201
|
Jovancevic N, Wunderlich KA, Haering C, Flegel C, Maßberg D, Weinrich M, Weber L, Tebbe L, Kampik A, Gisselmann G, Wolfrum U, Hatt H, Gelis L. Deep Sequencing of the Human Retinae Reveals the Expression of Odorant Receptors. Front Cell Neurosci 2017; 11:03. [PMID: 28174521 PMCID: PMC5258773 DOI: 10.3389/fncel.2017.00003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023] Open
Abstract
Several studies have demonstrated that the expression of odorant receptors (ORs) occurs in various tissues. These findings have served as a basis for functional studies that demonstrate the potential of ORs as drug targets for a clinical application. To the best of our knowledge, this report describes the first evaluation of the mRNA expression of ORs and the localization of OR proteins in the human retina that set a stage for subsequent functional analyses. RNA-Sequencing datasets of three individual neural retinae were generated using Next-generation sequencing and were compared to previously published but reanalyzed datasets of the peripheral and the macular human retina and to reference tissues. The protein localization of several ORs was investigated by immunohistochemistry. The transcriptome analyses detected an average of 14 OR transcripts in the neural retina, of which OR6B3 is one of the most highly expressed ORs. Immunohistochemical stainings of retina sections localized OR2W3 to the photosensitive outer segment membranes of cones, whereas OR6B3 was found in various cell types. OR5P3 and OR10AD1 were detected at the base of the photoreceptor connecting cilium, and OR10AD1 was also localized to the nuclear envelope of all of the nuclei of the retina. The cell type-specific expression of the ORs in the retina suggests that there are unique biological functions for those receptors.
Collapse
Affiliation(s)
| | - Kirsten A Wunderlich
- Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Claudia Haering
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Caroline Flegel
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Désirée Maßberg
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Markus Weinrich
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Lea Weber
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Lars Tebbe
- Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Anselm Kampik
- Department of Ophthalmology, Ludwig Maximilian University of Munich Munich, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Uwe Wolfrum
- Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Lian Gelis
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
202
|
Jovancevic N, Dendorfer A, Matzkies M, Kovarova M, Heckmann JC, Osterloh M, Boehm M, Weber L, Nguemo F, Semmler J, Hescheler J, Milting H, Schleicher E, Gelis L, Hatt H. Medium-chain fatty acids modulate myocardial function via a cardiac odorant receptor. Basic Res Cardiol 2017; 112:13. [PMID: 28116519 PMCID: PMC5258789 DOI: 10.1007/s00395-017-0600-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022]
Abstract
Several studies have demonstrated the expression of odorant receptors (OR) in various human tissues and their involvement in different physiological and pathophysiological processes. However, the functional role of ORs in the human heart is still unclear. Here, we firstly report the functional characterization of an OR in the human heart. Initial next-generation sequencing analysis revealed the OR expression pattern in the adult and fetal human heart and identified the fatty acid-sensing OR51E1 as the most highly expressed OR in both cardiac development stages. An extensive characterization of the OR51E1 ligand profile by luciferase reporter gene activation assay identified 2-ethylhexanoic acid as a receptor antagonist and various structurally related fatty acids as novel OR51E1 ligands, some of which were detected at receptor-activating concentrations in plasma and epicardial adipose tissue. Functional investigation of the endogenous receptor was carried out by Ca2+ imaging of human stem cell-derived cardiomyocytes. Application of OR51E1 ligands induced negative chronotropic effects that depended on activation of the OR. OR51E1 activation also provoked a negative inotropic action in cardiac trabeculae and slice preparations of human explanted ventricles. These findings indicate that OR51E1 may play a role as metabolic regulator of cardiac function.
Collapse
Affiliation(s)
- Nikolina Jovancevic
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany.
| | - A Dendorfer
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, 80336, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - M Matzkies
- Institute for Neurophysiology, University of Cologne, 50931, Cologne, Germany
| | - M Kovarova
- Division of Pathobiochemistry and Clinical Chemistry, University of Tuebingen, 72076, Tuebingen, Germany
| | - J C Heckmann
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - M Osterloh
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - M Boehm
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - L Weber
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - F Nguemo
- Institute for Neurophysiology, University of Cologne, 50931, Cologne, Germany
| | - J Semmler
- Institute for Neurophysiology, University of Cologne, 50931, Cologne, Germany
| | - J Hescheler
- Institute for Neurophysiology, University of Cologne, 50931, Cologne, Germany
| | - H Milting
- Erich and Hanna Klessmann Institute, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Ruhr-University Bochum, 32545, Bad Oeynhausen, Germany
| | - E Schleicher
- Division of Pathobiochemistry and Clinical Chemistry, University of Tuebingen, 72076, Tuebingen, Germany
| | - L Gelis
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - H Hatt
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany
| |
Collapse
|
203
|
Belloir C, Miller-Leseigneur ML, Neiers F, Briand L, Le Bon AM. Biophysical and functional characterization of the human olfactory receptor OR1A1 expressed in a mammalian inducible cell line. Protein Expr Purif 2017; 129:31-43. [DOI: 10.1016/j.pep.2016.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022]
|
204
|
Kawamura S, Melin AD. Evolution of Genes for Color Vision and the Chemical Senses in Primates. EVOLUTION OF THE HUMAN GENOME I 2017. [DOI: 10.1007/978-4-431-56603-8_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
205
|
Ko HJ, Park TH. Bioelectronic nose and its application to smell visualization. J Biol Eng 2016; 10:17. [PMID: 27999616 PMCID: PMC5154139 DOI: 10.1186/s13036-016-0041-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022] Open
Abstract
There have been many trials to visualize smell using various techniques in order to objectively express the smell because information obtained from the sense of smell in human is very subjective. So far, well-trained experts such as a perfumer, complex and large-scale equipment such as GC-MS, and an electronic nose have played major roles in objectively detecting and recognizing odors. Recently, an optoelectronic nose was developed to achieve this purpose, but some limitations regarding the sensitivity and the number of smells that can be visualized still persist. Since the elucidation of the olfactory mechanism, numerous researches have been accomplished for the development of a sensing device by mimicking human olfactory system. Engineered olfactory cells were constructed to mimic the human olfactory system, and the use of engineered olfactory cells for smell visualization has been attempted with the use of various methods such as calcium imaging, CRE reporter assay, BRET, and membrane potential assay; however, it is not easy to consistently control the condition of cells and it is impossible to detect low odorant concentration. Recently, the bioelectronic nose was developed, and much improved along with the improvement of nano-biotechnology. The bioelectronic nose consists of the following two parts: primary transducer and secondary transducer. Biological materials as a primary transducer improved the selectivity of the sensor, and nanomaterials as a secondary transducer increased the sensitivity. Especially, the bioelectronic noses using various nanomaterials combined with human olfactory receptors or nanovesicles derived from engineered olfactory cells have a potential which can detect almost all of the smells recognized by human because an engineered olfactory cell might be able to express any human olfactory receptor as well as can mimic human olfactory system. Therefore, bioelectronic nose will be a potent tool for smell visualization, but only if two technologies are completed. First, a multi-channel array-sensing system has to be applied for the integration of all of the olfactory receptors into a single chip for mimicking the performance of human nose. Second, the processing technique of the multi-channel system signals should be simultaneously established with the conversion of the signals to visual images. With the use of this latest sensing technology, the realization of a proper smell-visualization technology is expected in the near future.
Collapse
Affiliation(s)
- Hwi Jin Ko
- Bio-MAX Institute, Seoul, 151-742 Republic of Korea
| | - Tai Hyun Park
- Bio-MAX Institute, Seoul, 151-742 Republic of Korea ; School of Chemical and Biological Engineering, Seoul National University, Seoul, 151-742 Republic of Korea ; Advanced Institutes of Convergence Technology, Suwon, Gyeonggido 443-270 Republic of Korea
| |
Collapse
|
206
|
Shepard BD, Cheval L, Peterlin Z, Firestein S, Koepsell H, Doucet A, Pluznick JL. A Renal Olfactory Receptor Aids in Kidney Glucose Handling. Sci Rep 2016; 6:35215. [PMID: 27739476 PMCID: PMC5064317 DOI: 10.1038/srep35215] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022] Open
Abstract
Olfactory receptors (ORs) are G protein-coupled receptors which serve important sensory functions beyond their role as odorant detectors in the olfactory epithelium. Here we describe a novel role for one of these ORs, Olfr1393, as a regulator of renal glucose handling. Olfr1393 is specifically expressed in the kidney proximal tubule, which is the site of renal glucose reabsorption. Olfr1393 knockout mice exhibit urinary glucose wasting and improved glucose tolerance, despite euglycemia and normal insulin levels. Consistent with this phenotype, Olfr1393 knockout mice have a significant decrease in luminal expression of Sglt1, a key renal glucose transporter, uncovering a novel regulatory pathway involving Olfr1393 and Sglt1. In addition, by utilizing a large scale screen of over 1400 chemicals we reveal the ligand profile of Olfr1393 for the first time, offering new insight into potential pathways of physiological regulation for this novel signaling pathway.
