201
|
An X, Naowarojna N, Liu P, Reinhard BM. Hybrid Plasmonic Photoreactors as Visible Light-Mediated Bactericides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:106-116. [PMID: 31800205 DOI: 10.1021/acsami.9b14834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photocatalytic compounds and complexes, such as tris(bipyridine)ruthenium(II), [Ru(bpy)3]2+, have recently attracted attention as light-mediated bactericides that can help to address the need for new antibacterial strategies. We demonstrate in this work that the bactericidal efficacy of [Ru(bpy)3]2+ and the control of its antibacterial function can be significantly enhanced through combination with a plasmonic nanoantenna. We report strong, visible light-controlled bacterial inactivation with a nanocomposite design that incorporates [Ru(bpy)3]2+ as a photocatalyst and a Ag nanoparticle (NP) core as a light-concentrating nanoantenna into a plasmonic hybrid photoreactor. The hybrid photoreactor platform is facilitated by a self-assembled lipid membrane that encapsulates the Ag NP and binds the photocatalyst. The lipid membrane renders the nanocomposite biocompatible in the absence of resonant illumination. Upon illumination, the plasmon-enhanced photoexcitation of the metal-to-ligand charge-transfer band of [Ru(bpy)3]2+ prepares the reactive excited state of the complex that oxidizes the nanocomposite membrane and increases its permeability. The photooxidation induces the release of [Ru(bpy)3]2+, Ag+, and peroxidized lipids into the ambient medium, where they interact synergistically to inactivate bacteria. We measured a 7 order of magnitude decrease in Gram-positive Arthrobacter sp. and a 4 order of magnitude decrease in Gram-negative Escherichia coli colony forming units with the photoreactor bactericides after visible light illumination for 1 h. In both cases, the photoreactor exceeds the bactericidal standard of a log reduction value of 3 and surpasses the antibacterial effect of free Ag NPs or [Ru(bpy)3]2+ by >4 orders of magnitude. We also implement the inactivation of a bacterial thin film in a proof-of-concept study.
Collapse
Affiliation(s)
- Xingda An
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Nathchar Naowarojna
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Pinghua Liu
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Björn M Reinhard
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
- Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
202
|
Aslam MN, Bassis CM, Bergin IL, Knuver K, Zick SM, Sen A, Turgeon DK, Varani J. A Calcium-Rich Multimineral Intervention to Modulate Colonic Microbial Communities and Metabolomic Profiles in Humans: Results from a 90-Day Trial. Cancer Prev Res (Phila) 2020; 13:101-116. [PMID: 31771942 PMCID: PMC7528938 DOI: 10.1158/1940-6207.capr-19-0325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/02/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022]
Abstract
Aquamin is a calcium-, magnesium-, and multiple trace element-rich natural product with colon polyp prevention efficacy based on preclinical studies. The goal of this study was to determine the effects of Aquamin on colonic microbial community and attendant metabolomic profile. Thirty healthy human participants were enrolled in a 90-day trial in which Aquamin (delivering 800 mg of calcium per day) was compared with calcium alone or placebo. Before and after the intervention, colonic biopsies and stool specimens were obtained. All 30 participants completed the study without serious adverse event or change in liver and renal function markers. Compared with pretreatment values, intervention with Aquamin led to a reduction in total bacterial DNA (P = 0.0001) and a shift in the microbial community measured by thetaYC (θYC; P = 0.0087). Treatment with calcium also produced a decline in total bacteria, but smaller than seen with Aquamin, whereas no reduction was observed with placebo in the colon. In parallel with microbial changes, a reduction in total bile acid levels (P = 0.0375) and a slight increase in the level of the short-chain fatty acid (SCFA) acetate in stool specimens (P < 0.0001) from Aquamin-treated participants were noted. No change in bile acids or SCFAs was observed with calcium or placebo. We conclude that Aquamin is safe and tolerable in healthy human participants and may produce beneficial alterations in the colonic microbial community and the attendant metabolomic profile. Because the number of participants was small, the findings should be considered preliminary.
Collapse
Affiliation(s)
- Muhammad N Aslam
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan.
| | - Christine M Bassis
- Division of Infectious Diseases, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Ingrid L Bergin
- The Unit for Laboratory Animal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Karsten Knuver
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Suzanna M Zick
- Department of Family Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Nutritional Science, The University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Ananda Sen
- Department of Family Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biostatistics, The University of Michigan Medical School, Ann Arbor, Michigan
| | - D Kim Turgeon
- Division of Gastroenterology, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
| | - James Varani
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
203
|
Ophthalmic Nanosystems with Antioxidants for the Prevention and Treatment of Eye Diseases. COATINGS 2020. [DOI: 10.3390/coatings10010036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidative stress may induce a series of pathophysiological modifications that are directly involved in the development of ophthalmic diseases like age-related cataract, macular degeneration or diabetic retinopathy, considered to be responsible for the majority of vision loss cases. Although various treatment options for eye diseases are available, multiple factors could limit their efficacy. Recently, the accelerated development of ophthalmic nanosystems has provided new possibilities for overcoming the limitations of existing ocular drug delivery methods. This review evaluates the current status of ophthalmic nanosystems loaded with antioxidants for the prevention and treatment of several eye diseases.
Collapse
|
204
|
Daristotle JL, Lau LW, Erdi M, Hunter J, Djoum A, Srinivasan P, Wu X, Basu M, Ayyub OB, Sandler AD, Kofinas P. Sprayable and biodegradable, intrinsically adhesive wound dressing with antimicrobial properties. Bioeng Transl Med 2020; 5:e10149. [PMID: 31989038 PMCID: PMC6971445 DOI: 10.1002/btm2.10149] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 01/29/2023] Open
Abstract
Conventional wound dressings are difficult to apply to large total body surface area (TBSA) wounds, as they typically are prefabricated, require a layer of adhesive coating for fixation, and need frequent replacement for entrapped exudate. Large TBSA wounds as well as orthopedic trauma and low-resource surgery also have a high risk of infection. In this report, a sprayable and intrinsically adhesive wound dressing loaded with antimicrobial silver is investigated that provides personalized fabrication with minimal patient contact. The dressing is composed of adhesive and biodegradable poly(lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA/PEG) blend fibers with or without silver salt (AgNO3). in vitro studies demonstrate that the PLGA/PEG/Ag dressing has antimicrobial properties and low cytotoxicity, with antimicrobial silver controllably released over 7-14 days. In a porcine partial-thickness wound model, the wounds treated with both antimicrobial and nonantimicrobial PLGA/PEG dressings heal at rates similar to those of the clinical, thin film polyurethane wound dressing, with similar scarring. However, PLGA/PEG adds a number of features beneficial for wound healing: greater exudate absorption, integration into the wound, a 25% reduction in dressing changes, and tissue regeneration with greater vascularization. There is also modest improvement in epidermis thickness compared to the control wound dressing.
Collapse
Affiliation(s)
- John L. Daristotle
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland
| | - Lung W. Lau
- Sheikh Zayed Institute for Pediatric Surgical InnovationJoseph E. Robert Jr. Center for Surgical Care, Children's National Medical CenterWashingtonDistrict of Columbia
| | - Metecan Erdi
- Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkMaryland
| | - Joseph Hunter
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland
| | - Albert Djoum
- Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkMaryland
| | - Priya Srinivasan
- Sheikh Zayed Institute for Pediatric Surgical InnovationJoseph E. Robert Jr. Center for Surgical Care, Children's National Medical CenterWashingtonDistrict of Columbia
| | - Xiaofang Wu
- Sheikh Zayed Institute for Pediatric Surgical InnovationJoseph E. Robert Jr. Center for Surgical Care, Children's National Medical CenterWashingtonDistrict of Columbia
| | - Mousumi Basu
- Sheikh Zayed Institute for Pediatric Surgical InnovationJoseph E. Robert Jr. Center for Surgical Care, Children's National Medical CenterWashingtonDistrict of Columbia
| | - Omar B. Ayyub
- Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkMaryland
| | - Anthony D. Sandler
- Sheikh Zayed Institute for Pediatric Surgical InnovationJoseph E. Robert Jr. Center for Surgical Care, Children's National Medical CenterWashingtonDistrict of Columbia
| | - Peter Kofinas
- Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkMaryland
| |
Collapse
|
205
|
Yuan K, Jiang Z, Jurado-Sánchez B, Escarpa A. Nano/Micromotors for Diagnosis and Therapy of Cancer and Infectious Diseases. Chemistry 2019; 26:2309-2326. [PMID: 31682040 DOI: 10.1002/chem.201903475] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/23/2022]
Abstract
Micromotors are man-made nano/microscale devices capable of transforming energy into mechanical motion. The accessibility and force offered by micromotors hold great promise to solve complex biomedical challenges. This Review highlights current progress and prospects in the use of nano and micromotors for diagnosis and treatment of infectious diseases and cancer. Motion-based sensing and fluorescence switching detection strategies along with therapeutic approaches based on direct cell capture; killing by direct contact or specific drug delivery to the affected site, will be comprehensively covered. Future challenges to translate the potential of nano/micromotors into practical applications will be described in the conclusions.
