, by enzymatic deamidation, into the secondary destabilizing residues aspartate and glutamate, whose destabilizing activity requires their enzymatic conjugation to arginine, one of the primary destabilizing residues. We report the isolation and analysis of a mouse cDNA and the corresponding gene (termed Ntan1) that encode a 310-residue amidohydrolase (termed NtN-amidase) specific for N-terminal asparagine. The approximately 17-kilobase pair Ntan1 gene is located in the proximal region of mouse chromosome 16 and contains 10 exons ranging from 54 to 177 base pairs in length. The approximately 1.4-kilobase pair Ntan1 mRNA is expressed in all of the tested mouse tissues and cell lines and is down-regulated upon the conversion of myoblasts into myotubes. The Ntan1 promoter is located approximately 500 base pairs upstream of the Ntan1 start codon. The deduced amino acid sequence of mouse NtN-amidase is 88% identical to the sequence of its porcine counterpart, but bears no significant similarity to the sequence of the NTA1-encoded N-terminal amidohydrolase of the yeast Saccharomyces cerevisiae, which can deamidate either N-terminal asparagine or glutamine. The expression of mouse NtN-amidase in S. cerevisiae nta1Delta was used to verify that NtN-amidase retains its asparagine selectivity in vivo and can implement the asparagine-specific subset of the N-end rule. Further dissection of mouse Ntan1, including its null phenotype analysis, should illuminate the functions of the N-end rule, most of which are still unknown.
Collapse
Affiliation(s)
- S Grigoryev
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Similar but distinct versions of the N-end rule operate in all organisms examined, from mammals to fungi and bacteria. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system. I discuss the mechanisms and functions of this pathway, and consider its applications.
Collapse
Affiliation(s)
- A Varshavsky
- Division of Biology, California Institute of Technology, Pasadena 91125, USA.
| |
Collapse
|
226
|
Anderson MS, Lopes JM. Carbon source regulation of PIS1 gene expression in Saccharomyces cerevisiae involves the MCM1 gene and the two-component regulatory gene, SLN1. J Biol Chem 1996; 271:26596-601. [PMID: 8900132 DOI: 10.1074/jbc.271.43.26596] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Saccharomyces cerevisiae PIS1 gene encodes phosphatidylinositol synthase. The amount of phosphatidylinositol synthase is not affected by the presence of inositol and choline in the growth medium. This is unusual because the amounts and/or activities of other phospholipid biosynthetic enzymes are affected by these precursors, and the promoter of the PIS1 gene contains a sequence resembling the regulatory element that coordinates the inositol-mediated regulation (UASINO). We found that transcription of the PIS1 gene was insensitive to inositol and choline and did not require the putative UASINO regulatory sequence or the cognate regulatory genes (INO2 and OPI1). The PIS1 promoter includes sequences (MCEs) that bind the Mcm1 protein. Because the Mcm1 protein interacts with both the Sln1 and the Gal11 regulatory proteins, we examined the effect of mutant alleles of the MCM1 and SLN1 genes and carbon source on expression of the PIS1 gene. We found that expression of the PIS1 gene was reduced when cells were grown in a medium containing glycerol and increased when grown in a medium containing galactose relative to cells grown in a glucose medium. The glycerol-mediated repression of PIS1 gene expression required both the MCM1 gene and the MCEs, whereas the SLN1 gene was required for full galactose-mediated induction of a PIS1-lacZ reporter gene. Thus, PIS1 gene expression is unique among the phospholipid biosynthetic structural genes because it is uncoupled from the inositol response and regulated in response to the carbon source. This is the first example in yeast of a complete circuit linking a stimulus (carbon source) to gene regulation (PIS1) using a two-component regulator (SLN1).