Collapse
Affiliation(s)
- Blythe D. Shepard
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lydie Cheval
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, CNRS, ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Zita Peterlin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Stuart Firestein
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University Wurzburg, Julius-von-Sachs-Platz 2, 97082 Wurzburg, Germany
| | - Alain Doucet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, CNRS, ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
207
|
Li S, Ahmed L, Zhang R, Pan Y, Matsunami H, Burger JL, Block E, Batista VS, Zhuang H. Smelling Sulfur: Copper and Silver Regulate the Response of Human Odorant Receptor OR2T11 to Low-Molecular-Weight Thiols. J Am Chem Soc 2016; 138:13281-13288. [PMID: 27659093 DOI: 10.1021/jacs.6b06983] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mammalian survival depends on ultrasensitive olfactory detection of volatile sulfur compounds, since these compounds can signal the presence of rancid food, O2 depleted atmospheres, and predators (through carnivore excretions). Skunks exploit this sensitivity with their noxious spray. In commerce, natural and liquefied gases are odorized with t-BuSH and EtSH, respectively, as warnings. The 100-million-fold difference in olfactory perception between structurally similar EtSH and EtOH has long puzzled those studying olfaction. Mammals detect thiols and other odorants using odorant receptors (ORs), members of the family of seven transmembrane G-protein-coupled receptors (GPCRs). Understanding the regulator cofactors and response of ORs is particularly challenging due to the lack of X-ray structural models. Here, we combine computational modeling and site-directed mutagenesis with saturation transfer difference (STD) NMR spectroscopy and measurements of the receptor response profiles. We find that human thiol receptor OR2T11 responds specifically to gas odorants t-BuSH and EtSH requiring ionic copper for its robust activation and that this role of copper is mimicked by ionic and nanoparticulate silver. While copper is both an essential nutrient for life and, in excess, a hallmark of various pathologies and neurodegenerative diseases, its involvement in human olfaction has not been previously demonstrated. When screened against a series of alcohols, thiols, sulfides, and metal-coordinating ligands, OR2T11 responds with enhancement by copper to the mouse semiochemical CH3SCH2SH and derivatives, to four-membered cyclic sulfide thietane and to one- to four-carbon straight- and branched-chain and five-carbon branched-chain thiols but not to longer chain thiols, suggesting compact receptor dimensions. Alcohols are unreactive.
Collapse
Affiliation(s)
- Shengju Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China
| | - Lucky Ahmed
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Ruina Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China
| | - Yi Pan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology and Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Jessica L Burger
- Applied Chemicals and Materials Division, National Institute of Standards and Technology , Boulder, Colorado 80305, United States
| | - Eric Block
- Department of Chemistry, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Victor S Batista
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Hanyi Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiaotong University School of Medicine , Shanghai 200025, China.,Institute of Health Sciences, Shanghai Jiaotong University School of Medicine/Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences , Shanghai 200031, China
| |
Collapse
|
208
|
Kalbe B, Schlimm M, Mohrhardt J, Scholz P, Jansen F, Hatt H, Osterloh S. Helional induces Ca2+ decrease and serotonin secretion of QGP-1 cells via a PKG-mediated pathway. J Mol Endocrinol 2016; 57:201-10. [PMID: 27553203 DOI: 10.1530/jme-16-0063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022]
Abstract
The secretion, motility and transport by intestinal tissues are regulated among others by specialized neuroendocrine cells, the so-called enterochromaffin (EC) cells. These cells detect different luminal stimuli, such as mechanical stimuli, fatty acids, glucose and distinct chemosensory substances. The EC cells react to the changes in their environment through the release of transmitter molecules, most importantly serotonin, to mediate the corresponding physiological response. However, little is known about the molecular targets of the chemical stimuli delivered from consumed food, spices and cosmetics within EC cells. In this study, we evaluated the expression of the olfactory receptor (OR) 2J3 in the human pancreatic EC cell line QGP-1 at the mRNA and protein levels. Using ratiofluorometric Ca(2+) imaging experiments, we demonstrated that the OR2J3-specific agonist helional induces a transient dose-dependent decrease in the intracellular Ca(2+) levels. This Ca(2+) decrease is mediated by protein kinase G (PKG) on the basis that the specific pharmacological inhibition of PKG with Rp-8-pCPT-cGMPS abolished the helional-induced Ca(2+) response. Furthermore, stimulation of QGP-1 cells with helional caused a dose-dependent release of serotonin that was comparable with the release induced by the application of a direct PKG activator (8-bromo-cGMP). Taken together, our results demonstrate that luminal odorants can be detected by specific ORs in QGP-1 cells and thus cause the directed release of serotonin and a PKG-dependent decrease in intracellular Ca(2.)
Collapse
Affiliation(s)
- Benjamin Kalbe
- Department of Cell PhysiologyRuhr-University Bochum, Bochum, Germany
| | - Marian Schlimm
- Department of Cell PhysiologyRuhr-University Bochum, Bochum, Germany
| | - Julia Mohrhardt
- Department of ChemosensationInstitute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Paul Scholz
- Department of Cell PhysiologyRuhr-University Bochum, Bochum, Germany
| | - Fabian Jansen
- Department of Cell PhysiologyRuhr-University Bochum, Bochum, Germany
| | - Hanns Hatt
- Department of Cell PhysiologyRuhr-University Bochum, Bochum, Germany
| | - Sabrina Osterloh
- Department of Cell PhysiologyRuhr-University Bochum, Bochum, Germany
| |
Collapse
|
209
|
Hasegawa T, Hashimoto M, Fujihara T, Yamada H. Aroma Profile of Galangal Composed of Cinnamic Acid Derivatives and Their Structure-Odor Relationships. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cinnamic acid derivatives are important odorants due to their characteristic scent. Some fragrance materials, such as cinnamon bark, matsutake mushrooms, and Kaempferia galanga L. rhizome (galangal), contain several cinnamic acid derivatives as important odor constituents. The main odor constituent of galangal is ( E)-ethyl 4-methoxycinnamate, but the odor of this compound is different from that of galangal. We investigated the aroma profile of galangal using our previously described method that considers the intermolecular interactions of the odorant compounds with their receptors. Odorant compounds in galangal were extracted by hexane extraction, steam distillation, and headspace sampling. The odor of the hexane extract was different from that of the steam distillate and similar to that of galangal; therefore, we searched for the key compounds contributing to the aroma profile of galangal by separating the constituents of the hexane extract. A fraction with a galangal-like odor was obtained by bulb-to-bulb distillation of the hexane extract. The main component of this fraction was not ( E)-ethyl 4-methoxycinnamate, but rather ethyl cinnamate. These results indicate that ethyl cinnamate is more important in the aroma profile of galangal than ( E)-ethyl 4-methoxycinnamate. GC-MS analysis revealed that this fraction contained aromatic compounds, cyclic terpenes, and linear chain compounds in addition to ethyl cinnamate. We synthesized cinnamic acid derivatives and examined the importance of the odor expression of these cinnamic acid derivatives. Cinnamic acid derivatives lacking a p-methoxy group had a strong fruity odor. Replacement of the hydrogen atom at the para position with a methoxy group altered and weakened the odor. We found that a p-methoxy group in cinnamic acid derivatives plays an important role in the aroma profile of galangal.
Collapse
Affiliation(s)
- Toshio Hasegawa
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Momohiro Hashimoto
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takashi Fujihara
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hideo Yamada
- Yamada-matsu Co., Ltd., 164 Kageyukoji-cho, Kamigyo-ku, Kyoto 602-8014, Japan
| |
Collapse
|
210
|
Ligand Specificity and Evolution of Mammalian Musk Odor Receptors: Effect of Single Receptor Deletion on Odor Detection. J Neurosci 2016; 36:4482-91. [PMID: 27098692 DOI: 10.1523/jneurosci.3259-15.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/01/2016] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Musk odors have been used widely for fragrance and medicine for >2000 years because of their fascinating scent and physiological effects. Therefore, fragrance manufacturers have been eager to develop high-quality musk compounds that are safe and easily synthesized. We recently identified muscone-responsive olfactory receptors (ORs) MOR215-1 and OR5AN1 in mice and humans, respectively (Shirasu et al., 2014). In this study, we identified musk ORs that are evolutionarily closely related to MOR215-1 or OR5AN1 in various primates and investigated structure-activity relationships for various musk odorants and related compounds. We found that each species has one or two functional musk ORs that exhibit specific ligand spectra to musk compounds. Some of them, including the human OR5AN1, responded to nitro musks with chemical properties distinct from muscone. The ligand specificity of OR5AN1 reflects the perception of musk odors in humans. Genetic deletion of MOR215-1 in mice resulted in drastic reduction of sensitivity to muscone, suggesting that MOR215-1 plays a critical role in muscone perception. Therefore, the current study reveals a clear link between the identified OR and muscone perception. Moreover, the strategy established for screening ligands for the muscone OR may facilitate the development of novel and commercially useful musk odors. SIGNIFICANCE STATEMENT The long-sought musk odor receptor family in mammals was discovered and found to be well conserved and narrowly tuned to musk odors. In mice, deletion of the most sensitive musk receptor resulted in drastic reduction in sensitivity to muscone, demonstrating a strong link between receptor and odor perception. In humans, we found one musk receptor that recognized both macrocyclic and nitro musks that had distinct chemical structures. The structure-activity relationships were in a good agreement with human sensory perception and therefore may be used to develop novel musk aroma in fragrance fields. Finally, identification of a natural ligand(s) for musk receptors in mammals other than musk deer would reveal an evolutionarily pivotal role in each species in the future.
