201
|
CRISPR-Cas9 Probing of Infectious Diseases and Genetic Disorders. Indian J Pediatr 2019; 86:1131-1135. [PMID: 31367975 DOI: 10.1007/s12098-019-03037-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022]
Abstract
The ability to precisely change the deoxyribonucleic acid (DNA) bases at specific sites offers tremendous advantages in the field of molecular biology and medical biotechnology. Identification of Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR), revelation of its role in prokaryotic adaptive immunity and subsequent conversion into genome and epigenome engineering system are the landmark research progresses of the decade. The possibilities of deciphering the molecular mechanisms of the disease, identifying the disease targets, generating the disease models, validating the drug targets, developing resistance to the infection and correcting the genotype have brought off much enthusiasm in the field of infectious diseases and genetic disorders. This review focuses on CRISPR/Cas9's impact in the field of infection and genetic disorders.
Collapse
|
202
|
Valenti MT, Serena M, Carbonare LD, Zipeto D. CRISPR/Cas system: An emerging technology in stem cell research. World J Stem Cells 2019; 11:937-956. [PMID: 31768221 PMCID: PMC6851009 DOI: 10.4252/wjsc.v11.i11.937] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The identification of new and even more precise technologies for modifying and manipulating the genome has been a challenge since the discovery of the DNA double helix. The ability to modify selectively specific genes provides a powerful tool for characterizing gene functions, performing gene therapy, correcting specific genetic mutations, eradicating diseases, engineering cells and organisms to achieve new and different functions and obtaining transgenic animals as models for studying specific diseases. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology has recently revolutionized genome engineering. The application of this new technology to stem cell research allows disease models to be developed to explore new therapeutic tools. The possibility of translating new systems of molecular knowledge to clinical research is particularly appealing for addressing degenerative diseases. In this review, we describe several applications of CRISPR/Cas9 to stem cells related to degenerative diseases. In addition, we address the challenges and future perspectives regarding the use of CRISPR/Cas9 as an important technology in the medical sciences.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, Section of Internal Medicine D, University of Verona, Verona 37134, Italy.
| | - Michela Serena
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Luca Dalle Carbonare
- Department of Medicine, Section of Internal Medicine D, University of Verona, Verona 37134, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Laboratory of Molecular Biology, Verona 37134, Italy
| |
Collapse
|
203
|
Métais JY, Doerfler PA, Mayuranathan T, Bauer DE, Fowler SC, Hsieh MM, Katta V, Keriwala S, Lazzarotto CR, Luk K, Neel MD, Perry SS, Peters ST, Porter SN, Ryu BY, Sharma A, Shea D, Tisdale JF, Uchida N, Wolfe SA, Woodard KJ, Wu Y, Yao Y, Zeng J, Pruett-Miller S, Tsai SQ, Weiss MJ. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv 2019; 3:3379-3392. [PMID: 31698466 PMCID: PMC6855127 DOI: 10.1182/bloodadvances.2019000820] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Induction of fetal hemoglobin (HbF) via clustered regularly interspaced short palindromic repeats/Cas9-mediated disruption of DNA regulatory elements that repress γ-globin gene (HBG1 and HBG2) expression is a promising therapeutic strategy for sickle cell disease (SCD) and β-thalassemia, although the optimal technical approaches and limiting toxicities are not yet fully defined. We disrupted an HBG1/HBG2 gene promoter motif that is bound by the transcriptional repressor BCL11A. Electroporation of Cas9 single guide RNA ribonucleoprotein complex into normal and SCD donor CD34+ hematopoietic stem and progenitor cells resulted in high frequencies of on-target mutations and the induction of HbF to potentially therapeutic levels in erythroid progeny generated in vitro and in vivo after transplantation of hematopoietic stem and progenitor cells into nonobese diabetic/severe combined immunodeficiency/Il2rγ-/-/KitW41/W41 immunodeficient mice. On-target editing did not impair CD34+ cell regeneration or differentiation into erythroid, T, B, or myeloid cell lineages at 16 to 17 weeks after xenotransplantation. No off-target mutations were detected by targeted sequencing of candidate sites identified by circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), an in vitro genome-scale method for detecting Cas9 activity. Engineered Cas9 containing 3 nuclear localization sequences edited human hematopoietic stem and progenitor cells more efficiently and consistently than conventional Cas9 with 2 nuclear localization sequences. Our studies provide novel and essential preclinical evidence supporting the safety, feasibility, and efficacy of a mechanism-based approach to induce HbF for treating hemoglobinopathies.
