201
|
Yuan Z, Chen S, Gao C, Dai Q, Zhang C, Sun Q, Lin JS, Guo C, Chen Y, Jiang Y. Development of a versatile DNMT and HDAC inhibitor C02S modulating multiple cancer hallmarks for breast cancer therapy. Bioorg Chem 2019; 87:200-208. [PMID: 30901675 DOI: 10.1016/j.bioorg.2019.03.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 01/01/2023]
Abstract
DNMT and HDAC are closely related to each other and involved in various human diseases especially cancer. These two enzymes have been widely recognized as antitumor targets for drug discovery. Besides, research has indicated that combination therapy consisting of DNMT and HDAC inhibitors exhibited therapeutic advantages. We have reported a DNMT and HDAC dual inhibitor 15a of which the DNMT enzymatic inhibitory potency needs to be improved. Herein we reported the development of a novel dual DNMT and HDAC inhibitor C02S which showed potent enzymatic inhibitory activities against DNMT1, DNMT3A, DNMT3B and HDAC1 with IC50 values of 2.05, 0.93, 1.32, and 4.16 µM, respectively. Further evaluations indicated that C02S could inhibit DNMT and HDAC at cellular levels, thereby inversing mutated methylation and acetylation and increasing expression of tumor suppressor proteins. Moreover, C02S regulated multiple biological processes including inducing apoptosis and G0/G1 cell cycle arrest, inhibiting angiogenesis, blocking migration and invasion, and finally suppressing tumor cells proliferation in vitro and tumor growth in vivo.
Collapse
Affiliation(s)
- Zigao Yuan
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Shaopeng Chen
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Chunmei Gao
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Qiuzi Dai
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Cunlong Zhang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Qinsheng Sun
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Jin-Shun Lin
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Chun Guo
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Yuzong Chen
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Department of Pharmacy, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Yuyang Jiang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
202
|
Liu J, Li H, Sun L, Shen S, Zhou Q, Yuan Y, Xing C. Epigenetic Alternations of MicroRNAs and DNA Methylation Contribute to Liver Metastasis of Colorectal Cancer. Dig Dis Sci 2019; 64:1523-1534. [PMID: 30604369 DOI: 10.1007/s10620-018-5424-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liver metastasis is a major cause of mortality in colorectal cancer (CRC). Epigenetic alternations could serve as biomarkers for cancer diagnosis and prognosis. In this study, we analyzed microarray data in order to identify core genes and pathways which contribute to liver metastasis in CRC under epigenetic regulations. MATERIALS AND METHODS Data of miRNAs (GSE35834, GSE81582), DNA methylation (GSE90709, GSE77955), and mRNA microarrays (GSE68468, GSE81558) were downloaded from GEO database. Differentially expressed genes (DEGs), differentially expressed miRNAs (DEMs), and differentially methylated genes (DMGs) were obtained by GEO2R. The target genes of DEMs were predicted by miRWalk. Functional and enrichment analyses were conducted by DAVID database. Protein-protein interaction (PPI) network was constructed in STRING and visualized using Cytoscape. RESULTS In liver metastasis, miR-143-3p, miR-10b-5p, miR-21-5p, and miR-518f-5p were down-regulated, while miR-122-5p, miR-885-5p, miR-210-3p, miR-130b-5p, miR-1275, miR-139-5p, miR-139-3p, and miR-1290 were up-regulated compared with primary CRC. DEGs targeted by altered miRNAs were enriched in pathways including complement, PPAR signaling, ECM-receptor interaction, spliceosome, and focal adhesion. In addition, aberrant DNA methylation-regulated genes showed enrichment in pathways of amino acid metabolism, calcium signaling, TGF-beta signaling, cell cycle, spliceosome, and Wnt signaling. CONCLUSION Our study identified a series of differentially expressed genes which are associated with epigenetic alternations of miRNAs and DNA methylation in colorectal liver metastasis. Up-regulated genes of SLC10A1, MAPT, SHANK2, PTH1R, and C2, as well as down-regulated genes of CAB39, CFLAR, CTSC, THBS1, and TRAPPC3 were associated with both miRNA and DNA methylation, which might become promising biomarker of colorectal liver metastasis in future.
Collapse
Affiliation(s)
- Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Hao Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Quan Zhou
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
203
|
Ru B, Sun J, Kang Q, Tong Y, Zhang J. A framework for identifying dysregulated chromatin regulators as master regulators in human cancer. Bioinformatics 2019; 35:1805-1812. [PMID: 30358822 DOI: 10.1093/bioinformatics/bty836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 10/24/2018] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Chromatin regulators (CRs) are frequently dysregulated to reprogram the epigenetic landscape of the cancer genome. However, the underpinnings of the dysregulation of CRs and their downstream effectors remain to be elucidated. RESULTS Here, we designed an integrated framework based on multi-omics data to identify candidate master regulatory CRs affected by genomic alterations across eight cancer types in The Cancer Genome Atlas. Most of them showed consistent activated or repressed (i.e. oncogenic or tumor-suppressive) roles in cancer initiation and progression. In order to further explore the insight mechanism of the dysregulated CRs, we developed an R package ModReg based on differential connectivity to identify CRs as modulators of transcription factors (TFs) involved in tumorigenesis. Our analysis revealed that the connectivity between TFs and their target genes (TGs) tended to be disrupted in the patients who had a high expression of oncogenic CRs or low-expression of tumor-suppressive CRs. As a proof-of-principle study, 14 (82.4%) of the top-ranked 17 driver CRs in liver cancer were able to be validated by literature mining or experiments including shRNA knockdown and dCas9-based epigenetic editing. Moreover, we confirmed that CR SIRT7 physically interacted with TF NFE2L2, and positively modulated the transcriptional program of NFE2L2 by affecting ∼64% of its TGs. AVAILABILITY AND IMPLEMENTATION ModReg is freely accessible at http://cis.hku.hk/software/ModReg.tar.gz. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
204
|
Tessaro AL, Fraix A, Pedrozo da Silva AC, Gazzano E, Riganti C, Sortino S. "Three-Bullets" Loaded Mesoporous Silica Nanoparticles for Combined Photo/Chemotherapy. NANOMATERIALS 2019; 9:nano9060823. [PMID: 31159241 PMCID: PMC6631764 DOI: 10.3390/nano9060823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/14/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Abstract
This contribution reports the design, preparation, photophysical and photochemical characterization, as well as a preliminary biological evaluation of mesoporous silica nanoparticles (MSNs) covalently integrating a nitric oxide (NO) photodonor (NOPD) and a singlet oxygen (1O2) photosensitizer (PS) and encapsulating the anticancer doxorubicin (DOX) in a noncovalent fashion. These MSNs bind the NOPD mainly in their inner part and the PS in their outer part in order to judiciously exploit the different diffusion radius of the cytotoxic NO and 1O2. Furthermore this silica nanoconstruct has been devised in such a way to permit the selective excitation of the NOPD and the PS with light sources of different energy in the visible window. We demonstrate that the individual photochemical performances of the photoactive components of the MSNs are not mutually affected, and remain unaltered even in the presence of DOX. As a result, the complete nanoconstruct is able to deliver NO and 1O2 under blue and green light, respectively, and to release DOX under physiological conditions. Preliminary biological results performed using A375 cancer cells show a good tolerability of the functionalized MSNs in the dark and a potentiated activity of DOX upon irradiation, due to the effect of the NO photoreleased.
Collapse
Affiliation(s)
- André Luiz Tessaro
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
- Department of Chemistry, Federal University of Technology, Paraná, R. Marcílio Dias, 635, Jardim Paraíso, Apucarana 86812-460, Paraná, Brazil.
| | - Aurore Fraix
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Ana Claudia Pedrozo da Silva
- Department of Chemistry, Universidade Estadual de Maringá, Av. Colombo, 5.790, Maringá 87.020-900, Paraná, Brazil.
| | - Elena Gazzano
- Department of Oncology, University of Torino, Via Santena 5/bis, I-10126 Torino, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Santena 5/bis, I-10126 Torino, Italy.
| | - Salvatore Sortino
- Laboratory of Photochemistry, Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
205
|
Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clin Epigenetics 2019; 11:81. [PMID: 31097014 PMCID: PMC6524244 DOI: 10.1186/s13148-019-0675-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
The emergence of nanotechnology applied to medicine has revolutionized the treatment of human cancer. As in the case of classic drugs for the treatment of cancer, epigenetic drugs have evolved in terms of their specificity and efficiency, especially because of the possibility of using more effective transport and delivery systems. The use of nanoparticles (NPs) in oncology management offers promising advantages in terms of the efficacy of cancer treatments, but it is still unclear how these NPs may be affecting the epigenome such that safe routine use is ensured. In this work, we summarize the importance of the epigenetic alterations identified in human cancer, which have led to the appearance of biomarkers or epigenetic drugs in precision medicine, and we describe the transport and release systems of the epigenetic drugs that have been developed to date.