Collapse
Affiliation(s)
- Kaisong Yuan
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, 28805, Madrid, Spain.,Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Zhengjin Jiang
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, 28805, Madrid, Spain.,Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, 28805, Madrid, Spain.,Chemical Research Institute "Andres M. Del Rio", University of Alcala, 28805, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, University of Alcala, 28805, Madrid, Spain.,Chemical Research Institute "Andres M. Del Rio", University of Alcala, 28805, Madrid, Spain
| |
Collapse
|
206
|
Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100420] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
207
|
Kobatake T, Miyamoto H, Hashimoto A, Ueno M, Nakashima T, Murakami T, Noda I, Shobuike T, Sonohata M, Mawatari M. Antibacterial Activity of Ag-Hydroxyapatite Coating Against Hematogenous Infection by Methicillin-Resistant Staphylococcus aureus in the Rat Femur. J Orthop Res 2019; 37:2655-2660. [PMID: 31373384 DOI: 10.1002/jor.24431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/24/2019] [Indexed: 02/04/2023]
Abstract
Several antibacterial materials have been developed to prevent periprosthetic joint infection and thus prevent serious complications for patients and surgeons. However, no study has addressed the activity of antibacterial materials against hematogenous infection. The present study evaluated the antibacterial activity of a silver-containing hydroxyapatite-coated implant against methicillin-resistant Staphylococcus aureus (MRSA) hematogenous infection. Implants coated with hydroxyapatite and silver-hydroxyapatite were inserted into rats' right and left femurs, respectively, after which the animals were infected with S. aureus via a tail vessel. About 107 colony-forming units was the optimal bacterial number for the establishment of S. aureus hematogenous infection. Bacterial loads and C-reactive protein in the blood were measured to confirm bacteremia and inflammation. Fourteen days after the infection, bacterial loads were statistically lower in the femurs containing silver-hydroxyapatite-coated implants than in those with hydroxyapatite-coated implants (p = 0.022). Thus, silver-hydroxyapatite-coated implants might provide antibacterial activity against MRSA hematogenous infection in the postoperative period. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2655-2660, 2019.
Collapse
Affiliation(s)
- Tomoki Kobatake
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Hiroshi Miyamoto
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Akira Hashimoto
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Masaya Ueno
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Takema Nakashima
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Takayuki Murakami
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.,Research Section, Medical Division, KYOCERA Corporation, 800 Ichimiyake, Yasu City, Shiga 530-2362, Japan
| | - Iwao Noda
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.,Research Section, Medical Division, KYOCERA Corporation, 800 Ichimiyake, Yasu City, Shiga 530-2362, Japan
| | - Takeo Shobuike
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Motoki Sonohata
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Masaaki Mawatari
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
208
|
Barman S, Mukherjee S, Ghosh S, Haldar J. Amino-Acid-Conjugated Polymer-Rifampicin Combination: Effective at Tackling Drug-Resistant Gram-Negative Clinical Isolates. ACS APPLIED BIO MATERIALS 2019; 2:5404-5414. [DOI: 10.1021/acsabm.9b00732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Swagatam Barman
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
209
|
Mitchell SL, Hudson-Smith NV, Cahill MS, Reynolds BN, Frand SD, Green CM, Wang C, Hang MN, Hernandez RT, Hamers RJ, Feng ZV, Haynes CL, Carlson EE. Chronic exposure to complex metal oxide nanoparticles elicits rapid resistance in Shewanella oneidensis MR-1. Chem Sci 2019; 10:9768-9781. [PMID: 32055346 PMCID: PMC6993611 DOI: 10.1039/c9sc01942a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Engineered nanoparticles are incorporated into numerous emerging technologies because of their unique physical and chemical properties. Many of these properties facilitate novel interactions, including both intentional and accidental effects on biological systems. Silver-containing particles are widely used as antimicrobial agents and recent evidence indicates that bacteria rapidly become resistant to these nanoparticles. Much less studied is the chronic exposure of bacteria to particles that were not designed to interact with microorganisms. For example, previous work has demonstrated that the lithium intercalated battery cathode nanosheet, nickel manganese cobalt oxide (NMC), is cytotoxic and causes a significant delay in growth of Shewanella oneidensis MR-1 upon acute exposure. Here, we report that S. oneidensis MR-1 rapidly adapts to chronic NMC exposure and is subsequently able to survive in much higher concentrations of these particles, providing the first evidence of permanent bacterial resistance following exposure to nanoparticles that were not intended as antibacterial agents. We also found that when NMC-adapted bacteria were subjected to only the metal ions released from this material, their specific growth rates were higher than when exposed to the nanoparticle. As such, we provide here the first demonstration of bacterial resistance to complex metal oxide nanoparticles with an adaptation mechanism that cannot be fully explained by multi-metal adaptation. Importantly, this adaptation persists even after the organism has been grown in pristine media for multiple generations, indicating that S. oneidensis MR-1 has developed permanent resistance to NMC.
Collapse
Affiliation(s)
- Stephanie L Mitchell
- Department of Chemistry , University of Minnesota , 207 Pleasant St. SE , Minneapolis , MN 55455 , USA .
| | - Natalie V Hudson-Smith
- Department of Chemistry , University of Minnesota , 207 Pleasant St. SE , Minneapolis , MN 55455 , USA .
| | - Meghan S Cahill
- Department of Chemistry , University of Minnesota , 207 Pleasant St. SE , Minneapolis , MN 55455 , USA .
| | - Benjamin N Reynolds
- Department of Biochemistry, Molecular Biology, and Biophysics , University of Minnesota , 321 Church Street SE , Minneapolis , Minnesota 55454 , USA
| | - Seth D Frand
- Chemistry Department , Augsburg University , 2211 Riverside Ave , Minneapolis , MN 55454 , USA
| | - Curtis M Green
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , WI 53706 , USA
| | - Chenyu Wang
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , WI 53706 , USA
| | - Mimi N Hang
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , WI 53706 , USA
| | - Rodrigo Tapia Hernandez
- Chemistry Department , Augsburg University , 2211 Riverside Ave , Minneapolis , MN 55454 , USA
| | - Robert J Hamers
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , WI 53706 , USA
| | - Z Vivian Feng
- Chemistry Department , Augsburg University , 2211 Riverside Ave , Minneapolis , MN 55454 , USA
| | - Christy L Haynes
- Department of Chemistry , University of Minnesota , 207 Pleasant St. SE , Minneapolis , MN 55455 , USA .
| | - Erin E Carlson
- Department of Chemistry , University of Minnesota , 207 Pleasant St. SE , Minneapolis , MN 55455 , USA .
- Department of Biochemistry, Molecular Biology, and Biophysics , University of Minnesota , 321 Church Street SE , Minneapolis , Minnesota 55454 , USA
- Department of Medicinal Chemistry , University of Minnesota , 208 Harvard Street SE , Minneapolis , 55454 , USA
| |
Collapse
|
210
|
Vazquez-Muñoz R, Meza-Villezcas A, Fournier PGJ, Soria-Castro E, Juarez-Moreno K, Gallego-Hernández AL, Bogdanchikova N, Vazquez-Duhalt R, Huerta-Saquero A. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One 2019; 14:e0224904. [PMID: 31703098 PMCID: PMC6839893 DOI: 10.1371/journal.pone.0224904] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/23/2019] [Indexed: 12/03/2022] Open
Abstract
The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10–12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: <0.5), an additive effect by combining AgNPs and chloramphenicol (FICI: 0.5 to 1), whereas no effect was found with AgNPs and β-lactam antibiotics combinations. Flow cytometry and TEM analysis showed that sublethal concentrations of AgNPs (6–7 μg mL-1) altered the bacterial membrane potential and caused ultrastructural damage, increasing the cell membrane permeability. No chemical interactions between AgNPs and antibiotics were detected. We propose an experimental supported mechanism of action by which combinatorial effect of antimicrobials drives synergy depending on their specific target, facilitated by membrane alterations generated by AgNPs. Our results provide a deeper understanding about the synergistic mechanism of AgNPs and antibiotics, aiming to combat antimicrobial infections efficiently, especially those by multi-drug resistant microorganisms, in order to mitigate the current crisis due to antibiotic resistance.
Collapse
Affiliation(s)
- R. Vazquez-Muñoz
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México
| | - A. Meza-Villezcas
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México
| | - P. G. J. Fournier
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México
| | - E. Soria-Castro
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - K. Juarez-Moreno
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | | | - N. Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - R. Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - A. Huerta-Saquero
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
- * E-mail:
| |
Collapse
|
211
|
Tong C, Li L, Xiao F, Fan J, Zhong X, Liu X, Liu B, Wu Z, Zhou J. Daptomycin and AgNP co-loaded rGO nanocomposites for specific treatment of Gram-positive bacterial infection in vitro and in vivo. Biomater Sci 2019; 7:5097-5111. [PMID: 31524205 DOI: 10.1039/c9bm01229j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to improve the stability of AgNPs and decrease the dosage of Daptomycin for killing bacteria, a reduced graphene oxide (rGO) was used for simultaneously anchoring AgNPs and Daptomycin to prepare rGO@Ag@Dap nanocomposites. In vitro experiments showed that the nanocomposites can efficiently kill four kinds of pathogenic bacteria, especially two kinds of Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) through damaging cell integrity, producing ROS, decreasing ATP and GSH and disrupting bacterial metabolism. Against Gram-positive bacteria, the rGO@Ag@Dap nanocomposites showed a cooperative antibacterial effect. Moreover, in vivo experiments showed that rGO@Ag@Dap can improve the healing of wounds infected with bacteria by efficiently killing the bacteria on the wounds and further promoting skin regeneration and dense collagen deposition. In summary, the above results suggest that the cooperative function of AgNPs with Daptomycin can significantly improve antibacterial efficiency against infectious diseases caused by bacteria, especially for therapies made ineffective due to the drug resistance of pathogenic bacteria.
