201
|
Meinel JA, Yumiceba V, Künstner A, Schultz K, Kruse N, Kaiser FJ, Holterhus PM, Claviez A, Hiort O, Busch H, Spielmann M, Werner R. Disruption of the topologically associated domain at Xp21.2 is related to 46,XY gonadal dysgenesis. J Med Genet 2022; 60:469-476. [PMID: 36227713 PMCID: PMC10176412 DOI: 10.1136/jmg-2022-108635] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/25/2022] [Indexed: 11/03/2022]
Abstract
BackgroundDuplications at the Xp21.2 locus have previously been linked to 46,XY gonadal dysgenesis (GD), which is thought to result from gene dosage effects of NR0B1 (DAX1), but the exact disease mechanism remains unknown.MethodsPatients with 46,XY GD were analysed by whole genome sequencing. Identified structural variants were confirmed by array CGH and analysed by high-throughput chromosome conformation capture (Hi-C).ResultsWe identified two unrelated patients: one showing a complex rearrangement upstream of NR0B1 and a second harbouring a 1.2 Mb triplication, including NR0B1. Whole genome sequencing and Hi-C analysis revealed the rewiring of a topological-associated domain (TAD) boundary close to NR0B1 associated with neo-TAD formation and may cause enhancer hijacking and ectopic NR0B1 expression. Modelling of previous Xp21.2 structural variations associated with isolated GD support our hypothesis and predict similar neo-TAD formation as well as TAD fusion.ConclusionHere we present a general mechanism how deletions, duplications or inversions at the NR0B1 locus can lead to partial or complete GD by disrupting the cognate TAD in the vicinity of NR0B1. This model not only allows better diagnosis of GD with copy number variations (CNVs) at Xp21.2, but also gives deeper insight on how spatiotemporal activation of developmental genes can be disrupted by reorganised TADs causing impairment of gonadal development.
Collapse
Affiliation(s)
- Jakob A Meinel
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Universität zu Lübeck, Lubeck, Germany
| | | | - Axel Künstner
- Group of Medical Systems Biology, Lübeck Institute of Experimental Dermatology, Universität zu Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, Universität zu Lübeck, Lübeck, Germany
| | - Kristin Schultz
- Institute of Human Genetics, Universität zu Lübeck, Lübeck, Germany
| | - Nathalie Kruse
- Institute of Human Genetics, Universität zu Lübeck, Lübeck, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, Universität Duisburg-Essen, Duisburg, Germany
- Essen Center for Rare Diseases (EZSE), University Hospital Essen, Essen, Germany
| | - Paul-Martin Holterhus
- University Medical Center for Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine I, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Alexander Claviez
- Department of Pediatrics and Adolescent Medicine I, Division of Pediatric Oncology and Hematology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Olaf Hiort
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Universität zu Lübeck, Lubeck, Germany
| | - Hauke Busch
- Group of Medical Systems Biology, Lübeck Institute of Experimental Dermatology, Universität zu Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, Universität zu Lübeck, Lübeck, Germany
| | - Malte Spielmann
- Institute of Human Genetics, Universität zu Lübeck, Lübeck, Germany
- Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Disease, Berlin, Germany
| | - Ralf Werner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Universität zu Lübeck, Lubeck, Germany
- Institute of Molecular Medicine, Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
202
|
Dehingia B, Milewska M, Janowski M, Pękowska A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep 2022; 23:e55146. [PMID: 35993175 PMCID: PMC9442299 DOI: 10.15252/embr.202255146] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
CCCTC-binding factor (CTCF) is an eleven zinc finger (ZF), multivalent transcriptional regulator, that recognizes numerous motifs thanks to the deployment of distinct combinations of its ZFs. The great majority of the ~50,000 genomic locations bound by the CTCF protein in a given cell type is intergenic, and a fraction of these sites overlaps with transcriptional enhancers. Furthermore, a proportion of the regions bound by CTCF intersect genes and promoters. This suggests multiple ways in which CTCF may impact gene expression. At promoters, CTCF can directly affect transcription. At more distal sites, CTCF may orchestrate interactions between regulatory elements and help separate eu- and heterochromatic areas in the genome, exerting a chromatin barrier function. In this review, we outline how CTCF contributes to the regulation of the three-dimensional structure of chromatin and the formation of chromatin domains. We discuss how CTCF binding and architectural functions are regulated. We examine the literature implicating CTCF in controlling gene expression in development and disease both by acting as an insulator and a factor facilitating regulatory elements to efficiently interact with each other in the nuclear space.
Collapse
Affiliation(s)
- Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Małgorzata Milewska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Marcin Janowski
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
203
|
Dubois F, Sidiropoulos N, Weischenfeldt J, Beroukhim R. Structural variations in cancer and the 3D genome. Nat Rev Cancer 2022; 22:533-546. [PMID: 35764888 PMCID: PMC10423586 DOI: 10.1038/s41568-022-00488-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/21/2022]
Abstract
Structural variations (SVs) affect more of the cancer genome than any other type of somatic genetic alteration but difficulties in detecting and interpreting them have limited our understanding. Clinical cancer sequencing also increasingly aims to detect SVs, leading to a widespread necessity to interpret their biological and clinical relevance. Recently, analyses of large whole-genome sequencing data sets revealed features that impact rates of SVs across the genome in different cancers. A striking feature has been the extent to which, in both their generation and their influence on the selective fitness of cancer cells, SVs are more specific to individual cancer types than other genetic alterations such as single-nucleotide variants. This Perspective discusses how the folding of the 3D genome, and differences in its folding across cell types, affect observed SV rates in different cancer types as well as how SVs can impact cancer cell fitness.
Collapse
Affiliation(s)
- Frank Dubois
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikos Sidiropoulos
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
204
|
Fleck K, Raj R, Erceg J. The 3D genome landscape: Diverse chromosomal interactions and their functional implications. Front Cell Dev Biol 2022; 10:968145. [PMID: 36036013 PMCID: PMC9402908 DOI: 10.3389/fcell.2022.968145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Genome organization includes contacts both within a single chromosome and between distinct chromosomes. Thus, regulatory organization in the nucleus may include interplay of these two types of chromosomal interactions with genome activity. Emerging advances in omics and single-cell imaging technologies have allowed new insights into chromosomal contacts, including those of homologs and sister chromatids, and their significance to genome function. In this review, we highlight recent studies in this field and discuss their impact on understanding the principles of chromosome organization and associated functional implications in diverse cellular processes. Specifically, we describe the contributions of intra-chromosomal, inter-homolog, and inter-sister chromatid contacts to genome organization and gene expression.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Romir Raj
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
205
|
Zhou R, Tian K, Huang J, Duan W, Fu H, Feng Y, Wang H, Jiang Y, Li Y, Wang R, Hu J, Ma H, Qi Z, Ji X. CTCF DNA binding domain undergoes dynamic and selective protein–protein interactions. iScience 2022; 25:105011. [PMID: 36117989 PMCID: PMC9474293 DOI: 10.1016/j.isci.2022.105011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
CTCF is a predominant insulator protein required for three-dimensional chromatin organization. However, the roles of its insulation of enhancers in a 3D nuclear organization have not been fully explained. Here, we found that the CTCF DNA-binding domain (DBD) forms dynamic self-interacting clusters. Strikingly, CTCF DBD clusters were found to incorporate other insulator proteins but are not coenriched with transcriptional activators in the nucleus. This property is not observed in other domains of CTCF or the DBDs of other transcription factors. Moreover, endogenous CTCF shows a phenotype consistent with the DBD by forming small protein clusters and interacting with CTCF motif arrays that have fewer transcriptional activators bound. Our results reveal an interesting phenomenon in which CTCF DBD interacts with insulator proteins and selectively localizes to nuclear positions with lower concentrations of transcriptional activators, providing insights into the insulation function of CTCF. The CTCF DNA-binding domain forms protein clusters in vivo and in vitro CTCF DBD clusters colocalize with insulator proteins but not with activators Arginine residues of CTCF DBD are frequently mutated in cancers Multiple transcription factor DBDs form protein clusters
Collapse
|
206
|
The FOXO family of transcription factors: key molecular players in gastric cancer. J Mol Med (Berl) 2022; 100:997-1015. [PMID: 35680690 DOI: 10.1007/s00109-022-02219-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Gastric cancer (GC) is the fifth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death with an oncological origin. Despite its decline in incidence and mortality in recent years, GC remains a global public problem that seriously threatens patients' health and lives. The forkhead box O proteins (FOXOs) are a family of evolutionarily conserved transcription factors (TFs) with crucial roles in cell fate decisions. In mammals, the FOXO family consists of four members FOXO1, 3a, 4, and 6. FOXOs play crucial roles in a variety of biological processes, such as development, metabolism, and stem cell maintenance, by regulating the expression of their target genes in space and time. An accumulating amount of evidence has shown that the dysregulation of FOXOs is involved in GC progression by affecting multiple cellular processes, including proliferation, apoptosis, invasion, metastasis, cell cycle progression, carcinogenesis, and resistance to chemotherapeutic drugs. In this review, we systematically summarize the recent findings on the regulatory mechanisms of FOXO family expression and activity and elucidate its roles in GC progression. Moreover, we also highlight the clinical implications of FOXOs in GC treatment.