Collapse
Affiliation(s)
- Annalisa Roberti
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-FINBA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Avenida de Roma, 33011, Oviedo, Asturias, Spain
| | - Adolfo F Valdes
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, Avenida de Roma, 33011, Oviedo, Asturias, Spain
| | - Ramón Torrecillas
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, Avenida de Roma, 33011, Oviedo, Asturias, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, Avenida de Roma, 33011, Oviedo, Asturias, Spain.
| | - Agustin F Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-FINBA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Avenida de Roma, 33011, Oviedo, Asturias, Spain.
| |
Collapse
|
206
|
Chen S, Wiewiora RP, Meng F, Babault N, Ma A, Yu W, Qian K, Hu H, Zou H, Wang J, Fan S, Blum G, Pittella-Silva F, Beauchamp KA, Tempel W, Jiang H, Chen K, Skene RJ, Zheng YG, Brown PJ, Jin J, Luo C, Chodera JD, Luo M. The dynamic conformational landscape of the protein methyltransferase SETD8. eLife 2019; 8:45403. [PMID: 31081496 PMCID: PMC6579520 DOI: 10.7554/elife.45403] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Elucidating the conformational heterogeneity of proteins is essential for understanding protein function and developing exogenous ligands. With the rapid development of experimental and computational methods, it is of great interest to integrate these approaches to illuminate the conformational landscapes of target proteins. SETD8 is a protein lysine methyltransferase (PKMT), which functions in vivo via the methylation of histone and nonhistone targets. Utilizing covalent inhibitors and depleting native ligands to trap hidden conformational states, we obtained diverse X-ray structures of SETD8. These structures were used to seed distributed atomistic molecular dynamics simulations that generated a total of six milliseconds of trajectory data. Markov state models, built via an automated machine learning approach and corroborated experimentally, reveal how slow conformational motions and conformational states are relevant to catalysis. These findings provide molecular insight on enzymatic catalysis and allosteric mechanisms of a PKMT via its detailed conformational landscape. Our cells contain thousands of proteins that perform many different tasks. Such tasks often involve significant changes in the shape of a protein that allow it to interact with other proteins or ligands. Understanding these shape changes can be an essential step for predicting and manipulating how proteins work or designing new drugs. Some changes in protein shape happen quickly, whereas others take longer. Existing experimental approaches generally only capture some, but not all, of the different shapes an individual protein adopts. A family of proteins known as protein lysine methyltransferases (PKMTs) help to regulate the activities of other proteins by adding small tags called methyl groups to specific positions on their target proteins. PKMTs play important roles in many life processes including in activating genes, maintaining stem cells and controlling how organs develop. It is important for cells to properly control the activity of PKMTs because too much, or too little, activity can promote cancers and neurological diseases. For example, genetic mutations that increase the levels of a PKMT known as SETD8 appear to promote the progression of some breast cancers and childhood leukemia. There is a pressing need to develop new drugs that can inhibit SETD8 and other PKMTs in human patients. However, these efforts are hindered by the lack of understanding of exactly how the shape of PKMT proteins change as they operate in cells. Chen, Wiewiora et al. used a technique called X-ray crystallography to generate structural models of the human SETD8 protein in the presence or absence of native or foreign ligands. These models were used to develop computer simulations of how the shape of SETD8 changes as it operates. Further computational analysis and laboratory experiments revealed how slow changes in the shape of SETD8 contribute to the ability of the protein to attach methyl groups to other proteins. This work is a significant stepping-stone to developing a complete model of how the SETD8 protein works, as well as understanding how genetic mutations may affect the protein’s role in the body. The next step is to refine the model by integrating data from other approaches including biophysical models and mathematical calculations of the energy associated with the shape changes, with a long-term goal to better understand and then manipulate the function of SETD8.
Collapse
Affiliation(s)
- Shi Chen
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, United States.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Rafal P Wiewiora
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, United States.,Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Fanwang Meng
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nicolas Babault
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Wenyu Yu
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Kun Qian
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, United States
| | - Hao Hu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, United States
| | - Hua Zou
- Takeda California, Science Center Drive, San Diego, United States
| | - Junyi Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Shijie Fan
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gil Blum
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Fabio Pittella-Silva
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kyle A Beauchamp
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Hualiang Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kaixian Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Robert J Skene
- Takeda California, Science Center Drive, San Diego, United States
| | - Yujun George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, United States
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - John D Chodera
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, United States
| |
Collapse
|
207
|
Zhang Q, Xiong M, Liu J, Wang S, Du T, Kang T, Liu Y, Cheng H, Huang M, Gou M. Targeted nanoparticle-mediated LHPP for melanoma treatment. Int J Nanomedicine 2019; 14:3455-3468. [PMID: 31190803 PMCID: PMC6516749 DOI: 10.2147/ijn.s196374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/12/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is a novel tumor suppressor. However, whether LHPP is effective to melanoma has not been investigated. Gene therapy provides a new strategy for the treatment of melanoma. Currently, it suffers from the lack of safe and effective gene delivery systems. Methods: A CRGDKGPDC peptide (iRGD) modified hybrid monomethoxy poly(ethylene glycol)-poly(D,L-lactide) nanoparticle (iDPP) was prepared and complexed with a LHPP plasmid, forming an iDPP/LHPP nanocomplex. The iDPP/LHPP nanocomplex was characterized by particle size distribution, zeta potential, morphology, cytotoxicity, and transfection efficiency. The antitumor efficacy of the nanocomplex against melanoma was studied both in vitro and in vivo. Further, the potential epigenetic changes in melanoma induced by iDPP/LHPP nanocomplex were evaluated. Results: The iDPP/LHPP nanocomplex showed high transfection efficiency and low toxicity. Moreover, the nanocomplex displayed a neutral charge that can meet the requirement of intravenous injection for targeted gene therapy. In vitro and in vivo experiments indicated that the iDPP/LHPP nanocomplex significantly inhibited the melanoma growth without causing notable adverse effects. We also found that LHPP played an important role in epigenetics. It regulated the expression of genes related to the proliferation and apoptosis chiefly at the level of transcription. Conclusion: This work demonstrates that the iDPP nanoparticle-delivered LHPP gene has a potential application in melanoma therapy through regulation of the genes associated with epigenetics.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Meimei Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jinlu Liu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shuai Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ting Du
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Tianyi Kang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Meijuan Huang
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
208
|
Yang Y, Liu L, Fang M, Bai H, Xu Y. The chromatin remodeling protein BRM regulates the transcription of tight junction proteins: Implication in breast cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:547-556. [PMID: 30946989 DOI: 10.1016/j.bbagrm.2019.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Claudins are a group of cell tight junction proteins that play versatile roles in cancer biology. Recent studies have correlated down-regulation of Claudins with augmented breast cancer malignancy and poor prognosis. The mechanism underlying repression of Claudin transcription in breast cancer cells is not well understood. Here we report that expression levels of Brahma (BRM) were down-regulated in triple negative breast cancer cells (MDA-231) compared to the less malignant MCF-7 cells and in high-grade human breast cancer specimens compared to low-grade ones. TGF-β treatment in MCF-7 cells repressed BRM transcription likely through targeting C/EBPβ. BRM over-expression suppressed whereas BRM knockdown promoted TGF-β induced migration and invasion of MCF-7 cells. BRM down-regulation was accompanied by the loss of a panel of Claudins in breast cancer cells. BRM directly bound to the promoter region of Claudin genes via interacting with Sp1 and activated transcription by modulating histone modifications. Together, our data have identified a novel epigenetic pathway that links Claudin transcription to breast cancer metastasis.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Hui Bai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
209
|
Sheng S, Margarida Bernardo M, Dzinic SH, Chen K, Heath EI, Sakr WA. Tackling tumor heterogeneity and phenotypic plasticity in cancer precision medicine: our experience and a literature review. Cancer Metastasis Rev 2019; 37:655-663. [PMID: 30484007 DOI: 10.1007/s10555-018-9767-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The predominant cause of cancer mortality is metastasis. The major impediment to cancer cure is the intrinsic or acquired resistance to currently available therapies. Cancer is heterogeneous at the genetic, epigenetic, and metabolic levels. And, while a molecular-targeted drug may be pathway-precise, it can still fail to achieve wholesome cancer-precise toxicity. In the current review, we discuss the strategic differences between targeting the strengths of cancer cells in phenotypic plasticity and heterogeneity and targeting shared vulnerabilities of cancer cells such as the compromised integrity of membranous organelles. To better recapitulate subpopulations of cancer cells in different phenotypic and functional states, we developed a schematic combination of 2-dimensional culture (2D), 3-dimmensional culture in collagen I (3D), and mammosphere culture for stem cells (mammosphere), designated as Scheme 2D/3D/mammosphere. We investigated how the tumor suppressor maspin may limit carcinoma cell plasticity and affect their context-dependent response to drugs of different mechanisms including docetaxel, histone deacetylase (HDAC) inhibitor MS-275, and ionophore antibiotic salinomycin. We showed that tumor cell phenotypic plasticity is not an exclusive attribute to cancer stem cells. Nonetheless, three subpopulations of prostate cancer cells, enriched through Scheme 2D/3D/mammosphere, show qualitatively different drug responses. Interestingly, salinomycin was the only drug that effectively killed all three cancer cell subpopulations, irrespective of their capacity of stemness. Further, Scheme 2D/3D/mammosphere may be a useful model to accelerate the screening for curative cancer drugs while avoiding costly characterization of compounds that may have only selective toxicity to some, but not all, cancer cell subpopulations.
Collapse
Affiliation(s)
- Shijie Sheng
- Department of Pathology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Tumor Biology and Microenvironment Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - M Margarida Bernardo
- Department of Pathology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA
- Tumor Biology and Microenvironment Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Tumor Biology and Microenvironment Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kang Chen
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Elisabeth I Heath
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Molecular Therapeutics Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Wael A Sakr
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Tumor Biology and Microenvironment Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
210
|
Petell CJ, Pham AT, Skela J, Strahl BD. Improved methods for the detection of histone interactions with peptide microarrays. Sci Rep 2019; 9:6265. [PMID: 31000785 PMCID: PMC6472351 DOI: 10.1038/s41598-019-42711-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/05/2019] [Indexed: 02/07/2023] Open
Abstract
Histone post-translational modifications contribute to chromatin function largely through the recruitment of effector proteins that contain specialized "reader" domains. While a significant number of reader domains have been characterized for their histone binding specificities, many of these domains remain poorly characterized. Peptide microarrays have been widely employed for the characterization of histone readers, as well as modifying enzymes and histone antibodies. While powerful, this platform has limitations in terms of its sensitivity and they frequently miss low affinity reader domain interactions. Here, we provide several technical changes that improve reader domain detection of low-affinity interactions. We show that 1% non-fat milk in 1X PBST as the blocking reagent during incubation improved reader-domain interaction results. Further, coupling this with post-binding high-salt washes and a brief, low-percentage formaldehyde cross-linking step prior to the high-salt washes provided the optimal balance between resolving specific low-affinity interactions and minimizing background or spurious signals. We expect this improved methodology will lead to the elucidation of previously unreported reader-histone interactions that will be important for chromatin function.