Collapse
Affiliation(s)
- Jean-Yves Métais
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Phillip A Doerfler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Stephanie C Fowler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Matthew M Hsieh
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Varun Katta
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Sagar Keriwala
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Cicera R Lazzarotto
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | | | | | | | | | - Byoung Y Ryu
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN
| | - Devlin Shea
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Kaitly J Woodard
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Yuxuan Wu
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | | | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
204
|
Brendel C, Rio P, Verhoeyen E. Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochem Pharmacol 2019; 174:113711. [PMID: 31726047 DOI: 10.1016/j.bcp.2019.113711] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
Over the last decade, incrementally improved xenograft mouse models, which support the engraftment and development of a human hemato-lymphoid system, have been developed and represent an important fundamental and preclinical research tool. Immunodeficient mice can be transplanted with human hematopoietic stem cells (HSCs) and this process is accompanied by HSC homing to the murine bone marrow. This is followed by stem cell expansion, multilineage hematopoiesis, long-term engraftment, and functional human antibody and cellular immune responses. The most significant contributions made by these humanized mice are the identification of normal and leukemic hematopoietic stem cells, the characterization of the human hematopoietic hierarchy, screening of anti-cancer therapies and their use as preclinical models for gene therapy applications. This review article focuses on several gene therapy applications that have benefited from evaluation in humanized mice such as chimeric antigen receptor (CAR) T cell therapies for cancer, anti-viral therapies and gene therapies for multiple monogenetic diseases. Humanized mouse models have been and still are of great value for the gene therapy field since they provide a more reliable understanding of sometimes complicated therapeutic approaches such as recently developed therapeutic gene editing strategies, which seek to correct a gene at its endogenous genomic locus. Additionally, humanized mouse models, which are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior toclinical trials, help to expedite the critical translation from basic findings to clinical applications. In this review, innovative gene therapies and preclinical studies to evaluate T- and B-cell and HSC-based therapies in humanized mice are discussed and illustrated by multiple examples.
Collapse
Affiliation(s)
- Christian Brendel
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Paula Rio
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France; Université Côte d'Azur, INSERM, C3M, 06204 Nice, France.
| |
Collapse
|
205
|
Radtke S, Humbert O, Kiem HP. Mouse models in hematopoietic stem cell gene therapy and genome editing. Biochem Pharmacol 2019; 174:113692. [PMID: 31705854 DOI: 10.1016/j.bcp.2019.113692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Gene therapy has become an important treatment option for a variety of hematological diseases. The biggest advances have been made with CAR T cells and many of those studies are now FDA approved as a routine treatment for some hematologic malignancies. Hematopoietic stem cell (HSC) gene therapy is not far behind with treatment approvals granted for beta-hemoglobinopathies and adenosine deaminase severe combined immune deficiency (ADA-SCID), and additional approbations currently being sought. With the current pace of research, the significant investment of biotech companies, and the continuously growing toolbox of viral as well as non-viral gene delivery methods, the development of new ex vivo and in vivo gene therapy approaches is at an all-time high. Research in the field of gene therapy has been ongoing for more than 4 decades with big success stories as well as devastating drawbacks along the way. In particular, the damaging effect of uncontrolled viral vector integration observed in the initial gene therapy applications in the 90s led to a more comprehensive upfront safety assessment of treatment strategies. Since the late 90s, an important read-out to comprehensively assess the quality and safety of cell products has come forward with the mouse xenograft model. Here, we review the use of mouse models across the different stages of basic, pre-clinical and translational research towards the clinical application of HSC-mediated gene therapy and editing approaches.
Collapse
Affiliation(s)
- Stefan Radtke
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
206
|
Tong S, Moyo B, Lee CM, Leong K, Bao G. Engineered materials for in vivo delivery of genome-editing machinery. NATURE REVIEWS. MATERIALS 2019; 4:726-737. [PMID: 34094589 PMCID: PMC8174554 DOI: 10.1038/s41578-019-0145-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 05/22/2023]
Abstract
Genome editing technologies, such as CRISPR/Cas9, are promising for treating otherwise incurable genetic diseases. Great progress has been made for ex vivo genome editing; however, major bottlenecks exist in the development of efficient, safe, and targetable in vivo delivery systems, which are needed for the treatment of many diseases. To achieve high efficacy and safety in therapeutic in vivo genome editing, editing activities must be controlled spatially and temporally in the body, which requires novel materials, delivery strategies, and control mechanisms. Thus, there is currently a tremendous opportunity for the biomaterials research community to develop in vivo delivery systems that overcome the problems of low editing efficiency, off-targeting effect, safety, and cell and tissue specificity. In this Review, we summarize delivery approaches and provide perspectives on the challenges and possible solutions, aiming to stimulate further development of engineered materials for in vivo delivery of genome-editing machinery.
Collapse
Affiliation(s)
- Sheng Tong
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Buhle Moyo
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ciaran M. Lee
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Kam Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
207
|
Xiong Z, Xie Y, Yang Y, Xue Y, Wang D, Lin S, Chen D, Lu D, He L, Song B, Yang Y, Sun X. Efficient gene correction of an aberrant splice site in β-thalassaemia iPSCs by CRISPR/Cas9 and single-strand oligodeoxynucleotides. J Cell Mol Med 2019; 23:8046-8057. [PMID: 31631510 PMCID: PMC6850948 DOI: 10.1111/jcmm.14669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022] Open
Abstract
β‐thalassaemia is a prevalent hereditary haematological disease caused by mutations in the human haemoglobin β (HBB) gene. Among them, the HBB IVS2‐654 (C > T) mutation, which is in the intron, creates an aberrant splicing site. Bone marrow transplantation for curing β‐thalassaemia is limited due to the lack of matched donors. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein 9 (Cas9), as a widely used tool for gene editing, is able to target specific sequence and create double‐strand break (DSB), which can be combined with the single‐stranded oligodeoxynucleotide (ssODN) to correct mutations. In this study, according to two different strategies, the HBB IVS2‐654 mutation was seamlessly corrected in iPSCs by CRISPR/Cas9 system and ssODN. To reduce the occurrence of secondary cleavage, a more efficient strategy was adopted. The corrected iPSCs kept pluripotency and genome stability. Moreover, they could differentiate normally. Through CRISPR/Cas9 system and ssODN, our study provides improved strategies for gene correction of β‐Thalassaemia, and the expression of the HBB gene can be restored, which can be used for gene therapy in the future.