Collapse
|
207
|
Mikulasova A, Kent D, Trevisan-Herraz M, Karataraki N, Fung KTM, Ashby C, Cieslak A, Yaccoby S, van Rhee F, Zangari M, Thanendrarajan S, Schinke C, Morgan GJ, Asnafi V, Spicuglia S, Brackley CA, Corcoran AE, Hambleton S, Walker BA, Rico D, Russell LJ. Epigenomic translocation of H3K4me3 broad domains over oncogenes following hijacking of super-enhancers. Genome Res 2022; 32:1343-1354. [PMID: 34933939 PMCID: PMC9341503 DOI: 10.1101/gr.276042.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
Chromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called enhancer hijacking We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with hijacking of super-enhancers of other common oncogenes in B cell (MAF, MYC, and FGFR3/NSD2) and T cell malignancies (LMO2, TLX3, and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, in which the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.
Collapse
Affiliation(s)
- Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Daniel Kent
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Marco Trevisan-Herraz
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nefeli Karataraki
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Kent T M Fung
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Cody Ashby
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Shmuel Yaccoby
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Frits van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Maurizio Zangari
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | - Carolina Schinke
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Gareth J Morgan
- NYU Langone Medical Center, Perlmutter Cancer Center, NYU Langone Health, New York, New York 10016, USA
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker-Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, 13288 Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Anne E Corcoran
- Lymphocyte Signalling and Development Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, Indiana 46202, USA
| | - Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Lisa J Russell
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
208
|
In vivo dissection of a clustered-CTCF domain boundary reveals developmental principles of regulatory insulation. Nat Genet 2022; 54:1026-1036. [PMID: 35817979 PMCID: PMC9279147 DOI: 10.1038/s41588-022-01117-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/31/2022] [Indexed: 01/05/2023]
Abstract
Vertebrate genomes organize into topologically associating domains, delimited by boundaries that insulate regulatory elements from nontarget genes. However, how boundary function is established is not well understood. Here, we combine genome-wide analyses and transgenic mouse assays to dissect the regulatory logic of clustered-CCCTC-binding factor (CTCF) boundaries in vivo, interrogating their function at multiple levels: chromatin interactions, transcription and phenotypes. Individual CTCF binding site (CBS) deletions revealed that the characteristics of specific sites can outweigh other factors such as CBS number and orientation. Combined deletions demonstrated that CBSs cooperate redundantly and provide boundary robustness. We show that divergent CBS signatures are not strictly required for effective insulation and that chromatin loops formed by nonconvergently oriented sites could be mediated by a loop interference mechanism. Further, we observe that insulation strength constitutes a quantitative modulator of gene expression and phenotypes. Our results highlight the modular nature of boundaries and their control over developmental processes.
Collapse
|
209
|
Dsouza KB, Maslova A, Al-Jibury E, Merkenschlager M, Bhargava VK, Libbrecht MW. Learning representations of chromatin contacts using a recurrent neural network identifies genomic drivers of conformation. Nat Commun 2022; 13:3704. [PMID: 35764630 PMCID: PMC9240038 DOI: 10.1038/s41467-022-31337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the availability of chromatin conformation capture experiments, discerning the relationship between the 1D genome and 3D conformation remains a challenge, which limits our understanding of their affect on gene expression and disease. We propose Hi-C-LSTM, a method that produces low-dimensional latent representations that summarize intra-chromosomal Hi-C contacts via a recurrent long short-term memory neural network model. We find that these representations contain all the information needed to recreate the observed Hi-C matrix with high accuracy, outperforming existing methods. These representations enable the identification of a variety of conformation-defining genomic elements, including nuclear compartments and conformation-related transcription factors. They furthermore enable in-silico perturbation experiments that measure the influence of cis-regulatory elements on conformation.
Collapse
Affiliation(s)
- Kevin B Dsouza
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada.
| | - Alexandra Maslova
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | - Ediem Al-Jibury
- MRC, London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Matthias Merkenschlager
- MRC, London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Vijay K Bhargava
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
210
|
Peng A, Peng W, Wang R, Zhao H, Yu X, Sun Y. Regulation of 3D Organization and Its Role in Cancer Biology. Front Cell Dev Biol 2022; 10:879465. [PMID: 35757006 PMCID: PMC9213882 DOI: 10.3389/fcell.2022.879465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) genomics is the frontier field in the post-genomics era, its foremost content is the relationship between chromatin spatial conformation and regulation of gene transcription. Cancer biology is a complex system resulting from genetic alterations in key tumor oncogenes and suppressor genes for cell proliferation, DNA replication, cell differentiation, and homeostatic functions. Although scientific research in recent decades has revealed how the genome sequence is mutated in many cancers, high-order chromosomal structures involved in the development and fate of cancer cells represent a crucial but rarely explored aspect of cancer genomics. Hence, dissection of the 3D genome conformation of cancer helps understand the unique epigenetic patterns and gene regulation processes that distinguish cancer biology from normal physiological states. In recent years, research in tumor 3D genomics has grown quickly. With the rapid progress of 3D genomics technology, we can now better determine the relationship between cancer pathogenesis and the chromatin structure of cancer cells. It is becoming increasingly explicit that changes in 3D chromatin structure play a vital role in controlling oncogene transcription. This review focuses on the relationships between tumor gene expression regulation, tumor 3D chromatin structure, and cancer phenotypic plasticity. Furthermore, based on the functional consequences of spatial disorganization in the cancer genome, we look forward to the clinical application prospects of 3D genomic biomarkers.
Collapse
Affiliation(s)
- Anghui Peng
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Wang Peng
- Department of Oncology, Liuzhou People's Hospital, Liuzhou, China
| | - Ruiqi Wang
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Hao Zhao
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Xinyang Yu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yihao Sun
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| |
Collapse
|
211
|
Piecyk RS, Schlegel L, Johannes F. Predicting 3D chromatin interactions from DNA sequence using Deep Learning. Comput Struct Biotechnol J 2022; 20:3439-3448. [PMID: 35832620 PMCID: PMC9271978 DOI: 10.1016/j.csbj.2022.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Gene regulation in eukaryotes is profoundly shaped by the 3D organization of chromatin within the cell nucleus. Distal regulatory interactions between enhancers and their target genes are widespread and many causal loci underlying heritable agricultural or clinical traits have been mapped to distal cis-regulatory elements. Dissecting the sequence features that mediate such distal interactions is key to understanding their underlying biology. Deep Learning (DL) models coupled with genome-wide 3C-based sequencing data have emerged as powerful tools to infer the DNA sequence grammar underlying such distal interactions. In this review we show that most DL models have remarkably high prediction accuracy, which indicates that DNA sequence features are important determinants of chromatin looping. However, DL model training has so far been limited to a small set of human cell lines, raising questions about the generalization of these predictions to other tissue-types and species. Furthermore, we find that the model architecture seems less relevant for model performance than the training strategy and the data preparation step. Transfer learning, coupled with functionally curated interactions, appear to be the most promising approach to learn cell-type specific and possibly species- specific sequence features in future applications.
Collapse
Affiliation(s)
- Robert S. Piecyk
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Luca Schlegel
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany
- TUM Institute for Advanced Study, Garching, Germany
| |
Collapse
|
212
|
Bateman JR, Johnson JE. Altering enhancer-promoter linear distance impacts promoter competition in cis and in trans. Genetics 2022; 222:6617354. [PMID: 35748724 PMCID: PMC9434180 DOI: 10.1093/genetics/iyac098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/18/2022] [Indexed: 11/14/2022] Open
Abstract
In Drosophila, pairing of maternal and paternal homologs can permit trans-interactions between enhancers on one homolog and promoters on another, an example of a phenomenon called transvection. When chromosomes are paired, promoters in cis and in trans to an enhancer can compete for the enhancer's activity, but the parameters that govern this competition are as yet poorly understood. To assess how the linear spacing between an enhancer and promoter can influence promoter competition in Drosophila, we employed transgenic constructs wherein the eye-specific enhancer GMR is placed at varying distances from a heterologous hsp70 promoter driving a fluorescent reporter. While GMR activates the reporter to a high degree when the enhancer and promoter are spaced by a few hundred base pairs, activation is strongly attenuated when the enhancer is moved 3 kilobases away. By examining transcription of endogenous genes near the point of transgene insertion, we show that linear spacing of 3 kb between GMR and the hsp70 promoter results in elevated transcription of neighboring promoters, suggesting a loss of specificity between the enhancer and its intended transgenic target promoter. Furthermore, increasing spacing between GMR and hsp70 by just 100 bp can enhance transvection, resulting in increased activation of a promoter on a paired homolog at the expense of a promoter in cis to the enhancer. Finally, cis-/trans-promoter competition assays in which one promoter carries mutations to key core promoter elements show that GMR will skew its activity toward a wild type promoter, suggesting that an enhancer is in a balanced competition between its potential target promoters in cis and in trans.