Collapse
Affiliation(s)
- Christopher J Petell
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, Chapel Hill, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, 450 West Drive, University of North Carolina at Chapel Hill, NC, Chapel Hill, 27599, USA
| | - Andrea T Pham
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, Chapel Hill, 27599, USA
| | - Jessica Skela
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, Chapel Hill, 27599, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC, Chapel Hill, 27599, USA.
- UNC Lineberger Comprehensive Cancer Center, 450 West Drive, University of North Carolina at Chapel Hill, NC, Chapel Hill, 27599, USA.
| |
Collapse
|
211
|
Vinyard ME, Su C, Siegenfeld AP, Waterbury AL, Freedy AM, Gosavi PM, Park Y, Kwan EE, Senzer BD, Doench JG, Bauer DE, Pinello L, Liau BB. CRISPR-suppressor scanning reveals a nonenzymatic role of LSD1 in AML. Nat Chem Biol 2019; 15:529-539. [PMID: 30992567 DOI: 10.1038/s41589-019-0263-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/03/2019] [Indexed: 12/13/2022]
Abstract
Understanding the mechanism of small molecules is a critical challenge in chemical biology and drug discovery. Medicinal chemistry is essential for elucidating drug mechanism, enabling variation of small molecule structure to gain structure-activity relationships (SARs). However, the development of complementary approaches that systematically vary target protein structure could provide equally informative SARs for investigating drug mechanism and protein function. Here we explore the ability of CRISPR-Cas9 mutagenesis to profile the interactions between lysine-specific histone demethylase 1 (LSD1) and chemical inhibitors in the context of acute myeloid leukemia (AML). Through this approach, termed CRISPR-suppressor scanning, we elucidate drug mechanism of action by showing that LSD1 enzyme activity is not required for AML survival and that LSD1 inhibitors instead function by disrupting interactions between LSD1 and the transcription factor GFI1B on chromatin. Our studies clarify how LSD1 inhibitors mechanistically operate in AML and demonstrate how CRISPR-suppressor scanning can uncover novel aspects of target biology.
Collapse
Affiliation(s)
- Michael E Vinyard
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Cindy Su
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Allison P Siegenfeld
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Amanda L Waterbury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Allyson M Freedy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pallavi M Gosavi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yongho Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Eugene E Kwan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Benjamin D Senzer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Luca Pinello
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Molecular Pathology Unit and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
212
|
Wang Q, Dai L, Wang Y, Deng J, Lin Y, Wang Q, Fang C, Ma Z, Wang H, Shi G, Cheng L, Liu Y, Chen S, Li J, Dong Z, Su X, Yang L, Zhang S, Jiang M, Huang M, Yang Y, Yu D, Zhou Z, Wei Y, Deng H. Targeted demethylation of the SARI promotor impairs colon tumour growth. Cancer Lett 2019; 448:132-143. [DOI: 10.1016/j.canlet.2019.01.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
|
213
|
Transcriptional and epigenetic regulation of immune tolerance: roles of the NF-κB family members. Cell Mol Immunol 2019; 16:315-323. [PMID: 30872809 DOI: 10.1038/s41423-019-0202-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 01/06/2023] Open
Abstract
Immune tolerance is a highly regulated state and involves diverse mechanisms. Central to the induction of tolerance is the targeted modulation of T-cell activities (both effector and regulatory), in which transcription factors play a significant role. The nuclear factor kappa-B (NF-κB) family is a family of transcription factors that not only are critically involved in diverse T-cell responses but also are regulated by many mechanisms to maintain tolerance and T-cell homeostasis. NF-κB, as a transcription factor, has been extensively studied in recent decades, and the molecular mechanisms that regulate NF-κB activities have been well documented. However, recent studies have revealed exciting new roles for NF-κB; in addition to its transcriptional activity, NF-κB can also activate diverse epigenetic mechanisms that mediate extensive chromatin remodeling of target genes to regulate T-cell activities. In this review article, we highlight recent discoveries and emerging opportunities in targeting NF-κB family members as well as their associated chromatin modifiers in the induction of immune tolerance and in the clinical treatment of immune diseases.
Collapse
|
214
|
OAS-RNase L innate immune pathway mediates the cytotoxicity of a DNA-demethylating drug. Proc Natl Acad Sci U S A 2019; 116:5071-5076. [PMID: 30814222 PMCID: PMC6421468 DOI: 10.1073/pnas.1815071116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Drugs that cause epigenetic modification of DNA, such as 5-azacytidine (AZA), are used clinically to treat myelodysplastic syndromes and acute myeloid leukemia. In addition, AZA is being investigated for use against a range of different types of solid tumors, including lung and colorectal cancers. Treatment with AZA causes demethylation of DNA, thus increasing RNA synthesis, including the synthesis of double-stranded RNA, which is otherwise produced in virus-infected cells. We determined that cell death in response to AZA requires the antiviral enzyme RNase L. The results identify a drug target for enhancing the anticancer activity and reducing the toxicity of AZA and related drugs. Drugs that reverse epigenetic silencing, such as the DNA methyltransferase inhibitor (DNMTi) 5-azacytidine (AZA), have profound effects on transcription and tumor cell survival. AZA is an approved drug for myelodysplastic syndromes and acute myeloid leukemia, and is under investigation for different solid malignant tumors. AZA treatment generates self, double-stranded RNA (dsRNA), transcribed from hypomethylated repetitive elements. Self dsRNA accumulation in DNMTi-treated cells leads to type I IFN production and IFN-stimulated gene expression. Here we report that cell death in response to AZA treatment occurs through the 2′,5′-oligoadenylate synthetase (OAS)-RNase L pathway. OASs are IFN-induced enzymes that synthesize the RNase L activator 2-5A in response to dsRNA. Cells deficient in RNase L or OAS1 to 3 are highly resistant to AZA, as are wild-type cells treated with a small-molecule inhibitor of RNase L. A small-molecule inhibitor of c-Jun NH2-terminal kinases (JNKs) also antagonizes RNase L-dependent cell death in response to AZA, consistent with a role for JNK in RNase L-induced apoptosis. In contrast, the rates of AZA-induced and RNase L-dependent cell death were increased by transfection of 2-5A, by deficiencies in ADAR1 (which edits and destabilizes dsRNA), PDE12 or AKAP7 (which degrade 2-5A), or by ionizing radiation (which induces IFN-dependent signaling). Finally, OAS1 expression correlates with AZA sensitivity in the NCI-60 set of tumor cell lines, suggesting that the level of OAS1 can be a biomarker for predicting AZA sensitivity of tumor cells. These studies may eventually lead to pharmacologic strategies for regulating the antitumor activity and toxicity of AZA and related drugs.
Collapse
|
215
|
Turdo A, Veschi V, Gaggianesi M, Chinnici A, Bianca P, Todaro M, Stassi G. Meeting the Challenge of Targeting Cancer Stem Cells. Front Cell Dev Biol 2019; 7:16. [PMID: 30834247 PMCID: PMC6387961 DOI: 10.3389/fcell.2019.00016] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Notwithstanding cancer patients benefit from a plethora of therapeutic alternatives, drug resistance remains a critical hurdle. Indeed, the high mortality rate is associated with metastatic disease, which is mostly incurable due to the refractoriness of metastatic cells to current treatments. Increasing data demonstrate that tumors contain a small subpopulation of cancer stem cells (CSCs) able to establish primary tumor and metastasis. CSCs are endowed with multiple treatment resistance capabilities comprising a highly efficient DNA damage repair machinery, the activation of survival pathways, enhanced cellular plasticity, immune evasion and the adaptation to a hostile microenvironment. Due to the presence of distinct cell populations within a tumor, cancer research has to face the major challenge of targeting the intra-tumoral as well as inter-tumoral heterogeneity. Thus, targeting molecular drivers operating in CSCs, in combination with standard treatments, may improve cancer patients’ outcomes, yielding long-lasting responses. Here, we report a comprehensive overview on the most significant therapeutic advances that have changed the known paradigms of cancer treatment with a particular emphasis on newly developed compounds that selectively affect the CSC population. Specifically, we are focusing on innovative therapeutic approaches including differentiation therapy, anti-angiogenic compounds, immunotherapy and inhibition of epigenetic enzymes and microenvironmental cues.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Aurora Chinnici
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Paola Bianca
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of PROMISE, University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
216
|
The functional synergism of microRNA clustering provides therapeutically relevant epigenetic interference in glioblastoma. Nat Commun 2019; 10:442. [PMID: 30683859 PMCID: PMC6347618 DOI: 10.1038/s41467-019-08390-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNA deregulation is a consistent feature of glioblastoma, yet the biological effect of each single gene is generally modest, and therapeutically negligible. Here we describe a module of microRNAs, constituted by miR-124, miR-128 and miR-137, which are co-expressed during neuronal differentiation and simultaneously lost in gliomagenesis. Each one of these miRs targets several transcriptional regulators, including the oncogenic chromatin repressors EZH2, BMI1 and LSD1, which are functionally interdependent and involved in glioblastoma recurrence after therapeutic chemoradiation. Synchronizing the expression of these three microRNAs in a gene therapy approach displays significant anticancer synergism, abrogates this epigenetic-mediated, multi-protein tumor survival mechanism and results in a 5-fold increase in survival when combined with chemotherapy in murine glioblastoma models. These transgenic microRNA clusters display intercellular propagation in vivo, via extracellular vesicles, extending their biological effect throughout the whole tumor. Our results support the rationale and feasibility of combinatorial microRNA strategies for anticancer therapies. The delivery of single therapeutic microRNAs in brain cancers is challenging. Here, the authors engineer three neuronal microRNAs (miR-124, 128 and 137) into a cluster that, targeting oncogenic chromatin repressors, increases survival of GBM-bearing mice when combined with chemotherapy.