Collapse
Affiliation(s)
- Zeyu Xiong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingjun Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Yang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanting Xue
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ding Wang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shouheng Lin
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Diyu Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dian Lu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lina He
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Song
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinghong Yang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
208
|
Quintana-Bustamante O, Fañanas-Baquero S, Orman I, Torres R, Duchateau P, Poirot L, Gouble A, Bueren JA, Segovia JC. Gene editing of PKLR gene in human hematopoietic progenitors through 5' and 3' UTR modified TALEN mRNA. PLoS One 2019; 14:e0223775. [PMID: 31618280 PMCID: PMC6795450 DOI: 10.1371/journal.pone.0223775] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Pyruvate Kinase Deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene, which encodes the erythroid specific Pyruvate Kinase enzyme. Erythrocytes from PKD patients show an energetic imbalance and are susceptible to hemolysis. Gene editing of hematopoietic stem cells (HSCs) would provide a therapeutic benefit and improve safety of gene therapy approaches to treat PKD patients. In previous studies, we established a gene editing protocol that corrected the PKD phenotype of PKD-iPSC lines through a TALEN mediated homologous recombination strategy. With the goal of moving toward more clinically relevant stem cells, we aim at editing the PKLR gene in primary human hematopoietic progenitors and hematopoietic stem cells (HPSCs). After nucleofection of the gene editing tools and selection with puromycin, up to 96% colony forming units showed precise integration. However, a low yield of gene edited HPSCs was associated to the procedure. To reduce toxicity while increasing efficacy, we worked on i) optimizing gene editing tools and ii) defining optimal expansion and selection times. Different versions of specific nucleases (TALEN and CRISPR-Cas9) were compared. TALEN mRNAs with 5’ and 3’ added motifs to increase RNA stability were the most efficient nucleases to obtain high gene editing frequency and low toxicity. Shortening ex vivo manipulation did not reduce the efficiency of homologous recombination and preserved the hematopoietic progenitor potential of the nucleofected HPSCs. Lastly, a very low level of gene edited HPSCs were detected after engraftment in immunodeficient (NSG) mice. Overall, we showed that gene editing of the PKLR gene in HPSCs is feasible, although further improvements must to be done before the clinical use of the gene editing to correct PKD.
Collapse
Affiliation(s)
- Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
- * E-mail:
| | - Sara Fañanas-Baquero
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Israel Orman
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Raul Torres
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Instituto Josep Carreras, Barcelona, Spain
| | | | | | | | - Juan A. Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Jose C. Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
209
|
Rogers GL, Chen HY, Morales H, Cannon PM. Homologous Recombination-Based Genome Editing by Clade F AAVs Is Inefficient in the Absence of a Targeted DNA Break. Mol Ther 2019; 27:1726-1736. [PMID: 31540849 PMCID: PMC6822228 DOI: 10.1016/j.ymthe.2019.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are frequently used as donor templates for genome editing by homologous recombination. Although modification rates are typically under 1%, they are greatly enhanced by targeted double-stranded DNA breaks (DSBs). A recent report described clade F AAVs mediating high-efficiency homologous recombination-based editing in the absence of DSBs. The clade F vectors included AAV9 and a series isolated from human hematopoietic stem and progenitor cells (HSPCs). We evaluated these vectors by packaging homology donors into AAV9 and an AAVHSC capsid and examining their ability to insert GFP at the CCR5 and AAVS1 loci in human HSPCs and cell lines. As a control, we used AAV6, which effectively edits HSPCs but only when combined with a targeted DSB. Each AAV vector promoted GFP insertion in the presence of matched CCR5 or AAVS1 zinc-finger nucleases (ZFNs), but none supported detectable editing in the absence of the nucleases. Rates of editing with ZFNs correlated with transduction efficiencies for each vector, implying no differences in the ability of donor sequences delivered by the different vectors to direct genome editing. Our results, therefore, do not support that clade F AAVs can perform high-efficiency genome editing in the absence of a DSB.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
210
|
Tran NT, Sommermann T, Graf R, Trombke J, Pempe J, Petsch K, Kühn R, Rajewsky K, Chu VT. Efficient CRISPR/Cas9-Mediated Gene Knockin in Mouse Hematopoietic Stem and Progenitor Cells. Cell Rep 2019; 28:3510-3522.e5. [PMID: 31553918 PMCID: PMC6899516 DOI: 10.1016/j.celrep.2019.08.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
Mutations accumulating in hematopoietic stem and progenitor cells (HSPCs) during development can cause severe hematological disorders. Modeling these mutations in mice is essential for understanding their functional consequences. Here, we describe an efficient CRISPR/Cas9-based system to knock in and repair genes in mouse HSPCs. CRISPR/Cas9 ribonucleoproteins, in combination with recombinant adeno-associated virus (rAAV)-DJ donor templates, led to gene knockin efficiencies of up to 30% in the Lmnb1 and Actb loci of mouse HSPCs in vitro. The targeted HSPCs engraft and reconstitute all immune cell lineages in the recipient mice. Using this approach, we corrected a neomycin-disrupted Rag2 gene. The Rag2-corrected HSPCs restore B and T cell development in vivo, confirming the functionality of the approach. Our method provides an efficient strategy to study gene function in the hematopoietic system and model hematological disorders in vivo, without the need for germline mutagenesis.