Collapse
Affiliation(s)
- Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | | |
Collapse
|
213
|
Papadogkonas G, Papamatheakis DA, Spilianakis C. 3D Genome Organization as an Epigenetic Determinant of Transcription Regulation in T Cells. Front Immunol 2022; 13:921375. [PMID: 35812421 PMCID: PMC9257000 DOI: 10.3389/fimmu.2022.921375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
In the heart of innate and adaptive immunity lies the proper spatiotemporal development of several immune cell lineages. Multiple studies have highlighted the necessity of epigenetic and transcriptional regulation in cell lineage specification. This mode of regulation is mediated by transcription factors and chromatin remodelers, controlling developmentally essential gene sets. The core of transcription and epigenetic regulation is formulated by different epigenetic modifications determining gene expression. Apart from “classic” epigenetic modifications, 3D chromatin architecture is also purported to exert fundamental roles in gene regulation. Chromatin conformation both facilitates cell-specific factor binding at specified regions and is in turn modified as such, acting synergistically. The interplay between global and tissue-specific protein factors dictates the epigenetic landscape of T and innate lymphoid cell (ILC) lineages. The expression of global genome organizers such as CTCF, YY1, and the cohesin complexes, closely cooperate with tissue-specific factors to exert cell type-specific gene regulation. Special AT-rich binding protein 1 (SATB1) is an important tissue-specific genome organizer and regulator controlling both long- and short-range chromatin interactions. Recent indications point to SATB1’s cooperation with the aforementioned factors, linking global to tissue-specific gene regulation. Changes in 3D genome organization are of vital importance for proper cell development and function, while disruption of this mechanism can lead to severe immuno-developmental defects. Newly emerging data have inextricably linked chromatin architecture deregulation to tissue-specific pathophysiological phenotypes. The combination of these findings may shed light on the mechanisms behind pathological conditions.
Collapse
Affiliation(s)
- George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
- *Correspondence: Charalampos Spilianakis,
| |
Collapse
|
214
|
Super-Enhancers, Phase-Separated Condensates, and 3D Genome Organization in Cancer. Cancers (Basel) 2022; 14:cancers14122866. [PMID: 35740532 PMCID: PMC9221043 DOI: 10.3390/cancers14122866] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
3D chromatin organization plays an important role in transcription regulation and gene expression. The 3D genome is highly maintained by several architectural proteins, such as CTCF, Yin Yang 1, and cohesin complex. This structural organization brings regulatory DNA elements in close proximity to their target promoters. In this review, we discuss the 3D chromatin organization of super-enhancers and their relationship to phase-separated condensates. Super-enhancers are large clusters of DNA elements. They can physically contact with their target promoters by chromatin looping during transcription. Multiple transcription factors can bind to enhancer and promoter sequences and recruit a complex array of transcriptional co-activators and RNA polymerase II to effect transcriptional activation. Phase-separated condensates of transcription factors and transcriptional co-activators have been implicated in assembling the transcription machinery at particular enhancers. Cancer cells can hijack super-enhancers to drive oncogenic transcription to promote cell survival and proliferation. These dysregulated transcriptional programs can cause cancer cells to become highly dependent on transcriptional regulators, such as Mediator and BRD4. Moreover, the expression of oncogenes that are driven by super-enhancers is sensitive to transcriptional perturbation and often occurs in phase-separated condensates, supporting therapeutic rationales of targeting SE components, 3D genome organization, or dysregulated condensates in cancer.
Collapse
|
215
|
Boldyreva LV, Andreyeva EN, Pindyurin AV. Position Effect Variegation: Role of the Local Chromatin Context in Gene Expression Regulation. Mol Biol 2022. [DOI: 10.1134/s0026893322030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
216
|
Meyer BJ. The X chromosome in C. elegans sex determination and dosage compensation. Curr Opin Genet Dev 2022; 74:101912. [PMID: 35490475 DOI: 10.1016/j.gde.2022.101912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
Abnormalities in chromosome dose can reduce organismal fitness and viability by disrupting the balance of gene expression. Unlike imbalances in chromosome dose that cause pathologies, differences in X-chromosome dose that determine sex are well tolerated. Dosage compensation mechanisms have evolved in diverse species to balance X-chromosome gene expression between sexes. Mechanisms underlying nematode X-chromosome counting to determine sex revealed how small quantitative differences in molecular signals are translated into dramatically different developmental fates. Mechanisms underlying X-chromosome dosage compensation revealed the interplay between chromatin modification and three-dimensional chromosome structure imposed by an X-specific condensin complex to regulate gene expression over vast chromosomal territories. In a surprising twist of evolution, this dosage-compensation condensin complex also regulates lifespan and tolerance to proteotoxic stress.
Collapse
Affiliation(s)
- Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, 16 Barker Hall, Berkeley, CA 94720-3204, USA.
| |
Collapse
|
217
|
Du Y, Gu Z, Li Z, Yuan Z, Zhao Y, Zheng X, Bo X, Chen H, Wang C. Dynamic Interplay between Structural Variations and 3D Genome Organization in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200818. [PMID: 35570408 PMCID: PMC9218654 DOI: 10.1002/advs.202200818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/04/2022] [Indexed: 06/05/2023]
Abstract
Structural variations (SVs) are the greatest source of variations in the genome and can lead to oncogenesis. However, the identification and interpretation of SVs in human cancer remain technologically challenging. Here, long-read sequencing is first employed to depict the signatures of structural variations in carcinogenesis of human pancreatic ductal epithelium. Then widespread reprogramming of the 3D chromatin architecture is revealed by an in situ Hi-C technique. Integrative analyses indicate that the distribution pattern of SVs among the 3D genome is highly cell-type specific and the bulk remodeling effects of SVs in the chromatin organization partly depend on intercellular genomic heterogeneity. Meanwhile, contact domains tend to minimize these disrupting effects of SVs within local adjacent genomic regions to maintain overall stability. Notably, complex genomic rearrangements involving two key driver genes CDKN2A and SMAD4 are identified, and their influence on the expression of oncogenes MIR31HG, MYO5B, etc., are further elucidated from both a linear view and 3D perspective. Overall, this work provides a genome-wide resource and highlights the impact, complexity, and dynamicity of the interplay between structural variations and high-order chromatin organization, which expands the current understanding of the pathogenesis of SVs in human cancer.
Collapse
Affiliation(s)
- Yongxing Du
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zongting Gu
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zongze Li
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zan Yuan
- Annoroad Gene Technology Co. LtdBeijing100176P. R. China
| | - Yue Zhao
- Annoroad Gene Technology Co. LtdBeijing100176P. R. China
| | - Xiaohao Zheng
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xiaochen Bo
- Department of BiotechnologyInstitute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Hebing Chen
- Department of BiotechnologyInstitute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Chengfeng Wang
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| |
Collapse
|
218
|
Rinzema NJ, Sofiadis K, Tjalsma SJD, Verstegen MJAM, Oz Y, Valdes-Quezada C, Felder AK, Filipovska T, van der Elst S, de Andrade Dos Ramos Z, Han R, Krijger PHL, de Laat W. Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes. Nat Struct Mol Biol 2022; 29:563-574. [PMID: 35710842 PMCID: PMC9205769 DOI: 10.1038/s41594-022-00787-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
Developmental gene expression is often controlled by distal regulatory DNA elements called enhancers. Distant enhancer action is restricted to structural chromosomal domains that are flanked by CTCF-associated boundaries and formed through cohesin chromatin loop extrusion. To better understand how enhancers, genes and CTCF boundaries together form structural domains and control expression, we used a bottom-up approach, building series of active regulatory landscapes in inactive chromatin. We demonstrate here that gene transcription levels and activity over time reduce with increased enhancer distance. The enhancer recruits cohesin to stimulate domain formation and engage flanking CTCF sites in loop formation. It requires cohesin exclusively for the activation of distant genes, not of proximal genes, with nearby CTCF boundaries supporting efficient long-range enhancer action. Our work supports a dual activity model for enhancers: its classic role of stimulating transcription initiation and elongation from target gene promoters and a role of recruiting cohesin for the creation of chromosomal domains, the engagement of CTCF sites in chromatin looping and the activation of distal target genes.
Collapse
Affiliation(s)
- Niels J Rinzema
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Konstantinos Sofiadis
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sjoerd J D Tjalsma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marjon J A M Verstegen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yuva Oz
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Christian Valdes-Quezada
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anna-Karina Felder
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Teodora Filipovska
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan van der Elst
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Zaria de Andrade Dos Ramos
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ruiqi Han
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
219
|
Ashby C, Boyle EM, Bauer MA, Mikulasova A, Wardell CP, Williams L, Siegel A, Blaney P, Braunstein M, Kaminetsky D, Keats J, Maura F, Landgren O, Walker BA, Davies FE, Morgan GJ. Structural variants shape the genomic landscape and clinical outcome of multiple myeloma. Blood Cancer J 2022; 12:85. [PMID: 35637217 PMCID: PMC9151656 DOI: 10.1038/s41408-022-00673-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/11/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Deciphering genomic architecture is key to identifying novel disease drivers and understanding the mechanisms underlying myeloma initiation and progression. In this work, using the CoMMpass dataset, we show that structural variants (SV) occur in a nonrandom fashion throughout the genome with an increased frequency in the t(4;14), RB1, or TP53 mutated cases and reduced frequency in t(11;14) cases. By mapping sites of chromosomal rearrangements to topologically associated domains and identifying significantly upregulated genes by RNAseq we identify both predicted and novel putative driver genes. These data highlight the heterogeneity of transcriptional dysregulation occurring as a consequence of both the canonical and novel structural variants. Further, it shows that the complex rearrangements chromoplexy, chromothripsis and templated insertions are common in MM with each variant having its own distinct frequency and impact on clinical outcome. Chromothripsis is associated with a significant independent negative impact on clinical outcome in newly diagnosed cases consistent with its use alongside other clinical and genetic risk factors to identify prognosis.