Collapse
Affiliation(s)
- M S Anderson
- Department of Molecular and Cellular Biochemistry, Loyola University of Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
227
|
Domian IJ, Quon KC, Shapiro L. The control of temporal and spatial organization during the Caulobacter cell cycle. Curr Opin Genet Dev 1996; 6:538-44. [PMID: 8939718 DOI: 10.1016/s0959-437x(96)80081-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Caulobacter cell cycle exhibits time-dependent expression of differentiation events. These include the morphological transition of a swarmer cell to a replication-competent stalked cell and the subsequent polarized distribution of specific gene products that results in an asymmetric predivisional cell. Cell division then yields a new swarmer cell and a stem-cell-like stalked cell. Two-component signal transduction proteins involved in cell cycle control and proteins required for cell division and flagellar biogenesis have been shown to be regulated temporally and spatially during the cell cycle. The mechanisms underlying this regulation include protein phosphorylation and proteolysis.
Collapse
Affiliation(s)
- I J Domian
- Department of Developmental Biology, Beckman Center for Molecular and Genetic Medicine, Stanford University, Stanford, California 94305-5427, USA.
| | | | | |
Collapse
|
228
|
van Es S, Virdy KJ, Pitt GS, Meima M, Sands TW, Devreotes PN, Cotter DA, Schaap P. Adenylyl cyclase G, an osmosensor controlling germination of Dictyostelium spores. J Biol Chem 1996; 271:23623-5. [PMID: 8798577 DOI: 10.1074/jbc.271.39.23623] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dictyostelium cells express a G-protein-coupled adenylyl cyclase, ACA, during aggregation and an atypical adenylyl cyclase, ACG, in mature spores. The ACG gene was disrupted by homologous recombination. acg- cells developed into normal fruiting bodies with viable spores, but spore germination was no longer inhibited by high osmolarity, a fairly universal constraint for spore and seed germination. ACG activity, measured in aca-/ACG cells, was strongly stimulated by high osmolarity with optimal stimulation occurring at 200 milliosmolar. RdeC mutants, which display unrestrained protein kinase A (PKA) activity and a cell line, which overexpresses PKA under a prespore specific promoter, germinate very poorly, both at high and low osmolarity. These data indicate that ACG is an osmosensor controlling spore germination through activation of protein kinase A.
Collapse
Affiliation(s)
- S van Es
- Cell Biology Section, Institute for Molecular Plant Sciences, University of Leiden, Wassenaarseweg 64, 2333AL Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 1996; 86:865-75. [PMID: 8808622 DOI: 10.1016/s0092-8674(00)80162-2] [Citation(s) in RCA: 660] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An osmosensing mechanism in the budding yeast (Saccharomyces cerevisiae) involves both a two-component signal transducer (Sln1p, Ypd1p and Ssk1p) and a MAP kinase cascade (Ssk2p/Ssk22p, Pbs2p, and Hog1p). The transmembrane protein Sln1p contains an extracellular sensor domain and cytoplasmic histidine kinase and receiver domains, whereas the cytoplasmic protein Ssk1p contains a receiver domain. Ypd1p binds to both Sln1p and Ssk1p and mediates the multistep phosphotransfer reaction (phosphorelay). This phosphorelay system is initiated by the autophosphorylation of Sln1p at His576. This phosphate is then sequentially transferred to Sln1p-Asp-1144, then to Ypd1p-His64, and finally to Ssk1p-Asp554. We propose that the multistep phosphorelay mechanism is a universal signal transduction apparatus utilized both in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- F Posas
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
230
|
Kehoe DM, Grossman AR. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 1996; 273:1409-12. [PMID: 8703080 DOI: 10.1126/science.273.5280.1409] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Complementary chromatic adaptation in cyanobacteria acts through photoreceptors to control the biosynthesis of light-harvesting complexes. The mutant FdBk, which appears black, cannot chromatically adapt and may contain a lesion in the apparatus that senses light quality. The complementing gene identified here, rcaE, encodes a deduced protein in which the amino-terminal region resembles the chromophore attachment domain of phytochrome photoreceptors and regions of plant ethylene receptors; the carboxyl- terminal half is similar to the histidine kinase domain of two-component sensor kinases.