Collapse
Affiliation(s)
- Ngoc Tung Tran
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Robin Graf
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Janine Trombke
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Kerstin Petsch
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | - Van Trung Chu
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
211
|
CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnol Adv 2019; 37:107447. [PMID: 31513841 DOI: 10.1016/j.biotechadv.2019.107447] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
CRISPR/Cas9 system exploits the concerted action of Cas9 nuclease and programmable single guide RNA (sgRNA), and has been widely used for genome editing. The Cas9 nuclease activity can be abolished by mutation to yield the catalytically deactivated Cas9 (dCas9). Coupling with the customizable sgRNA for targeting, dCas9 can be fused with transcription repressors to inhibit specific gene expression (CRISPR interference, CRISPRi) or fused with transcription activators to activate the expression of gene of interest (CRISPR activation, CRISPRa). Here we introduce the principles and recent advances of these CRISPR technologies, their delivery vectors and review their applications in stem cell engineering and regenerative medicine. In particular, we focus on in vitro stem cell fate manipulation and in vivo applications such as prevention of retinal and muscular degeneration, neural regeneration, bone regeneration, cartilage tissue engineering, as well as treatment of diseases in blood, skin and liver. Finally, the challenges to translate CRISPR to regenerative medicine and future perspectives are discussed and proposed.
Collapse
|
212
|
Pattabhi S, Lotti SN, Berger MP, Singh S, Lux CT, Jacoby K, Lee C, Negre O, Scharenberg AM, Rawlings DJ. In Vivo Outcome of Homology-Directed Repair at the HBB Gene in HSC Using Alternative Donor Template Delivery Methods. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:277-288. [PMID: 31279229 PMCID: PMC6611979 DOI: 10.1016/j.omtn.2019.05.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
Gene editing following designer nuclease cleavage in the presence of a DNA donor template can revert mutations in disease-causing genes. For optimal benefit, reversion of the point mutation in HBB leading to sickle cell disease (SCD) would permit precise homology-directed repair (HDR) while concurrently limiting on-target non-homologous end joining (NHEJ)-based HBB disruption. In this study, we directly compared the relative efficiency of co-delivery of a novel CRISPR/Cas9 ribonucleoprotein targeting HBB in association with recombinant adeno-associated virus 6 (rAAV6) versus single-stranded oligodeoxynucleotides (ssODNs) to introduce the sickle mutation (GTC or GTG; encoding E6V) or a silent change (GAA; encoding E6optE) in human CD34+ mobilized peripheral blood stem cells (mPBSCs) derived from healthy donors. In vitro, rAAV6 outperformed ssODN donor template delivery and mediated greater HDR correction, leading to both higher HDR rates and a higher HDR:NHEJ ratio. In contrast, at 12-14 weeks post-transplant into recipient, immunodeficient, NOD, B6, SCID Il2rγ-/- Kit(W41/W41) (NBSGW) mice, a ∼6-fold higher proportion of ssODN-modified cells persisted in vivo compared to recipients of rAAV6-modified mPBSCs. Together, our findings highlight that methodology for donor template delivery markedly impacts long-term persistence of HBB gene-modified mPBSCs, and they suggest that the ssODN platform is likely to be most amenable to direct clinical translation.
Collapse
Affiliation(s)
- Sowmya Pattabhi
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Samantha N Lotti
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Mason P Berger
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Swati Singh
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Christopher T Lux
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kyle Jacoby
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Andrew M Scharenberg
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; Casebia Therapeutics, Cambridge, MA, USA; Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA, USA; Department of Immunology, University of Washington, School of Medicine, Seattle, WA, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA, USA; Department of Immunology, University of Washington, School of Medicine, Seattle, WA, USA.
| |
Collapse
|
213
|
Park SH, Lee CM, Dever DP, Davis TH, Camarena J, Srifa W, Zhang Y, Paikari A, Chang AK, Porteus MH, Sheehan VA, Bao G. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res 2019; 47:7955-7972. [PMID: 31147717 PMCID: PMC6735704 DOI: 10.1093/nar/gkz475] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/14/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Sickle cell disease (SCD) is a monogenic disorder that affects millions worldwide. Allogeneic hematopoietic stem cell transplantation is the only available cure. Here, we demonstrate the use of CRISPR/Cas9 and a short single-stranded oligonucleotide template to correct the sickle mutation in the β-globin gene in hematopoietic stem and progenitor cells (HSPCs) from peripheral blood or bone marrow of patients with SCD, with 24.5 ± 7.6% efficiency without selection. Erythrocytes derived from gene-edited cells showed a marked reduction of sickle cells, with the level of normal hemoglobin (HbA) increased to 25.3 ± 13.9%. Gene-corrected SCD HSPCs retained the ability to engraft when transplanted into non-obese diabetic (NOD)-SCID-gamma (NSG) mice with detectable levels of gene correction 16-19 weeks post-transplantation. We show that, by using a high-fidelity SpyCas9 that maintained the same level of on-target gene modification, the off-target effects including chromosomal rearrangements were significantly reduced. Taken together, our results demonstrate efficient gene correction of the sickle mutation in both peripheral blood and bone marrow-derived SCD HSPCs, a significant reduction in sickling of red blood cells, engraftment of gene-edited SCD HSPCs in vivo and the importance of reducing off-target effects; all are essential for moving genome editing based SCD treatment into clinical practice.