Collapse
|
217
|
He C, Sun J, Liu C, Jiang Y, Hao Y. Elevated H3K27me3 levels sensitize osteosarcoma to cisplatin. Clin Epigenetics 2019; 11:8. [PMID: 30651137 PMCID: PMC6335728 DOI: 10.1186/s13148-018-0605-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In osteosarcoma (OS), chemotherapy resistance has become one of the greatest issues leading to high mortality among patients. However, the mechanisms of drug resistance remain elusive, limiting therapeutic efficacy. Here, we set out to explore the relationship between dynamic histone changes and the efficacy of cisplatin against OS. RESULTS First, we found two histone demethylases associated with histone H3 lysine 27 trimethylation (H3K27me3) demethylation, KDM6A, and KDM6B that were upregulated after cisplatin treatment. Consistent with the clinical data, cisplatin-resistant OS specimens showed lower H3K27me3 levels than sensitive specimens. Then, we evaluated the effects of H3K27me3 alteration on OS chemosensitivity. In vitro inhibition of the histone methyltransferase EZH2 in OS cells decreased H3K27me3 levels and led to cisplatin resistance. Conversely, inhibition of the demethylases KDM6A and KDM6B increased H3K27me3 levels in OS and reversed cisplatin resistance in vitro and in vivo. Mechanistically, with the help of RNA sequencing (RNAseq), we found that PRKCA and MCL1 directly participated in the process by altering H3K27me3 on their gene loci, ultimately inactivating RAF/ERK/MAPK cascades and decreasing phosphorylation of BCL2. CONCLUSIONS Our study reveals a new epigenetic mechanism of OS resistance and indicates that elevated H3K27me3 levels can sensitize OS to cisplatin, suggesting a promising new strategy for the treatment of OS.
Collapse
Affiliation(s)
- Chao He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jian Sun
- Department of Emergency, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chao Liu
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yuhang Jiang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
218
|
Mio C, Bulotta S, Russo D, Damante G. Reading Cancer: Chromatin Readers as Druggable Targets for Cancer Treatment. Cancers (Basel) 2019; 11:cancers11010061. [PMID: 30634442 PMCID: PMC6356452 DOI: 10.3390/cancers11010061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023] Open
Abstract
The epigenetic machinery deputed to control histone post-translational modifications is frequently dysregulated in cancer cells. With epigenetics being naturally reversible, it represents a good target for therapies directed to restore normal gene expression. Since the discovery of Bromodomain and Extra Terminal (BET) inhibitors, a great effort has been spent investigating the effects of chromatin readers’ inhibition, specifically the class of proteins assigned to bind acetylated and methylated residues. So far, focused studies have been produced on epigenetic regulation, dissecting a specific class of epigenetic-related proteins or investigating epigenetic therapy in a specific tumor type. In this review, recent steps toward drug discovery on the different classes of chromatin readers have been outlined, highlighting the pros and cons of current therapeutic approaches.
Collapse
Affiliation(s)
- Catia Mio
- Department of Medical Area, University of Udine, 33100 Udine, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy.
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy.
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100 Udine, Italy.
- Medical Genetics Institute, University Hospital of Udine, 33100 Udine, Italy.
| |
Collapse
|
219
|
Easwaran H, Baylin SB. Origin and Mechanisms of DNA Methylation Dynamics in Cancers. RNA TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-14792-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
220
|
Jarred EG, Bildsoe H, Western PS. Out of sight, out of mind? Germ cells and the potential impacts of epigenomic drugs. F1000Res 2018; 7. [PMID: 30613387 PMCID: PMC6305226 DOI: 10.12688/f1000research.15935.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications, including DNA methylation and histone modifications, determine the way DNA is packaged within the nucleus and regulate cell-specific gene expression. The heritability of these modifications provides a memory of cell identity and function. Common dysregulation of epigenetic modifications in cancer has driven substantial interest in the development of epigenetic modifying drugs. Although these drugs have the potential to be highly beneficial for patients, they act systemically and may have “off-target” effects in other cells such as the patients’ sperm or eggs. This review discusses the potential for epigenomic drugs to impact on the germline epigenome and subsequent offspring and aims to foster further examination into the possible effects of these drugs on gametes. Ultimately, the information gained by further research may improve the clinical guidelines for the use of such drugs in patients of reproductive age.
Collapse
Affiliation(s)
- Ellen G Jarred
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Heidi Bildsoe
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| |
Collapse
|
221
|
Laisné M, Gupta N, Kirsh O, Pradhan S, Defossez PA. Mechanisms of DNA Methyltransferase Recruitment in Mammals. Genes (Basel) 2018; 9:genes9120617. [PMID: 30544749 PMCID: PMC6316769 DOI: 10.3390/genes9120617] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
DNA methylation is an essential epigenetic mark in mammals. The proper distribution of this mark depends on accurate deposition and maintenance mechanisms, and underpins its functional role. This, in turn, depends on the precise recruitment and activation of de novo and maintenance DNA methyltransferases (DNMTs). In this review, we discuss mechanisms of recruitment of DNMTs by transcription factors and chromatin modifiers—and by RNA—and place these mechanisms in the context of biologically meaningful epigenetic events. We present hypotheses and speculations for future research, and underline the fundamental and practical benefits of better understanding the mechanisms that govern the recruitment of DNMTs.
Collapse
Affiliation(s)
- Marthe Laisné
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Nikhil Gupta
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Olivier Kirsh
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | | | - Pierre-Antoine Defossez
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| |
Collapse
|
222
|
Agarwal R, Chan YC, Tam CS, Hunter T, Vassiliadis D, Teh CE, Thijssen R, Yeh P, Wong SQ, Ftouni S, Lam EYN, Anderson MA, Pott C, Gilan O, Bell CC, Knezevic K, Blombery P, Rayeroux K, Zordan A, Li J, Huang DCS, Wall M, Seymour JF, Gray DHD, Roberts AW, Dawson MA, Dawson SJ. Dynamic molecular monitoring reveals that SWI–SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. Nat Med 2018; 25:119-129. [DOI: 10.1038/s41591-018-0243-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/21/2018] [Indexed: 11/09/2022]
|
223
|
Thapar R, Bacolla A, Oyeniran C, Brickner JR, Chinnam NB, Mosammaparast N, Tainer JA. RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry 2018; 58:312-329. [PMID: 30346748 DOI: 10.1021/acs.biochem.8b00949] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An emerging molecular understanding of RNA alkylation and its removal is transforming our knowledge of RNA biology and its interplay with cancer chemotherapy responses. DNA modifications are known to perform critical functions depending on the genome template, including gene expression, DNA replication timing, and DNA damage protection, yet current results suggest that the chemical diversity of DNA modifications pales in comparison to those on RNA. More than 150 RNA modifications have been identified to date, and their complete functional implications are still being unveiled. These include intrinsic roles such as proper processing and RNA maturation; emerging evidence has furthermore uncovered RNA modification "readers", seemingly analogous to those identified for histone modifications. These modification recognition factors may regulate mRNA stability, localization, and interaction with translation machinery, affecting gene expression. Not surprisingly, tumors differentially modulate factors involved in expressing these marks, contributing to both tumorigenesis and responses to alkylating chemotherapy. Here we describe the current understanding of RNA modifications and their removal, with a focus primarily on methylation and alkylation as functionally relevant changes to the transcriptome. Intriguingly, some of the same RNA modifications elicited by physiological processes are also produced by alkylating agents, thus blurring the lines between what is a physiological mark and a damage-induced modification. Furthermore, we find that a high level of gene expression of enzymes with RNA dealkylation activity is a sensitive readout for poor survival in four different cancer types, underscoring the likely importance of examining RNA dealkylation mechanisms to cancer biology and for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Clement Oyeniran
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Joshua R Brickner
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Naga Babu Chinnam
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - John A Tainer
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| |
Collapse
|
224
|
Canestrari E, Paroo Z. Ribonucleases as Drug Targets. Trends Pharmacol Sci 2018; 39:855-866. [PMID: 30144949 DOI: 10.1016/j.tips.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
Across disease indications, there is immediate need for new drug targets. Target scarcity is reflected in a growing number of same-target drugs of marginal clinical value. Advances in RNA mechanisms of disease are revealing a windfall of targets for nucleic acids therapeutics. However, nucleic acids remain limited as pharmaceutical agents. Because enzymes are predominant drug targets, ribonucleases represent an established target class to capitalize on RNA mechanisms of disease. Analysis of the human proteome identified 122 ribonucleases. This small ribonucleome mediates the biosynthetic and catabolic processing of a large transcriptome. Thus, ribonucleases represent critical signaling targets. Similar to kinases, proteases, and epigenetic enzymes, ribonucleases are rational targets for development of therapies with novel mechanisms, expanding treatment options for improved patient outcomes.
Collapse
Affiliation(s)
- Emanuele Canestrari
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zain Paroo
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
225
|
Li Y, Yang X, Du X, Lei Y, He Q, Hong X, Tang X, Wen X, Zhang P, Sun Y, Zhang J, Wang Y, Ma J, Liu N. RAB37 Hypermethylation Regulates Metastasis and Resistance to Docetaxel-Based Induction Chemotherapy in Nasopharyngeal Carcinoma. Clin Cancer Res 2018; 24:6495-6508. [PMID: 30131385 DOI: 10.1158/1078-0432.ccr-18-0532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/30/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Epigenetic alterations play important roles in metastasis and drug resistance through gene regulation. However, the functional features and molecular mechanisms of epigenetic changes remain largely unclear in nasopharyngeal carcinoma (NPC) metastasis. EXPERIMENTAL DESIGN Gene regulatory network analysis was used to identify metastatic-specific dysregulated genes between normal and NPC tissues and the expression was validated in published Gene-Expression Omnibus data set. The regulatory and functional role of RAB37 downregulation was examined in NPC and was validated in vitro and in vivo, and downstream target of RAB37 was explored. The clinical value of RAB37 methylation was evaluated in NPC metastasis and chemosensitivity. RESULTS We identified RAB37 as a specific hypermethylated gene that is most commonly downregulated in NPC. Moreover, RAB37 downregulation was attributed to hypermethylation of its promoter and was significantly associated with metastasis- and docetaxel chemoresistance-related features in NPC. Ectopic RAB37 overexpression suppressed NPC cell metastasis and enhanced chemosensitivity to docetaxel. Mechanistically, RAB37 colocalized with TIMP2, regulated TIMP2 secretion, inhibited downstream MMP2 activity, and consequently altered NPC cell metastasis. Furthermore, RAB37 hypermethylation was correlated with poor clinical outcomes in patients with NPC. We developed a prognostic model based on RAB37 methylation and N stage that effectively predicted an increased risk of distant metastasis and a favorable response to docetaxel-containing induction chemotherapy (IC) in NPC patients. CONCLUSIONS This study shows that RAB37 hypermethylation is involved in NPC metastasis and chemoresistance, and that our prognostic model can identify patients who are at a high risk of distant metastasis and might benefit from for docetaxel IC.