Collapse
Affiliation(s)
- D M Kehoe
- Department of Plant Biology, Carnegie Institution of Washington, 290 Panama Street, Stanford, CA 94305, USA
| | | |
Collapse
|
231
|
Beier D, Deppisch H, Gross R. Conserved sequence motifs in the unorthodox BvgS two-component sensor protein of Bordetella pertussis. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:169-76. [PMID: 8804390 DOI: 10.1007/bf02173217] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The unorthodox two-component sensor protein BvgS of Bordetella pertussis contains several interesting sequence motifs of unknown functional relevance, such as a histidine motif in its output domain, which is conserved among several unorthodox sensor proteins, a putative nucleotide binding site [Walker box type A] in its linker region, and a region in its periplasmic domain with significant homology to the TonB protein of Escherichia coli. We investigated potential functions of these sequences by constructing B. pertussis strains that express mutant BvgS derivatives. The His1172 residue in the output domain was exchanged for Gln, and the Walker motif was mutated either by the replacement of Lys625 by Arg, or of Gly624 by Val and Lys625 by Leu. To analyse the TonB motif, the periplasmic domain of BvgS was replaced with the corresponding domain of EvgS, an E. coli sensor that is highly homologous to BvgS but lacks the similarity with TonB. All mutations except the conservative Lys/Arg exchange in the Walker box caused the inactivation of BvgS, indicating the functional importance of the conserved motifs. The activity of the mutant proteins could be restored by complementation in trans with various separately expressed, truncated parts of BvgS. Mutations in the BvgS receiver domain could be complemented not only by a construct expressing the wild-type receiver and output domains, but also by the derivative containing the His-Gln exchange. Therefore, the histidine motif, although important for BvgS function, is not essential for complementation of BvgS mutants. The mutations in the Walker box and in the periplasmic domain could be complemented by a truncated BvgS derivative lacking the receiver and output domains. The characterization of a spontaneous revertant of the strain expressing the originally inactive EvgS/BvgS hybrid protein revealed the presence of a mutation in the BvgS linker region, conferring constitutive activity on the protein. As TonB energizes transport processes across the outer membrane of E. coli, the strain expressing the constitutive EvgS/BvgS hybrid protein lacking the TonB motif was used in preliminary investigations of a possible direct involvement of BvgS in transport processes.
Collapse
Affiliation(s)
- D Beier
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum) der Universität Würzburg, Germany
| | | | | |
Collapse
|
232
|
Kennelly PJ, Potts M. Fancy meeting you here! A fresh look at "prokaryotic" protein phosphorylation. J Bacteriol 1996; 178:4759-64. [PMID: 8759835 PMCID: PMC178254 DOI: 10.1128/jb.178.16.4759-4764.1996] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacteria play host to a wide range of protein phosphorylation-dephosphorylation systems (Fig. 1). As little as five years ago the known systems were thought to be late-emerging and absolutely prokaryote specific. Today we know that most protein kinases and protein phosphatases are descended from a set of common, and possibly quite ancient, prototypes. Prokaryote- and eukaryote-specific protein kinases and protein phosphatases are rare and represent exceptions, not the rule as previously thought. Commonality suggests that a dynamic and versatile regulatory mechanism was first adapted to the modulation of protein function as early if not earlier than more "basic" mechanisms such as allosterism, etc. The existence of common molecular themes confirms that the microbial world offers a unique, largely untapped library and a powerful set of tools for the understanding of a regulatory mechanism which is crucial to all organisms, tools whose diversity and experimental malleability will provide new avenues for exploring and understanding key modes of cellular regulation.
Collapse
Affiliation(s)
- P J Kennelly
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA.