Collapse
Affiliation(s)
- So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Timothy H Davis
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Waracharee Srifa
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Yankai Zhang
- Texas Children’s Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alireza Paikari
- Texas Children’s Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alicia K Chang
- Texas Children’s Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Vivien A Sheehan
- Texas Children’s Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
214
|
Abstract
Gene therapy for β-thalassemia and sickle-cell disease is based on transplantation of genetically corrected, autologous hematopoietic stem cells. Preclinical and clinical studies have shown the safety and efficacy of this therapeutic approach, currently based on lentiviral vectors to transfer a β-globin gene under the transcriptional control of regulatory elements of the β-globin locus. Nevertheless, a number of factors are still limiting its efficacy, such as limited stem-cell dose and quality, suboptimal gene transfer efficiency and gene expression levels, and toxicity of myeloablative regimens. In addition, the cost and complexity of the current vector and cell manufacturing clearly limits its application to patients living in less favored countries, where hemoglobinopathies may reach endemic proportions. Gene-editing technology may provide a therapeutic alternative overcoming some of these limitations, though proving its safety and efficacy will most likely require extensive clinical investigation.
Collapse
Affiliation(s)
- Marina Cavazzana
- University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
- Correspondence: Marina Cavazzana, Imagine Institute, 24 Boulevard de Montparnasse, 75015 Paris, France.
| | - Fulvio Mavilio
- University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Fulvio Mavilio, Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy.
| |
Collapse
|
215
|
Papasavva P, Kleanthous M, Lederer CW. Rare Opportunities: CRISPR/Cas-Based Therapy Development for Rare Genetic Diseases. Mol Diagn Ther 2019; 23:201-222. [PMID: 30945166 PMCID: PMC6469594 DOI: 10.1007/s40291-019-00392-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rare diseases pose a global challenge, in that their collective impact on health systems is considerable, whereas their individually rare occurrence impedes research and development of efficient therapies. In consequence, patients and their families are often unable to find an expert for their affliction, let alone a cure. The tide is turning as pharmaceutical companies embrace gene therapy development and as serviceable tools for the repair of primary mutations separate the ability to create cures from underlying disease expertise. Whereas gene therapy by gene addition took decades to reach the clinic by incremental disease-specific refinements of vectors and methods, gene therapy by genome editing in its basic form merely requires certainty about the causative mutation. Suddenly we move from concept to trial in 3 years instead of 30: therapy development in the fast lane, with all the positive and negative implications of the phrase. Since their first application to eukaryotic cells in 2013, the proliferation and refinement in particular of tools based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) prokaryotic RNA-guided nucleases has prompted a landslide of therapy-development studies for rare diseases. An estimated thousands of orphan diseases are up for adoption, and legislative, entrepreneurial, and research initiatives may finally conspire to find many of them a good home. Here we summarize the most significant recent achievements and remaining hurdles in the application of CRISPR/Cas technology to rare diseases and take a glimpse at the exciting road ahead.
Collapse
Affiliation(s)
- Panayiota Papasavva
- Department of Molecular Genetics Thalassaemia, Cyprus School of Molecular Medicine and The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, Cyprus School of Molecular Medicine and The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia, Cyprus School of Molecular Medicine and The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus.
| |
Collapse
|
216
|
Ghiaccio V, Chappell M, Rivella S, Breda L. Gene Therapy for Beta-Hemoglobinopathies: Milestones, New Therapies and Challenges. Mol Diagn Ther 2019; 23:173-186. [PMID: 30701409 DOI: 10.1007/s40291-019-00383-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inherited monogenic disorders such as beta-hemoglobinopathies (BH) are fitting candidates for treatment via gene therapy by gene transfer or gene editing. The reported safety and efficacy of lentiviral vectors in preclinical studies have led to the development of several clinical trials for the addition of a functional beta-globin gene. Across trials, dozens of transfusion-dependent patients with sickle cell disease (SCD) and transfusion-dependent beta-thalassemia (TDT) have been treated via gene therapy and have achieved reduced transfusion requirements. While overall results are encouraging, the outcomes appear to be strongly influenced by the level of lentiviral integration in transduced cells after engraftment, as well as the underlying genotype resulting in thalassemia. In addition, the method of procurement of hematopoietic stem cells can affect their quality and thus the outcome of gene therapy both in SCD and TDT. This suggests that new studies aimed at maximizing the number of corrected cells with long-term self-renewal potential are crucial to ensure successful treatment for every patient. Recent advancements in gene transfer and bone marrow transplantation have improved the success of this approach, and the results obtained by using these strategies demonstrated significant improvement of gene transfer outcome in patients. The advent of new gene-editing technologies has suggested additional therapeutic options. These are primarily focused on correcting the defective beta-globin gene or editing the expression of genes or genomic segments that regulate fetal hemoglobin synthesis. In this review, we aim to establish the potential benefits of gene therapy for BH, to summarize the status of the ongoing trials, and to discuss the possible improvement or direction for future treatments.