Collapse
|
211
|
|
212
|
Mathis A, Rokni D, Kapoor V, Bethge M, Murthy VN. Reading Out Olfactory Receptors: Feedforward Circuits Detect Odors in Mixtures without Demixing. Neuron 2016; 91:1110-1123. [PMID: 27593177 DOI: 10.1016/j.neuron.2016.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/31/2016] [Accepted: 07/25/2016] [Indexed: 02/05/2023]
Abstract
The olfactory system, like other sensory systems, can detect specific stimuli of interest amidst complex, varying backgrounds. To gain insight into the neural mechanisms underlying this ability, we imaged responses of mouse olfactory bulb glomeruli to mixtures. We used this data to build a model of mixture responses that incorporated nonlinear interactions and trial-to-trial variability and explored potential decoding mechanisms that can mimic mouse performance when given glomerular responses as input. We find that a linear decoder with sparse weights could match mouse performance using just a small subset of the glomeruli (∼15). However, when such a decoder is trained only with single odors, it generalizes poorly to mixture stimuli due to nonlinear mixture responses. We show that mice similarly fail to generalize, suggesting that they learn this segregation task discriminatively by adjusting task-specific decision boundaries without taking advantage of a demixed representation of odors.
Collapse
Affiliation(s)
- Alexander Mathis
- Center for Brain Science and Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138 USA; Werner Reichardt Centre for Integrative Neuroscience & Institute of Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Dan Rokni
- Center for Brain Science and Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Vikrant Kapoor
- Center for Brain Science and Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Matthias Bethge
- Werner Reichardt Centre for Integrative Neuroscience & Institute of Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany; Bernstein Center for Computational Neuroscience, University of Tübingen, 72076 Tübingen, Germany; Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Venkatesh N Murthy
- Center for Brain Science and Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138 USA.
| |
Collapse
|
213
|
Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors. Kidney Int 2016; 90:1191-1198. [PMID: 27575555 DOI: 10.1016/j.kint.2016.06.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/14/2022]
Abstract
A number of recent studies have begun to explore a new and exciting area: the interaction between the gut microbiome and renal physiology. In particular, multiple studies have focused on the role of microbially produced short chain fatty acids, which are generally thought to promote health. This review will focus on what is known to date regarding the influence of the microbiome on renal function, with emphasis on the cell biology, physiology, and clinical implications of short chain fatty acids and short chain fatty acid receptors. It is clear that microbe-host interactions are an exciting and ever-expanding field, which has implications for how we view diseases such as hypertension, acute kidney injury, and chronic kidney disease. However, it is important to recognize that although the potential promise of this area is extremely enticing, we are only the very edge of this new field.
Collapse
|
214
|
D'Hulst C, Mina RB, Gershon Z, Jamet S, Cerullo A, Tomoiaga D, Bai L, Belluscio L, Rogers ME, Sirotin Y, Feinstein P. MouSensor: A Versatile Genetic Platform to Create Super Sniffer Mice for Studying Human Odor Coding. Cell Rep 2016; 16:1115-1125. [PMID: 27396335 DOI: 10.1016/j.celrep.2016.06.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 05/02/2016] [Accepted: 06/09/2016] [Indexed: 12/27/2022] Open
Abstract
Typically, ∼0.1% of the total number of olfactory sensory neurons (OSNs) in the main olfactory epithelium express the same odorant receptor (OR) in a singular fashion and their axons coalesce into homotypic glomeruli in the olfactory bulb. Here, we have dramatically increased the total number of OSNs expressing specific cloned OR coding sequences by multimerizing a 21-bp sequence encompassing the predicted homeodomain binding site sequence, TAATGA, known to be essential in OR gene choice. Singular gene choice is maintained in these "MouSensors." In vivo synaptopHluorin imaging of odor-induced responses by known M71 ligands shows functional glomerular activation in an M71 MouSensor. Moreover, a behavioral avoidance task demonstrates that specific odor detection thresholds are significantly decreased in multiple transgenic lines, expressing mouse or human ORs. We have developed a versatile platform to study gene choice and axon identity, to create biosensors with great translational potential, and to finally decode human olfaction.
Collapse
Affiliation(s)
- Charlotte D'Hulst
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA; The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, City University of New York, New York, NY 10065, USA
| | - Raena B Mina
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA; The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, City University of New York, New York, NY 10065, USA
| | - Zachary Gershon
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA; The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, City University of New York, New York, NY 10065, USA
| | - Sophie Jamet
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA; The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, City University of New York, New York, NY 10065, USA
| | - Antonio Cerullo
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA; The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, City University of New York, New York, NY 10065, USA
| | - Delia Tomoiaga
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA; The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, City University of New York, New York, NY 10065, USA
| | - Li Bai
- Developmental Neural Plasticity Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Leonardo Belluscio
- Developmental Neural Plasticity Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Matthew E Rogers
- Corporate Research and Development, Firmenich Inc., Plainsboro, NJ 08536, USA
| | - Yevgeniy Sirotin
- Shelby White and Leon Levy Center for Neurobiology and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA; The Graduate Center Biochemistry, Biology and Biopsychology and Behavioral Neuroscience Programs, City University of New York, New York, NY 10065, USA.
| |
Collapse
|
215
|
El Mountassir F, Belloir C, Briand L, Thomas-Danguin T, Le Bon AM. Encoding odorant mixtures by human olfactory receptors. FLAVOUR FRAG J 2016. [DOI: 10.1002/ffj.3331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fouzia El Mountassir
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA; Univ. Bourgogne Franche-Comté; F-21000 Dijon France
| | - Christine Belloir
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA; Univ. Bourgogne Franche-Comté; F-21000 Dijon France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA; Univ. Bourgogne Franche-Comté; F-21000 Dijon France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA; Univ. Bourgogne Franche-Comté; F-21000 Dijon France
| | - Anne-Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA; Univ. Bourgogne Franche-Comté; F-21000 Dijon France
| |
Collapse
|
216
|
Sharma K, Ahuja G, Hussain A, Balfanz S, Baumann A, Korsching SI. Elimination of a ligand gating site generates a supersensitive olfactory receptor. Sci Rep 2016; 6:28359. [PMID: 27323929 PMCID: PMC4914996 DOI: 10.1038/srep28359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/01/2016] [Indexed: 11/18/2022] Open
Abstract
Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors. Unexpectedly we observed a binding site for cadaverine at the external surface of the receptor, in addition to an internal binding site, whose mutation resulted in complete loss of activity. In stark contrast, elimination of the external binding site generated supersensitive receptors. Modeling suggests this site to act as a gate, limiting access of the ligand to the internal binding site and thereby downregulating the affinity of the native receptor. This constitutes a novel mechanism to fine-tune physiological sensitivity to socially relevant odors.
Collapse
Affiliation(s)
- Kanika Sharma
- Institute of Genetics, Biocenter, University at Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany
| | - Gaurav Ahuja
- Institute of Genetics, Biocenter, University at Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany
| | - Ashiq Hussain
- Institute of Genetics, Biocenter, University at Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany
| | - Sabine Balfanz
- Institute of Complex Systems (ICS-4), Research Center Jülich, 52428 Jülich, Germany
| | - Arnd Baumann
- Institute of Complex Systems (ICS-4), Research Center Jülich, 52428 Jülich, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Biocenter, University at Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany
| |
Collapse
|
217
|
Tempere S, Schaaper M, Cuzange E, de Lescar R, de Revel G, Sicard G. The olfactory masking effect of ethylphenols: Characterization and elucidation of its origin. Food Qual Prefer 2016. [DOI: 10.1016/j.foodqual.2016.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
218
|
Greer PL, Bear DM, Lassance JM, Bloom ML, Tsukahara T, Pashkovski SL, Masuda FK, Nowlan AC, Kirchner R, Hoekstra HE, Datta SR. A Family of non-GPCR Chemosensors Defines an Alternative Logic for Mammalian Olfaction. Cell 2016; 165:1734-1748. [PMID: 27238024 DOI: 10.1016/j.cell.2016.05.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/14/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Odor perception in mammals is mediated by parallel sensory pathways that convey distinct information about the olfactory world. Multiple olfactory subsystems express characteristic seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-per-neuron pattern that facilitates odor discrimination. Sensory neurons of the "necklace" subsystem are nestled within the recesses of the olfactory epithelium and detect diverse odorants; however, they do not express known GPCR odor receptors. Here, we report that members of the four-pass transmembrane MS4A protein family are chemosensors expressed within necklace sensory neurons. These receptors localize to sensory endings and confer responses to ethologically relevant ligands, including pheromones and fatty acids, in vitro and in vivo. Individual necklace neurons co-express many MS4A proteins and are activated by multiple MS4A ligands; this pooling of information suggests that the necklace is organized more like subsystems for taste than for smell. The MS4As therefore define a distinct mechanism and functional logic for mammalian olfaction.