Collapse
Affiliation(s)
- Cody Ashby
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eileen M Boyle
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| | - Michael A Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aneta Mikulasova
- Institute of Cellular Medicine, University of Newcastle upon Tyne, Newcastle, UK
| | - Christopher P Wardell
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Louis Williams
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Ariel Siegel
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Patrick Blaney
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Marc Braunstein
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | | | - Jonathan Keats
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, USA
| | | | - Ola Landgren
- Sylvester Cancer Center University of Miami, Miami, FL, USA
| | - Brian A Walker
- Division of Hematology Oncology Indiana University, Indianapolis, IN, USA
| | - Faith E Davies
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Gareth J Morgan
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
220
|
Abstract
One of the most fundamental questions in developmental biology is how one fertilized cell can give rise to a fully mature organism and how gene regulation governs this process. Precise spatiotemporal gene expression is required for development and is believed to be achieved through a complex interplay of sequence-specific information, epigenetic modifications, trans-acting factors, and chromatin folding. Here we review the role of chromatin folding during development, the mechanisms governing 3D genome organization, and how it is established in the embryo. Furthermore, we discuss recent advances and debated questions regarding the contribution of the 3D genome to gene regulation during organogenesis. Finally, we describe the mechanisms that can reshape the 3D genome, including disease-causing structural variations and the emerging view that transposable elements contribute to chromatin organization.
Collapse
Affiliation(s)
- Juliane Glaser
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefan Mundlos
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
- Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, 10178 Berlin, Germany
| |
Collapse
|
221
|
Giannikopoulos P, Parham DM. Pediatric Sarcomas: The Next Generation of Molecular Studies. Cancers (Basel) 2022; 14:2515. [PMID: 35626119 PMCID: PMC9139929 DOI: 10.3390/cancers14102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Pediatric sarcomas constitute one of the largest groups of childhood cancers, following hematopoietic, neural, and renal lesions. Partly because of their diversity, they continue to offer challenges in diagnosis and treatment. In spite of the diagnostic, nosologic, and therapeutic gains made with genetic technology, newer means for investigation are needed. This article reviews emerging technology being used to study human neoplasia and how these methods might be applicable to pediatric sarcomas. Methods reviewed include single cell RNA sequencing (scRNAseq), spatial multi-omics, high-throughput functional genomics, and clustered regularly interspersed short palindromic sequence-Cas9 (CRISPR-Cas9) technology. In spite of these advances, the field continues to be challenged by a dearth of properly annotated materials, particularly from recurrences and metastases and pre- and post-treatment samples.
Collapse
Affiliation(s)
| | - David M. Parham
- Department of Anatomic Pathology, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
222
|
Parteka-Tojek Z, Zhu JJ, Lee B, Jodkowska K, Wang P, Aaron J, Chew TL, Banecki K, Plewczynski D, Ruan Y. Super-resolution visualization of chromatin loop folding in human lymphoblastoid cells using interferometric photoactivated localization microscopy. Sci Rep 2022; 12:8582. [PMID: 35595799 PMCID: PMC9122977 DOI: 10.1038/s41598-022-12568-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
The three-dimensional (3D) genome structure plays a fundamental role in gene regulation and cellular functions. Recent studies in 3D genomics inferred the very basic functional chromatin folding structures known as chromatin loops, the long-range chromatin interactions that are mediated by protein factors and dynamically extruded by cohesin. We combined the use of FISH staining of a very short (33 kb) chromatin fragment, interferometric photoactivated localization microscopy (iPALM), and traveling salesman problem-based heuristic loop reconstruction algorithm from an image of the one of the strongest CTCF-mediated chromatin loops in human lymphoblastoid cells. In total, we have generated thirteen good quality images of the target chromatin region with 2-22 nm oligo probe localization precision. We visualized the shape of the single chromatin loops with unprecedented genomic resolution which allowed us to study the structural heterogeneity of chromatin looping. We were able to compare the physical distance maps from all reconstructed image-driven computational models with contact frequencies observed by ChIA-PET and Hi-C genomic-driven methods to examine the concordance between single cell imaging and population based genomic data.
Collapse
Affiliation(s)
- Zofia Parteka-Tojek
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Jacqueline Jufen Zhu
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06030, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT, 06030, USA
| | - Byoungkoo Lee
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06030, USA
| | - Karolina Jodkowska
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Ping Wang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06030, USA
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Krzysztof Banecki
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Dariusz Plewczynski
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06030, USA.
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland.
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06030, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
223
|
Pallotta MM, Di Nardo M, Sarogni P, Krantz ID, Musio A. Disease-associated c-MYC downregulation in human disorders of transcriptional regulation. Hum Mol Genet 2022; 31:1599-1609. [PMID: 34849865 PMCID: PMC9122636 DOI: 10.1093/hmg/ddab348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a rare multiorgan developmental disorder caused by pathogenic variants in cohesin genes. It is a genetically and clinically heterogeneous dominant (both autosomal and X-linked) rare disease. Increasing experimental evidence indicates that CdLS is caused by a combination of factors, such as gene expression dysregulation, accumulation of cellular damage and cellular aging, which collectively contribute to the CdLS phenotype. The CdLS phenotype overlaps with a number of related diagnoses such as KBG syndrome and Rubinstein-Taybi syndrome both caused by variants in chromatin-associated factors other than cohesin. The molecular basis underlying these overlapping phenotypes is not clearly defined. Here, we found that cells from individuals with CdLS and CdLS-related diagnoses are characterized by global transcription disturbance and share common dysregulated pathways. Intriguingly, c-MYC (subsequently referred to as MYC) is downregulated in all cell lines and represents a convergent hub lying at the center of dysregulated pathways. Subsequent treatment with estradiol restores MYC expression by modulating cohesin occupancy at its promoter region. In addition, MYC activation leads to modification in expression in hundreds of genes, which in turn reduce the oxidative stress level and genome instability. Together, these results show that MYC plays a pivotal role in the etiopathogenesis of CdLS and CdLS-related diagnoses and represents a potential therapeutic target for these conditions.
Collapse
Affiliation(s)
- Maria M Pallotta
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Maddalena Di Nardo
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Patrizia Sarogni
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Ian D Krantz
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, The Department of Pediatrics, The Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonio Musio
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
224
|
Avdeyev P, Zhou J. Computational Approaches for Understanding Sequence Variation Effects on the 3D Genome Architecture. Annu Rev Biomed Data Sci 2022; 5:183-204. [PMID: 35537461 DOI: 10.1146/annurev-biodatasci-102521-012018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Decoding how genomic sequence and its variations affect 3D genome architecture is indispensable for understanding the genetic architecture of various traits and diseases. The 3D genome organization can be significantly altered by genome variations and in turn impact the function of the genomic sequence. Techniques for measuring the 3D genome architecture across spatial scales have opened up new possibilities for understanding how the 3D genome depends upon the genomic sequence and how it can be altered by sequence variations. Computational methods have become instrumental in analyzing and modeling the sequence effects on 3D genome architecture, and recent development in deep learning sequence models have opened up new opportunities for studying the interplay between sequence variations and the 3D genome. In this review, we focus on computational approaches for both the detection and modeling of sequence variation effects on the 3D genome, and we discuss the opportunities presented by these approaches. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pavel Avdeyev
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
225
|
Segueni J, Noordermeer D. CTCF: a misguided jack-of-all-trades in cancer cells. Comput Struct Biotechnol J 2022; 20:2685-2698. [PMID: 35685367 PMCID: PMC9166472 DOI: 10.1016/j.csbj.2022.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/13/2022] Open
Abstract
The emergence and progression of cancers is accompanied by a dysregulation of transcriptional programs. The three-dimensional (3D) organization of the human genome has emerged as an important multi-level mediator of gene transcription and regulation. In cancer cells, this organization can be restructured, providing a framework for the deregulation of gene activity. The CTCF protein, initially identified as the product from a tumor suppressor gene, is a jack-of-all-trades for the formation of 3D genome organization in normal cells. Here, we summarize how CTCF is involved in the multi-level organization of the human genome and we discuss emerging insights into how perturbed CTCF function and DNA binding causes the activation of oncogenes in cancer cells, mostly through a process of enhancer hijacking. Moreover, we highlight non-canonical functions of CTCF that can be relevant for the emergence of cancers as well. Finally, we provide guidelines for the computational identification of perturbed CTCF binding and reorganized 3D genome structure in cancer cells.
Collapse
|
226
|
Yoshino S, Suzuki HI. The molecular understanding of super-enhancer dysregulation in cancer. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:216-229. [PMID: 35967935 PMCID: PMC9350580 DOI: 10.18999/nagjms.84.2.216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Abnormalities in the regulation of gene expression are associated with various pathological conditions. Among the distal regulatory elements in the genome, the activation of target genes by enhancers plays a central role in the formation of cell type-specific gene expression patterns. Super-enhancers are a subclass of enhancers that frequently contain multiple enhancer-like elements and are characterized by dense binding of master transcription factors and Mediator complexes and high signals of active histone marks. Super-enhancers have been studied in detail as important regulatory regions that control cell identity and contribute to the pathogenesis of diverse diseases. In cancer, super-enhancers have multifaceted roles by activating various oncogenes and other cancer-related genes and shaping characteristic gene expression patterns in cancer cells. Alterations in super-enhancer activities in cancer involve multiple mechanisms, including the dysregulation of transcription factors and the super-enhancer-associated genomic abnormalities. The study of super-enhancers could contribute to the identification of effective biomarkers and the development of cancer therapeutics targeting transcriptional addiction. In this review, we summarize the roles of super-enhancers in cancer biology, with a particular focus on hematopoietic malignancies, in which multiple super-enhancer alteration mechanisms have been reported.