| | | |
Collapse
|
233
|
Norbeck J, Pâhlman AK, Akhtar N, Blomberg A, Adler L. Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1996; 271:13875-81. [PMID: 8662716 DOI: 10.1074/jbc.271.23.13875] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The existence of specific dl-glycerol-3-phosphatase (EC 3.1.3.21) activity in extracts of Saccharomyces cerevisiae was confirmed by examining strains lacking nonspecific acid and alkaline phosphatase activities. During purification of the glycerol-3-phosphatase, two isozymes having very similar molecular weights were isolated by gel filtration and anion exchange chromatography. By microsequencing of trypsin-generated peptides the corresponding genes were identified as previously sequenced open reading frames of unknown function. The two genes, GPP1 (YIL053W) and GPP2 (YER062C) encode proteins that show 95% amino acid identity and have molecular masses of 30.4 and 27.8 kDa, respectively. The intracellular concentration of Gpp2p increases in cells subjected to osmotic stress, while the production of Gpp1p is unaffected by changes of external osmolarity. Both isoforms have a high specificity for dl-glycerol-3-phosphate, pH optima at 6.5, and KmG3P in the range of 3-4 mM. The osmotic induction of Gpp2p is blocked in cells that are defective in the HOG-mitogen-activated protein kinase pathway, indicating that GPP2 is a target gene for this osmosensing signal transduction pathway. Together with DOG1 and DOG2, encoding two highly homologous enzymes that dephosphorylate 2-deoxyglucose-6-phosphate, GPP1 and GPP2 constitute a new family of genes for low molecular weight phosphatases.
Collapse
Affiliation(s)
- J Norbeck
- Department of General and Marine Microbiology, Lundberg Laboratory, Göteborg University, Medicinaregatan 9C, S-41390 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
234
|
Abstract
Posttranslational modification of proteins by phosphorylation is a universal mechanism for regulating diverse biological functions. Recognition that many cellular proteins are reversibly phosphorylated in response to external stimuli or intracellular signals has generated an ongoing interest in identifying and characterizing plant protein kinases and protein phosphatases that modulate the phosphorylation status of proteins. This review discusses recent advances in our understanding of the structure, regulation, and function of plant protein phosphatases. Three major classes of enzymes have been reported in plants that are homologues of the mammalian type-1, -2A, and -2C protein serine/threonine phosphatases. Molecular genetic and biochemical studies reveal a role for some of these enzymes in signal transduction, cell cycle progression, and hormonal regulation. Studies also point to the presence of additional phosphatases in plants that are unrelated to these major classes.
Collapse
Affiliation(s)
- Robert D. Smith
- AgBiotech Center, Rutgers University, New Brunswick, New Jersey 08903-0231, Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | | |
Collapse
|
235
|
Osorio G, Jerez CA. Adaptive response of the archaeon Sulfolobus acidocaldarius BC65 to phosphate starvation. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 6):1531-1536. [PMID: 8704993 DOI: 10.1099/13500872-142-6-1531] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The adaptive response of the archaeon Sulfolobus acidocaldarius BC65 to phosphate starvation was studied. When cells were subjected to phosphate limitation, their growth was affected. In addition, the levels of synthesis and/or the degree of phosphorylation of several proteins changed, as detected by two-dimensional nonequilibrium pH gradient electrophoresis of cells labelled in vivo with [35S]methionine and [35S]cysteine, or H3 32PO4. After another growth-restricting treatment, a heat shock, a general inhibition of protein synthesis was observed. Under phosphate starvation conditions, a 36 kDa protein became phosphorylated without its synthesis being significantly modified, suggesting a probable regulatory role during adaptation of the cell to the change in the external environment. In Southern blot analysis with specific probes from very conserved regions of the phoR and phoB genes from Escherichia coli, a positive hybridization with S. acidocaldarius BC65 chromosomal DNA fragments was found. This suggested the presence in S. acidocaldarius BC65 of genes related to the E. coli genes involved in the phosphate starvation response system. This appears to be the first evidence of the possible existence of a two-component sensory system in a micro-organism from the archaeal kingdom Crenarchaeota.