Collapse
Affiliation(s)
- Valentina Ghiaccio
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Maxwell Chappell
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stefano Rivella
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Laura Breda
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
217
|
Miller JC, Patil DP, Xia DF, Paine CB, Fauser F, Richards HW, Shivak DA, Bendaña YR, Hinkley SJ, Scarlott NA, Lam SC, Reik A, Zhou Y, Paschon DE, Li P, Wangzor T, Lee G, Zhang L, Rebar EJ. Enhancing gene editing specificity by attenuating DNA cleavage kinetics. Nat Biotechnol 2019; 37:945-952. [PMID: 31359006 DOI: 10.1038/s41587-019-0186-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
Engineered nucleases have gained broad appeal for their ability to mediate highly efficient genome editing. However the specificity of these reagents remains a concern, especially for therapeutic applications, given the potential mutagenic consequences of off-target cleavage. Here we have developed an approach for improving the specificity of zinc finger nucleases (ZFNs) that engineers the FokI catalytic domain with the aim of slowing cleavage, which should selectively reduce activity at low-affinity off-target sites. For three ZFN pairs, we engineered single-residue substitutions in the FokI domain that preserved full on-target activity but showed a reduction in off-target indels of up to 3,000-fold. By combining this approach with substitutions that reduced the affinity of zinc fingers, we developed ZFNs specific for the TRAC locus that mediated 98% knockout in T cells with no detectable off-target activity at an assay background of ~0.01%. We anticipate that this approach, and the FokI variants we report, will enable routine generation of nucleases for gene editing with no detectable off-target activity.
Collapse
Affiliation(s)
| | | | - Danny F Xia
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Patrick Li
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | - Gary Lee
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | - Lei Zhang
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | |
Collapse
|
218
|
Hennessy EJ. Cardiovascular Disease and Long Noncoding RNAs: Tools for Unraveling the Mystery Lnc-ing RNA and Phenotype. ACTA ACUST UNITED AC 2019; 10:e001556. [PMID: 28768752 DOI: 10.1161/circgenetics.117.001556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
219
|
Bueren JA, Quintana-Bustamante O, Almarza E, Navarro S, Río P, Segovia JC, Guenechea G. Advances in the gene therapy of monogenic blood cell diseases. Clin Genet 2019; 97:89-102. [PMID: 31231794 DOI: 10.1111/cge.13593] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 01/19/2023]
Abstract
Hematopoietic gene therapy has markedly progressed during the last 15 years both in terms of safety and efficacy. While a number of serious adverse events (SAE) were initially generated as a consequence of genotoxic insertions of gamma-retroviral vectors in the cell genome, no SAEs and excellent outcomes have been reported in patients infused with autologous hematopoietic stem cells (HSCs) transduced with self-inactivated lentiviral and gammaretroviral vectors. Advances in the field of HSC gene therapy have extended the number of monogenic diseases that can be treated with these approaches. Nowadays, evidence of clinical efficacy has been shown not only in primary immunodeficiencies, but also in other hematopoietic diseases, including beta-thalassemia and sickle cell anemia. In addition to the rapid progression of non-targeted gene therapies in the clinic, new approaches based on gene editing have been developed thanks to the discovery of designed nucleases and improved non-integrative vectors, which have markedly increased the efficacy and specificity of gene targeting to levels compatible with its clinical application. Based on advances achieved in the field of gene therapy, it can be envisaged that these therapies will soon be part of the therapeutic approaches used to treat life-threatening diseases of the hematopoietic system.
Collapse
Affiliation(s)
- Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - José C Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
220
|
Davies K, Carroll D. Giving Genome Editing the Fingers: An Interview with Dana Carroll. CRISPR J 2019; 2:157-162. [PMID: 31225752 DOI: 10.1089/crispr.2019.29058.dca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
221
|
You L, Tong R, Li M, Liu Y, Xue J, Lu Y. Advancements and Obstacles of CRISPR-Cas9 Technology in Translational Research. Mol Ther Methods Clin Dev 2019; 13:359-370. [PMID: 30989086 PMCID: PMC6447755 DOI: 10.1016/j.omtm.2019.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The expanding CRISPR-Cas9 technology is an easily accessible, programmable, and precise gene-editing tool with numerous applications, most notably in biomedical research. Together with advancements in genome and transcriptome sequencing in the era of metadata, genomic engineering with CRISPR-Cas9 meets the developmental requirements of precision medicine, and clinical tests using CRISPR-Cas9 are now possible. This review summarizes developments and established preclinical applications of CRISPR-Cas9 technology, along with its current challenges, and highlights future applications in translational research.