Collapse
Affiliation(s)
- Chunyi Tong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Li Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Feng Xiao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Jialong Fan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Xianghua Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Bin Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Zhaohui Wu
- Hunan Hybrid Rice Research Center/State key Laboratory of Hybrid Rice, Changsha, 410125, PR China.
| | - Jianqun Zhou
- Hunan Institute of Agricultural Information and Engineering, Changsha, 410125, PR China
| |
Collapse
|
212
|
Pajares-Chamorro N, Shook J, Hammer ND, Chatzistavrou X. Resurrection of antibiotics that methicillin-resistant Staphylococcus aureus resists by silver-doped bioactive glass-ceramic microparticles. Acta Biomater 2019; 96:537-546. [PMID: 31302297 DOI: 10.1016/j.actbio.2019.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022]
Abstract
This work describes a novel strategy to combat methicillin-resistant Staphylococcus aureus (MRSA) via the reactivation of inert antibiotics. This strategy exploits a multifunctional system consisting of bioactive glass-ceramic microparticles with antibacterial properties combined with various antibiotics to kill MRSA. Specifically, sol-gel derived silver-doped bioactive glass-ceramic microparticles (Ag-BG) combined with antibiotics that MRSA resists such as oxacillin or fosfomycin, significantly decreased the viability of MRSA. Ag-BG also potentiated the activity of vancomycin on static bacteria, which are typically resistant to this antibiotic. Notably, the synergistic activity is restricted to cell-envelope acting antibiotics as Ag-BG supplementation did not increase the efficacy of gentamicin. Bacteria viability assays and electron microscopy images demonstrate that Ag-BG synergizes to restore antibacterial activity to antibiotics that MRSA resists. The low cytotoxicity previously studied against oral bacteria, together with the known regenerative properties presented in previous studies, and the unique antibacterial properties observed in this work when they are combined with antibiotics, make this multifunctional system a promising approach for healing infected tissue. STATEMENT OF SIGNIFICANCE: This study addresses a very significant issue in the field of antibiotic resistance presenting an innovative way to clear MRSA, by utilizing bioactive glass-ceramic microparticles in combination with antibiotics. Multifunctional glass-ceramic microparticles doped with silver ions (Ag-BG) have been previously observed to exhibit bioactive and antibacterial properties. In this study Ag-BG microparticles were observed to synergize with antibiotics restoring their sensitivity against MRSA. This research work presents a novel approach to resurrect ineffective antibiotics and render them effective against MRSA. Cytotoxicity to eukaryotic cells is not anticipated, as it has been previously observed that these microparticles can trigger hard and soft dental tissue regeneration, when they are utilized in certain concentrations. This study opens a new avenue in the treatment of multidrug resistance bacteria.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - John Shook
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
213
|
Wu J, Li F, Hu X, Lu J, Sun X, Gao J, Ling D. Responsive Assembly of Silver Nanoclusters with a Biofilm Locally Amplified Bactericidal Effect to Enhance Treatments against Multi-Drug-Resistant Bacterial Infections. ACS CENTRAL SCIENCE 2019; 5:1366-1376. [PMID: 31482119 PMCID: PMC6716126 DOI: 10.1021/acscentsci.9b00359] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 05/19/2023]
Abstract
Bacterial biofilms pose a major threat to public health because they are resistant to most current therapeutics. Conventional antibiotics exhibit limited penetration and weakened activity in the acidic microenvironment of a biofilm. Here, the development of biofilm-responsive nanoantibiotics (rAgNAs) composed of self-assembled silver nanoclusters and pH-sensitive charge reversal ligands, whose bactericidal activity can be selectively boosted in the biofilm microenvironment, is reported. Under neutral physiological conditions, the bactericidal activity of rAgNAs is self-quenched because the toxic silver ions' release is largely inhibited; however, upon entry into the acidic biofilm microenvironment, the rAgNAs not only exhibit charge reversal to facilitate local accumulation and retention but also disassemble into small silver nanoclusters, thus enabling deep penetration and accelerated silver ions release for dramatically amplified bactericidal activity. The superior antibiofilm activity of rAgNAs is demonstrated both in vitro and in vivo, and the mortality rate of mice with multi-drug-resistant biofilm-induced severe pyomyositis can be significantly reduced by rAgNAs treatment, indicating the immense potential of rAgNAs as highly efficient nanoscale antibacterial agents to combat resistant bacterial biofilm-associated infections.
Collapse
Affiliation(s)
- Jiahe Wu
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Key Laboratory of Biomedical
Engineering of the Ministry of Education, College of Biomedical Engineering
& Instrument Science, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, P. R.
China
| | - Fangyuan Li
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Key Laboratory of Biomedical
Engineering of the Ministry of Education, College of Biomedical Engineering
& Instrument Science, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, P. R.
China
| | - Xi Hu
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Key Laboratory of Biomedical
Engineering of the Ministry of Education, College of Biomedical Engineering
& Instrument Science, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, P. R.
China
| | - Jingxiong Lu
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Key Laboratory of Biomedical
Engineering of the Ministry of Education, College of Biomedical Engineering
& Instrument Science, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, P. R.
China
| | - Xiaolian Sun
- Department
of Pharmaceutical Analysis, China Pharmaceutical
University, Nanjing 210009, P. R. China
| | - Jianqing Gao
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Key Laboratory of Biomedical
Engineering of the Ministry of Education, College of Biomedical Engineering
& Instrument Science, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, P. R.
China
- E-mail:
| | - Daishun Ling
- Institute
of Pharmaceutics, College of Pharmaceutical Sciences, Key Laboratory of Biomedical
Engineering of the Ministry of Education, College of Biomedical Engineering
& Instrument Science, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, P. R.
China
- E-mail:
| |
Collapse
|
214
|
Wang H, Wang M, Yang X, Xu X, Hao Q, Yan A, Hu M, Lobinski R, Li H, Sun H. Antimicrobial silver targets glyceraldehyde-3-phosphate dehydrogenase in glycolysis of E. coli. Chem Sci 2019; 10:7193-7199. [PMID: 31588287 PMCID: PMC6685357 DOI: 10.1039/c9sc02032b] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/14/2019] [Indexed: 01/13/2023] Open
Abstract
Silver has long been used as an antibacterial agent, yet its molecular targets remain largely unknown. Using a custom-designed coupling of gel electrophoresis with inductively coupled plasma mass spectrometry (GE-ICP-MS), we identified six silver-binding proteins in E. coli. The majority of the identified proteins are associated with the central carbon metabolism of E. coli. Among them, we unveil that GAPDH, an essential enzyme in glycolysis, serves as a vital target of Ag+ in E. coli for the first time. We demonstrate that silver inhibits the enzymatic function of GAPDH through targeting Cys149 in its catalytic site. The X-ray structure reveals that Ag+ coordinates to Cys149 and His176 with a quasi-linear geometry (S-Ag-N angle of 157°). And unexpectedly, two Ag+ ions coordinate to Cys288 in the non-catalytic site with weak argentophilic interaction (Ag···Ag distance of 2.9 Å). This is the first report on antimicrobial Ag+ targeting a key enzyme in the glycolytic pathway of E. coli. The findings expand our knowledge on the mode of action and bio-coordination chemistry of silver, particularly silver-targeting residues in proteins at the atomic level.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Minji Wang
- School of Biological Sciences , The University of Hong Kong , Hong Kong , P. R. China
| | - Xinming Yang
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Xiaohan Xu
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Quan Hao
- School of Biomedical Sciences , The University of Hong Kong , Laboratory Block, 21 Sassoon Road, Pokfulam , Hong Kong , China
| | - Aixin Yan
- School of Biological Sciences , The University of Hong Kong , Hong Kong , P. R. China
| | - Menglong Hu
- School of Biomedical Sciences , The University of Hong Kong , Laboratory Block, 21 Sassoon Road, Pokfulam , Hong Kong , China
| | - Ryszard Lobinski
- CNRS/University of Pau , Institute of Analytical and Physical Chemistry for the Environment and Materials , IPREM-UMR5254 , Hélioparc, 2, Avenue Angot , 64053 Pau , France
| | - Hongyan Li
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Hongzhe Sun
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| |
Collapse
|
215
|
Nair RR, Sharan D, Ajitkumar P. A Minor Subpopulation of Mycobacteria Inherently Produces High Levels of Reactive Oxygen Species That Generate Antibiotic Resisters at High Frequency From Itself and Enhance Resister Generation From Its Major Kin Subpopulation. Front Microbiol 2019; 10:1842. [PMID: 31456773 PMCID: PMC6700507 DOI: 10.3389/fmicb.2019.01842] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Antibiotic-exposed bacteria produce elevated levels of reactive oxygen species (ROS), to which either they succumb or get mutated genome-wide to generate antibiotic resisters. We recently showed that mycobacterial cultures contained two subpopulations, short-sized cells (SCs; ∼10%) and normal/long-sized cells (NCs; ∼90%). The SCs were significantly more antibiotic-susceptible than the NCs. It implied that the SCs might naturally be predisposed to generate significantly higher levels of ROS than the NCs. This in turn could make the SCs more susceptible to antibiotics or generate more resisters as compared to the NCs. Investigation into this possibility showed that the SCs in the actively growing mid-log phase culture naturally generated significantly high levels of superoxide, as compared to the equivalent NCs, due to the naturally high expression of a specific NADH oxidase in the SCs. This caused labile Fe2+ leaching from 4Fe-4S proteins and elevated H2O2 formation through superoxide dismutation. Thus, the SCs of both Mycobacterium smegmatis and Mycobacterium tuberculosis inherently contained significantly higher levels of H2O2 and labile Fe2+ than the NCs. This in turn produced significantly higher levels of hydroxyl radical through Fenton reaction, promoting enhanced antibiotic resister generation from the SCs than from the NCs. The SCs, when mixed back with the NCs, at their natural proportion in the actively growing mid-log phase culture, enhanced antibiotic resister generation from the NCs, to a level equivalent to that from the unfractionated whole culture. The enhanced antibiotic resister generation from the NCs in the reconstituted SCs-NCs natural mixture was found to be due to the high levels of H2O2 secreted by the SCs. Thus, the present work unveils and documents the metabolic designs of two mycobacterial subpopulations where one subpopulation produces high ROS levels, despite higher susceptibility, to generate significantly higher number of antibiotic resisters from itself and to enhance resister generation from its kin subpopulation. These findings show the existence of an inherent natural mechanism in both the non-pathogenic and pathogenic mycobacteria to generate antibiotic resisters. The presence of the SCs and the NCs in the pulmonary tuberculosis patients’ sputum, reported by us earlier, alludes to the clinical significance of the study.