Collapse
Affiliation(s)
- Yingqin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xiaojing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xiaojing Du
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Yuan Lei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Qingmei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xiaohong Hong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xinran Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xin Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Panpan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Ying Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Jian Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Yaqin Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China.
| |
Collapse
|
226
|
Cañeque T, Müller S, Rodriguez R. Visualizing biologically active small molecules in cells using click chemistry. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0030-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
227
|
Li M, Zhao BR, Liu SQ, An J, Deng PB, Han-Zhang H, Ye JY, Mao XR, Chuai SK, Hu CP. Mutational landscape and clonal diversity of pulmonary adenoid cystic carcinoma. Cancer Biol Ther 2018; 19:898-903. [PMID: 30067437 DOI: 10.1080/15384047.2018.1480296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pulmonary adenoid cystic carcinoma is a rare and indolent lung malignancy, characterized by a protracted but unpredictable growth behavior. Currently, the treatment of PACC relies on surgery and local radiotherapy. However, treatment options for advanced PACC patients are limited. A larger number of studies demonstrated that advanced PACC patients obtained limited benefit from chemotherapy. Moreover, only a few case reports revealed PACC patients were candidates for target therapy. Therefore, there is an urgent need to develop novel therapies. Due to its rareness, its mutational landscape remains largely elusive. In this study, we performed capture-based ultra-deep sequencing on multiregional surgical specimens obtained from 8 PACC patients using a panel consisting of 295 cancer-related genes. Our data revealed distinctive mutational spectrum of PACC, which differed from non-small cell lung cancer and adenoid cystic carcinomas originated from other anatomical sites. PACC, lacking mutations in a majority of non-small cell lung cancer driver genes, has frequent mutations in genes participating in chromatin remodeling and NOTCH signaling pathway. We also elucidated spatial intra-tumoral heterogeneity, which varied among cases. Most mutations in chromatin remodelers were subclonal. Collectively, our findings elucidated molecular signature associated with PACC and highlighted the potential for epigenetic therapy in this disease.
Collapse
Affiliation(s)
- Min Li
- a Department of Respiratory Medicine , Xiangya Hospital, Central South University , Changsha , China.,b Center for Molecular Medicine , Xiangya Hospital, Central South University , Changsha , China
| | - Bing-Rong Zhao
- a Department of Respiratory Medicine , Xiangya Hospital, Central South University , Changsha , China
| | - Shi-Qing Liu
- a Department of Respiratory Medicine , Xiangya Hospital, Central South University , Changsha , China
| | - Jian An
- a Department of Respiratory Medicine , Xiangya Hospital, Central South University , Changsha , China
| | - Peng-Bo Deng
- a Department of Respiratory Medicine , Xiangya Hospital, Central South University , Changsha , China
| | | | - Jun-Yi Ye
- c Burning Rock Biotech , Guangzhou , China
| | - Xin-Ru Mao
- c Burning Rock Biotech , Guangzhou , China
| | | | - Cheng-Ping Hu
- a Department of Respiratory Medicine , Xiangya Hospital, Central South University , Changsha , China
| |
Collapse
|
228
|
Yu J, Ji HY, Liu AJ. Alcohol-soluble polysaccharide from Astragalus membranaceus: Preparation, characteristics and antitumor activity. Int J Biol Macromol 2018; 118:2057-2064. [PMID: 30009907 DOI: 10.1016/j.ijbiomac.2018.07.073] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 01/14/2023]
Abstract
The alcohol-soluble polysaccharide (ASP) was extracted from Astragalus membranaceus, and their preliminary structural characteristics and in vivo antitumor activity were investigated in this study. The contents of total sugar, protein and uronic acid in ASP was 92.04%, 0.51% and 1.42%, respectively. FTIR and IC results indicated that ASP (about 2.1 × 103 Da) was a neutral polysaccharide composed of arabinose, galactose, glucose and mannose (molar ratio: 1.00:0.98:3.01:1.52) with pyranose ring and α-type glycosidic linkages. Besides, ASP could significantly inhibit the growth of H22 heptoma cells in vivo via improving the levels of serum cytokines (TNF-α, IL-2 and IFN-γ) and activities of immune cells (macrophages, lymphocytes and NK cells), thereby inducing tumor cell apoptosis and attenuating their accessional damages. These results suggested that ASP may serve as a novel potential antitumor agent in the future.
Collapse
Affiliation(s)
- Juan Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd. Beijing 100176, China
| | - Hai-Yu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd. Beijing 100176, China
| | - An-Jun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
229
|
Swinstead EE, Paakinaho V, Hager GL. Chromatin reprogramming in breast cancer. Endocr Relat Cancer 2018; 25:R385-R404. [PMID: 29692347 PMCID: PMC6029727 DOI: 10.1530/erc-18-0033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
Reprogramming of the chromatin landscape is a critical component to the transcriptional response in breast cancer. Effects of sex hormones such as estrogens and progesterone have been well described to have a critical impact on breast cancer proliferation. However, the complex network of the chromatin landscape, enhancer regions and mode of function of steroid receptors (SRs) and other transcription factors (TFs), is an intricate web of signaling and functional processes that is still largely misunderstood at the mechanistic level. In this review, we describe what is currently known about the dynamic interplay between TFs with chromatin and the reprogramming of enhancer elements. Emphasis has been placed on characterizing the different modes of action of TFs in regulating enhancer activity, specifically, how different SRs target enhancer regions to reprogram chromatin in breast cancer cells. In addition, we discuss current techniques employed to study enhancer function at a genome-wide level. Further, we have noted recent advances in live cell imaging technology. These single-cell approaches enable the coupling of population-based assays with real-time studies to address many unsolved questions about SRs and chromatin dynamics in breast cancer.
Collapse
Affiliation(s)
- Erin E Swinstead
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
- Institute of BiomedicineUniversity of Eastern Finland, Kuopio, Finland
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
230
|
Wilson S, Filipp FV. A network of epigenomic and transcriptional cooperation encompassing an epigenomic master regulator in cancer. NPJ Syst Biol Appl 2018; 4:24. [PMID: 29977600 PMCID: PMC6026491 DOI: 10.1038/s41540-018-0061-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Coordinated experiments focused on transcriptional responses and chromatin states are well-equipped to capture different epigenomic and transcriptomic levels governing the circuitry of a regulatory network. We propose a workflow for the genome-wide identification of epigenomic and transcriptional cooperation to elucidate transcriptional networks in cancer. Gene promoter annotation in combination with network analysis and sequence-resolution of enriched transcriptional motifs in epigenomic data reveals transcription factor families that act synergistically with epigenomic master regulators. By investigating complementary omics levels, a close teamwork of the transcriptional and epigenomic machinery was discovered. The discovered network is tightly connected and surrounds the histone lysine demethylase KDM3A, basic helix-loop-helix factors MYC, HIF1A, and SREBF1, as well as differentiation factors AP1, MYOD1, SP1, MEIS1, ZEB1, and ELK1. In such a cooperative network, one component opens the chromatin, another one recognizes gene-specific DNA motifs, others scaffold between histones, cofactors, and the transcriptional complex. In cancer, due to the ability to team up with transcription factors, epigenetic factors concert mitogenic and metabolic gene networks, claiming the role of a cancer master regulators or epioncogenes. Significantly, specific histone modification patterns are commonly associated with open or closed chromatin states, and are linked to distinct biological outcomes by transcriptional activation or repression. Disruption of patterns of histone modifications is associated with the loss of proliferative control and cancer. There is tremendous therapeutic potential in understanding and targeting histone modification pathways. Thus, investigating cooperation of chromatin remodelers and the transcriptional machinery is not only important for elucidating fundamental mechanisms of chromatin regulation, but also necessary for the design of targeted therapeutics.
Collapse
Affiliation(s)
- Stephen Wilson
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343 USA
| | - Fabian Volker Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343 USA
| |
Collapse
|
231
|
Moggs J, Terranova R. Chromatin dynamics underlying latent responses to xenobiotics. Toxicol Res (Camb) 2018; 7:606-617. [PMID: 30090610 PMCID: PMC6062062 DOI: 10.1039/c7tx00317j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/26/2018] [Indexed: 11/21/2022] Open
Abstract
Pleiotropic xenobiotics can trigger dynamic alterations in mammalian chromatin structure and function but many of these are likely non-adverse and simply reflect short-term changes in DNA transactions underlying normal homeostatic, adaptive and protective cellular responses. However, it is plausible that a subset of xenobiotic-induced perturbations of somatic tissue or germline epigenomes result in delayed-onset and long-lasting adverse effects, in particular if they occur during critical stages of growth and development. These could include reprogramming, dedifferentiation, uncontrolled growth, and cumulative toxicity effects through molecular memory of prior xenobiotic exposures or altered susceptibility to subsequent xenobiotic exposures. Here we discuss the current evidence for epigenetic mechanisms underlying latent responses to xenobiotics, and the potential for identifying molecular epigenetic changes that are prodromal to overt morphologic or functional toxicity phenotypes.