Collapse
Affiliation(s)
- Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
227
|
Abstract
Over the past decade, CRISPR has become as much a verb as it is an acronym, transforming biomedical research and providing entirely new approaches for dissecting all facets of cell biology. In cancer research, CRISPR and related tools have offered a window into previously intractable problems in our understanding of cancer genetics, the noncoding genome and tumour heterogeneity, and provided new insights into therapeutic vulnerabilities. Here, we review the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Alyna Katti
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Bianca J Diaz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Christina M Caragine
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
228
|
Comparative characterization of 3D chromatin organization in triple-negative breast cancers. Exp Mol Med 2022; 54:585-600. [PMID: 35513575 PMCID: PMC9166756 DOI: 10.1038/s12276-022-00768-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a malignant cancer subtype with a high risk of recurrence and an aggressive phenotype compared to other breast cancer subtypes. Although many breast cancer studies conducted to date have investigated genetic variations and differential target gene expression, how 3D chromatin architectures are reorganized in TNBC has been poorly elucidated. Here, using in situ Hi-C technology, we characterized the 3D chromatin organization in cells representing five distinct subtypes of breast cancer (including TNBC) compared to that in normal cells. We found that the global and local 3D architectures were severely disrupted in breast cancer. TNBC cell lines (especially BT549 cells) showed the most dramatic changes relative to normal cells. Importantly, we detected CTCF-dependent TNBC-susceptible losses/gains of 3D chromatin organization and found that these changes were strongly associated with perturbed chromatin accessibility and transcriptional dysregulation. In TNBC tissue, 3D chromatin disorganization was also observed relative to the 3D chromatin organization in normal tissues. We observed that the perturbed local 3D architectures found in TNBC cells were partially conserved in TNBC tissues. Finally, we discovered distinct tissue-specific chromatin loops by comparing normal and TNBC tissues. In this study, we elucidated the characteristics of the 3D chromatin organization in breast cancer relative to normal cells/tissues at multiple scales and identified associations between disrupted structures and various epigenetic features and transcriptomes. Collectively, our findings reveal important 3D chromatin structural features for future diagnostic and therapeutic studies of TNBC. The 3D architecture of the genome is dramatically altered in an aggressive form of breast cancer, leading to changes in the regulation of gene expression that can fuel tumor growth. A team from South Korea, led by Hyeong-Gon Moon of Seoul National University College of Medicine and Daeyoup Lee of the Korea Advanced Institute of Science and Technology, Daejeon, detailed how chromosomes are positioned and folded within the nucleus of cell liness from five different subtypes of breast cancer. They found that triple-negative breast cancers displayed the most extreme reorganization of their genomes, a pattern also observed in biopsy tissues taken from patients with this subtype of cancer. Knowledge of these conformational changes could inform future efforts to develop therapies and diagnostics for patients with triple-negative breast tumors.
Collapse
|
229
|
Galupa R, Picard C, Servant N, Nora EP, Zhan Y, van Bemmel JG, El Marjou F, Johanneau C, Borensztein M, Ancelin K, Giorgetti L, Heard E. Inversion of a topological domain leads to restricted changes in its gene expression and affects interdomain communication. Development 2022; 149:275259. [PMID: 35502750 PMCID: PMC9148567 DOI: 10.1242/dev.200568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023]
Abstract
The interplay between the topological organization of the genome and the regulation of gene expression remains unclear. Depletion of molecular factors (e.g. CTCF) underlying topologically associating domains (TADs) leads to modest alterations in gene expression, whereas genomic rearrangements involving TAD boundaries disrupt normal gene expression and can lead to pathological phenotypes. Here, we targeted the TAD neighboring that of the noncoding transcript Xist, which controls X-chromosome inactivation. Inverting 245 kb within the TAD led to expected rearrangement of CTCF-based contacts but revealed heterogeneity in the 'contact' potential of different CTCF sites. Expression of most genes therein remained unaffected in mouse embryonic stem cells and during differentiation. Interestingly, expression of Xist was ectopically upregulated. The same inversion in mouse embryos led to biased Xist expression. Smaller inversions and deletions of CTCF clusters led to similar results: rearrangement of contacts and limited changes in local gene expression, but significant changes in Xist expression in embryos. Our study suggests that the wiring of regulatory interactions within a TAD can influence the expression of genes in neighboring TADs, highlighting the existence of mechanisms of inter-TAD communication.
Collapse
Affiliation(s)
- Rafael Galupa
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Christel Picard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Nicolas Servant
- Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, PSL Research University, INSERM U900, Paris 75005, France.,MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris 75006, France
| | - Elphège P Nora
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland.,University of Basel, Basel 4001, Switzerland
| | - Joke G van Bemmel
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | | | | | - Maud Borensztein
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Katia Ancelin
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris 75005, France.,Collège de France, Paris 75231, France
| |
Collapse
|
230
|
Abstract
Three-dimensional protein structural data at the molecular level are pivotal for successful precision medicine. Such data are crucial not only for discovering drugs that act to block the active site of the target mutant protein but also for clarifying to the patient and the clinician how the mutations harbored by the patient work. The relative paucity of structural data reflects their cost, challenges in their interpretation, and lack of clinical guidelines for their utilization. Rapid technological advancements in experimental high-resolution structural determination increasingly generate structures. Computationally, modeling algorithms, including molecular dynamics simulations, are becoming more powerful, as are compute-intensive hardware, particularly graphics processing units, overlapping with the inception of the exascale era. Accessible, freely available, and detailed structural and dynamical data can be merged with big data to powerfully transform personalized pharmacology. Here we review protein and emerging genome high-resolution data, along with means, applications, and examples underscoring their usefulness in precision medicine. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland, USA; .,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland, USA;
| | - Guy Nir
- Department of Biochemistry and Molecular Biology, Department of Neuroscience, Cell Biology and Anatomy, and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland, USA;
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
231
|
Oksa L, Mäkinen A, Nikkilä A, Hyvärinen N, Laukkanen S, Rokka A, Haapaniemi P, Seki M, Takita J, Kauko O, Heinäniemi M, Lohi O. Arginine Methyltransferase PRMT7 Deregulates Expression of RUNX1 Target Genes in T-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:2169. [PMID: 35565298 PMCID: PMC9101393 DOI: 10.3390/cancers14092169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 02/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with no well-established prognostic biomarkers. We examined the expression of protein arginine methyltransferases across hematological malignancies and discovered high levels of PRMT7 mRNA in T-ALL, particularly in the mature subtypes of T-ALL. The genetic deletion of PRMT7 by CRISPR-Cas9 reduced the colony formation of T-ALL cells and changed arginine monomethylation patterns in protein complexes associated with the RNA and DNA processing and the T-ALL pathogenesis. Among them was RUNX1, whose target gene expression was consequently deregulated. These results suggest that PRMT7 plays an active role in the pathogenesis of T-ALL.
Collapse
Affiliation(s)
- Laura Oksa
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Artturi Mäkinen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, FI-33520 Tampere, Finland
| | - Atte Nikkilä
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Noora Hyvärinen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Saara Laukkanen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Anne Rokka
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Pekka Haapaniemi
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Masafumi Seki
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17165 Solna, Sweden;
| | - Junko Takita
- Graduate School of Medicine, Kyoto University, Kyoto JP-606-8501, Japan;
| | - Otto Kauko
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Merja Heinäniemi
- The Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland;
| | - Olli Lohi
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
- Tays Cancer Center, Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|
232
|
Warwick T, Schulz MH, Gilsbach R, Brandes RP, Seuter S. Nuclear receptor activation shapes spatial genome organization essential for gene expression control: lessons learned from the vitamin D receptor. Nucleic Acids Res 2022; 50:3745-3763. [PMID: 35325193 PMCID: PMC9023275 DOI: 10.1093/nar/gkac178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Spatial genome organization is tightly controlled by several regulatory mechanisms and is essential for gene expression control. Nuclear receptors are ligand-activated transcription factors that modulate physiological and pathophysiological processes and are primary pharmacological targets. DNA binding of the important loop-forming insulator protein CCCTC-binding factor (CTCF) was modulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). We performed CTCF HiChIP assays to produce the first genome-wide dataset of CTCF long-range interactions in 1,25(OH)2D3-treated cells, and to determine whether dynamic changes of spatial chromatin interactions are essential for fine-tuning of nuclear receptor signaling. We detected changes in 3D chromatin organization upon vitamin D receptor (VDR) activation at 3.1% of all observed CTCF interactions. VDR binding was enriched at both differential loop anchors and within differential loops. Differential loops were observed in several putative functional roles including TAD border formation, promoter-enhancer looping, and establishment of VDR-responsive insulated neighborhoods. Vitamin D target genes were enriched in differential loops and at their anchors. Secondary vitamin D effects related to dynamic chromatin domain changes were linked to location of downstream transcription factors in differential loops. CRISPR interference and loop anchor deletion experiments confirmed the functional relevance of nuclear receptor ligand-induced adjustments of the chromatin 3D structure for gene expression regulation.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Ralf Gilsbach
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Sabine Seuter
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| |
Collapse
|
233
|
A walk through the SMC cycle: From catching DNAs to shaping the genome. Mol Cell 2022; 82:1616-1630. [PMID: 35477004 DOI: 10.1016/j.molcel.2022.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
SMC protein complexes are molecular machines that provide structure to chromosomes. These complexes bridge DNA elements and by doing so build DNA loops in cis and hold together the sister chromatids in trans. We discuss how drastic conformational changes allow SMC complexes to build such intricate DNA structures. The tight regulation of these complexes controls fundamental chromosomal processes such as transcription, recombination, repair, and mitosis.