Collapse
Affiliation(s)
- Rashmi Ravindran Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Deepti Sharan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
216
|
Green Synthesis of Potent Antimicrobial Silver Nanoparticles Using Different Plant Extracts and Their Mixtures. Processes (Basel) 2019. [DOI: 10.3390/pr7080510] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nano-sized metals have been introduced as a promising solution for microbial resistance to antimicrobial agents. Silver nanoparticles (AgNPs) have been proven to possess good antimicrobial activity. Green synthesis of AgNPs has been reported as safe, low cost and ecofriendly. This methodology uses extracts originating from different plants to reduce silver ions from AgNO3 into nano-sized particles. In this study, extracts of several plants including ginger, garlic, capsicum and their mixtures were successfully used to produce AgNPs. Numerous spectroscopic, light scattering and microscopic techniques were employed to characterize the synthesized AgNPs. Agar well diffusion assay was performed to investigate the antimicrobial activity of AgNPs. The biosynthesized AgNPs have spherical shape with a size range of 20–70 nm. Garlic extract, pure or in mixture with ginger extract, generated AgNPs of the smallest size. The presence of the plant-origin capping agents surrounding AgNPs was proven by Fourier-transform infrared spectroscopy. The AgNPs, at a concentration of 50 µg/mL, demonstrated potent antimicrobial activity against Staphyloccocus aureus, Escherichia coli and Candida albicans as indicated by the zones of. Our results revealed that AgNPs having potent antimicrobial activity could be prepared using different pure plant extracts and their mixtures.
Collapse
|
217
|
Reuter WH, Masuch T, Ke N, Lenon M, Radzinski M, Van Loi V, Ren G, Riggs P, Antelmann H, Reichmann D, Leichert LI, Berkmen M. Utilizing redox-sensitive GFP fusions to detect in vivo redox changes in a genetically engineered prokaryote. Redox Biol 2019; 26:101280. [PMID: 31450103 PMCID: PMC6831853 DOI: 10.1016/j.redox.2019.101280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 11/26/2022] Open
Abstract
Understanding the in vivo redox biology of cells is a complex albeit important biological problem. Studying redox processes within living cells without physical disruption or chemical modifications is essential in determining the native redox states of cells. In this study, the previously characterized reduction-oxidation sensitive green fluorescent protein (roGFP2) was used to elucidate the redox changes of the genetically engineered Escherichia coli strain, SHuffle. SHuffle cells were demonstrated to be under constitutive oxidative stress and responding transcriptionally in an OxyR-dependent manner. Using roGFP2 fused to either glutathione (GSH)- or hydrogen peroxide (H2O2)- sensitive proteins (glutaredoxin 1 or Orp1), the cytosolic redox state of both wild type and SHuffle cells based on GSH/GSSG and H2O2 pools was measured. These probes open the path to in vivo studies of redox changes and genetic selections in prokaryotic hosts.
Collapse
Affiliation(s)
| | - Thorsten Masuch
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA; Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstr. 150, 44780, Bochum, Germany
| | - Na Ke
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Marine Lenon
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Meytal Radzinski
- The Hebrew University of Jerusalem, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, Jerusalem, 91904, Israel
| | - Vu Van Loi
- Institute for Biology-Microbiology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Guoping Ren
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Paul Riggs
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Dana Reichmann
- The Hebrew University of Jerusalem, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, Jerusalem, 91904, Israel
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstr. 150, 44780, Bochum, Germany
| | - Mehmet Berkmen
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
218
|
Wang Y, Li H, Sun H. Metalloproteomics for Unveiling the Mechanism of Action of Metallodrugs. Inorg Chem 2019; 58:13673-13685. [PMID: 31298530 DOI: 10.1021/acs.inorgchem.9b01199] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yuchuan Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
219
|
Hosny AEDM, Rasmy SA, Aboul-Magd DS, Kashef MT, El-Bazza ZE. The increasing threat of silver-resistance in clinical isolates from wounds and burns. Infect Drug Resist 2019; 12:1985-2001. [PMID: 31372006 PMCID: PMC6636436 DOI: 10.2147/idr.s209881] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose The widespread use of silver-containing compounds has led to emergence of silver-resistant bacteria. Few studies are available on the detectability of plasmid-mediated silver-resistance in developing countries. Therefore, we aimed to detect silver-resistance in isolates from wounds and burns, and to genetically characterize plasmid-mediated silver-resistance genes (sil genes). Methods One hundred and fifty clinical isolates were obtained from burns and wounds. They were identified using the suitable Analytical Profile Index and MicroScan identification systems. Their antimicrobial susceptibility was tested by the disk diffusion and broth microdilution methods. Their silver nitrate (AgNO3) minimum inhibitory concentration (MIC) was determined using the broth macrodilution method. The presence of different sil genes on plasmids extracted from silver-resistant isolates and the replicon types of the extracted plasmids were investigated using polymerase chain reaction (PCR). The ability of these plasmids to impart silver-resistance was tested by transformation. Results All except two isolates were multidrug-resistant. Nineteen silver-resistant bacterial isolates (12.6%) were detected; with AgNO3 MIC ≥512 µg/mL. They were identified as Klebsiella pneumoniae (n=7), Staphylococcus aureus (n=4), Escherichia coli (n=2), Enterobacter cloacae (n=2), Pseudomonas aeruginosa (n=2) and Acinetobacter baumannii (n=2). PCR revealed the presence of different sil genes on the extracted plasmids. Plasmid transformation resulted in the transfer of silver-resistance to the resulting transformants. The extracted plasmids had different replicon types. Conclusion Plasmid-mediated silver-resistance was detected for the first time, in clinical P. aeruginosa, A. baumannii and S. aureus isolates; in addition to its detection in K. pneumoniae, E. coli and Enterobacter cloacae. Therefore, strict monitoring on the use of silver compounds in medical settings is required; with implementation of an approved standardized method for silver-resistance detection.
Collapse
Affiliation(s)
- Alaa El-Dien Ms Hosny
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salwa A Rasmy
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mona T Kashef
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Zeinab E El-Bazza
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
220
|
Xiong Y, Wang Y, Han X, Ma Y, Zhu HF, Long Y, Chen S. Nuclear fast red-based colorimetric sensors for sensitive and selective detection of Ag ions. LUMINESCENCE 2019; 34:724-730. [PMID: 31245914 DOI: 10.1002/bio.3666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 11/10/2022]
Abstract
The reduction of nuclear fast red (NFR) stain by sodium tetrahydroboron was catalyzed in the presence of silver ions (Ag+ ). The fluorescence properties of reduced NFR differed from that of NFR. The product showed fluorescence emission at 480 nm with excitation at 369 nm. Furthermore, the fluorescence intensity of the mixture increased strongly in the presence of Ag+ and Britton-Robinson buffer at pH 4.78. There was a good linear relationship between increased fluorescence intensity (ΔI) and Ag+ concentration in the range 5.0 × 10-9 to 5.0 × 10-8 M. The correlation coefficient was 0.998, and the detection limit (3σ/k) was 1.5 × 10-9 M. The colour of the reaction system changed with variation in Ag+ concentration over a wide range. Based on the colour change, a visual semiquantitative detection method for recognition and sensing of Ag+ was developed for the range 1.0 × 10-8 to 5.0 × 10-4 M, with an indicator that was visible to the naked eye. Therefore, a sensitive, simple method for determination of Ag+ was developed. Optimum conditions for Ag+ detection, the effect of other ions and the analytical application of Ag+ detection of synthesized sample were investigated.
Collapse
Affiliation(s)
- Yuan Xiong
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yi Wang
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Xue Han
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yao Ma
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Han Fang Zhu
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - YunFei Long
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Shu Chen
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
221
|
Tang Q, Plank TN, Zhu T, Yu H, Ge Z, Li Q, Li L, Davis JT, Pei H. Self-Assembly of Metallo-Nucleoside Hydrogels for Injectable Materials That Promote Wound Closure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19743-19750. [PMID: 31081327 DOI: 10.1021/acsami.9b02265] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Injectable hydrogels are increasingly being used as scaffolds for in situ tissue engineering and wound healing. Most of these injectable hydrogels are made from polymers, and there are fewer examples of such soft materials made via self-assembly of low-molecular weight gelators. We report the room-temperature synthesis of a functional hydrogel formed by mixing cytidine (C) with 0.5 equiv each of B(OH)3 and AgNO3. The structural basis for this supramolecular hydrogel (C-B-C·Ag+) involves orthogonal formation of cytidine borate diesters (C-B-C) and Ag+-stabilized C-C base pairs, namely, the C·Ag+·C dimer. The C-B-C·Ag+ hydrogels, which can have high water content (at least 99.6%), are stable (no degradation after 1 year in the light), stimuli-responsive, and self-supporting, with elastic moduli of up to 104 Pa. Incorporation of Ag+ ions into the gel matrix endows the C-B-C·Ag+ hydrogel with significant antibacterial capability. Importantly, the rapid switching between the sol and gel states for this supramolecular hydrogel, as a response to shear stress, enables 3D printing of a flexible medical patch made from the C-B-C·Ag+ hydrogel. The C-B-C·Ag+ hydrogel was used to promote the closure of burn wounds in a mouse model.