Collapse
Affiliation(s)
- Jonathan Moggs
- Preclinical Safety , Translational Medicine , Novartis Institutes for BioMedical Research , Basel , Switzerland
| | - Rémi Terranova
- Preclinical Safety , Translational Medicine , Novartis Institutes for BioMedical Research , Basel , Switzerland
| |
Collapse
|
232
|
Iyer S, Agarwal SK. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. J Mol Endocrinol 2018; 61:R13-R24. [PMID: 29615472 PMCID: PMC5966343 DOI: 10.1530/jme-18-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation is emerging as a key feature in the molecular characteristics of various human diseases. Epigenetic aberrations can occur from mutations in genes associated with epigenetic regulation, improper deposition, removal or reading of histone modifications, DNA methylation/demethylation and impaired non-coding RNA interactions in chromatin. Menin, the protein product of the gene causative for the multiple endocrine neoplasia type 1 (MEN1) syndrome, interacts with chromatin-associated protein complexes and also regulates some non-coding RNAs, thus participating in epigenetic control mechanisms. Germline inactivating mutations in the MEN1 gene that encodes menin predispose patients to develop endocrine tumors of the parathyroids, anterior pituitary and the duodenopancreatic neuroendocrine tissues. Therefore, functional loss of menin in the various MEN1-associated endocrine cell types can result in epigenetic changes that promote tumorigenesis. Because epigenetic changes are reversible, they can be targeted to develop therapeutics for restoring the tumor epigenome to the normal state. Irrespective of whether epigenetic alterations are the cause or consequence of the tumorigenesis process, targeting the endocrine tumor-associated epigenome offers opportunities for exploring therapeutic options. This review presents epigenetic control mechanisms relevant to the interactions and targets of menin, and the contribution of epigenetics in the tumorigenesis of endocrine cell types from menin loss.
Collapse
Affiliation(s)
- Sucharitha Iyer
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
233
|
Alagarswamy K, Shinohara KI, Takayanagi S, Fukuyo M, Okabe A, Rahmutulla B, Yoda N, Qin R, Shiga N, Sugiura M, Sato H, Kita K, Suzuki T, Nemoto T, Kaneda A. Region-specific alteration of histone modification by LSD1 inhibitor conjugated with pyrrole-imidazole polyamide. Oncotarget 2018; 9:29316-29335. [PMID: 30034620 PMCID: PMC6047668 DOI: 10.18632/oncotarget.25451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/07/2018] [Indexed: 12/26/2022] Open
Abstract
Epigenome regulates gene expression to determine cell fate, and accumulation of epigenomic aberrations leads to diseases, including cancer. NCD38 inhibits lysine-specific demethylase-1 (LSD1), a histone demethylase targeting H3K4me1 and H3K4me2, but not H3K4me3. In this study, we conjugated NCD38 with a potent small molecule called pyrrole (Py) imidazole (Im) polyamide, to analyze whether targets of the inhibitor could be regulated in a sequence-specific manner. We synthesized two conjugates using β-Ala (β) as a linker, i.e., NCD38-β-β-Py-Py-Py-Py (NCD38-β2P4) recognizing WWWWWW sequence, and NCD38-β-β-Py-Im-Py-Py (NCD38-β2PIPP) recognizing WWCGWW sequence. When RKO cells were treated with NCD38, H3K4me2 levels increased in 103 regions with significant activation of nearby genes (P = 0.03), whereas H3K4me3 levels were not obviously increased. H3K27ac levels were also increased in 458 regions with significant activation of nearby genes (P = 3 × 10-10), and these activated regions frequently included GC-rich sequences, but less frequently included AT-rich sequences (P < 1 × 10-15) or WWCGWW sequences (P = 2 × 10-13). When treated with NCD38-β2P4, 234 regions showed increased H3K27ac levels with significant activation of nearby genes (P = 2 × 10-11), including significantly fewer GC-rich sequences (P < 1 × 10-15) and significantly more AT-rich sequences (P < 1 × 10-15) compared with NCD38 treatment. When treated with NCD38-β2PIPP, 82 regions showed increased H3K27ac levels, including significantly fewer GC-rich sequences (P = 1 × 10-11) and fewer AT-rich sequences (P = 0.005), but significantly more WWCGWW sequences (P = 0.0001) compared with NCD38 treatment. These indicated that target regions of epigenomic inhibitors could be modified in a sequence-specific manner and that conjugation of Py-Im polyamides may be useful for this purpose.
Collapse
Affiliation(s)
| | - Ken-Ichi Shinohara
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Shihori Takayanagi
- Department of Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Natsumi Yoda
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Rui Qin
- Department of Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Naoki Shiga
- Department of Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masahiro Sugiura
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Sato
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Kazuko Kita
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| | - Takayoshi Suzuki
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuhiro Nemoto
- Department of Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
234
|
Heiss JA, Just AC. Identifying mislabeled and contaminated DNA methylation microarray data: an extended quality control toolset with examples from GEO. Clin Epigenetics 2018; 10:73. [PMID: 29881472 PMCID: PMC5984806 DOI: 10.1186/s13148-018-0504-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 12/23/2022] Open
Abstract
Background Mislabeled, contaminated or poorly performing samples can threaten power in methylation microarray analyses or even result in spurious associations. We describe a set of quality checks for the popular Illumina 450K and EPIC microarrays to identify problematic samples and demonstrate their application in publicly available datasets. Methods Quality checks implemented here include 17 control metrics defined by the manufacturer, a sex check to detect mislabeled sex-discordant samples, and both an identity check for fingerprinting sample donors and a measure of sample contamination based on probes querying high-frequency SNPs. These checks were tested on 80 datasets comprising 8327 samples run on the 450K microarray from the GEO repository. Results Nine hundred forty samples were flagged by at least one control metric and 133 samples from 20 datasets were assigned the wrong sex. In a dataset in which a subset of samples appear contaminated with a single source of DNA, we demonstrate that our measure based on outliers among SNP probes was strongly correlated (> 0.95) with another independent measure of contamination. Conclusions A more complete examination of samples that may be mislabeled, contaminated, or have poor performance due to technical problems will improve downstream analyses and replication of findings. We demonstrate that quality control problems are prevalent in a public repository of DNA methylation data. We advocate for a more thorough quality control workflow in epigenome-wide association studies and provide a software package to perform the checks described in this work. Reproducible code and supplementary material are available at 10.5281/zenodo.1172730.
Collapse
Affiliation(s)
- Jonathan A Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, 10029 NY USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, 10029 NY USA
| |
Collapse
|
235
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
236
|
Yin J, Ren W, Huang X, Li T, Yin Y. Protein restriction and cancer. Biochim Biophys Acta Rev Cancer 2018; 1869:256-262. [PMID: 29596961 DOI: 10.1016/j.bbcan.2018.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/02/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
Protein restriction without malnutrition is currently an effective nutritional intervention known to prevent diseases and promote health span from yeast to human. Recently, low protein diets are reported to be associated with lowered cancer incidence and mortality risk of cancers in human. In murine models, protein restriction inhibits tumor growth via mTOR signaling pathway. IGF-1, amino acid metabolic programing, FGF21, and autophagy may also serve as potential mechanisms of protein restriction mediated cancer prevention. Together, dietary intervention aimed at reducing protein intake can be beneficial and has the potential to be widely adopted and effective in preventing and treating cancers.
Collapse
Affiliation(s)
- Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xingguo Huang
- Department of Animal science, Hunan Agriculture University, Changsha, PR China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, PR China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, PR China; Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, PR China.
| |
Collapse
|
237
|
Abstract
Our genetic information is organized into chromatin, which consists of histones and proteins involved in regulating DNA compaction, accessibility and function. Chromatin is decorated by histone modifications, which provide signals that coordinate DNA-based processes including transcription and DNA damage response (DDR) pathways. A major signal involved in these processes is acetylation, which when attached to lysines within proteins, including histones, can be recognized and read by bromodomain-containing proteins. We recently identified the bromodomain protein ZMYND8 (also known as RACK7 and PRKCBP1) as a critical DNA damage response factor involved in regulating transcriptional responses and DNA repair activities at DNA double-strand breaks. Other studies have further defined the molecular details for how ZMYND8 interacts with chromatin and other chromatin modifying proteins to exert its DNA damage response functions. ZMYND8 also plays essential roles in regulating transcription during normal cellular growth, perturbation of which promotes cellular processes involved in cancer initiation and progression. In addition to acetylation, histone methylation and demethylase enzymes have emerged as important regulators of ZMYND8. Here we discuss our current understanding of the molecular mechanisms that govern ZMYND8 function within chromatin, highlighting the importance of this protein for genome maintenance both during the DDR and in cancer.
Collapse
Affiliation(s)
- Fade Gong
- a Department of Molecular Biosciences, Institute for Cellular and Molecular Biology , The University of Texas at Austin , 2506 Speedway, Austin , TX 78712 , USA
| | - Kyle M Miller
- a Department of Molecular Biosciences, Institute for Cellular and Molecular Biology , The University of Texas at Austin , 2506 Speedway, Austin , TX 78712 , USA
| |
Collapse
|
238
|
Smith BH, Gazda LS, Fahey TJ, Nazarian A, Laramore MA, Martis P, Andrada ZP, Thomas J, Parikh T, Sureshbabu S, Berman N, Ocean AJ, Hall RD, Wolf DJ. Clinical laboratory and imaging evidence for effectiveness of agarose-agarose macrobeads containing stem-like cells derived from a mouse renal adenocarcinoma cell population (RMBs) in treatment-resistant, advanced metastatic colorectal cancer: Evaluation of a biological-systems approach to cancer therapy (U.S. FDA IND-BB 10091; NCT 02046174, NCT 01053013). Chin J Cancer Res 2018; 30:72-83. [PMID: 29545721 DOI: 10.21147/j.issn.1000-9604.2018.01.08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Objective The complexity, heterogeneity and capacity of malignant neoplastic cells and tumors for rapid change and evolution suggest that living-cell-based biological-systems approaches to cancer treatment are merited. Testing this hypothesis, the tumor marker, metabolic activity, and overall survival (OS) responses, to the use of one such system, implantable macrobeads [RENCA macrobeads (RMBs)], in phase I and IIa clinical trials in advanced, treatment-resistant metastatic colorectal cancer (mCRC) are described here. Methods Forty-eight mCRC patients (30 females; 18 males), who had failed all available, approved treatments, underwent RMB implantation (8 RMB/kg body weight) up to 4 times in phase I and phase IIa open-label trials. Physicals, labs [tumor and inflammation markers, lactate dehydrogenase (LDH)] and positron emission tomography-computed tomography (PET-CT) imaging to measure number/volume and metabolic activity of the tumors were performed pre- and 3-month-post-implantation to evaluate safety and initial efficacy (as defined by biological responses). PET-CT maximum standard uptake value (SUVmax) (baseline and d 90; SUVmax ≥2.5), LDH, and carcinoembryonic antigen (CEA) and/or cancer antigen 19-9 (CA 19-9) response (baseline, d 30 and/or d 60) were assessed and compared to OS. Results Responses after implantation were characterized by an at least 20% decrease in CEA and/or CA 19-9 in 75% of patients. Fluorodeoxyglucose (FDG)-positive lesions (phase I, 39; 2a, 82) were detected in 37/48 evaluable patients, with 35% stable volume and stable or decreased SUV (10) plus four with necrosis; 10, increased tumor volume, SUV. LDH levels remained stable and low in Responders (R) (d 0-60, 290.4-333.9), but increased steadily in Non-responders (NR) (d 0-60, 382.8-1,278.5) (d 60, P=0.050). Responders to RMBs, indicated by the changes in the above markers, correlated with OS (R mean OS=10.76 months; NR mean OS=4.9 months; P=0.0006). Conclusions The correlations of the tumor marker, tumor volume and SUV changes on PET-CT, and LDH levels themselves, and with OS, support the concept of a biological response to RMB implantation and the validity of the biological-systems approach to mCRC. A phase III clinical trial is planned.