Collapse
Affiliation(s)
- Paul L Greer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel M Bear
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean-Marc Lassance
- Departments of Molecular and Cellular Biology and Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | | | - Tatsuya Tsukahara
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stan L Pashkovski
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Francis Kei Masuda
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra C Nowlan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rory Kirchner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Hopi E Hoekstra
- Departments of Molecular and Cellular Biology and Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | | |
Collapse
|
219
|
Shepard BD, Pluznick JL. How does your kidney smell? Emerging roles for olfactory receptors in renal function. Pediatr Nephrol 2016; 31:715-23. [PMID: 26264790 PMCID: PMC4752438 DOI: 10.1007/s00467-015-3181-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/24/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022]
Abstract
Olfactory receptors (ORs) are chemosensors that are responsible for one's sense of smell. In addition to this specialized role in the nose, recent evidence suggests that ORs are also found in a variety of additional tissues including the kidney. As this list of renal ORs continues to expand, it is becoming clear that they play important roles in renal and whole-body physiology, including a novel role in blood pressure regulation. In this review, we highlight important considerations that are crucial when studying ORs and present the current literature on renal ORs and their emerging relevance in maintaining renal function.
Collapse
|
220
|
Abstract
Natural odors typically consist of many molecules at different concentrations. It is unclear how the numerous odorant molecules and their possible mixtures are discriminated by relatively few olfactory receptors. Using an information theoretic model, we show that a receptor array is optimal for this task if it achieves two possibly conflicting goals: (i) Each receptor should respond to half of all odors and (ii) the response of different receptors should be uncorrelated when averaged over odors presented with natural statistics. We use these design principles to predict statistics of the affinities between receptors and odorant molecules for a broad class of odor statistics. We also show that optimal receptor arrays can be tuned to either resolve concentrations well or distinguish mixtures reliably. Finally, we use our results to predict properties of experimentally measured receptor arrays. Our work can thus be used to better understand natural olfaction, and it also suggests ways to improve artificial sensor arrays.
Collapse
|
221
|
Zhou T, Chien MS, Kaleem S, Matsunami H. Single cell transcriptome analysis of mouse carotid body glomus cells. J Physiol 2016; 594:4225-51. [PMID: 26940531 DOI: 10.1113/jp271936] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/24/2016] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Carotid body (CB) glomus cells mediate acute oxygen sensing and the initiation of the hypoxic ventilatory response, yet the gene expression profile of these cells is not available. We demonstrate that the single cell RNA-Seq method is a powerful tool for identifying highly expressed genes in CB glomus cells. Our single cell RNA-Seq results characterized novel CB glomus cell genes, including members of the G protein-coupled receptor signalling pathway, ion channels and atypical mitochondrial electron transport chain subunits. A heterologous cell-based screening identified acetate (which is known to affect CB glomus cell activity) as an agonist for the most highly abundant G protein-coupled receptor (Olfr78) in CB glomus cells. These data established the first transcriptome profile of CB glomus cells, highlighting genes with potential implications in CB chemosensory function. ABSTRACT The carotid body (CB) is a major arterial chemoreceptor containing glomus cells whose activities are regulated by changes in arterial blood content, including oxygen. Despite significant advancements in the characterization of their physiological properties, our understanding of the underlying molecular machinery and signalling pathway in CB glomus cells is still limited. To overcome this, we employed the single cell RNA-Seq method by performing next-generation sequencing on single glomus cell-derived cDNAs to eliminate contamination of genes derived from other cell types present in the CB. Using this method, we identified a set of genes abundantly expressed in glomus cells, which contained novel glomus cell-specific genes. Transcriptome and subsequent in situ hybridization and immunohistochemistry analyses identified abundant G protein-coupled receptor signalling pathway components and various types of ion channels, as well as members of the hypoxia-inducible factors pathway. A short-chain fatty acid olfactory receptor Olfr78, recently implicated in CB function, was the most abundant G protein-coupled receptor. Two atypical mitochondrial electron transport chain subunits (Ndufa4l2 and Cox4i2) were among the most specifically expressed genes in CB glomus cells, highlighting their potential roles in mitochondria-mediated oxygen sensing. The wealth of information provided by the present study offers a valuable foundation for identifying molecules functioning in the CB.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| | - Ming-Shan Chien
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| | - Safa Kaleem
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA.,Department of Neurobiology and Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
222
|
Saxena P, Heng BC, Bai P, Folcher M, Zulewski H, Fussenegger M. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat Commun 2016; 7:11247. [PMID: 27063289 PMCID: PMC4831023 DOI: 10.1038/ncomms11247] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Synthetic biology has advanced the design of standardized transcription control
devices that programme cellular behaviour. By coupling synthetic signalling cascade-
and transcription factor-based gene switches with reverse and differential
sensitivity to the licensed food additive vanillic acid, we designed a synthetic
lineage-control network combining vanillic acid-triggered mutually exclusive
expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF)
and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant
induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A;
OFF-ON). This designer network consisting of different network topologies
orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA
variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived
pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like
cells, whose glucose-stimulated insulin-release dynamics are comparable to human
pancreatic islets. Synthetic lineage-control networks may provide the missing link
to genetically programme somatic cells into autologous cell phenotypes for
regenerative medicine. Synthetic biology offers the potential for the design and
implementation of rationally designed, complex genetic programmes. Here the authors
design a genetic network to trigger the differentiation of patient derived IPSCs into
beta-like cells.
Collapse
Affiliation(s)
- Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Boon Chin Heng
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Peng Bai
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Henryk Zulewski
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.,Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
223
|
Poivet E, Peterlin Z, Tahirova N, Xu L, Altomare C, Paria A, Zou DJ, Firestein S. Applying medicinal chemistry strategies to understand odorant discrimination. Nat Commun 2016; 7:11157. [PMID: 27040654 PMCID: PMC4822015 DOI: 10.1038/ncomms11157] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022] Open
Abstract
Associating an odorant's chemical structure with its percept is a long-standing challenge. One hindrance may come from the adoption of the organic chemistry scheme of molecular description and classification. Chemists classify molecules according to characteristics that are useful in synthesis or isolation, but which may be of little importance to a biological sensory system. Accordingly, we look to medicinal chemistry, which emphasizes biological function over chemical form, in an attempt to discern which among the many molecular features are most important for odour discrimination. Here we use medicinal chemistry concepts to assemble a panel of molecules to test how heteroaromatic ring substitution of the benzene ring will change the odour percept of acetophenone. This work allows us to describe an extensive rule in odorant detection by mammalian olfactory receptors. Whereas organic chemistry would have predicted the ring size and composition to be key features, our work reveals that the topological polar surface area is the key feature for the discrimination of these odorants. Understanding the basis of odour perception and discrimination is a challenging task, due to the inherent complexity of the olfactory system. Here, the authors use a medicinal chemistry approach to derive biologically relevant rules for odorant classification.
Collapse
Affiliation(s)
- Erwan Poivet
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Zita Peterlin
- Corporate Research and Development, Firmenich Incorporated, Plainsboro, New Jersey 08536, USA
| | - Narmin Tahirova
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Lu Xu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Clara Altomare
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Anne Paria
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Dong-Jing Zou
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Stuart Firestein
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
224
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
225
|
Burger JL, Jeerage KM, Bruno TJ. Direct nuclear magnetic resonance observation of odorant binding to mouse odorant receptor MOR244-3. Anal Biochem 2016; 502:64-72. [PMID: 27019154 DOI: 10.1016/j.ab.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/01/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
Mammals are able to perceive and differentiate a great number of structurally diverse odorants through the odorant's interaction with odorant receptors (ORs), proteins found within the cell membrane of olfactory sensory neurons. The natural gas industry has used human olfactory sensitivity to sulfur compounds (thiols, sulfides, etc.) to increase the safety of fuel gas transport, storage, and use through the odorization of this product. In the United States, mixtures of sulfur compounds are used, but the major constituent of odorant packages is 2-methylpropane-2-thiol, also known as tert-butyl mercaptan. It has been fundamentally challenging to understand olfaction and odorization due to the low affinity of odorous ligands to the ORs and the difficulty in expressing a sufficient number of OR proteins. Here, we directly observed the binding of tert-butyl mercaptan and another odiferous compound, cis-cyclooctene, to mouse OR MOR244-3 on living cells by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. This effort lays the groundwork for resolving molecular mechanisms responsible for ligand binding and resulting signaling, which in turn will lead to a clearer understanding of odorant recognition and competition.