Collapse
Affiliation(s)
- Liting You
- Department of Thoracic Cancer, Cancer Center, West China Hospital, West China School of Medicine, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, China
| | - Ruizhan Tong
- Department of Thoracic Cancer, Cancer Center, West China Hospital, West China School of Medicine, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, China
| | - Mengqian Li
- Department of Thoracic Cancer, Cancer Center, West China Hospital, West China School of Medicine, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, China
| | - Yuncong Liu
- Department of Thoracic Cancer, Cancer Center, West China Hospital, West China School of Medicine, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, China
- Department of Gynaecological Oncology, Guizhou Provincial People’s Hospital, 83 Zhongshan Dong Road, Guiyang, Guizhou 550002, China
| | - Jianxin Xue
- Department of Thoracic Cancer, Cancer Center, West China Hospital, West China School of Medicine, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, China
| | - You Lu
- Department of Thoracic Cancer, Cancer Center, West China Hospital, West China School of Medicine, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, China
| |
Collapse
|
222
|
Romito M, Rai R, Thrasher AJ, Cavazza A. Genome editing for blood disorders: state of the art and recent advances. Emerg Top Life Sci 2019; 3:289-299. [PMID: 33523137 PMCID: PMC7288986 DOI: 10.1042/etls20180147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
In recent years, tremendous advances have been made in the use of gene editing to precisely engineer the genome. This technology relies on the activity of a wide range of nuclease platforms - such as zinc-finger nucleases, transcription activator-like effector nucleases, and the CRISPR-Cas system - that can cleave and repair specific DNA regions, providing a unique and flexible tool to study gene function and correct disease-causing mutations. Preclinical studies using gene editing to tackle genetic and infectious diseases have highlighted the therapeutic potential of this technology. This review summarizes the progresses made towards the development of gene editing tools for the treatment of haematological disorders and the hurdles that need to be overcome to achieve clinical success.
Collapse
Affiliation(s)
- Marianna Romito
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, U.K
| | - Rajeev Rai
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, U.K
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, U.K
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, U.K
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Program, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, U.K
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, U.K
| |
Collapse
|
223
|
Integrate CRISPR/Cas9 for protein expression of HLA-B*38:68Q via precise gene editing. Sci Rep 2019; 9:8067. [PMID: 31147565 PMCID: PMC6542842 DOI: 10.1038/s41598-019-44336-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 05/14/2019] [Indexed: 11/16/2022] Open
Abstract
The determination of null- or low-expressed HLA alleles is clinically relevant in both hematopoietic stem cell transplantation and solid organ transplantation. We studied the expression level of a questionable (Q) HLA-B*38:68Q allele, which carries a 9-nucleotide (nt) deletion at codon 230–232 in exon 4 of HLA-B*38:01:01:01 using CRISPR/Cas9 gene editing technology. CRISPR/Cas9 gene editing of HLA-B*38:01:01:01 homozygous EBV B cell line resulted in one HLA-B*38:68Q/B*38:01:01:01 heterozygous and one HLA-B*38:68Q homozygous clone. Flow cytometric analysis of monoclonal anti-Bw4 antibody showed the protein expression of HLA-B*38:01:01:01 in homozygous cells was 2.2 fold higher than HLA-B*38:68Q/B*38:01:01:01 heterozygous cells, and the expression of HLA-B*38:68Q/B*38:01:01:01 heterozygous cells was over 2.0 fold higher than HLA-B*38:68Q homozygous cells. The HLA-B*38:68Q expression was further confirmed using anti-B38 polyclonal antibody. Similarly, the expression of the HLA-B*38:01:01:01 homozygous cells was 1.5 fold higher than that of HLA-B*38:68Q/B*38:01:01:01 heterozygous cells, and the HLA-B*38:68Q/B*38:01:01:01 heterozygous cells was over 1.6 fold higher than that of HLA-B*38:68Q homozygous cells. The treatment of HLA-B*38:68Q homozygous cells with IFN-γ significantly increased its expression. In conclusion, we demonstrate that HLA-B*38:68Q is a low-expressing HLA allele. The CRISPR/Cas9 technology is a useful tool to induce precise gene editing in HLA genes to enable the characterization of HLA gene variants on expression and function.
Collapse
|
224
|
Romero Z, Lomova A, Said S, Miggelbrink A, Kuo CY, Campo-Fernandez B, Hoban MD, Masiuk KE, Clark DN, Long J, Sanchez JM, Velez M, Miyahira E, Zhang R, Brown D, Wang X, Kurmangaliyev YZ, Hollis RP, Kohn DB. Editing the Sickle Cell Disease Mutation in Human Hematopoietic Stem Cells: Comparison of Endonucleases and Homologous Donor Templates. Mol Ther 2019; 27:1389-1406. [PMID: 31178391 DOI: 10.1016/j.ymthe.2019.05.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023] Open
Abstract
Site-specific correction of a point mutation causing a monogenic disease in autologous hematopoietic stem and progenitor cells (HSPCs) can be used as a treatment of inherited disorders of the blood cells. Sickle cell disease (SCD) is an ideal model to investigate the potential use of gene editing to transvert a single point mutation at the β-globin locus (HBB). We compared the activity of zinc-finger nucleases (ZFNs) and CRISPR/Cas9 for editing, and homologous donor templates delivered as single-stranded oligodeoxynucleotides (ssODNs), adeno-associated virus serotype 6 (AAV6), integrase-deficient lentiviral vectors (IDLVs), and adenovirus 5/35 serotype (Ad5/35) to transvert the base pair responsible for SCD in HBB in primary human CD34+ HSPCs. We found that the ZFNs and Cas9 directed similar frequencies of nuclease activity. In vitro, AAV6 led to the highest frequencies of homology-directed repair (HDR), but levels of base pair transversions were significantly reduced when analyzing cells in vivo in immunodeficient mouse xenografts, with similar frequencies achieved with either AAV6 or ssODNs. AAV6 also caused significant impairment of colony-forming progenitors and human cell engraftment. Gene correction in engrafting hematopoietic stem cells may be limited by the capacity of the cells to mediate HDR, suggesting additional manipulations may be needed for high-efficiency gene correction in HSPCs.