Collapse
Affiliation(s)
- Qian Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Taylor N Plank
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Tong Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Huizhen Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qian Li
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Jeffery T Davis
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| |
Collapse
|
222
|
Wang H, Yan A, Liu Z, Yang X, Xu Z, Wang Y, Wang R, Koohi-Moghadam M, Hu L, Xia W, Tang H, Wang Y, Li H, Sun H. Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli. PLoS Biol 2019; 17:e3000292. [PMID: 31181061 PMCID: PMC6557469 DOI: 10.1371/journal.pbio.3000292] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/13/2019] [Indexed: 12/17/2022] Open
Abstract
Despite the broad-spectrum antimicrobial activities of silver, its internal usage is restricted, owing to the toxicity. Strategies to enhance its efficacy are highly desirable but rely heavily on the understanding of its molecular mechanism of action. However, up to now, no direct silver-targeting proteins have been mined at a proteome-wide scale, which hinders systemic studies on the biological pathways interrupted by silver. Herein, we build up a unique system, namely liquid chromatography gel electrophoresis inductively coupled plasma mass spectrometry (LC-GE-ICP-MS), allowing 34 proteins directly bound by silver ions to be identified in Escherichia coli. By using integrated omic approaches, including metalloproteomics, metabolomics, bioinformatics, and systemic biology, we delineated the first dynamic antimicrobial actions of silver (Ag+) in E. coli, i.e., it primarily damages multiple enzymes in glycolysis and tricarboxylic acid (TCA) cycle, leading to the stalling of the oxidative branch of the TCA cycle and an adaptive metabolic divergence to the reductive glyoxylate pathway. It then further damages the adaptive glyoxylate pathway and suppresses the cellular oxidative stress responses, causing systemic damages and death of the bacterium. To harness these novel findings, we coadministrated metabolites involved in the Krebs cycles with Ag+ and found that they can significantly potentiate the efficacy of silver both in vitro and in an animal model. Our study reveals the comprehensive and dynamic mechanisms of Ag+ toxicity in E. coli cells and offers a novel and general approach for deciphering molecular mechanisms of metallodrugs in various pathogens and cells to facilitate the development of new therapeutics.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, P. R. China
| | - Zhigang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xinming Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Zeling Xu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, P. R. China
| | - Yuchuan Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Runming Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | | | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China
| | - Wei Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai International Centre for Molecular Phenomics, Collaborative Innovation Centre for Genetics and Development, Shanghai, P. R. China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
223
|
Li X, Gu AZ, Zhang Y, Xie B, Li D, Chen J. Sub-lethal concentrations of heavy metals induce antibiotic resistance via mutagenesis. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:9-16. [PMID: 30753956 DOI: 10.1016/j.jhazmat.2019.02.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 05/20/2023]
Abstract
The emergence of antibiotic resistance is a growing problem worldwide. Numerous studies have demonstrated that heavy metals facilitate the spread of bacterial drug-resistance in the environment. However, the actions and mechanisms of metals at relatively low sub-lethal levels (far below the minimal inhibitory concentration [MIC]) on antibiotic resistance remain unclear. In this study, we investigated the effect of sub-lethal levels of heavy metals [Ag(I), Zn(II), and Cu(II)] on antibiotic resistance and explored the underlying mechanisms. The results demonstrated that sub-lethal levels of metal ions increased the mutation rates and enriched de novo mutants that exhibited significant resistance to multiple antibiotics. The resistant mutants exhibited hereditary resistance after 5-day of sub-culture. Whole-genome analysis revealed distinct mutations in genes involved in multiple drug and drug-specific resistance, as well as genes that are not associated with antibiotic resistance to data. The number and identities of genetic changes were distinct for mutants induced by different metals. This study provides evidence and mechanistic insights into the induction of antibiotic resistance by sub-lethal concentrations of heavy metals, which may enhance the emergence of antibiotic resistance in various environments. More consideration and regulations should be given to this potential health risk for long-standing and harmful heavy metals.
Collapse
Affiliation(s)
- Xiangyang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; College of Environment and Life Sciences, Kaili University, Kaiyuan Road, 556011, Kaili, China
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Ye Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Bin Xie
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, SE, 22100, Lund, Sweden
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
224
|
Wang Y, Han B, Xie Y, Wang H, Wang R, Xia W, Li H, Sun H. Combination of gallium(iii) with acetate for combating antibiotic resistant Pseudomonas aeruginosa. Chem Sci 2019; 10:6099-6106. [PMID: 31360415 PMCID: PMC6585600 DOI: 10.1039/c9sc01480b] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
Combination of Ga(iii) with acetate greatly enhances the antimicrobial activity of Ga(iii) against P. aeruginosa, and shows promise to combat the crisis of antimicrobial resistance.
Gallium(iii) has been widely used as a diagnostic and therapeutic agent in clinics for the treatment of various diseases, in particular, Ga-based drugs have been exploited as antimicrobials to combat the crisis of antimicrobial resistance. The therapeutic properties of Ga(iii) are believed to be attributable to its chemical similarity to Fe(iii). However, the molecular mechanisms of action of gallium remain unclear. Herein, by integrating metalloproteomics with metabolomics and transcriptomics, we for the first time identified RpoB and RpoC, two subunits of RNA polymerase, as Ga-binding proteins in Pseudomonas aeruginosa. We show that Ga(iii) targets the essential transcription enzyme RNA polymerase to suppress RNA synthesis, resulting in reduced metabolic rates and energy utilization. Significantly, we show that exogenous supplementation of acetate could enhance the antimicrobial activity of Ga(iii), evidenced by the inhibited growth of persister cells and attenuated bacterial virulence. The effectiveness of co-therapy of Ga(iii) and acetate was further validated in mammalian cell and murine skin infection models, which is attributable to enhanced uptake of Ga(iii), and reduced TCA cycle flow and bacterial respiration. Our study provides novel insights into the mechanistic understanding of the antimicrobial activity of Ga(iii) and offers a safe and practical strategy of using metabolites to enhance the efficacy of Ga(iii)-based antimicrobials to fight drug resistance.
Collapse
Affiliation(s)
- Yuchuan Wang
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China.,Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Bingjie Han
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China
| | - Yanxuan Xie
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China
| | - Haibo Wang
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Runming Wang
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Wei Xia
- School of Chemistry , Sun Yat-sen University , Guangzhou , 510275 , P. R. China
| | - Hongyan Li
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| | - Hongzhe Sun
- Department of Chemistry , The University of Hong Kong , Hong Kong , P. R. China .
| |
Collapse
|
225
|
Venter H. Reversing resistance to counter antimicrobial resistance in the World Health Organisation's critical priority of most dangerous pathogens. Biosci Rep 2019; 39:BSR20180474. [PMID: 30910848 PMCID: PMC6465202 DOI: 10.1042/bsr20180474] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
The speed at which bacteria develop antimicrobial resistance far outpace drug discovery and development efforts resulting in untreatable infections. The World Health Organisation recently released a list of pathogens in urgent need for the development of new antimicrobials. The organisms that are listed as the most critical priority are all Gram-negative bacteria resistant to the carbapenem class of antibiotics. Carbapenem resistance in these organisms is typified by intrinsic resistance due to the expression of antibiotic efflux pumps and the permeability barrier presented by the outer membrane, as well as by acquired resistance due to the acquisition of enzymes able to degrade β-lactam antibiotics. In this perspective article we argue the case for reversing resistance by targeting these resistance mechanisms - to increase our arsenal of available antibiotics and drastically reduce antibiotic discovery times - as the most effective way to combat antimicrobial resistance in these high priority pathogens.
Collapse
Affiliation(s)
- Henrietta Venter
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
226
|
Liu Y, Li R, Xiao X, Wang Z. Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bacteria. Crit Rev Microbiol 2019; 45:301-314. [PMID: 30985240 DOI: 10.1080/1040841x.2019.1599813] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antibiotic resistance in Gram-negative pathogens has emerged and constituted a global crisis, thereby novel antibiotics and other anti-infective strategies are urgently needed. However, the growing gap between clinical need and drug innovation, coupled with the membrane permeability barrier in Gram-negative bacteria restricts the discovery of Gram-negative antibiotics. Antibiotic adjuvants approach provides an alternative and complementary strategy for new antibiotic discovery. These compounds restore or potentiate the activity of commonly used antibiotics against multi-drug resistant (MDR) Gram-negative bacteria by targeting resistance or enhancing action of antibiotics. In this review, we first provide a brief overview of antibiotic resistance mechanism in Gram-negative bacteria, which can be used to guide the development of new antibiotic adjuvants. Additionally, we summarize the recent achievements in the search for antibiotic adjuvants based on their modes of action. Lastly, we discuss our perspectives in developing next-generation adjuvants such as broad-spectrum adjuvants and hybridization approach, which would contribute to enrich our arsenal against MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Yuan Liu
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , China.,c Institute of Comparative Medicine, Yangzhou University , Yangzhou , Jiangsu , China
| | - Ruichao Li
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , China
| | - Xia Xiao
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , China
| | - Zhiqiang Wang
- a College of Veterinary Medicine, Yangzhou University , Yangzhou , Jiangsu , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu , China
| |
Collapse
|
227
|
Garza-Cervantes JA, Escárcega-González CE, Barriga Castro ED, Mendiola-Garza G, Marichal-Cancino BA, López-Vázquez MA, Morones-Ramirez JR. Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent. Int J Nanomedicine 2019; 14:2557-2571. [PMID: 31118605 PMCID: PMC6498977 DOI: 10.2147/ijn.s196470] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/22/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction: Global increase in the consumption of antibiotics has induced selective stress on wild-type microorganisms, pushing them to adapt to conditions of higher antibiotic concentrations, and thus an increased variety of resistant bacterial strains have emerged. Metal nanoparticles synthesized by green methods have been studied and proposed as potential antimicrobial agents against both wild-type and antibiotic-resistant strains; in addition, exopolysaccharides have been used as capping agent of metal nanoparticles due to their biocompatibility, reducing biological risks in a wide variety of applications. Purpose: In this work, we use an exopolysaccharide, from Rhodotorula mucilaginosa UANL-001L, an autochthonous strain from the Mexican northeast, as a capping agent in the synthesis of Zn, and Ni, nanoparticle biopolymer biocomposites. Materials and methods: To physically and chemically characterize the synthesized biocomposites, FT-IR, UV-Vs, TEM, SAED and EDS analysis were carried out. Antimicrobial and antibiofilm biological activity were tested for the biocomposites against two resistant clinical strains, a Gram-positive Staphylococcus aureus, and a Gram-negative Pseudomonas aeruginosa. Antimicrobial activity was determined using a microdilution assay whereas antibiofilm activity was analyzed through crystal violet staining. Results: Biocomposites composed of exopolysaccharide capped Zn and Ni metal nanoparticles were synthesized through a green synthesis methodology. The average size of the Zn and Ni nanoparticles ranged between 8 and 26 nm, respectively. The Ni-EPS biocomposites showed antimicrobial and antibiofilm activity against resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa at 3 and 2 mg/mL, respectively. Moreover, Zn-EPS biocomposites showed antimicrobial activity against resistant Staphylococcus aureus at 1 mg/mL. Both biocomposites showed no toxicity, as renal function showed no differences between treatments and control in the in vivo assays with male rats tests in this study at a concentration of 24 mg/kg of body weight. Conclusion: The exopolysaccharide produced by Rhodotorula mucilaginosa UANL-001L is an excellent candidate as a capping agent in the synthesis of biopolymer-metal nanoparticle biocomposites. Both Ni and Zn-EPS biocomposites demonstrate to be potential contenders as novel antimicrobial agents against both Gram-negative and Gram-positive clinically relevant resistant bacterial strains. Moreover, Ni-EPS biocomposites also showed antibiofilm activity, which makes them an interesting material to be used in different applications to counterattack global health problems due to the emergence of resistant microorganisms.