Collapse
Affiliation(s)
- Jessica L Burger
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA.
| | - Kavita M Jeerage
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Thomas J Bruno
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, 80305, USA
| |
Collapse
|
226
|
Nakahara TS, Cardozo LM, Ibarra-Soria X, Bard AD, Carvalho VMA, Trintinalia GZ, Logan DW, Papes F. Detection of pup odors by non-canonical adult vomeronasal neurons expressing an odorant receptor gene is influenced by sex and parenting status. BMC Biol 2016; 14:12. [PMID: 26878847 PMCID: PMC4753656 DOI: 10.1186/s12915-016-0234-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/04/2016] [Indexed: 11/21/2022] Open
Abstract
Background Olfaction is a fundamental sense through which most animals perceive the external world. The olfactory system detects odors via specialized sensory organs such as the main olfactory epithelium and the vomeronasal organ. Sensory neurons in these organs use G-protein coupled receptors to detect chemosensory stimuli. The odorant receptor (OR) family is expressed in sensory neurons of the main olfactory epithelium, while the adult vomeronasal organ is thought to express other types of receptors. Results Here, we describe Olfr692, a member of the OR gene family identified by next-generation RNA sequencing, which is highly upregulated and non-canonically expressed in the vomeronasal organ. We show that neurons expressing this gene are activated by odors emanating from pups. Surprisingly, activity in Olfr692-positive cells is sexually dimorphic, being very low in females. Our results also show that juvenile odors activate a large number of Olfr692 vomeronasal neurons in virgin males, which is correlated with the display of infanticide behavior. . In contrast, activity substantially decreases in parenting males (fathers), where infanticidal aggressive behavior is not frequently observed. Conclusions Our results describe, for the first time, a sensory neural population with a specific molecular identity involved in the detection of pup odors. Moreover, it is one of the first reports of a group of sensory neurons the activity of which is sexually dimorphic and depends on social status. Our data suggest that the Olfr692 population is involved in mediating pup-oriented behaviors in mice. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0234-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thiago S Nakahara
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 13083-862, Brazil. .,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
| | - Leonardo M Cardozo
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 13083-862, Brazil. .,Current affiliation: Neurosciences Graduate Program, University of California San Diego, 9500 Gilman Drive 0634, La Jolla, CA, 92093-0634, USA.
| | - Ximena Ibarra-Soria
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Andrew D Bard
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Current affiliation: MRC Centre for Developmental Neurobiology, King's College London, Strand, London, WC2R 2LS, UK.
| | - Vinicius M A Carvalho
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 13083-862, Brazil. .,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
| | - Guilherme Z Trintinalia
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 13083-862, Brazil. .,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA, 19104, USA.
| | - Fabio Papes
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
227
|
Vandewege MW, Mangum SF, Gabaldón T, Castoe TA, Ray DA, Hoffmann FG. Contrasting Patterns of Evolutionary Diversification in the Olfactory Repertoires of Reptile and Bird Genomes. Genome Biol Evol 2016; 8:470-80. [PMID: 26865070 PMCID: PMC4825420 DOI: 10.1093/gbe/evw013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Olfactory receptors (ORs) are membrane proteins that mediate the detection of odorants in the environment, and are the largest vertebrate gene family. Comparative studies of mammalian genomes indicate that OR repertoires vary widely, even between closely related lineages, as a consequence of frequent OR gains and losses. Several studies also suggest that mammalian OR repertoires are influenced by life history traits. Sauropsida is a diverse group of vertebrates group that is the sister group to mammals, and includes birds, testudines, squamates, and crocodilians, and represents a natural system to explore predictions derived from mammalian studies. In this study, we analyzed olfactory receptor (OR) repertoire variation among several representative species and found that the number of intact OR genes in sauropsid genomes analyzed ranged over an order of magnitude, from 108 in the green anole to over 1,000 in turtles. Our results suggest that different sauropsid lineages have highly divergent OR repertoire composition that derive from lineage-specific combinations of gene expansions, losses, and retentions of ancestral OR genes. These differences also suggest that varying degrees of adaption related to life history have shaped the unique OR repertoires observed across sauropsid lineages.
Collapse
Affiliation(s)
- Michael W Vandewege
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University
| | - Sarah F Mangum
- Department of Biological Sciences, Texas Tech University
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington
| | - David A Ray
- Department of Biological Sciences, Texas Tech University
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biochemistry, Mississippi State University
| |
Collapse
|
228
|
Deciphering the Receptor Repertoire Encoding Specific Odorants by Time-Lapse Single-Cell Array Cytometry. Sci Rep 2016; 6:19934. [PMID: 26832639 PMCID: PMC4735795 DOI: 10.1038/srep19934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/21/2015] [Indexed: 01/12/2023] Open
Abstract
Mammals can recognize a vast number of odorants by using olfactory receptors (ORs) known as G protein-coupled receptors. The OR gene family is one of the most diverse gene families in mammalian genomes. Because of the vast combinations of ORs and odorants, few ORs have thus far been linked to specific odorants. Here, we established a functional screening method for OR genes by using a microchamber array containing >5,400 single olfactory epithelium-derived cells from mice applied to time-lapse single-cell array cytometry. This method facilitated the prompt isolation of single olfactory sensory neurons (OSNs) responding to the odorant of interest. Subsequent single-cell RT-PCR allowed us to isolate the genes encoding respective ORs. By using volatile molecules recognized as biomarkers for lung cancers, this method could deorphanize ORs and thereby reconstitute the OR-mediated signaling cascade in HEK293T cells. Thus, our system could be applied to identify any receptor by using specific ligands in the fields of physiopathology and pharmacology.
Collapse
|
229
|
Tazir B, Khan M, Mombaerts P, Grosmaitre X. The extremely broad odorant response profile of mouse olfactory sensory neurons expressing the odorant receptor MOR256-17 includes trace amine-associated receptor ligands. Eur J Neurosci 2016; 43:608-17. [PMID: 26666691 PMCID: PMC4819710 DOI: 10.1111/ejn.13153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/18/2015] [Accepted: 12/08/2015] [Indexed: 11/30/2022]
Abstract
The mouse olfactory system employs ~1100 G‐protein‐coupled odorant receptors (ORs). Each mature olfactory sensory neuron (OSN) is thought to express just one OR gene, and the expressed OR determines the odorant response properties of the OSN. The broadest odorant response profile thus far demonstrated in native mouse OSNs is for OSNs that express the OR gene SR1 (also known as Olfr124 and MOR256‐3). Here we showed that the odorant responsiveness of native mouse OSNs expressing the OR gene MOR256‐17 (also known as Olfr15 and OR3) is even broader than that of OSNs expressing SR1. We investigated the electrophysiological properties of green fluorescent protein (GFP)+ OSNs in a MOR256‐17‐IRES‐tauGFP gene‐targeted mouse strain, in parallel with GFP+ OSNs in the SR1‐IRES‐tauGFP gene‐targeted mouse strain that we previously reported. Of 35 single chemical compounds belonging to distinct structural classes, MOR256‐17+ OSNs responded to 31 chemicals, compared with 10 for SR1+ OSNs. The 10 compounds that activated SR1+ OSNs also activated MOR256‐17+ OSNs. Interestingly, MOR256‐17+ OSNs were activated by three amines (cyclohexylamine, isopenthylamine, and phenylethylamine) that are typically viewed as ligands for chemosensory neurons in the main olfactory epithelium that express trace amine‐associated receptor genes, a family of 15 genes encoding G‐protein‐coupled receptors unrelated in sequence to ORs. We did not observe differences in membrane properties, indicating that the differences in odorant response profiles between the two OSN populations were due to the expressed OR. MOR256‐17+ OSNs appear to be at one extreme of odorant responsiveness among populations of OSNs expressing distinct OR genes in the mouse.
Collapse
Affiliation(s)
- Bassim Tazir
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, D-60438, Frankfurt, Germany
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, D-60438, Frankfurt, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, D-60438, Frankfurt, Germany
| | | |
Collapse
|
230
|
Flegel C, Vogel F, Hofreuter A, Schreiner BSP, Osthold S, Veitinger S, Becker C, Brockmeyer NH, Muschol M, Wennemuth G, Altmüller J, Hatt H, Gisselmann G. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa. Front Mol Biosci 2016; 2:73. [PMID: 26779489 PMCID: PMC4703994 DOI: 10.3389/fmolb.2015.00073] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022] Open
Abstract
The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs) are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca(2+) signals in human spermatozoa, which could be inhibited by mibefradil. This study indicates that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa.