Collapse
|
234
|
Antoszewski M, Fournier N, Ruiz Buendía GA, Lourenco J, Liu Y, Sugrue T, Dubey C, Nkosi M, Pritchard CE, Huijbers IJ, Segat GC, Alonso-Moreno S, Serracanta E, Belver L, Ferrando AA, Ciriello G, Weng AP, Koch U, Radtke F. Tcf1 is essential for initiation of oncogenic Notch1-driven chromatin topology in T-ALL. Blood 2022; 139:2483-2498. [PMID: 35020836 PMCID: PMC9710489 DOI: 10.1182/blood.2021012077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023] Open
Abstract
NOTCH1 is a well-established lineage specifier for T cells and among the most frequently mutated genes throughout all subclasses of T cell acute lymphoblastic leukemia (T-ALL). How oncogenic NOTCH1 signaling launches a leukemia-prone chromatin landscape during T-ALL initiation is unknown. Here we demonstrate an essential role for the high-mobility-group transcription factor Tcf1 in orchestrating chromatin accessibility and topology, allowing aberrant Notch1 signaling to convey its oncogenic function. Although essential, Tcf1 is not sufficient to initiate leukemia. The formation of a leukemia-prone epigenetic landscape at the distal Notch1-regulated Myc enhancer, which is fundamental to this disease, is Tcf1-dependent and occurs within the earliest progenitor stage even before cells adopt a T lymphocyte or leukemic fate. Moreover, we discovered a unique evolutionarily conserved Tcf1-regulated enhancer element in the distal Myc-enhancer, which is important for the transition of preleukemic cells to full-blown disease.
Collapse
Affiliation(s)
- Mateusz Antoszewski
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Nadine Fournier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gustavo A. Ruiz Buendía
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Joao Lourenco
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yuanlong Liu
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tara Sugrue
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Botnar Research Centre for Child Health, University of Basel & ETH Zürich, Basel, Switzerland
| | - Christelle Dubey
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- INSELSPITAL, Universitätsspital Bern, Universitätsklinik für Thoraxchirurgie, Forschungsabteilung Thoraxchirurgie, Bern, Switzerland
| | - Marianne Nkosi
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Colin E.J. Pritchard
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Laura Belver
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Catalan Institute of Oncology-Immuno Procure, Barcelona, Spain
| | - Adolfo A. Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Giovanni Ciriello
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| |
Collapse
|
235
|
Enhancer RNAs (eRNAs) in Cancer: The Jacks of All Trades. Cancers (Basel) 2022; 14:cancers14081978. [PMID: 35454885 PMCID: PMC9030334 DOI: 10.3390/cancers14081978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review focuses on eRNAs and the several mechanisms by which they can regulate gene expression. In particular we describe here the most recent examples of eRNAs dysregulated in cancer or involved in the immune escape of tumor cells. Abstract Enhancer RNAs (eRNAs) are non-coding RNAs (ncRNAs) transcribed in enhancer regions. They play an important role in transcriptional regulation, mainly during cellular differentiation. eRNAs are tightly tissue- and cell-type specific and are induced by specific stimuli, activating promoters of target genes in turn. eRNAs usually have a very short half-life but in some cases, once activated, they can be stably expressed and acquire additional functions. Due to their critical role, eRNAs are often dysregulated in cancer and growing number of interactions with chromatin modifiers, transcription factors, and splicing machinery have been described. Enhancer activation and eRNA transcription have particular relevance also in inflammatory response, placing the eRNAs at the interplay between cancer and immune cells. Here, we summarize all the possible molecular mechanisms recently reported in association with eRNAs activity.
Collapse
|
236
|
Sefer E. A comparison of topologically associating domain callers over mammals at high resolution. BMC Bioinformatics 2022; 23:127. [PMID: 35413815 PMCID: PMC9006547 DOI: 10.1186/s12859-022-04674-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Topologically associating domains (TADs) are locally highly-interacting genome regions, which also play a critical role in regulating gene expression in the cell. TADs have been first identified while investigating the 3D genome structure over High-throughput Chromosome Conformation Capture (Hi-C) interaction dataset. Substantial degree of efforts have been devoted to develop techniques for inferring TADs from Hi-C interaction dataset. Many TAD-calling methods have been developed which differ in their criteria and assumptions in TAD inference. Correspondingly, TADs inferred via these callers vary in terms of both similarities and biological features they are enriched in. RESULT We have carried out a systematic comparison of 27 TAD-calling methods over mammals. We use Micro-C, a recent high-resolution variant of Hi-C, to compare TADs at a very high resolution, and classify the methods into 3 categories: feature-based methods, Clustering methods, Graph-partitioning methods. We have evaluated TAD boundaries, gaps between adjacent TADs, and quality of TADs across various criteria. We also found particularly CTCF and Cohesin proteins to be effective in formation of TADs with corner dots. We have also assessed the callers performance on simulated datasets since a gold standard for TADs is missing. TAD sizes and numbers change remarkably between TAD callers and dataset resolutions, indicating that TADs are hierarchically-organized domains, instead of disjoint regions. A core subset of feature-based TAD callers regularly perform the best while inferring reproducible domains, which are also enriched for TAD related biological properties. CONCLUSION We have analyzed the fundamental principles of TAD-calling methods, and identified the existing situation in TAD inference across high resolution Micro-C interaction datasets over mammals. We come up with a systematic, comprehensive, and concise framework to evaluate the TAD-calling methods performance across Micro-C datasets. Our research will be useful in selecting appropriate methods for TAD inference and evaluation based on available data, experimental design, and biological question of interest. We also introduce our analysis as a benchmarking tool with publicly available source code.
Collapse
Affiliation(s)
- Emre Sefer
- Department of Computer Science, Ozyegin University, Istanbul, Turkey.
| |
Collapse
|
237
|
Transcriptome-wide subtyping of pediatric and adult T cell acute lymphoblastic leukemia in an international study of 707 cases. Proc Natl Acad Sci U S A 2022; 119:e2120787119. [PMID: 35385357 PMCID: PMC9169777 DOI: 10.1073/pnas.2120787119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We provide transcriptomic insights into differences between pediatric and adult T cell acute lymphoblastic leukemia (T-ALL) patients through an international collaborative effort integrating RNA-sequencing data of 707 patients. Ten subtypes were identified, each characterized by distinct gene mutation profiles and dysregulated expression signatures of leukemogenic factors, and associated with T cell development stages. Adult T-ALL tends to have characteristics of early T cell precursor ALL, mostly corresponding to the mixed phenotype acute leukemia, whereas pediatric T-ALL shows a wide spectrum of aberrant molecular features, from early T cell precursor to mature T cell compartments. Our findings have important implications for disease mechanism of T-ALL that differs between pediatric and adult patients, facilitating further refined targeted therapy. T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1–G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1–G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7–G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9–G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.
Collapse
|
238
|
Yang Q, Jiang N, Zou H, Fan X, Liu T, Huang X, Wanggou S, Li X. Alterations in 3D chromatin organization contribute to tumorigenesis of EGFR-amplified glioblastoma. Comput Struct Biotechnol J 2022; 20:1967-1978. [PMID: 35521558 PMCID: PMC9062087 DOI: 10.1016/j.csbj.2022.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
There is widespread chromatin disorganization in EGFR-amplified glioblastoma. Chromatin disorganization contribute to tumorigenesis in glioblastoma. Structural variations have a substantial impact on chromatin conformation.
Background EGFR amplification and/or mutation are found in more than half of the cases with glioblastoma. Yet, the role of chromatin interactions and its regulation of gene expression in EGFR-amplified glioblastoma remains unclear. Methods In this study, we explored alterations in 3D chromatin organization of EGFR-amplified glioblastoma and its subsequent impact by performing a comparative analysis of Hi-C, RNA-seq, and whole-genome sequencing (WGS) on EGFR-amplified glioblastoma-derived A172 and normal astrocytes (HA1800 cell line). Results A172 cells showed an elevated chromatin relaxation, and unexpected entanglement of chromosome regions. A genome-wide landscape of switched compartments and differentially expressed genes between HA1800 and A172 cell lines demonstrated that compartment activation reshaped chromatin accessibility and activated tumorigenesis-related genes. Topological associating domain (TAD) analysis revealed that altered TAD domains in A172 also contribute to oncogene activation and tumor repressor deactivation. Interestingly, glioblastoma-derived A172 cells showed a different chromatin loop contact propensity. Genes in tumorigenesis-associated signaling pathways were significantly enriched at the anchor loci of altered chromatin loops. Oncogene activation and tumor repressor deactivation were associated with chromatin loop alteration. Structure variations (SVs) had a dramatic impact on the chromatin conformation of EGFR-amplified glioblastoma-derived tumor cells. Moreover, our results revealed that 7p11.2 duplication activated EGFR expression in EGFR-amplified glioblastoma via neo-TAD formation and novel enhancer-promoter interaction emergence between LINC01446 and EGFR. Conclusions The disordered 3D genomic map and multi-omics data of EGFR-amplified glioblastoma provide a resource for future interrogation of the relationship between chromatin interactions and transcriptome in tumorigenesis.