Collapse
Affiliation(s)
- Javier Alberto Garza-Cervantes
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, San Nicolás de los Garza, NL 66451, México.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca 66629, Nuevo León, México
| | - C Enrique Escárcega-González
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, San Nicolás de los Garza, NL 66451, México.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca 66629, Nuevo León, México.,Universidad Autónoma de Aguascalientes, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Aguascalientes, Mexico
| | | | - G Mendiola-Garza
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, San Nicolás de los Garza, NL 66451, México.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca 66629, Nuevo León, México
| | - Bruno Antonio Marichal-Cancino
- Universidad Autónoma de Aguascalientes, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Aguascalientes, Mexico
| | - Mario Alberto López-Vázquez
- Universidad Autónoma de Aguascalientes, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Aguascalientes, Mexico
| | - Jose Ruben Morones-Ramirez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, San Nicolás de los Garza, NL 66451, México.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca 66629, Nuevo León, México
| |
Collapse
|
228
|
Antibacterial Activity of combinatorial treatments composed of transition-metal/antibiotics against Mycobacterium tuberculosis. Sci Rep 2019; 9:5471. [PMID: 30940878 PMCID: PMC6445279 DOI: 10.1038/s41598-019-42049-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Notwithstanding evidence that tuberculosis (TB) is declining, one of the greatest concerns to public health is the emergence and spread of multi-drug resistant strains of Mycobacterium tuberculosis (MDR-TB). MDR-TB are defined as strains which are resistant to at least isoniazid (INH) and rifampicin, the two most potent TB drugs, and their increasing incidence is a serious concern. Recently, notable efforts have been spent on research to pursue novel treatments against MDR-TB, especially on synergistic drug combinations as they have the potential to improve TB treatment. Our research group has previously reported promising synergistic antimicrobial effects between transition-metal compounds and antibiotics in Gram-negative and Gram-positive bacteria. In this work, we evaluated antimycobacterial activity of transition-metals/antibiotics combinatorial treatments against first-line drug resistant strains of Mycobacterium tuberculosis. Our data showed that INH/AgNO3 combinatorial treatment had an additive effect (bactericidal activity) in an isoniazid-resistant clinical strain of Mycobacterium tuberculosis. Moreover, in vitro evaluation of cytotoxicity induced by both, the individual tratments of AgNO3 and INH and the combinatorial treatment of INH/AgNO3 in murine RAW 264.7 macrophages and human A549 lung cells; showed no toxic effects. Together, this data suggests that the INH/AgNO3 combinatorial treatment could be used in the development of new strategies to treat resistant strains of Mycobacterium tuberculosis.
Collapse
|
229
|
Dong F, Zhou Y. Differential transformation and antibacterial effects of silver nanoparticles in aerobic and anaerobic environment. Nanotoxicology 2019; 13:339-353. [DOI: 10.1080/17435390.2018.1548667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Feng Dong
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| |
Collapse
|
230
|
Gurunathan S. Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.11.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
231
|
Kumar S, Sharma RP, Venugopalan P, Gondil VS, Chhibber S, Ferretti V. Synthesis and characterization of new silver(I) naphthalenedisulfonate complexes with heterocyclic N-donor ligands: Packing analyses and antibacterial studies. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
232
|
O'Beirne C, Alhamad NF, Ma Q, Müller-Bunz H, Kavanagh K, Butler G, Zhu X, Tacke M. Synthesis, structures and antimicrobial activity of novel NHC∗- and Ph3P-Ag(I)-Benzoate derivatives. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
233
|
Laube N, Bernsmann F, Fisang C. Individualisierte Patientenversorgung mit urologischen Implantaten durch biofilmabweisende Oberflächenkonzepte. Urologe A 2019; 58:143-150. [DOI: 10.1007/s00120-018-0623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
234
|
Sicairos-Ruelas EE, Gerba CP, Bright KR. Efficacy of copper and silver as residual disinfectants in drinking water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:146-155. [PMID: 30686111 DOI: 10.1080/10934529.2018.1535160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 06/09/2023]
Abstract
Contamination events and biofilms can decrease the amount of free chlorine available in drinking water systems. The efficacy of 100 μg/L silver and 400 μg/L copper, individually and combined, were evaluated as secondary, longer-lasting residual disinfectants against Salmonella enterica serovar Typhimurium, Escherichia coli, Listeria monocytogenes, and Mycobacterium fortuitum at 24 °C and 4 °C. A >5.0-log10 reduction was observed in E. coli and L. monocytogenes after three hours and S. Typhimurium following seven hours of exposure to silver. M. fortuitum was the most resistant species to silver (1.11-log10 after seven hours). Copper did not significantly reduce S. Typhimurium and E. coli at 24 °C; ≥2.80-log10 reductions were observed in the Gram-positive L. monocytogenes and M. fortuitum. Longer exposure times were required at 4 °C to achieve significant reductions in all species. A synergistic effect was observed when silver and copper were combined at 24 °C. In addition, silver was not affected by the presence of organic matter at concentrations that completely inhibited 0.2 mg/L chlorine. The results of this study suggest that combinations of silver and copper show promise as secondary residual disinfectants. They may also be used in conjunction with low chlorine levels or other disinfectants to provide additional, long-lasting residuals in distribution systems.
Collapse
Affiliation(s)
- Enue E Sicairos-Ruelas
- a Water and Energy Sustainable Technology Center , The University of Arizona , Tucson , Arizona , USA
| | - Charles P Gerba
- a Water and Energy Sustainable Technology Center , The University of Arizona , Tucson , Arizona , USA
| | - Kelly R Bright
- a Water and Energy Sustainable Technology Center , The University of Arizona , Tucson , Arizona , USA
| |
Collapse
|
235
|
Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 2019; 9:2673-2702. [PMID: 35520490 PMCID: PMC9059941 DOI: 10.1039/c8ra08982e] [Citation(s) in RCA: 437] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/23/2018] [Indexed: 12/23/2022] Open
Abstract
Since discovery of the first antibiotic drug, penicillin, in 1928, a variety of antibiotic and antimicrobial agents have been developed and used for both human therapy and industrial applications. However, excess and uncontrolled use of antibiotic agents has caused a significant growth in the number of drug resistant pathogens. Novel therapeutic approaches replacing the inefficient antibiotics are in high demand to overcome increasing microbial multidrug resistance. In the recent years, ongoing research has focused on development of nano-scale objects as efficient antimicrobial therapies. Among the various nanoparticles, silver nanoparticles have gained much attention due to their unique antimicrobial properties. However, concerns about the synthesis of these materials such as use of precursor chemicals and toxic solvents, and generation of toxic byproducts have led to a new alternative approach, green synthesis. This eco-friendly technique incorporates use of biological agents, plants or microbial agents as reducing and capping agents. Silver nanoparticles synthesized by green chemistry offer a novel and potential alternative to chemically synthesized nanoparticles. In this review, we discuss the recent advances in green synthesis of silver nanoparticles, their application as antimicrobial agents and mechanism of antimicrobial mode of action.
Collapse
Affiliation(s)
- Anupam Roy
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra Ranchi-835215 India
| | - Onur Bulut
- Department of Molecular Biology and Genetics, Faculty of Agriculture and Natural Sciences, Konya Food and Agriculture University 42080 Konya Turkey
- Department of Biological Sciences, Middle East Technical University 06800 Ankara Turkey
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University 42080 Konya Turkey
| | - Sudip Some
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University Uttar Dinajpur-733134 India
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University Uttar Dinajpur-733134 India
| | - M Deniz Yilmaz
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University 42080 Konya Turkey
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University 42080 Konya Turkey
| |
Collapse
|
236
|
Li H, Wang R, Sun H. Systems Approaches for Unveiling the Mechanism of Action of Bismuth Drugs: New Medicinal Applications beyond Helicobacter Pylori Infection. Acc Chem Res 2019; 52:216-227. [PMID: 30596427 DOI: 10.1021/acs.accounts.8b00439] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallodrugs have been widely used as diagnostic and therapeutic agents. Understanding their mechanisms of action may lead to advances in rational drug design. However, to achieve this, diversified approaches are required because of the complexity of metal-biomolecule interactions. Bismuth drugs in combination with antibiotics as a quadruple therapy show excellent success rates in the eradication of Helicobacter pylori, even for antibiotic-resistant strains, and in fact, they have been used in the clinic for decades for the treatment of infection. Understanding the mechanism of action of bismuth drugs may extend their medicinal application beyond the treatment of H. pylori infection. This Account describes several general strategies for mechanistic studies of metallodrugs, including system pharmacology and metalloproteomics approaches. The application of these approaches is exemplified using bismuth drugs. Through a system pharmacology approach, we showed that glutathione- and multidrug-resistance-associated protein 1-mediated self-propelled disposal of bismuth in human cells might explain the selective toxicity of bismuth drugs to H. pylori but not the human host. The development of metalloproteomics has enabled extensive studies of the putative protein targets of metallodrugs with a dynamic range of affinity. Continuous-flow GE-ICP-MS allows simultaneous monitoring of metals and their associated proteins with relatively high affinity on a proteome-wide scale. The fluorescence approach relies on unique M n+-NTA-based fluorescence probes and is particularly applicable for mining those proteins that bind to metals/metallodrugs weakly or transiently. Integration of these methods with quantitative proteomics makes it possible to maximum coverage of bismuth-associated proteins, and the sustained efficacy of bismuth drugs lies in their ability to disrupt multiple biological pathways through binding and functional perturbation of key enzymes. The knowledge acquired by mechanistic studies of bismuth drugs led to the discovery of UreG as a new target for the development of urease inhibitors. The ability of Bi(III) to inhibit metallo-β-lactamase (MBL) activity through displacement of the Zn(II) cofactor renders bismuth drugs new potential as broad-spectrum inhibitors of MBLs. Therefore, bismuth drugs could be repurposed together with clinically used antibiotics as a cotherapy to cope with the current antimicrobial resistance crisis. We anticipate that the methodologies described in this Account are generally applicable for understanding the (patho)physiological roles of metals/metallodrugs. Our mechanism-guided discovery of new druggable targets as well as new medicinal applications of bismuth drugs will inspire researchers in relevant fields to engage in the rational design of drugs and reuse of existing drugs, eventually leading to the development of new effective therapeutics.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Runming Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
237
|
Kaur A, Kumar R. Enhanced bactericidal efficacy of polymer stabilized silver nanoparticles in conjugation with different classes of antibiotics. RSC Adv 2019; 9:1095-1105. [PMID: 35517620 PMCID: PMC9059492 DOI: 10.1039/c8ra07980c] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/15/2018] [Indexed: 11/21/2022] Open
Abstract
The paper presents the interaction mechanism of silver nanoparticles (AgNPs) with different antibiotics and the antibacterial efficacy of the formed conjugates. The AgNPs used in this study were synthesized from silver nitrate using sodium borohydride as a reducing agent, in the presence of PVP as a protecting agent. Two antibiotics, amikacin and vancomycin with different modes of action, were used to functionalize the synthesized PVP-capped AgNPs. The formation of antibiotic-AgNPs conjugate was confirmed by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and X-ray diffraction (XRD) and the results suggest the conjugation of both drugs to silver nanoparticle surfaces. FTIR results indicate that intermolecular hydrogen bonding exists between PVP-coated AgNPs and antibiotics. The oxygen atom coordinated with PVP was available for interaction with either amine or amide groups of drugs. Further, the antibacterial efficacy of these PVP-capped AgNPs with selected antibiotics was evaluated against Escherichia coli and Staphylococcus aureus by agar well diffusion test. Synergetic bactericidal activity for antibiotic-AgNPs conjugate was observed against both microbes.