Collapse
Affiliation(s)
- Caroline Flegel
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | - Felix Vogel
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | - Adrian Hofreuter
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | | | - Sandra Osthold
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | - Sophie Veitinger
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | | | - Norbert H. Brockmeyer
- Department of Dermatology and Venereology, Center for Sexual Health and Medicine, Ruhr University BochumBochum, Germany
- Competence Network for HIV/AIDS, Ruhr University BochumBochum, Germany
| | - Michael Muschol
- Institute of Anatomy, University Hospital EssenEssen, Germany
| | | | | | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University BochumBochum, Germany
| |
Collapse
|
231
|
Silva Teixeira CS, Cerqueira NMFSA, Silva Ferreira AC. Unravelling the Olfactory Sense: From the Gene to Odor Perception. Chem Senses 2015; 41:105-21. [PMID: 26688501 DOI: 10.1093/chemse/bjv075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although neglected by science for a long time, the olfactory sense is now the focus of a panoply of studies that bring new insights and raises interesting questions regarding its functioning. The importance in the clarification of this process is of interest for science, but also motivated by the food and perfume industries boosted by a consumer society with increasingly demands for higher quality standards. In this review, a general overview of the state of art of science regarding the olfactory sense is presented with the main focus on the peripheral olfactory system. Special emphasis will be given to the deorphanization of the olfactory receptors (ORs), a critical issue because the specificity and functional properties of about 90% of human ORs remain unknown mainly due to the difficulties associated with the functional expression of ORs in high yields.
Collapse
Affiliation(s)
- Carla S Silva Teixeira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@Requimte/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and
| | - António C Silva Ferreira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal, Department of Viticulture and Oenology, Institute for Wine Biotechnology, University of Stellenbosch, Private Bag XI, Matieland 7602, South Africa
| |
Collapse
|
232
|
Chang AJ, Ortega FE, Riegler J, Madison DV, Krasnow MA. Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature 2015; 527:240-4. [PMID: 26560302 PMCID: PMC4765808 DOI: 10.1038/nature15721] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/28/2015] [Indexed: 12/25/2022]
Abstract
Animals have evolved homeostatic responses to changes in oxygen availability that act on different time scales. Although the hypoxia-inducible factor (HIF) transcriptional pathway that controls long term responses to low oxygen (hypoxia) has been established1, the pathway that mediates acute responses to hypoxia in mammals is not well understood. Here we show that the olfactory receptor Olfr78 is highly and selectively expressed in oxygen-sensitive glomus cells of the carotid body, a chemosensory organ at the carotid artery bifurcation that monitors blood oxygen and stimulates breathing within seconds when oxygen declines2. Olfr78 mutants fail to increase ventilation in hypoxia but respond normally to hypercapnia. Glomus cells are present in normal numbers and appear structurally intact, but hypoxia-induced carotid body activity is diminished. Lactate, a metabolite that rapidly accumulates in hypoxia and induces hyperventilation3–6, activates Olfr78 in heterologous expression experiments, induces calcium transients in glomus cells, and stimulates carotid sinus nerve activity through Olfr78. We propose that in addition to its role in olfaction, Olfr78 acts as a hypoxia sensor in the breathing circuit by sensing lactate produced when oxygen levels decline.
Collapse
Affiliation(s)
- Andy J Chang
- Department of Biochemistry, Stanford University School of Medicine and Howard Hughes Medical Institute, Stanford, California 94305-5307, USA
| | - Fabian E Ortega
- Department of Biochemistry, Stanford University School of Medicine and Howard Hughes Medical Institute, Stanford, California 94305-5307, USA
| | - Johannes Riegler
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mark A Krasnow
- Department of Biochemistry, Stanford University School of Medicine and Howard Hughes Medical Institute, Stanford, California 94305-5307, USA
| |
Collapse
|
233
|
Hybrid integrated biological-solid-state system powered with adenosine triphosphate. Nat Commun 2015; 6:10070. [PMID: 26638983 PMCID: PMC4686768 DOI: 10.1038/ncomms10070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/27/2015] [Indexed: 11/17/2022] Open
Abstract
There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na+/K+ adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 106 mm−2) are able to sustain a short-circuit current of 32.6 pA mm−2 and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm−2 from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%. There is enormous potential in combining the capabilities of the biological and the solid-state to create hybrid engineered systems. Here, the authors develop a technique to incorporate and activate ATPases in in vitro membranes to produce energy-harvestable currents to power an integrated circuit.
Collapse
|
234
|
Affiliation(s)
- Anne Tromelin
- CNRS; UMR6265 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- INRA; UMR1324 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- Université de Bourgogne; UMR Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
235
|
Responsiveness of G protein-coupled odorant receptors is partially attributed to the activation mechanism. Proc Natl Acad Sci U S A 2015; 112:14966-71. [PMID: 26627247 DOI: 10.1073/pnas.1517510112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammals detect and discriminate numerous odors via a large family of G protein-coupled odorant receptors (ORs). However, little is known about the molecular and structural basis underlying OR response properties. Using site-directed mutagenesis and computational modeling, we studied ORs sharing high sequence homology but with different response properties. When tested in heterologous cells by diverse odorants, MOR256-3 responded broadly to many odorants, whereas MOR256-8 responded weakly to a few odorants. Out of 36 mutant MOR256-3 ORs, the majority altered the responses to different odorants in a similar manner and the overall response of an OR was positively correlated with its basal activity, an indication of ligand-independent receptor activation. Strikingly, a single mutation in MOR256-8 was sufficient to confer both high basal activity and broad responsiveness to this receptor. These results suggest that broad responsiveness of an OR is at least partially attributed to its activation likelihood.
Collapse
|
236
|
Geithe C, Andersen G, Malki A, Krautwurst D. A Butter Aroma Recombinate Activates Human Class-I Odorant Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9410-9420. [PMID: 26451762 DOI: 10.1021/acs.jafc.5b01884] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
With ∼400 olfactory G protein-coupled receptors (GPCR), humans sensitively perceive ∼230 key aroma compounds as best natural agonists of ∼10000 food volatiles. An understanding of odorant coding, thus, critically depends on the knowledge about interactions of key food aroma chemicals and their mixtures with their cognate receptors. Genetically designed test cell systems enable the screening, deorphaning, and characterization of single odorant receptors (OR). This study shows for the food aroma-specific and quantitative butter aroma recombinate, and its single components, specific in vitro class-I OR activity patterns, as well as the activation of selected OR in a concentration-dependent manner. Recently, chemosensory receptors, especially class-I OR, were demonstrated to be expressed on blood leukocytes, which may encounter foodborne aroma compounds postprandially. This study shows that butter aroma recombinate induced chemotaxis of isolated human neutrophils in a defined gradient, and in a concentration-dependent and pertussis toxin-sensitive manner, suggesting at least a GPCR-mediated activation of blood leukocytes by key food odorants.
Collapse
Affiliation(s)
- Christiane Geithe
- Deutsche Forschungsanstalt fuer Lebensmittelchemie Leibniz Institut, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Gaby Andersen
- Deutsche Forschungsanstalt fuer Lebensmittelchemie Leibniz Institut, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Agne Malki
- Deutsche Forschungsanstalt fuer Lebensmittelchemie Leibniz Institut, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Deutsche Forschungsanstalt fuer Lebensmittelchemie Leibniz Institut, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| |
Collapse
|
237
|
Bubnell J, Jamet S, Tomoiaga D, D’Hulst C, Krampis K, Feinstein P. In Vitro Mutational and Bioinformatics Analysis of the M71 Odorant Receptor and Its Superfamily. PLoS One 2015; 10:e0141712. [PMID: 26513476 PMCID: PMC4626375 DOI: 10.1371/journal.pone.0141712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/12/2015] [Indexed: 02/03/2023] Open
Abstract
We performed an extensive mutational analysis of the canonical mouse odorant receptor (OR) M71 to determine the properties of ORs that inhibit plasma membrane trafficking in heterologous expression systems. We employed the use of the M71::GFP fusion protein to directly assess plasma membrane localization and functionality of M71 in heterologous cells in vitro or in olfactory sensory neurons (OSNs) in vivo. OSN expression of M71::GFP show only small differences in activity compared to untagged M71. However, M71::GFP could not traffic to the plasma membrane even in the presence of proposed accessory proteins RTP1S or mβ2AR. To ask if ORs contain an internal "kill sequence", we mutated ~15 of the most highly conserved OR specific amino acids not found amongst the trafficking non-OR GPCR superfamily; none of these mutants rescued trafficking. Addition of various amino terminal signal sequences or different glycosylation motifs all failed to produce trafficking. The addition of the amino and carboxy terminal domains of mβ2AR or the mutation Y289A in the highly conserved GPCR motif NPxxY does not rescue plasma membrane trafficking. The failure of targeted mutagenesis on rescuing plasma membrane localization in heterologous cells suggests that OR trafficking deficits may not be attributable to conserved collinear motifs, but rather the overall amino acid composition of the OR family. Thus, we performed an in silico analysis comparing the OR and other amine receptor superfamilies. We find that ORs contain fewer charged residues and more hydrophobic residues distributed throughout the protein and a conserved overall amino acid composition. From our analysis, we surmise that it may be difficult to traffic ORs at high levels to the cell surface in vitro, without making significant amino acid modifications. Finally, we observed specific increases in methionine and histidine residues as well as a marked decrease in tryptophan residues, suggesting that these changes provide ORs with special characteristics needed for them to function in olfactory neurons.