Collapse
Affiliation(s)
- Gonzalo Osorio
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Chile, Casilla 70086, Santiago-7, Chile
| | - Carlos A Jerez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Chile, Casilla 70086, Santiago-7, Chile
| |
Collapse
|
236
|
Alex LA, Borkovich KA, Simon MI. Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc Natl Acad Sci U S A 1996; 93:3416-21. [PMID: 8622950 PMCID: PMC39623 DOI: 10.1073/pnas.93.8.3416] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two-component signal transduction systems are most often found in prokaryotic organisms where they are responsible for mediating the cellular responses to many environmental stimuli. These systems are composed of an autophosphorylating histidine kinase and a response regulator. We have found evidence for the existence of two-component histidine kinases in the eukaryotic filamentous fungus Neurospora crassa based on screening with degenerate primers to conserved regions of these signaling proteins. Subsequent cloning and sequencing of one member of this newly discovered group, nik-1+, shows that the predicted protein sequence shares homology with both the kinase and response regulator modules of two-component signaling proteins. In addition, the N-terminal region of the protein has a novel repeating 90-amino acid motif. Deletion of the nik-1+ gene in N. crassa results in an organism that displays aberrant hyphal structure, which is enhanced under conditions of high osmostress. Increased osmotic pressure during growth on solid medium leads to restricted colonial growth, loss of aerial hyphae formation, and no subsequent conidiophore development. This finding may have implications for mechanisms of fungal colonization and pathogenicity.
Collapse
Affiliation(s)
- L A Alex
- Division of Biology, California Institute of Technology, Pasadena, 91125, USA
| | | | | |
Collapse
|
237
|
Abstract
Protein Ser, Thr and Tyr kinases play essential roles in signal transduction in organisms ranging from yeast to mammals, where they regulate a variety of cellular activities. During the last few years, a number of genes that encode eukaryotic-type protein kinases have also been identified in four different bacterial species, suggesting that such enzymes are also widespread in prokaryotes. Although many of them have yet to be fully characterized, several studies indicate that eukaryotic-type protein kinases play important roles in regulating cellular activities of these bacteria, such as cell differentiation, pathogenicity and secondary metabolism. A model based on the possible coupling between two-component systems and eukaryotic-type protein kinases is proposed to explain the function of eukaryotic-type protein kinases in bacterial signalling in the light of studies in bacteria, as well as in plants and yeast. These two groups of eukaryotes possess signal-transduction pathways involving both two-component systems and eukaryotic protein kinases.
Collapse
Affiliation(s)
- C C Zhang
- Ecole Superieure de Biotechnologie de Strasbourg, Universite Louis Pasteur de Strasbourg, Illkirch, France
| |
Collapse
|
238
|
Wanner BL. Signal transduction in the control of phosphate-regulated genes of Escherichia coli. Kidney Int 1996; 49:964-7. [PMID: 8691745 DOI: 10.1038/ki.1996.136] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
239
|
Varela JCS, Mager WH. Response of Saccharomyces cerevisiae to changes in external osmolarity. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 4):721-731. [PMID: 8936301 DOI: 10.1099/00221287-142-4-721] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Joäo C S Varela
- Department of Biochemistry and Molecular Biology, Institute for Molecular Biological Sciences, BioCentrum Amsterdam, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Willem H Mager
- Department of Biochemistry and Molecular Biology, Institute for Molecular Biological Sciences, BioCentrum Amsterdam, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
240
|
|
241
|
Perego M, Hoch JA. Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet 1996; 12:97-101. [PMID: 8868347 DOI: 10.1016/0168-9525(96)81420-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphorylation or dephosphorylation of an aspartate regulates the output activity of the response regulator of two-component signaling systems. Signal input in these systems is dependent on signal-transducing kinases, which can respond to a variety of signal ligands and, in some cases, to small phosphorylated metabolic intermediates. The kinase component of many two-component signaling systems also displays a response regulator-phosphate phosphatase activity that inactivates the response regulator in response to signals. Newly discovered kinase-independent phosphatases allow additional signals to influence the extent of response-regulator phosphorylation. Such phosphatases are prevalent in signal transduction systems controlling complex processes, such as the initiation of development in microorganisms.