Collapse
Affiliation(s)
- Amritpal Kaur
- Department of Physics, Panjab University Chandigarh 160014 India
| | - Rajesh Kumar
- Department of Physics, Panjab University Chandigarh 160014 India
| |
Collapse
|
238
|
Mijnendonckx K, Ali MM, Provoost A, Janssen P, Mergeay M, Leys N, Charlier D, Monsieurs P, Van Houdt R. Spontaneous mutation in the AgrRS two-component regulatory system ofCupriavidus metalliduransresults in enhanced silver resistance. Metallomics 2019; 11:1912-1924. [DOI: 10.1039/c9mt00123a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cupriavidus metalliduransis able to adapt to toxic silver concentrations and previously uncharacterized periplasmic proteins played a crucial role in this adaptation process.
Collapse
Affiliation(s)
| | - Md Muntasir Ali
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
- Research Group of Microbiology
| | - Ann Provoost
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
| | - Paul Janssen
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
| | - Max Mergeay
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
| | - Natalie Leys
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
| | - Daniël Charlier
- Research Group of Microbiology
- Department of Bioengineering Sciences
- Vrije Universiteit Brussel
- B-1050 Brussel
- Belgium
| | - Pieter Monsieurs
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
| | - Rob Van Houdt
- Unit of Microbiology
- Belgian Nuclear Research Centre SCK·CEN
- 2400 Mol
- Belgium
| |
Collapse
|
239
|
Veselska O, Dessal C, Melizi S, Guillou N, Podbevšek D, Ledoux G, Elkaim E, Fateeva A, Demessence A. New Lamellar Silver Thiolate Coordination Polymers with Tunable Photoluminescence Energies by Metal Substitution. Inorg Chem 2018; 58:99-105. [PMID: 30525528 DOI: 10.1021/acs.inorgchem.8b01257] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The structures of two lamellar silver thiolate coordination polymers [Ag( p-SPhCO2H)] n (1) and [Ag( p-SPhCO2Me)] n (2) are described for the first time. Their inorganic part is composed of distorted Ag3S3 honeycomb networks separated by noninterpenetrated thiolate ligands. The main difference between the two compounds arises from dimeric hydrogen bonds present for the carboxylic acids. Indepth photophysical studies show that the silver thiolates exhibit multiemission properties, implying luminescence thermochromism. More interestingly, the synthesis of a heterometallic lamellar compound, [Ag0.85Cu0.15( p-SPhCO2H)] n (3), allows to obtain mixed metal thiolate coordination polymers and to tune the photophysical properties with the excitation wavelengths from a green vibronic luminescence to a single red emission band.
Collapse
Affiliation(s)
- Oleksandra Veselska
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON) , 69626 Villeurbanne , France
| | - Caroline Dessal
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON) , 69626 Villeurbanne , France
| | - Sihem Melizi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON) , 69626 Villeurbanne , France
| | - Nathalie Guillou
- Université de Versailles Saint-Quentin-en Yvelines, Université Paris-Saclay, CNRS, Institut Lavoisier de Versailles (ILV) , F-78035 Versailles , France
| | - Darjan Podbevšek
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (ILM) , 69626 Villeurbanne , France
| | - Gilles Ledoux
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière (ILM) , 69626 Villeurbanne , France
| | - Erik Elkaim
- Synchrotron Soleil , Beamline Cristal, 91192 Gif-sur-Yvette , France
| | - Alexandra Fateeva
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces (LMI) , 69626 Villeurbanne , France
| | - Aude Demessence
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON) , 69626 Villeurbanne , France
| |
Collapse
|
240
|
de Luna LAV, Zorgi NE, de Moraes ACM, da Silva DS, Consonni SR, Giorgio S, Alves OL. In vitro immunotoxicological assessment of a potent microbicidal nanocomposite based on graphene oxide and silver nanoparticles. Nanotoxicology 2018; 13:189-203. [PMID: 30451576 DOI: 10.1080/17435390.2018.1537410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Graphene oxide (GO) and silver nanoparticles (AgNPs) can be formed into a hybrid nanomaterial, known as GOAg nanocomposite, which presents high antibacterial activity. The successful translation of this nanomaterial into medical use depends on critical information about its toxicological profile. In keeping with a Safe-by-design approach, we evaluated the immunotoxicity of GOAg using J774 and primary murine macrophages. The interaction between GOAg and macrophages was investigated with a scanning electron microscope (SEM). High-throughput technologies were employed to evaluate cell viability, apoptosis/necrosis, mitochondrial depolarization and lipid peroxidation. The inflammogenicity of nanomaterials was predicted after quantification of the cytokines IL-1β, TNF-α and IL-10 before and after stimulation with interferon-γ (IFN-γ). The ratio between CD80 and CD206 macrophage populations were also estimated. In addition, the production of nitric oxide (NO) was investigated. SEM surveys revealed the potential of GOAg to induce frustrated phagocytosis. GOAg induced a dose-dependent mitochondrial depolarization, apoptosis and lipid peroxidation to J774 macrophages. GOAg toxicity was not modified in an inflammatory microenvironment, but its toxicity was within the range of concentrations used in bacterial inactivation. GOAg did not induce primary macrophages to significantly produce inflammatory cytokines, and previous macrophage stimulation did not enhance GOAg inflammogenicity. Additionally, the pristine nanomaterials and GOAg do not shift macrophages polarization towards M1. Sublethal concentrations of GOAg did not impair macrophages NO production. Finally, we suggest options for improvement of GOAg nanocomposite in ways that may help minimize its possible adverse outcomes to human health.
Collapse
Affiliation(s)
- Luis Augusto Visani de Luna
- a Laboratory of Solid State Chemistry , Institute of Chemistry, University of Campinas , Campinas , Brazil.,b Department of Animal Biology , Laboratory of leishmaniasis, Institute of Biology, University of Campinas , Campinas , Brazil
| | - Nahiara Esteves Zorgi
- b Department of Animal Biology , Laboratory of leishmaniasis, Institute of Biology, University of Campinas , Campinas , Brazil
| | | | | | - Sílvio Roberto Consonni
- d Laboratory of Cytochemistry and Immunocytochemistry , Institute of Biology, University of Campinas , Campinas , Brazil
| | - Selma Giorgio
- b Department of Animal Biology , Laboratory of leishmaniasis, Institute of Biology, University of Campinas , Campinas , Brazil
| | - Oswaldo Luiz Alves
- a Laboratory of Solid State Chemistry , Institute of Chemistry, University of Campinas , Campinas , Brazil
| |
Collapse
|
241
|
Ziąbka M, Dziadek M, Menaszek E. Biocompatibility of Poly(acrylonitrile-butadiene-styrene) Nanocomposites Modified with Silver Nanoparticles. Polymers (Basel) 2018; 10:polym10111257. [PMID: 30961182 PMCID: PMC6401987 DOI: 10.3390/polym10111257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 01/02/2023] Open
Abstract
We evaluated the biological, mechanical, and surface properties of polymer nanocomposites manufactured via plastics processing, extrusion, and injection moulding. The aim of this study was to identify the interaction of fibroblasts and osteoblasts with materials intended for middle ear implants. We examined if silver nanoparticles (AgNPs) may change the mechanical parameters of the polymer nanocomposites. In our study, the biostable polymer of thermoplastic acrylonitrile-butadiene-styrene (ABS) copolymer was used. Silver nanoparticles were applied as a modifier. We discuss surface parameters of the materials, including wettability and roughness, and evaluated the microstructure. The mechanical parameters, such as the Young's modulus and tensile strength, were measured. Cytotoxicity tests were conducted on two cell lines: Hs680.Tr human fibroblasts and Saos-2 human osteoblasts. Cell viability, proliferation, and morphology in direct contact with nanocomposites were tested. Based on the results, the incorporated modifier was found to affect neither the number of osteoblasts nor the fibroblast cells. However, the addition of AgNPs had a relatively small effect on the cytotoxicity of the materials. A slight increase in the cytotoxicity of the test materials was observed with respect to the control, with the cytotoxicity of the materials tending to decrease after seven days for osteoblast cells, whereas it remained steady for fibroblasts. Based on optical microscope observation, the shape and morphology of the adhered cells were evaluated. After seven days of culture, fibroblasts and osteoblasts were properly shaped and evenly settled on the surface of both the pure polymer and the silver nanoparticle-modified composite. Water droplet tests demonstrated increased hydrophilicity when adding the AgNPs to ABS matrices, whereas roughness tests did not show changes in the surface topography of the investigated samples. The 0.5% by weight incorporation of AgNPs into ABS matrices did not influence the mechanical properties.