Collapse
Affiliation(s)
- Jaclyn Bubnell
- Department of Biological Sciences, Hunter College, CUNY, New York, NY, United States of America
| | - Sophie Jamet
- Department of Biological Sciences, Hunter College, CUNY, New York, NY, United States of America
| | - Delia Tomoiaga
- Department of Biological Sciences, Hunter College, CUNY, New York, NY, United States of America
| | - Charlotte D’Hulst
- Department of Biological Sciences, Hunter College, CUNY, New York, NY, United States of America
| | - Konstantinos Krampis
- Department of Biological Sciences, Hunter College, CUNY, New York, NY, United States of America
- Director of Bioinformatics, Center for Translational and Basic Research, CUNY, New York, NY, United States of America
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College, CUNY, New York, NY, United States of America
- The Graduate Center Biology Program, CUNY, New York, NY, United States of America
- The Graduate Center Behavioral and Cognitive Neuroscience Program, CUNY, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
238
|
Kumar R, Kaur R, Auffarth B, Bhondekar AP. Understanding the Odour Spaces: A Step towards Solving Olfactory Stimulus-Percept Problem. PLoS One 2015; 10:e0141263. [PMID: 26484763 PMCID: PMC4615634 DOI: 10.1371/journal.pone.0141263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/05/2015] [Indexed: 11/23/2022] Open
Abstract
Odours are highly complex, relying on hundreds of receptors, and people are known to disagree in their linguistic descriptions of smells. It is partly due to these facts that, it is very hard to map the domain of odour molecules or their structure to that of perceptual representations, a problem that has been referred to as the Structure-Odour-Relationship. We collected a number of diverse open domain databases of odour molecules having unorganised perceptual descriptors, and developed a graphical method to find the similarity between perceptual descriptors; which is intuitive and can be used to identify perceptual classes. We then separately projected the physico-chemical and perceptual features of these molecules in a non-linear dimension and clustered the similar molecules. We found a significant overlap between the spatial positioning of the clustered molecules in the physico-chemical and perceptual spaces. We also developed a statistical method of predicting the perceptual qualities of a novel molecule using its physico-chemical properties with high receiver operating characteristics(ROC).
Collapse
Affiliation(s)
- Ritesh Kumar
- CSIR-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research, New Delhi, India
- * E-mail:
| | - Rishemjit Kaur
- CSIR-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research, New Delhi, India
- Nagoya University, Nagoya, Japan
| | - Benjamin Auffarth
- Neuroinformatik, Department of Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Amol P. Bhondekar
- CSIR-Central Scientific Instruments Organisation, Chandigarh, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
239
|
Cometto-Muñiz JE, Abraham MH. Dose-Response Functions for the Olfactory, Nasal Trigeminal, and Ocular Trigeminal Detectability of Airborne Chemicals by Humans. Chem Senses 2015; 41:3-14. [PMID: 26476441 DOI: 10.1093/chemse/bjv060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We gathered from the literature 47 odor and 37 trigeminal (nasal and ocular) chemesthetic psychometric (i.e., detectability or dose-response) functions from a group of 41 chemicals. Vapors delivered were quantified by analytical methods. All functions were very well fitted by the sigmoid (logistic) equation: y = 1 / (1 + e({-(x-C)/D})), where parameter C quantifies the detection threshold concentration and parameter D the steepness of the function. Odor and chemesthetic functions showed no concentration overlap: olfactory functions grew along the parts per billion (ppb by volume) range or lower, whereas trigeminal functions grew along the part per million (ppm by volume) range. Although, on average, odor detectability rose from chance detection to perfect detection within 2 orders of magnitude in concentration, chemesthetic detectability did it within one. For 16 compounds having at least 1 odor and 1 chemesthetic function, the average gap between the 2 functions was 4.6 orders of magnitude in concentration. A quantitative structure-activity relationship (QSAR) using 5 chemical descriptors that had previously described stand-alone odor and chemesthetic threshold values, also holds promise to describe, and eventually predict, olfactory and chemesthetic detectability functions, albeit functions from additional compounds are needed to strengthen the QSAR.
Collapse
Affiliation(s)
- J Enrique Cometto-Muñiz
- University of California-San Diego, 8950 Villa La Jolla Drive, Suite C135, La Jolla, CA 92037, USA and
| | | |
Collapse
|
240
|
Abstract
Sensory cues that predict reward or punishment are fundamental drivers of animal behavior. For example, attractive odors of palatable food or a potential mate predict reward, while aversive odors of pathogen-laced food or a predator predict punishment. Aversive and attractive odors can be detected by intermingled sensory neurons that express highly related olfactory receptors and display similar central projections. These findings raise basic questions of how innate odor valence is extracted from olfactory circuits, how such circuits are developmentally endowed and modulated by state, and how innate and learned odor responses are related. Here, we review odors, receptors and neural circuits associated with stimulus valence, discussing salient principles derived from studies on nematodes, insects and vertebrates. Understanding the organization of neural circuitry that mediates odor aversion and attraction will provide key insights into how the brain functions.
Collapse
|
241
|
Abstract
The sense of smell collects vital information about the environment by detecting a multitude of chemical odorants. Breadth and sensitivity are provided by a huge number of chemosensory receptor proteins, including more than 1,400 olfactory receptors (ORs). Organizing the sensory information generated by these receptors so that it can be processed and evaluated by the central nervous system is a major challenge. This challenge is overcome by monogenic and monoallelic expression of OR genes. The single OR expressed by each olfactory sensory neuron determines the neuron's odor sensitivity and the axonal connections it will make to downstream neurons in the olfactory bulb. The expression of a single OR per neuron is accomplished by coupling a slow chromatin-mediated activation process to a fast negative-feedback signal that prevents activation of additional ORs. Singular OR activation is likely orchestrated by a network of interchromosomal enhancer interactions and large-scale changes in nuclear architecture.
Collapse
Affiliation(s)
- Kevin Monahan
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, and Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10032; ,
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, and Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10032; ,
| |
Collapse
|
242
|
von der Weid B, Rossier D, Lindup M, Tuberosa J, Widmer A, Col JD, Kan C, Carleton A, Rodriguez I. Large-scale transcriptional profiling of chemosensory neurons identifies receptor-ligand pairs in vivo. Nat Neurosci 2015; 18:1455-63. [PMID: 26322926 DOI: 10.1038/nn.4100] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/04/2015] [Indexed: 12/11/2022]
Abstract
In mammals, olfactory perception is based on the combinatorial activation of G protein-coupled receptors. Identifying the full repertoire of receptors activated by a given odorant in vivo, a quest that has been hampered for over 20 years by technical difficulties, would represent an important step in deciphering the rules governing chemoperception. We found that odorants induced a fast and reversible concentration-dependent decrease in the transcription of genes corresponding to activated receptors in intact mice. On the basis of this finding, we developed a large-scale transcriptomic approach to uncover receptor-ligand pairs in vivo. We identified the mouse and rat odorant receptor signatures corresponding to specific odorants. Finally, we found that this approach, which can be used for species for which no genomic sequence is available, is also applicable to non-vertebrate species such as Drosophila.