Collapse
Affiliation(s)
- M Perego
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
242
|
Krems B, Charizanis C, Entian KD. The response regulator-like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidative stress resistance. Curr Genet 1996; 29:327-34. [PMID: 8598053 DOI: 10.1007/bf02208613] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have isolated mutants of Saccharomyces cerevisiae with an increased sensitivity to oxidative stress. All pos9 mutants (pos for peroxide sensitivity) were hypersensitive to methylviologene, hyperbaric oxygen or hydrogen peroxide, but grew similarly to the wild-type under all other conditions tested. Isolation and sequencing of the respective POS9 gene revealed that it was identical to SKN7. The predicted Skn7/Pos9 protein possesses a domain with high homology to prokaryotic response regulators. These regulatory proteins are part of a simple signalling cascade termed a "two-component system", where a phosphorylation signal of a histidine kinase is transferred to a conserved aspartate residue of the response regulator. To test the functional role of the respective aspartate residue of Skn7/Pos9 protein in oxidative stress, we mutagenized this residue in vitro to alanine, arginine and glutamate. Only the glutamate allele (D427 to E) was able to rescue the hydrogen peroxide-sensitivity of pos9 mutants. By fusion experiments with the Gal4 DNA-binding domain we identified the isolated response regulator-like domain as a novel eukaryotic domain sufficient for gene activation. Whereas this hybrid protein activated transcription of a lacZ reporter gene under aerobic conditions, no activation was observed under anaerobic conditions, indicating that the response regulator domain is involved in a signalling reaction. Two-hybrid investigations also suggest an oligomerization of the Pos9 protein. Our results indicate that a two-component system is involved in the oxidative-stress response of yeast.
Collapse
Affiliation(s)
- B Krems
- Institute for Microbiology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | | | | |
Collapse
|
243
|
Zhou D, Kalaitzís P, Mattoo AK, Tucker ML. The mRNA for an ETR1 homologue in tomato is constitutively expressed in vegetative and reproductive tissues. PLANT MOLECULAR BIOLOGY 1996; 30:1331-8. [PMID: 8704141 DOI: 10.1007/bf00019564] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Dominant mutations in the Arabidopsis ETR1 gene block the ethylene signal transduction pathway. The ETR1 gene has been cloned and sequenced. Using the ETR1 cDNA as a probe, we identified a cDNA homologue (eTAE1) from tomato. eTAE1 contains an open reading frame encoding a polypeptide of 754 amino acid residues. The nucleic acid sequence for the coding sequence in eTAE1 is 74% identical to that for ETR1, and the deduced amino acid sequence is 81% identical and 90% similar. Genomic Southern blot analysis indicates that three or more ETR1 homologues exist in tomato. RNA blots show that eTAE1 mRNA is constitutively expressed in all the tissues examined, and its accumulation in leaf abscission zones was unaffected by ethylene, silver ions (an inhibitor of ethylene action) or auxin.
Collapse
Affiliation(s)
- D Zhou
- Plant Molecular Biology Laboratory, USDA/ARS, Beltsville, MD 20705, USA
| | | | | | | |
Collapse
|
244
|
Dutta R, Inouye M. Reverse phosphotransfer from OmpR to EnvZ in a kinase-/phosphatase+ mutant of EnvZ (EnvZ.N347D), a bifunctional signal transducer of Escherichia coli. J Biol Chem 1996; 271:1424-9. [PMID: 8576133 DOI: 10.1074/jbc.271.3.1424] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
EnvZ of Escherichia coli is a transmembrane histidine kinase belonging to the family of two-component signal transducing systems prevalent in prokaryotes and recently discovered in eukaryotes. In response to changes in medium osmolarity EnvZ regulates the level of phosphorylated OmpR, its conjugate response-regulating transcription factor for ompF and ompC genes. EnvZ has dual opposing enzymatic activities; OmpR-phosphorylase (kinase) and phospho-OmpR-dephosphorylase (phosphatase). The osmotic signal is proposed to regulate the ratio of the kinase to the phosphatase activities of EnvZ to modulate the level of OmpR phosphorylation. In this work we used a COOH-terminal fragment of a previously identified kinase-/phosphatase+ EnvZ mutant (EnvZ-N347D) to demonstrate that the phosphoryl group on phospho-OmpR is transferred back to EnvZ to the same histidine residue (His243) that is utilized for the autokinase reaction by the wild type protein. Phospho-EnvZ-N347D thus formed could also transfer its phosphoryl group back to OmpR. The phosphotransfer reaction from phospho-OmpR to EnvZ.N347D was inhibited by ADP while Mg2+ ions stimulated the dephosphorylation reaction, resulting in release of inorganic phosphate. These results indicate that the energy levels of phosphoryl groups on OmpR and EnvZ are very similar and that the phosphatase reaction in the EnvZ.N347D mutant involves a reversal of the phosphotransfer reaction from EnvZ to OmpR using the identical His243 residue.