Collapse
Affiliation(s)
- Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, PR China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, PR China
| | - Nian Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, PR China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, PR China
| | - Han Zou
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, PR China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, PR China
| | - Xuning Fan
- Annoroad Gene Tech. (Beijing) Co., Ltd, Block 1, Yard 88, Kechuang 6 RD, Beijing Economic-Technological Development Area, Beijing 100176, PR China
| | - Tao Liu
- Annoroad Gene Tech. (Beijing) Co., Ltd, Block 1, Yard 88, Kechuang 6 RD, Beijing Economic-Technological Development Area, Beijing 100176, PR China
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, PR China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, PR China
- Corresponding authors at: Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, PR China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, Hunan 410008, PR China
- Corresponding authors at: Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China.
| |
Collapse
|
239
|
Zuin J, Roth G, Zhan Y, Cramard J, Redolfi J, Piskadlo E, Mach P, Kryzhanovska M, Tihanyi G, Kohler H, Eder M, Leemans C, van Steensel B, Meister P, Smallwood S, Giorgetti L. Nonlinear control of transcription through enhancer-promoter interactions. Nature 2022; 604:571-577. [PMID: 35418676 PMCID: PMC9021019 DOI: 10.1038/s41586-022-04570-y] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)1-4. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer-promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.
Collapse
Affiliation(s)
- Jessica Zuin
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Julie Cramard
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Josef Redolfi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ewa Piskadlo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pia Mach
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Gergely Tihanyi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mathias Eder
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christ Leemans
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
240
|
Mas G, Santoro F, Blanco E, Gamarra Figueroa GP, Le Dily F, Frigè G, Vidal E, Mugianesi F, Ballaré C, Gutierrez A, Sparavier A, Marti-Renom MA, Minucci S, Di Croce L. In vivo temporal resolution of acute promyelocytic leukemia progression reveals a role of Klf4 in suppressing early leukemic transformation. Genes Dev 2022; 36:451-467. [PMID: 35450883 PMCID: PMC9067408 DOI: 10.1101/gad.349115.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
In this study, Mas et al. used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. Their multiomics-integrated analysis identified Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis, and they characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Genome organization plays a pivotal role in transcription, but how transcription factors (TFs) rewire the structure of the genome to initiate and maintain the programs that lead to oncogenic transformation remains poorly understood. Acute promyelocytic leukemia (APL) is a fatal subtype of leukemia driven by a chromosomal translocation between the promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) genes. We used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. We found that PML-RARα initiates a continuum of topologic alterations, including switches from A to B compartments, transcriptional repression, loss of active histone marks, and gain of repressive histone marks. Our multiomics-integrated analysis identifies Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis. Furthermore, we characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Our study provides a comprehensive in vivo temporal dissection of the epigenomic and topological reprogramming induced by an oncogenic TF and illustrates how topological architecture can be used to identify new drivers of malignant transformation.
Collapse
Affiliation(s)
- Glòria Mas
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Fabio Santoro
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | | | - François Le Dily
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Gianmaria Frigè
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Enrique Vidal
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Francesca Mugianesi
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Cecilia Ballaré
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Arantxa Gutierrez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Aleksandra Sparavier
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marc A Marti-Renom
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
241
|
InsuLock: A Weakly Supervised Learning Approach for Accurate Insulator Prediction, and Variant Impact Quantification. Genes (Basel) 2022; 13:genes13040621. [PMID: 35456427 PMCID: PMC9026820 DOI: 10.3390/genes13040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Mapping chromatin insulator loops is crucial to investigating genome evolution, elucidating critical biological functions, and ultimately quantifying variant impact in diseases. However, chromatin conformation profiling assays are usually expensive, time-consuming, and may report fuzzy insulator annotations with low resolution. Therefore, we propose a weakly supervised deep learning method, InsuLock, to address these challenges. Specifically, InsuLock first utilizes a Siamese neural network to predict the existence of insulators within a given region (up to 2000 bp). Then, it uses an object detection module for precise insulator boundary localization via gradient-weighted class activation mapping (~40 bp resolution). Finally, it quantifies variant impacts by comparing the insulator score differences between the wild-type and mutant alleles. We applied InsuLock on various bulk and single-cell datasets for performance testing and benchmarking. We showed that it outperformed existing methods with an AUROC of ~0.96 and condensed insulator annotations to ~2.5% of their original size while still demonstrating higher conservation scores and better motif enrichments. Finally, we utilized InsuLock to make cell-type-specific variant impacts from brain scATAC-seq data and identified a schizophrenia GWAS variant disrupting an insulator loop proximal to a known risk gene, indicating a possible new mechanism of action for the disease.
Collapse
|
242
|
Chathoth KT, Mikheeva LA, Crevel G, Wolfe JC, Hunter I, Beckett-Doyle S, Cotterill S, Dai H, Harrison A, Zabet NR. The role of insulators and transcription in 3D chromatin organization of flies. Genome Res 2022; 32:682-698. [PMID: 35354608 PMCID: PMC8997359 DOI: 10.1101/gr.275809.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
The DNA in many organisms, including humans, is shown to be organized in topologically associating domains (TADs). In Drosophila, several architectural proteins are enriched at TAD borders, but it is still unclear whether these proteins play a functional role in the formation and maintenance of TADs. Here, we show that depletion of BEAF-32, Cp190, Chro, and Dref leads to changes in TAD organization and chromatin loops. Their depletion predominantly affects TAD borders located in regions moderately enriched in repressive modifications and depleted in active ones, whereas TAD borders located in euchromatin are resilient to these knockdowns. Furthermore, transcriptomic data has revealed hundreds of genes displaying differential expression in these knockdowns and showed that the majority of differentially expressed genes are located within reorganized TADs. Our work identifies a novel and functional role for architectural proteins at TAD borders in Drosophila and a link between TAD reorganization and subsequent changes in gene expression.
Collapse
Affiliation(s)
- Keerthi T Chathoth
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Liudmila A Mikheeva
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom.,Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Gilles Crevel
- Department Basic Medical Sciences, St. Georges University London, London SW17 0RE, United Kingdom
| | - Jareth C Wolfe
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom.,School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Ioni Hunter
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Saskia Beckett-Doyle
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Sue Cotterill
- Department Basic Medical Sciences, St. Georges University London, London SW17 0RE, United Kingdom
| | - Hongsheng Dai
- Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Andrew Harrison
- Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| |
Collapse
|
243
|
Di Nardo M, Pallotta MM, Musio A. The multifaceted roles of cohesin in cancer. J Exp Clin Cancer Res 2022; 41:96. [PMID: 35287703 PMCID: PMC8919599 DOI: 10.1186/s13046-022-02321-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
The cohesin complex controls faithful chromosome segregation by pairing sister chromatids after DNA replication until mitosis. In addition, it is crucial for hierarchal three-dimensional organization of the genome, transcription regulation and maintaining DNA integrity. The core complex subunits SMC1A, SMC3, STAG1/2, and RAD21 as well as its modulators, have been found to be recurrently mutated in human cancers. The mechanisms by which cohesin mutations trigger cancer development and disease progression are still poorly understood. Since cohesin is involved in a range of chromosome-related processes, the outcome of cohesin mutations in cancer is complex. Herein, we discuss recent discoveries regarding cohesin that provide new insight into its role in tumorigenesis.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| | - Maria M. Pallotta
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| |
Collapse
|
244
|
An oncogenic enhancer encodes selective selenium dependency in AML. Cell Stem Cell 2022; 29:386-399.e7. [PMID: 35108519 PMCID: PMC8903199 DOI: 10.1016/j.stem.2022.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 11/29/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Deregulation of transcription is a hallmark of acute myeloid leukemia (AML) that drives oncogenic expression programs and presents opportunities for therapeutic targeting. By integrating comprehensive pan-cancer enhancer landscapes with genetic dependency mapping, we find that AML-enriched enhancers encode for more selective tumor dependencies. We hypothesized that this approach could identify actionable dependencies downstream of oncogenic driver events and discovered a MYB-regulated AML-enriched enhancer regulating SEPHS2, a key component of the selenoprotein production pathway. Using a combination of patient samples and mouse models, we show that this enhancer upregulates SEPHS2, promoting selenoprotein production and antioxidant function required for AML survival. SEPHS2 and other selenoprotein pathway genes are required for AML growth in vitro. SEPHS2 knockout and selenium dietary restriction significantly delay leukemogenesis in vivo with little effect on normal hematopoiesis. These data validate the utility of enhancer mapping in target identification and suggest that selenoprotein production is an actionable target in AML.
Collapse
|
245
|
Bellefroid M, Rodari A, Galais M, Krijger PHL, Tjalsma SJD, Nestola L, Plant E, Vos ESM, Cristinelli S, Van Driessche B, Vanhulle C, Ait-Ammar A, Burny A, Ciuffi A, de Laat W, Van Lint C. Role of the cellular factor CTCF in the regulation of bovine leukemia virus latency and three-dimensional chromatin organization. Nucleic Acids Res 2022; 50:3190-3202. [PMID: 35234910 PMCID: PMC8989512 DOI: 10.1093/nar/gkac107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 01/12/2023] Open
Abstract
Bovine leukemia virus (BLV)-induced tumoral development is a multifactorial phenomenon that remains incompletely understood. Here, we highlight the critical role of the cellular CCCTC-binding factor (CTCF) both in the regulation of BLV transcriptional activities and in the deregulation of the three-dimensional (3D) chromatin architecture surrounding the BLV integration site. We demonstrated the in vivo recruitment of CTCF to three conserved CTCF binding motifs along the provirus. Next, we showed that CTCF localized to regions of transitions in the histone modifications profile along the BLV genome and that it is implicated in the repression of the 5′Long Terminal Repeat (LTR) promoter activity, thereby contributing to viral latency, while favoring the 3′LTR promoter activity. Finally, we demonstrated that BLV integration deregulated the host cellular 3D chromatin organization through the formation of viral/host chromatin loops. Altogether, our results highlight CTCF as a new critical effector of BLV transcriptional regulation and BLV-induced physiopathology.