Collapse
Affiliation(s)
- Benoît von der Weid
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Daniel Rossier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Matti Lindup
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Joël Tuberosa
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Alexandre Widmer
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Julien Dal Col
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Chenda Kan
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Alan Carleton
- Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.,Department of Basic Neurosciences, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Ivan Rodriguez
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
243
|
Jiang Y, Gong NN, Hu XS, Ni MJ, Pasi R, Matsunami H. Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo. Nat Neurosci 2015; 18:1446-54. [PMID: 26322927 PMCID: PMC4583814 DOI: 10.1038/nn.4104] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/09/2015] [Indexed: 12/15/2022]
Abstract
The mammalian olfactory system uses a large family of odorant receptors (ORs) to detect and discriminate amongst a myriad of volatile odor molecules. Understanding odor coding requires comprehensive mapping between ORs and corresponding odors. We developed a means of high-throughput in vivo identification of OR repertoires responding to odorants using phosphorylated ribosome immunoprecipitation of mRNA from olfactory epithelium of odor-stimulated mice followed by RNA-Seq. This approach screened the endogenously expressed ORs against an odor in one set of experiments using awake and freely behaving mice. In combination with validations in a heterologous system, we identified sets of ORs for two odorants, acetophenone and 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), encompassing 69 OR-odorant pairs. We also identified shared amino acid residues specific to the acetophenone or TMT receptors and developed models to predict receptor activation by acetophenone. Our results provide a method for understanding the combinatorial coding of odors in vivo.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,University Program in Genetics and Genomics, Duke University Medical Center, Durham, North Carolina, USA.,Department of Statistical Science, Duke University, Durham, North Carolina, USA
| | - Naihua Natalie Gong
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xiaoyang Serene Hu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mengjue Jessica Ni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Radhika Pasi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
244
|
Chatelain P, Veithen A, Wilkin F, Philippeau M. Deorphanization and characterization of human olfactory receptors in heterologous cells. Chem Biodivers 2015; 11:1764-81. [PMID: 25408322 DOI: 10.1002/cbdv.201400083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Indexed: 11/07/2022]
Abstract
Olfaction plays an indispensable role in human and animals in self and environmental recognition, as well as intra- and interspecific communication. Following the discovery of a family of olfactory receptors (ORs) by Buck and Axel in 1991, it has been established that the sense of smell begins with the molecular recognition of a chemical odorant by one or more ORs expressed in the olfactory sensory neurons. Therefore, characterization of the molecular interactions between odorant molecules and ORs is a key step in the elucidation of the general properties of the olfactory system and in the development of applications, i.e., design of new odorants, search for blockers, etc. The process putted in place at ChemCom to improve the expression of ORs at the cytoplasmic membrane of the HEK293 cell and assays enabling large-scale deorphanization, and to characterize the interaction between chemical odorants and ORs is described. The family of human ORs includes ca. 400 putatively functional ORs which are GPCRs (G protein-coupled receptors); to date over 100 human ORs have been deorphanized.
Collapse
|
245
|
Takai Y, Touhara K. Enantioselective recognition of menthol by mouse odorant receptors. Biosci Biotechnol Biochem 2015; 79:1980-6. [PMID: 26248186 DOI: 10.1080/09168451.2015.1069697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The olfactory system has a remarkable ability to detect and discriminate a vast variety of odorant molecules. In mammals, hundreds to thousands of odorant receptors (ORs) expressed in olfactory sensory neurons play an essential role in this discrimination. Odorants are recognized by ORs in a combinatorial fashion in which a single odorant activates a particular combination of receptors, leading to its perception as a particular aroma. It is well known that enantiomers emit different aromas in spite of exhibiting otherwise identical chemical properties. To elucidate the molecular basis for the difference, we recorded responses to l- and d-menthol in the mouse olfactory bulb and found that enantiomers elicited similar but overlapping and distinct receptor activation patterns. We then identified l-menthol-specific and d-menthol-biased receptors and performed detailed structure-activity relationship studies, revealing high stereoselectivity of the enantiospecific menthol receptor. The binding site on ORs appears to have evolved to distinguish subtle differences in very similar odorant structures.
Collapse
Affiliation(s)
- Yoshiki Takai
- a Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| | - Kazushige Touhara
- a Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan.,b ERATO Touhara Chemosensory Signal Project, JST , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
246
|
Coupling of olfactory receptor and ion channel for rapid and sensitive visualization of odorant response. Acta Biomater 2015; 22:1-7. [PMID: 25931017 DOI: 10.1016/j.actbio.2015.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/31/2015] [Accepted: 04/22/2015] [Indexed: 11/23/2022]
Abstract
In the human smell sensing system, there are about 390 kinds of olfactory receptors (ORs) which bind to various odorants with different affinities and specificities. Characterization and odorant binding pattern analysis of the ORs are essential for understanding of human olfaction and to mimic the olfactory system in various applications. Although various cell-based odorant screening systems have been developed for this purpose, many human ORs (hORs) still remain orphan because of the time-consuming and labor-intensive experimental procedures of the available screening methods. In this study, we constructed an ion channel-coupled hOR for simple odorant detection by rapidly visualizing the odorant response to overcome the limitations of conventional screening systems. The hORs were coupled to the Kir6.2 potassium channel and the fusion proteins were expressed in HEK293 cells. In this system, when an odorant binds to the hORs coupled to the ion channel, a conformational change in the OR occurs, which consequently opens the ion channel to result in ion influx into the cell. This ion influx was then visualized using a membrane potential dye. Cells expressing ion channel-coupled hORs showed high sensitivity and selectivity to their specific odorants, and the odorant-hOR binding pattern was visualized to identify the response of individual hORs to various odorants, as well as the response of various hORs to various odorants. These results indicate that the ion channel-coupled hOR system can be effectively used not only for simple and fast high-throughput odorant screening, but also to visualize the odorant-hOR response pattern.
Collapse
|
247
|
Harini K, Sowdhamini R. Computational Approaches for Decoding Select Odorant-Olfactory Receptor Interactions Using Mini-Virtual Screening. PLoS One 2015. [PMID: 26221959 PMCID: PMC4519343 DOI: 10.1371/journal.pone.0131077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors.
Collapse
Affiliation(s)
- K. Harini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, India
- * E-mail:
| |
Collapse
|
248
|
Hayden S, Teeling EC. The molecular biology of vertebrate olfaction. Anat Rec (Hoboken) 2015; 297:2216-26. [PMID: 25312375 DOI: 10.1002/ar.23031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/16/2023]
Abstract
The importance of chemosensation for vertebrates is reflected in the vast and variable nature of their chemosensory tissues, neurons, and genes, which we explore in this review. Immense progress has been made in elucidating the molecular biology of olfaction since the discovery of the olfactory receptor genes by Buck and Axel, which eventually won the authors the Nobel Prize. In particular, research linking odor ligands to olfactory receptors (ORs) is truly revolutionizing our understanding of how a large but limited number of chemosensory receptors can allow us to perceive the massive diversity of odors in our habitat. This research is providing insight into the evolution of genomes and providing the raw data needed to explore links between genotype and phenotype, still a grand challenge in biology. Research into olfaction is still developing and will no doubt continue until we have a clear understanding of how all odors are detected and the evolutionary forces that have molded the chemosensory subgenome in vertebrates. This knowledge will not only be a huge step in elucidating olfactory function, advancing scientific knowledge and techniques, but there are also commercial applications for this research. This review focuses on the molecular basis of chemosensation, particularly olfaction, its evolution across vertebrates and the recent molecular advances linking odors to their cognate receptors.
Collapse
Affiliation(s)
- Sara Hayden
- Department of Biochemistry, University of Washington, Seattle, Washington
| | | |
Collapse
|
249
|
Loch D, Breer H, Strotmann J. Endocrine Modulation of Olfactory Responsiveness: Effects of the Orexigenic Hormone Ghrelin. Chem Senses 2015; 40:469-79. [DOI: 10.1093/chemse/bjv028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
250
|
Hasegawa T, Nakatani K, Fujihara T, Yamada H. Aroma of Turmeric: Dependence on the Combination of Groups of Several Odor Constituents. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Turmeric is a popular material that plays an important role in the flavor and fragrance industries. Although many compounds have been reported as components of turmeric, its aroma profile has not been clarified. Recently we have developed a new approach for evaluating the complex odors of materials based on recent research on the mechanism of odor recognition. Here we report the characteristic aroma properties of turmeric obtained through the investigation of its aroma profile. The hexane extract of turmeric had a turmeric-like odor, whereas the steam distillate of turmeric had a pungent, non-turmeric-like odor. We carried out bulb-to-bulb distillations of the extract and the steam distillate. For the hexane extract, two fractions with completely different odors were obtained. One was a high boiling point fraction (group A) with a turmeric-like odor, which consisted of ar-turmerone and β-turmerone as the main components, and the other was a low boiling point fraction (group B), which consisted of α-curcumene and β-sesquiphellandrene. In contrast, the bulb-to-bulb distillation of the steam distillate gave a fraction (group C) with a very different odor from groups A and B. Group C was composed of several kinds of alcohols that were not present in groups A and B. These results indicate that the group C fraction causes the different, pungent odor of the turmeric oil obtained by steam distillation. The variation in the aroma of turmeric depended on the combination of these three groups of odor constituents.
Collapse
Affiliation(s)
- Toshio Hasegawa
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Sakura-ku, Saitama 338–8570, Japan
| | - Kenta Nakatani
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Sakura-ku, Saitama 338–8570, Japan
| | - Takashi Fujihara
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Sakura-ku, Saitama 338–8570, Japan
| | - Hideo Yamada
- Yamada-mastu Co., Ltd., 164 Kageyukoji-cho, Kamigyo-ku, Kyoto 602–8014, Japan
| |
Collapse
|