Collapse
Affiliation(s)
- R Dutta
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
245
|
Metabolite Sensing and Regulatory Points of Carbon and Nitrogen Metabolic Pathways and Partitioning in Plants. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/978-3-7091-7474-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
246
|
Aiba H, Yamada H, Ohmiya R, Mizuno T. The osmo-inducible gpd1+ gene is a target of the signaling pathway involving Wis1 MAP-kinase kinase in fission yeast. FEBS Lett 1995; 376:199-201. [PMID: 7498541 DOI: 10.1016/0014-5793(95)01277-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The gpd1+ gene of Schizosaccharomyces pombe encodes an isozyme of NADH-dependent glycerol-3-phosphate dehydrogenases that is involved in glycerol synthesis, whose expression is induced upon an upshift of the medium osmolarity. We provide evidence that this osmotic induction of gpd1+ in S. pombe is under the control of a MAP-signaling pathway involving the wis1+ gene-product, which is a homologue of MAP-kinase kinases. The results suggested that the gpd1+ gene is a downstream target of the osmosensing signaling that is transmitted through Wis1, thereby defects of either of these genes result in the similar phenotype, namely, osmosensitive for growth, because of the failure in accumulation of the intracellular osmoprotectant, glycerol.
Collapse
Affiliation(s)
- H Aiba
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | | | |
Collapse
|
247
|
Lagarias DM, Wu SH, Lagarias JC. Atypical phytochrome gene structure in the green alga Mesotaenium caldariorum. PLANT MOLECULAR BIOLOGY 1995; 29:1127-1142. [PMID: 8616213 DOI: 10.1007/bf00020457] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The phytochrome photoreceptor in the green alga Mesotaenium caldariorum is encoded by a small family of highly related genes. DNA sequence analysis of two of the algal phytochrome genes indicates an atypical gene structure with numerous long introns. The two genes, termed mesphy1a and mesphy1b, encode polypeptides which differ by one amino acid in the region of overlap that was sequenced. RT-PCR studies have established the intron-exon junctions of both genes and show that both are expressed. RNA blot analysis indicates a single transcript of ca. 4.1 kb in length. The deduced amino acid sequence of the mesphy1b gene reveals that the photoreceptor consists of 1142 amino acids, with an overall structure similar to other phytochromes. Phylogenetic analyses indicate that the algal phytochrome falls into a distinct subfamily with other lower plant phytochromes. Profile analysis of an internal repeat found within the central hinge region of the phytochrome polypeptide indicates an evolutionary relatedness to the photoactive yellow protein from the purple bacterium Ectothiorhodospira halophila, to several bacterial sensor kinase family members, and to a family of eukaryotic regulatory proteins which includes the period clock (per) and single-minded (sim) gene products of Drosophila. Since mutations which alter phytochrome activity cluster within the region delimited by these direct repeats (P.H. Quail et al., Science 268 (1995): 675-680), this conserved motif may play an important role in the signal transducing function of these disparate protein families.
Collapse
Affiliation(s)
- D M Lagarias
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
248
|
Morgan BA, Bouquin N, Johnston LH. Two-component signal-transduction systems in budding yeast MAP a different pathway? Trends Cell Biol 1995; 5:453-7. [PMID: 14732029 DOI: 10.1016/s0962-8924(00)89114-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Until recently, two-component signal-transduction pathways were thought to be exclusively found in bacteria. Some eukaryotic examples have now been characterized but, at least in the budding yeast Saccharomyces cerevisiae, it appears that this type of signal-transduction pathway is not utilized as extensively as in bacteria. Further, the few eukaryotic examples described suggest that two-component signal-transduction pathways might not be freestanding, as in prokaryotes, but might effect gene expression by regulating eukaryotic mitogen-activated protein (MAP) kinase pathways.