Collapse
Affiliation(s)
- Barry H Smith
- The Rogosin Institute, New York NY 10021, USA.,The Rogosin Institute-Xenia Division, Xenia OH 45385, USA
| | | | | | | | | | | | | | | | | | | | - Nathaniel Berman
- The Rogosin Institute, New York NY 10021, USA.,The Rogosin Institute-Xenia Division, Xenia OH 45385, USA
| | | | | | - David J Wolf
- The Rogosin Institute, New York NY 10021, USA.,The Rogosin Institute-Xenia Division, Xenia OH 45385, USA
| |
Collapse
|
239
|
Baretti M, Azad NS. The role of epigenetic therapies in colorectal cancer. Curr Probl Cancer 2018; 42:530-547. [PMID: 29625794 DOI: 10.1016/j.currproblcancer.2018.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/21/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022]
Abstract
Although developments in the diagnosis and therapy of colorectal cancer (CRC) have been made in the last decade, much work remains to be done as it remains the second leading cause of cancer death. It is now well established that epigenetic events, together with genetic alterations, are key events in initiation and progression of CRC. Epigenetics refers to heritable alterations in gene expression that do not involve changes in the DNA sequence. These alterations include DNA methylation, histone alterations, chromatin remodelers, and noncoding RNAs. In CRC, aberrations in epigenome may also involve in the development of drug resistance to conventional drugs such as 5-fluorouracil, oxaliplatin, and irinotecan. Thus, it has been suggested that combined therapies with epigenetic agents may reverse drug resistance. In this regard, DNA methyltransferase inhibitors and histone deacetylase inhibitors have been extensively investigated in CRC. The aim of this review is to provide a brief overview of the preclinical data that represent a proof of principle for the employment of epigenetic agents in CRC with a focus on the advantages of combinatorial therapy over single-drug treatment. We will also critically discuss the results and limitations of initial clinical experiences of epigenetic-based therapy in CRC and summarize ongoing clinical trials. Nevertheless, since recent translational research suggest that epigenetic modulators play a key role in augmenting immunogenicity of the tumor microenvironment and in restoring immune recognition, we will also highlight the recent developments of combinations strategies of immunotherapies and epigenetic therapies in CRC, summarizing preclinical, and clinical data to signify this evolving and promising field for CRC treatment.
Collapse
Affiliation(s)
- Marina Baretti
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University.
| | - Nilofer Saba Azad
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University
| |
Collapse
|
240
|
Affiliation(s)
- Kosuke Funato
- Center for Stem Cell Biology and Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;,
| | - Viviane Tabar
- Center for Stem Cell Biology and Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;,
| |
Collapse
|
241
|
Lee JY, De Jager PL. What is the epigenome and is it involved in multiple sclerosis? Mult Scler 2018; 24:268-269. [PMID: 29498610 DOI: 10.1177/1352458517750769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ji Y Lee
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA/Center for Cell Circuits, Broad Institute, Cambridge, MA, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA/Center for Cell Circuits, Broad Institute, Cambridge, MA, USA
| |
Collapse
|
242
|
Sandoval-Basilio J, González-González R, Bologna-Molina R, Isiordia-Espinoza M, Leija-Montoya G, Alcaraz-Estrada SL, Serafín-Higuera I, González-Ramírez J, Serafín-Higuera N. Epigenetic mechanisms in odontogenic tumors: A literature review. Arch Oral Biol 2018; 87:211-217. [PMID: 29310033 DOI: 10.1016/j.archoralbio.2017.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Epigenetic mechanisms, such as DNA methylation, regulate important biological processes as gene expression and it was suggested that these phenomena play important roles in the carcinogenesis and tumor biology. The aim of this review is to provide the current state of knowledge about epigenetic alterations, focusing mainly on DNA methylation, reported in odontogenic tumors. DESIGN Literatures were searched based in the combination of the following keywords: odontogenic tumors, epigenetics, DNA methylation, histone modifications, non-coding RNA, microRNA, DNA methyltransferases. Electronic databases (Medline/PubMed, Scopus and Web of Science) were screened. RESULTS The analysis of epigenetic alterations in different tumors has rapidly increased; however, limited information is available about epigenetic mechanisms involved in the formation of odontogenic tumors. DNA methylation is the most studied epigenetic modification in these tumors and the participation of non-coding RNA's in odontogenic tumors has been recently addressed. Differential expression of DNA methyltransferases, altered DNA methylation patterns and aberrant expression of non-coding RNA's were reported in odontogenic tumors. CONCLUSIONS Current studies suggest epigenetics as an emerging mechanism, possibly implicated in etiopathogenesis of odontogenic tumors. Deeper understanding of the epigenetic abnormalities in these tumors could show potential applications as biomarkers or therapeutic possibilities in the future.
Collapse
Affiliation(s)
| | | | - Ronell Bologna-Molina
- Departamento de Investigación, Facultad Odontología, Universidad de la República. (UDELAR), Montevideo, Uruguay
| | | | | | | | | | | | | |
Collapse
|
243
|
Choudhry H, Harris AL. Advances in Hypoxia-Inducible Factor Biology. Cell Metab 2018; 27:281-298. [PMID: 29129785 DOI: 10.1016/j.cmet.2017.10.005] [Citation(s) in RCA: 568] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/03/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Hypoxia-inducible factor (HIF), a central regulator for detecting and adapting to cellular oxygen levels, transcriptionally activates genes modulating oxygen homeostasis and metabolic activation. Beyond this, HIF influences many other processes. Hypoxia, in part through HIF-dependent mechanisms, influences epigenetic factors, including DNA methylation and histone acetylation, which modulate hypoxia-responsive gene expression in cells. Hypoxia profoundly affects expression of many noncoding RNAs classes that have clinicopathological implications in cancer. HIF can regulate noncoding RNAs production, while, conversely, noncoding RNAs can modulate HIF expression. There is recent evidence for crosstalk between circadian rhythms and hypoxia-induced signaling, suggesting involvement of molecular clocks in adaptation to fluxes in nutrient and oxygen sensing. HIF induces increased production of cellular vesicles facilitating intercellular communication at a distance-for example, promoting angiogenesis in hypoxic tumors. Understanding the complex networks underlying cellular and genomic regulation in response to hypoxia via HIF may identify novel and specific therapeutic targets.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
244
|
Hajmirza A, Emadali A, Gauthier A, Casasnovas O, Gressin R, Callanan MB. BET Family Protein BRD4: An Emerging Actor in NFκB Signaling in Inflammation and Cancer. Biomedicines 2018; 6:biomedicines6010016. [PMID: 29415456 PMCID: PMC5874673 DOI: 10.3390/biomedicines6010016] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/04/2023] Open
Abstract
NFκB (Nuclear Factor-κ-light-chain-enhancer of activated B cells) signaling elicits global transcriptional changes by activating cognate promoters and through genome-wide remodeling of cognate regulatory elements called “super enhancers”. BET (Bromodomain and Extra-Terminal domain) protein family inhibitor studies have implicated BET protein member BRD4 and possibly other BET proteins in NFκB-dependent promoter and super-enhancer modulation. Members of the BET protein family are known to bind acetylated chromatin to facilitate access by transcriptional regulators to chromatin, as well as to assist the activity of transcription elongation complexes via CDK9/pTEFb. BET family member BRD4 has been shown to bind non-histone proteins and modulate their activity. One such protein is RELA, the NFκB co-activator. Specifically, BRD4 binds acetylated RELA, which increases its transcriptional transactivation activity and stability in the nucleus. In aggregate, this establishes an intimate link between NFκB and BET signaling, at least via BRD4. The present review provides a brief overview of the structure and function of BET family proteins and then examines the connections between NFκB and BRD4 signaling, using the inflammatory response and cancer cell signaling as study models. We also discuss the potential of BET inhibitors for relief of aberrant NFκB signaling in cancer, focusing on non-histone, acetyl-lysine binding functions.
Collapse
Affiliation(s)
- Azadeh Hajmirza
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université de Grenoble-Alpes, F-38042 Grenoble, France.
| | - Anouk Emadali
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université de Grenoble-Alpes, F-38042 Grenoble, France.
- Pôle Recherche, Grenoble-Alpes University Hospital, F-38043 Grenoble, France.
| | - Arnaud Gauthier
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université de Grenoble-Alpes, F-38042 Grenoble, France.
| | - Olivier Casasnovas
- Département d'Hématologie Clinique, Dijon University Hospital, F-21000 Dijon, France.
| | - Rémy Gressin
- Département d'Hématologie Clinique, Grenoble-Alpes University Hospital, F-38043 Grenoble, France.
| | - Mary B Callanan
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université de Grenoble-Alpes, F-38042 Grenoble, France.