Collapse
Affiliation(s)
- Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Anthony Rodari
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Mathilde Galais
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Sjoerd J D Tjalsma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Lorena Nestola
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Erica S M Vos
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Benoit Van Driessche
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Caroline Vanhulle
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Arsène Burny
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne 1011, Switzerland
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584, CT, The Netherlands
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| |
Collapse
|
246
|
Miyata K, Takahashi A. Pericentromeric repetitive ncRNA regulates chromatin interaction and inflammatory gene expression. Nucleus 2022; 13:74-78. [PMID: 35167425 PMCID: PMC8855862 DOI: 10.1080/19491034.2022.2034269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular senescence provokes a dramatic alteration of chromatin organization and gene expression profile of proinflammatory factors, thereby contributing to various age-related pathologies via the senescence-associated secretory phenotype (SASP). Chromatin organization and global gene expression are maintained through the CCCTC-binding factor (CTCF). However, the molecular mechanism underlying CTCF regulation and its association with SASP gene expression remains to be fully elucidated. A recent study by our team showed that noncoding RNA (ncRNA) derived from normally silenced pericentromeric repetitive sequences directly impair the DNA binding of CTCF. This CTCF disturbance increases the accessibility of chromatin at the loci of SASP genes and caused the transcription of inflammatory factors. This mechanism may promote malignant transformation.
Collapse
Affiliation(s)
- Kenichi Miyata
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akiko Takahashi
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan.,Advanced Research & Development Programs for Medical Innovation (PRIME), Japan Agency for Medical Research and Development (Amed), Tokyo, Japan
| |
Collapse
|
247
|
Super enhancers as master gene regulators in the pathogenesis of hematologic malignancies. Biochim Biophys Acta Rev Cancer 2022; 1877:188697. [PMID: 35150791 DOI: 10.1016/j.bbcan.2022.188697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Transcriptional deregulation of multiple oncogenes, tumor suppressors and survival pathways is a cancer cell hallmark. Super enhancers (SE) are long stretches of active enhancers in close linear proximity that ensure extraordinarily high expression levels of key genes associated with cell lineage, function and survival. SE landscape is intrinsically prone to changes and reorganization during the course of normal cell differentiation. This functional plasticity is typically utilized by cancer cells, which remodel their SE landscapes to ensure oncogenic transcriptional reprogramming. Multiple recent studies highlighted structural genetic mechanisms in non-coding regions that create new SE or hijack already existing ones. In addition, alterations in abundance/activity of certain SE-associated proteins or certain viral infections can elicit new super enhancers and trigger SE-driven transcriptional changes. For these reasons, SE profiling emerged as a powerful tool for discovering the core transcriptional regulatory circuits in tumor cells. This, in turn, provides new insights into cancer cell biology, and identifies main nodes of key cellular pathways to be potentially targeted. Since SEs are susceptible to inhibition, their disruption results in exponentially amassing 'butterfly' effect on gene expression and cell function. Moreover, many of SE elements are druggable, opening new therapeutic opportunities. Indeed, SE targeting drugs have been studied preclinically in various hematologic malignancies with promising effects. Herein, we review the unique features of SEs, present different cis- and trans-acting mechanisms through which hematologic tumor cells acquire SEs, and finally, discuss the potential of SE targeting in the therapy of hematologic malignancies.
Collapse
|
248
|
San Martin R, Das P, Dos Reis Marques R, Xu Y, Roberts JM, Sanders JT, Golloshi R, McCord RP. Chromosome compartmentalization alterations in prostate cancer cell lines model disease progression. J Cell Biol 2022; 221:212899. [PMID: 34889941 PMCID: PMC8669499 DOI: 10.1083/jcb.202104108] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/31/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer aggressiveness and metastatic potential are influenced by gene expression and genomic aberrations, features that can be influenced by the 3D structure of chromosomes inside the nucleus. Using chromosome conformation capture (Hi-C), we conducted a systematic genome architecture comparison on a cohort of cell lines that model prostate cancer progression, from normal epithelium to bone metastasis. We describe spatial compartment identity (A-open versus B-closed) changes with progression in these cell lines and their relation to gene expression changes in both cell lines and patient samples. In particular, 48 gene clusters switch from the B to the A compartment, including androgen receptor, WNT5A, and CDK14. These switches are accompanied by changes in the structure, size, and boundaries of topologically associating domains (TADs). Further, compartment changes in chromosome 21 are exacerbated with progression and may explain, in part, the genesis of the TMPRSS2-ERG translocation. These results suggest that discrete 3D genome structure changes play a deleterious role in prostate cancer progression. .
Collapse
Affiliation(s)
- Rebeca San Martin
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Priyojit Das
- University of Tennessee - Oak Ridge National Lab (UT-ORNL) Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN
| | - Renata Dos Reis Marques
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Yang Xu
- University of Tennessee - Oak Ridge National Lab (UT-ORNL) Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN
| | - Justin M Roberts
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancer, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jacob T Sanders
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| |
Collapse
|
249
|
Sharifi Tabar M, Francis H, Yeo D, Bailey CG, Rasko JEJ. Mapping oncogenic protein interactions for precision medicine. Int J Cancer 2022; 151:7-19. [PMID: 35113472 PMCID: PMC9306658 DOI: 10.1002/ijc.33954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
Normal protein‐protein interactions (normPPIs) occur with high fidelity to regulate almost every physiological process. In cancer, this highly organised and precisely regulated network is disrupted, hijacked or reprogrammed resulting in oncogenic protein‐protein interactions (oncoPPIs). OncoPPIs, which can result from genomic alterations, are a hallmark of many types of cancers. Recent technological advances in the field of mass spectrometry (MS)‐based interactomics, structural biology and drug discovery have prompted scientists to identify and characterise oncoPPIs. Disruption of oncoPPI interfaces has become a major focus of drug discovery programs and has resulted in the use of PPI‐specific drugs clinically. However, due to several technical hurdles, studies to build a reference oncoPPI map for various cancer types have not been undertaken. Therefore, there is an urgent need for experimental workflows to overcome the existing challenges in studying oncoPPIs in various cancers and to build comprehensive reference maps. Here, we discuss the important hurdles for characterising oncoPPIs and propose a three‐phase multidisciplinary workflow to identify and characterise oncoPPIs. Systematic identification of cancer‐type‐specific oncogenic interactions will spur new opportunities for PPI‐focused drug discovery projects and precision medicine.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Habib Francis
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Dannel Yeo
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia.,Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia.,Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
250
|
Yang H, Zhang H, Luan Y, Liu T, Yang W, Roberts KG, Qian MX, Zhang B, Yang W, Perez-Andreu V, Xu J, Iyyanki S, Kuang D, Stasiak LA, Reshmi SC, Gastier-Foster J, Smith C, Pui CH, Evans WE, Hunger SP, Platanias LC, Relling MV, Mullighan CG, Loh ML, Yue F, Yang JJ. Noncoding genetic variation in GATA3 increases acute lymphoblastic leukemia risk through local and global changes in chromatin conformation. Nat Genet 2022; 54:170-179. [PMID: 35115686 PMCID: PMC9794680 DOI: 10.1038/s41588-021-00993-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
Inherited noncoding genetic variants confer significant disease susceptibility to childhood acute lymphoblastic leukemia (ALL) but the molecular processes linking germline polymorphisms with somatic lesions in this cancer are poorly understood. Through targeted sequencing in 5,008 patients, we identified a key regulatory germline variant in GATA3 associated with Philadelphia chromosome-like ALL (Ph-like ALL). Using CRISPR-Cas9 editing and samples from patients with Ph-like ALL, we showed that this variant activated a strong enhancer that upregulated GATA3 transcription. This, in turn, reshaped global chromatin accessibility and three-dimensional genome organization, including regions proximal to the ALL oncogene CRLF2. Finally, we showed that GATA3 directly regulated CRLF2 and potentiated the JAK-STAT oncogenic effects during leukemogenesis. Taken together, we provide evidence for a distinct mechanism by which a germline noncoding variant contributes to oncogene activation, epigenetic regulation and three-dimensional genome reprogramming.
Collapse
Affiliation(s)
- Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hui Zhang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai, China
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Wentao Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mao-Xiang Qian
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bo Zhang
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, PA, USA
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Virginia Perez-Andreu
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Internal Medicine Department, MountainView Hospital, University of Reno, Las Vegas, NV, USA
| | - Jie Xu
- Department of Biochemistry and Molecular Biology, Penn State School of Medicine, Hershey, PA, USA
| | - Sriranga Iyyanki
- Department of Biochemistry and Molecular Biology, Penn State School of Medicine, Hershey, PA, USA
| | - Da Kuang
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Lena A Stasiak
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Shalini C Reshmi
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Ohio State University School of Medicine, Columbus, OH, USA
| | - Julie Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Ohio State University School of Medicine, Columbus, OH, USA
| | - Colton Smith
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen P Hunger
- Division of Oncology and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|