Collapse
Affiliation(s)
- B A Morgan
- Division of Yeast Genetics at the National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | |
Collapse
|
249
|
Engel M, Véron M, Theisinger B, Lacombe ML, Seib T, Dooley S, Welter C. A novel serine/threonine-specific protein phosphotransferase activity of Nm23/nucleoside-diphosphate kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:200-7. [PMID: 8529641 DOI: 10.1111/j.1432-1033.1995.200_c.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two human nm23 genes have been identified, designated nm23-H1 and nm23-H2, which encode the 88% identical nucleoside-diphosphate kinase (NDPK) A and NDPK B polypeptides, respectively. The nm23-H1 gene product has been shown to play a functional role in the suppression of tumor metastasis. The Nm23 proteins/NDPK are highly conserved throughout evolution and are implicated in controlling cellular differentiation and development in various species, while the underlying mechanisms remain undefined. Neither the NDPK activity nor the DNA-binding activity, identified recently for NDPK B, can satisfactory explain the regulatory functions of Nm23. The present study provides evidence that purified Nm23 proteins are capable of transferring a phosphate group to other proteins when non-denaturing amounts of urea are present. This novel Nm23/NDPK activity was found to be specific for serine and threonine residues, and the transphosphorylation of substrate proteins occurred stoichiometrically. Because of the absence of a substrate turn-over, the novel function was termed protein phosphotransferase activity instead of protein kinase activity. It is demonstrated that urea stimulates the interaction of NDPK with other proteins. Identical phosphoprotein patterns were obtained using purified NDPK preparations from human, Drosophila, yeast and Dictyostelium in the presence of urea. Partially purified NDPK from human erythrocytes produced a similar phosphorylation pattern independent of urea addition and also acted stoichiometrically. In this preparation, a protein phosphotransferase activity of Nm23 species may possibly be generated and/or stabilized by the interaction with copurified proteins. Using different mutants of Dictyostelium NDPK it was shown that the protein phosphotransferase activity depends on the same active site as the NDPK activity. A phosphotransfer mechanism analogous to that of protein-histidine kinases is proposed, involving a high-energy phosphohistidine intermediate. Furthermore, the novel Nm23 function is compared with an apparently similar protein phosphotransferase activity which was observed previously with partially purified NDPK from different plant species.
Collapse
Affiliation(s)
- M Engel
- Institut für Humangenetik, Universität des Saarlandes, Homburg, Germany
| | | | | | | | | | | | | |
Collapse
|
250
|
Harlocker SL, Bergstrom L, Inouye M. Tandem binding of six OmpR proteins to the ompF upstream regulatory sequence of Escherichia coli. J Biol Chem 1995; 270:26849-56. [PMID: 7592927 DOI: 10.1074/jbc.270.45.26849] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OmpR is a transcription factor in Escherichia coli whose function is modulated by phosphorylation in the presence of phosphorylated EnvZ, a transmembrane protein histidine kinase involved in osmosensing. Using a protein S-OmpR hybrid protein, we demonstrated that six OmpR molecules bind tandemly to the -100 to -39 sequence of ompF. This sequence consists of three 20-base pair units: F1, F2, and F3, each of which is bound by two OmpR proteins. Polymerase chain reaction selection of nine randomized base pairs within the F1 sequence revealed highly conserved C residues spaced 10 base pairs apart. Further mutational analysis of conserved bases indicated that two OmpR molecules bind tandemly to two direct repeats. Mobility shift assays showed that cooperative interactions play a role in enhancing binding of OmpR to lower affinity F2 and F3 sites. Activation and repression of ompF expression are thus regulated by a total of eight OmpR molecules, including two molecules that bind to a distal site (-380 to -361).
Collapse
Affiliation(s)
- S L Harlocker
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|