- Centre for Innovation in Cancer Genetics and Epigenetics, Dijon University Hospital, F-21000 Dijon, France.
| |
Collapse
|
245
|
Wang L, Dong X, Ren Y, Luo J, Liu P, Su D, Yang X. Targeting EHMT2 reverses EGFR-TKI resistance in NSCLC by epigenetically regulating the PTEN/AKT signaling pathway. Cell Death Dis 2018; 9:129. [PMID: 29374157 PMCID: PMC5833639 DOI: 10.1038/s41419-017-0120-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). Epigenetic alterations have been shown to be involved in NSCLC oncogenesis; however, their function in EGFR-TKI resistance remains uncharacterized. Here, we found that an EHMT2 inhibitor, UNC0638, can significantly inhibit cell growth and induce apoptosis in EGFR-TKI-resistant NSCLC cells. Additionally, we also found that EHMT2 expression and enzymatic activity levels were elevated in EGFR-TKI-resistant NSCLC cells. Moreover, we determined that genetic or pharmacological inhibition of EHMT2 expression enhanced TKI sensitivity and suppressed migration and tumor sphere formation in EGFR-TKI-resistant NSCLC cells. Further investigation revealed that EHMT2 contributed to PTEN transcriptional repression and thus facilitated AKT pathway activation. The negative relationship between EHMT2 and PTEN was confirmed by our clinical study. Furthermore, we determined that combination treatment with the EHMT2 inhibitor and Erlotinib resulted in enhanced antitumor effects in a preclinical EGFR-TKI-resistance model. We also found that high EHMT2 expression along with low PTEN expression can predict poor overall survival in patients with NSCLC. In summary, our findings showed that EHMT2 facilitated EGFR-TKI resistance by regulating the PTEN/AKT pathway in NSCLC cells, suggesting that EHMT2 may be a target in the clinical treatment of EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, China.
| | - Xiaoyu Dong
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Yong Ren
- Department of Pathology, Wuhan General Hospital, People's Liberation Army of China, Wuhan, China
| | - Juanjuan Luo
- Center for Neuroscience, Medical College of Shantou University, 515041, Shantou, PR China
| | - Pei Liu
- Center for Neuroscience, Medical College of Shantou University, 515041, Shantou, PR China
| | - Dongsheng Su
- Center for Neuroscience, Medical College of Shantou University, 515041, Shantou, PR China
| | - Xiaojun Yang
- Center for Neuroscience, Medical College of Shantou University, 515041, Shantou, PR China.
| |
Collapse
|
246
|
Haque I, Ghosh A, Acup S, Banerjee S, Dhar K, Ray A, Sarkar S, Kambhampati S, Banerjee SK. Leptin-induced ER-α-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway. BMC Cancer 2018; 18:99. [PMID: 29370782 PMCID: PMC5785848 DOI: 10.1186/s12885-018-3993-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background In menopausal women, one of the critical risk factors for breast cancer is obesity/adiposity. It is evident from various studies that leptin, a 16 kDa protein hormone overproduced in obese people, plays the critical role in neovascularization and tumorigenesis in breast and other organs. However, the mechanisms by which obesity influences the breast carcinogenesis remained unclear. In this study, by analyzing different estrogen receptor-α (ER-α)-positive and ER-α-negative BC cell lines, we defined the role of CCN5 in the leptin-mediated regulation of growth and invasive capacity. Methods We analyzed the effect of leptin on cell viability of ER-α-positive MCF-7 and ZR-75-1 cell lines and ER-α-negative MDA-MB-231 cell line. Additionally, we also determined the effect of leptin on the epithelial-mesenchymal transition (EMT) bio-markers, in vitro invasion and sphere-formation of MCF-7 and ZR-75-1 cell lines. To understand the mechanism, we determined the impact of leptin on CCN5 expression and the functional role of CCN5 in these cells by the treatment of human recombinant CCN5 protein(hrCCN5). Moreover, we also determined the role of JAK-STAT and AKT in the regulation of leptin-induced suppression of CCN5 in BC cells. Results Present studies demonstrate that leptin can induce cell viability, EMT, sphere-forming ability and migration of MCF-7 and ZR-75-1 cell lines. Furthermore, these studies found that leptin suppresses the expression of CCN5 at the transcriptional level. Although the CCN5 suppression has no impact on the constitutive proliferation of MCF-7 and ZR-75-1 cells, it is critical for leptin-induced viability and necessary for EMT, induction of in vitro migration and sphere formation, as the hrCCN5 treatment significantly inhibits the leptin-induced viability, EMT, migration and sphere-forming ability of these cells. Mechanistically, CCN5-suppression by leptin is mediated via activating JAK/AKT/STAT-signaling pathways. Conclusions These studies suggest that CCN5 serves as a gatekeeper for leptin-dependent growth and progression of luminal-type (ER-positive) BC cells. Leptin may thus need to destroy the CCN5-barrier to promote BC growth and progression via activating JAK/AKT/STAT signaling. Therefore, these observations suggest a therapeutic potency of CCN5 by restoration or treatment in obese-related luminal-type BC growth and progression.
Collapse
Affiliation(s)
- Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Acup
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA. .,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA. .,Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.
| | - Kakali Dhar
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Present Address: Syngene International Ltd, Clinical Development, Tower 1, Semicon Park, Phase II, Electronics City, Hosur Road, Bangalore, Karnataka, 560100, India.,Present Address: Saint James School of Medicine, Anguilla, British West Indies, USA
| | - Amitabha Ray
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Present Address: Syngene International Ltd, Clinical Development, Tower 1, Semicon Park, Phase II, Electronics City, Hosur Road, Bangalore, Karnataka, 560100, India.,Present Address: Saint James School of Medicine, Anguilla, British West Indies, USA
| | - Sandipto Sarkar
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA. .,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA. .,Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.
| |
Collapse
|
247
|
Bell CC, Dawson MA. TFIID and MYB Share a Therapeutic Handshake in AML. Cancer Cell 2018; 33:1-3. [PMID: 29316424 DOI: 10.1016/j.ccell.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Selectively disrupting oncogenic transcription factors in cancer remains an elusive ambition of targeted therapeutics. In this issue of Cancer Cell, Xu et al. provide an elegant proof-of-concept study demonstrating that interaction between MYB and the general transcriptional coactivator TFIID can be specifically disrupted to mediate a therapeutic effect in AML.
Collapse
Affiliation(s)
- Charles C Bell
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3052, Australia
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3052, Australia; Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia; Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
| |
Collapse
|
248
|
Hong X, Kim ES, Guo H. Epigenetic regulation of hepatitis B virus covalently closed circular DNA: Implications for epigenetic therapy against chronic hepatitis B. Hepatology 2017; 66:2066-2077. [PMID: 28833361 PMCID: PMC5696023 DOI: 10.1002/hep.29479] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/24/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) infection represents a significant public health burden worldwide. Although current therapeutics manage to control the disease progression, lifelong treatment and surveillance are required because drug resistance develops during treatment and reactivations frequently occur following medication cessation. Thus, the occurrence of hepatocellular carcinoma is decreased, but not eliminated. One major reason for failure of HBV treatment is the inability to eradicate or inactivate the viral covalently closed circular DNA (cccDNA), which is a stable episomal form of the viral genome decorated with host histones and nonhistone proteins. Accumulating evidence suggests that epigenetic modifications of cccDNA contribute to viral replication and the outcome of chronic HBV infection. Here, we summarize current progress on HBV epigenetics research and the therapeutic implications for chronic HBV infection by learning from the epigenetic therapies for cancer and other viral diseases, which may open a new venue to cure chronic hepatitis B. (Hepatology 2017;66:2066-2077).
Collapse
Affiliation(s)
- Xupeng Hong
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA,Corresponding author: Haitao Guo, ; Xupeng Hong,
| | - Elena S. Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Corresponding author: Haitao Guo, ; Xupeng Hong,
| |
Collapse
|
249
|
Abstract
Multiple mechanisms of epigenetic control that include DNA methylation, histone modification, noncoding RNAs, and mitotic gene bookmarking play pivotal roles in stringent gene regulation during lineage commitment and maintenance. Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone modifications, are a key property of pluripotent stem cells. Bivalency of developmental genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate decisions. Recently, some cancer types have been shown to exhibit partial recapitulation of bivalent chromatin modifications that are lost along with pluripotency, suggesting a mechanism by which cancer cells reacquire properties that are characteristic of undifferentiated, multipotent cells. This bivalent epigenetic control of oncofetal gene expression in cancer cells may offer novel insights into the onset and progression of cancer and may provide specific and selective options for diagnosis as well as for therapeutic intervention.
Collapse
|
250
|
Varricchi G, Galdiero MR, Loffredo S, Lucarini V, Marone G, Mattei F, Marone G, Schiavoni G. Eosinophils: The unsung heroes in cancer? Oncoimmunology 2017; 7:e1393134. [PMID: 29308325 DOI: 10.1080/2162402x.2017.1393134] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of a cancer. Eosinophils are components of the immune microenvironment that modulates tumor initiation and progression. Although canonically associated with a detrimental role in allergic disorders, these cells can induce a protective immune response against helminthes, viral and bacterial pathogens. Eosinophils are a source of anti-tumorigenic (e.g., TNF-α, granzyme, cationic proteins, and IL-18) and protumorigenic molecules (e.g., pro-angiogenic factors) depending on the milieu. In several neoplasias (e.g., melanoma, gastric, colorectal, oral and prostate cancer) eosinophils play an anti-tumorigenic role, in others (e.g., Hodgkin's lymphoma, cervical carcinoma) have been linked to poor prognosis, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of eosinophils and their mediators could be cancer-dependent. The microlocalization (e.g., peritumoral vs intratumoral) of eosinophils could be another important aspect in the initiation/progression of solid and hematological tumors. Increasing evidence in experimental models indicates that activation/recruitment of eosinophils could represent a new therapeutic strategy for certain tumors (e.g., melanoma). Many unanswered questions should be addressed before we understand whether eosinophils are an ally, adversary or neutral bystanders in different types of human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Valeria Lucarini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital Pharmacy, Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|