Collapse
Affiliation(s)
- Magdalena Ziąbka
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Michał Dziadek
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Elżbieta Menaszek
- Jagiellonian University, Collegium Medicum, Faculty of Pharmacy, Department of Cytobiology, ul. Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
242
|
Dhanda G, Sarkar P, Samaddar S, Haldar J. Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. J Med Chem 2018; 62:3184-3205. [DOI: 10.1021/acs.jmedchem.8b01093] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sandip Samaddar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
243
|
Ren X, Zou L, Lu J, Holmgren A. Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Radic Biol Med 2018; 127:238-247. [PMID: 29807162 DOI: 10.1016/j.freeradbiomed.2018.05.081] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/27/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
Abstract
Thioredoxin system is a ubiquitous disulfide reductase system evolutionarily conserved through all living organisms. It contains thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH. TrxR can use NADPH to reduce Trx which passes the reducing equivalent to its downstream substrates involved in various biomedical events, such as ribonucleotide reductase for deoxyribonucleotide and DNA synthesis, or peroxiredoxins for counteracting oxidative stress. Obviously, TrxR stays in the center of the system to maintain the electron flow. Mammalian TrxR contains a selenocysteine (Sec) in its active site, which is not present in the low molecular weight prokaryotic TrxRs. Due to the special property of Sec, mammalian TrxR employs a different catalytic mechanism from prokaryotic TrxRs and has a broader substrate-spectrum. On the other hand, Sec is easily targeted by electrophilic compounds which inhibits the TrxR activity and may turn TrxR into an NADPH oxidase. Ebselen, a synthetic seleno-compound containing selenazol, has been tested in several clinical studies. In mammalian cells, ebselen works as a GSH peroxidase mimic and mainly as a peroxiredoxin mimic via Trx and TrxR to scavenge hydrogen peroxide and peroxynitrite. In prokaryotic cells, ebselen is an inhibitor of TrxR and leads to elevation of reactive oxygen species (ROS). Recent studies have made use of the difference and developed ebselen as a potential antibiotic, especially in combination with silver which enables ebselen to kill multi-drug resistant Gram-negative bacteria. Collectively, Sec is important for the biological functions of mammalian TrxR and distinguishes it from prokaryotic TrxRs, therefore it is a promising drug target.
Collapse
Affiliation(s)
- Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lili Zou
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University, 443000 Yichang, China
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
244
|
Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007⁻2017). ANTIBIOTICS (BASEL, SWITZERLAND) 2018. [PMID: 30373130 DOI: 10.3390/antibiotics7040093]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of silver to control infections was common in ancient civilizations. In recent years, this material has resurfaced as a therapeutic option due to the increasing prevalence of bacterial resistance to antimicrobials. This renewed interest has prompted researchers to investigate how the antimicrobial properties of silver might be enhanced, thus broadening the possibilities for antimicrobial applications. This review presents a compilation of patented products utilizing any forms of silver for its bactericidal actions in the decade 2007⁻2017. It analyses the trends in patent applications related to different forms of silver and their use for antimicrobial purposes. Based on the retrospective view of registered patents, statements of prognosis are also presented with a view to heightening awareness of potential industrial and health care applications.
Collapse
|
245
|
Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007⁻2017). Antibiotics (Basel) 2018; 7:antibiotics7040093. [PMID: 30373130 PMCID: PMC6315945 DOI: 10.3390/antibiotics7040093] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
The use of silver to control infections was common in ancient civilizations. In recent years, this material has resurfaced as a therapeutic option due to the increasing prevalence of bacterial resistance to antimicrobials. This renewed interest has prompted researchers to investigate how the antimicrobial properties of silver might be enhanced, thus broadening the possibilities for antimicrobial applications. This review presents a compilation of patented products utilizing any forms of silver for its bactericidal actions in the decade 2007–2017. It analyses the trends in patent applications related to different forms of silver and their use for antimicrobial purposes. Based on the retrospective view of registered patents, statements of prognosis are also presented with a view to heightening awareness of potential industrial and health care applications.
Collapse
|
246
|
Wang X, Wu J, Li P, Wang L, Zhou J, Zhang G, Li X, Hu B, Xing X. Microenvironment-Responsive Magnetic Nanocomposites Based on Silver Nanoparticles/Gentamicin for Enhanced Biofilm Disruption by Magnetic Field. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34905-34915. [PMID: 30240195 DOI: 10.1021/acsami.8b10972] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biofilms contribute to persistent bacterial infections as well as formidable resistances to conventional antibiotics. However, it is still a major challenge to establish an advanced antibacterial nanoplatform that can efficiently eradicate biofilms while overcoming bacterial resistances. Taking advantage of the stimuli-responsive technique and the magnetic guidance strategy, here we present a highly efficient nanoplatform for planktonic inactivation and biofilm disruption. The multilayer films consisting of antibiotic gentamicin (Gen), tannic acid, and silver nanoparticles (AgNPs) were fabricated and coated on magnetic nanoparticles via electrostatic interactions. To achieve controlled drug release and improved biocompatibility, biodegradable hyaluronic acid was capped on the outer surface as a responsive shell. In vitro release profiles suggested that the nanocomposites showed both enzyme and pH-responsive release properties. The nanoplatform could be employed as a powerful nanocarrier for small molecular Gen and AgNPs delivery and on-demand release in response to bacterial infection microenvironment. The nanocomposites also showed satisfying antibacterial capacities against planktonic Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Intriguingly, with magnetic field navigation (NdFeB, 2000 gauss), the nanocomposites could be guided to handily penetrate into S. aureus biofilm and performed dual-responsive release, showing significantly enhanced biofilm disruption. Moreover, excess reactive oxygen species production resulting from the nanocomposites contributed to the decomposition of biofilm matrix and ultimate biofilm eradication. As a consequence, the ingenious antibacterial nanoplatform could be promising for combating biofilm infections while overcoming bacterial resistances with extra environmental factors such as magnetic field.
Collapse
Affiliation(s)
- Xi Wang
- College of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Juan Wu
- School of Chemical and Environmental Engineering , Jiangsu University of Technology , Changzhou 213002 , China
| | - Peili Li
- College of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Lina Wang
- College of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Jie Zhou
- College of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Gaoke Zhang
- College of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Xin Li
- College of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Bingcheng Hu
- College of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Xiaodong Xing
- College of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| |
Collapse
|
247
|
Kubo AL, Capjak I, Vrček IV, Bondarenko OM, Kurvet I, Vija H, Ivask A, Kasemets K, Kahru A. Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids Surf B Biointerfaces 2018; 170:401-410. [DOI: 10.1016/j.colsurfb.2018.06.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 10/14/2022]
|
248
|
Jia Z, Zhou W, Yan J, Xiong P, Guo H, Cheng Y, Zheng Y. Constructing Multilayer Silk Protein/Nanosilver Biofunctionalized Hierarchically Structured 3D Printed Ti6Al4 V Scaffold for Repair of Infective Bone Defects. ACS Biomater Sci Eng 2018; 5:244-261. [DOI: 10.1021/acsbiomaterials.8b00857] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhaojun Jia
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Department of Orthopaedic and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Wenhao Zhou
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jianglong Yan
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Pan Xiong
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hui Guo
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yan Cheng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
249
|
Zadpoor AA. Current Trends in Metallic Orthopedic Biomaterials: From Additive Manufacturing to Bio-Functionalization, Infection Prevention, and Beyond. Int J Mol Sci 2018; 19:ijms19092684. [PMID: 30201871 PMCID: PMC6165069 DOI: 10.3390/ijms19092684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
There has been a growing interest in metallic biomaterials during the last five years, as recent developments in additive manufacturing (=3D printing), surface bio-functionalization techniques, infection prevention strategies, biodegradable metallic biomaterials, and composite biomaterials have provided many possibilities to develop biomaterials and medical devices with unprecedented combinations of favorable properties and advanced functionalities. Moreover, development of biomaterials is no longer separated from the other branches of biomedical engineering, particularly tissue biomechanics, musculoskeletal dynamics, and image processing aspects of skeletal radiology. In this editorial, I will discuss all the above-mentioned topics, as they constitute some of the most important trends of research on metallic biomaterials. This editorial will, therefore, serve as a foreword to the papers appearing in a special issue covering the current trends in metallic biomaterials.
Collapse
Affiliation(s)
- Amir A Zadpoor
- Additive Manufacturing Laboratory, Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft 2628CD, The Netherlands.
| |
Collapse
|
250
|
Barras F, Aussel L, Ezraty B. Silver and Antibiotic, New Facts to an Old Story. Antibiotics (Basel) 2018; 7:antibiotics7030079. [PMID: 30135366 PMCID: PMC6163818 DOI: 10.3390/antibiotics7030079] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/19/2018] [Accepted: 08/21/2018] [Indexed: 11/21/2022] Open
Abstract
The therapeutic arsenal against bacterial infections is rapidly shrinking, as drug resistance spreads and pharmaceutical industry are struggling to produce new antibiotics. In this review we cover the efficacy of silver as an antibacterial agent. In particular we recall experimental evidences pointing to the multiple targets of silver, including DNA, proteins and small molecules, and we review the arguments for and against the hypothesis that silver acts by enhancing oxidative stress. We also review the recent use of silver as an adjuvant for antibiotics. Specifically, we discuss the state of our current understanding on the potentiating action of silver ions on aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Frédéric Barras
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), 13009 Marseille, France.
- Département de Microbiologie, Institut Pasteur, 75015 Paris, France.
| | - Laurent Aussel
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), 13009 Marseille, France.
| | - Benjamin Ezraty
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), 13009 Marseille, France.
| |
Collapse
|