Collapse
Affiliation(s)
- Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anastasia Lomova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Suzanne Said
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexandra Miggelbrink
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caroline Y Kuo
- Division of Allergy & Immunology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megan D Hoban
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katelyn E Masiuk
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Danielle N Clark
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Long
- Division of Allergy & Immunology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julie M Sanchez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miriam Velez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eric Miyahira
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruixue Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Devin Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaoyan Wang
- Department of Medicine Statistics Core, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, HHMI, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
225
|
CRISPR/Cas9 applications in gene therapy for primary immunodeficiency diseases. Emerg Top Life Sci 2019; 3:277-287. [PMID: 33523134 DOI: 10.1042/etls20180157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Primary immunodeficiency diseases (PIDs) encompass a range of diseases due to mutations in genes that are critical for immunity. Haploinsufficiency and gain-of-function mutations are more complex than simple loss-of-function mutations; in addition to increased susceptibility to infections, immune dysregulations like autoimmunity and hyperinflammation are common presentations. Hematopoietic stem cell (HSC) gene therapy, using integrating vectors, provides potential cure of disease, but genome-wide transgene insertions and the lack of physiological endogenous gene regulation may yet present problems, and not applicable in PIDs where immune regulation is paramount. Targeted genome editing addresses these concerns; we discuss some approaches of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas system applicable for gene therapy in PIDs. Preclinical repair of gene mutations and insertion of complementary DNA restore endogenous gene regulation and they have shown very promising data for clinical application. However, ongoing studies to characterize off-target genotoxicity, careful donor designs to ensure physiological expression, and maneuvers to optimize engraftment potential are critical to ensure successful application of this next-gen targeted HSC gene therapy.
Collapse
|
226
|
Xu S, Luk K, Yao Q, Shen AH, Zeng J, Wu Y, Luo HY, Brendel C, Pinello L, Chui DHK, Wolfe SA, Bauer DE. Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia. Blood 2019; 133:2255-2262. [PMID: 30704988 PMCID: PMC6533605 DOI: 10.1182/blood-2019-01-895094] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
The thalassemias are compelling targets for therapeutic genome editing in part because monoallelic correction of a subset of hematopoietic stem cells (HSCs) would be sufficient for enduring disease amelioration. A primary challenge is the development of efficient repair strategies that are effective in HSCs. Here, we demonstrate that allelic disruption of aberrant splice sites, one of the major classes of thalassemia mutations, is a robust approach to restore gene function. We target the IVS1-110G>A mutation using Cas9 ribonucleoprotein (RNP) and the IVS2-654C>T mutation by Cas12a/Cpf1 RNP in primary CD34+ hematopoietic stem and progenitor cells (HSPCs) from β-thalassemia patients. Each of these nuclease complexes achieves high efficiency and penetrance of therapeutic edits. Erythroid progeny of edited patient HSPCs show reversal of aberrant splicing and restoration of β-globin expression. This strategy could enable correction of a substantial fraction of transfusion-dependent β-thalassemia genotypes with currently available gene-editing technology.
Collapse
Affiliation(s)
- Shuqian Xu
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Broad Institute, Cambridge, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Broad Institute, Cambridge, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Molecular Pathology Unit
- Center for Cancer Research, and
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA
- Department of Pathology, Harvard Medical School, Boston, MA
| | - Anne H Shen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Broad Institute, Cambridge, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Broad Institute, Cambridge, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Yuxuan Wu
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Broad Institute, Cambridge, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Shanghai Key Laboratory of Regulatory Biology
- Institute of Biomedical Sciences, and
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Hong-Yuan Luo
- Department of Medicine and
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA
- Hemoglobin Diagnostic Reference Laboratory, Boston Medical Center, Boston, MA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA; and
| | - Luca Pinello
- Broad Institute, Cambridge, MA
- Molecular Pathology Unit
- Center for Cancer Research, and
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA
- Department of Pathology, Harvard Medical School, Boston, MA
| | - David H K Chui
- Department of Medicine and
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA
- Hemoglobin Diagnostic Reference Laboratory, Boston Medical Center, Boston, MA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Broad Institute, Cambridge, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
227
|
|
228
|
Limanskiy V, Vyas A, Chaturvedi LS, Vyas D. Harnessing the potential of gene editing technology using CRISPR in inflammatory bowel disease. World J Gastroenterol 2019; 25:2177-2187. [PMID: 31143069 PMCID: PMC6526155 DOI: 10.3748/wjg.v25.i18.2177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
The molecular scalpel of clustered regularly interspersed short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology may be sharp enough to begin cutting the genes implicated in inflammatory bowel disease (IBD) and consequently decrease the 6.3 billion dollar annual financial healthcare burden in the treatment of IBD. For the past few years CRISPR technology has drastically revolutionized DNA engineering and biomedical research field. We are beginning to see its application in gene manipulation of sickle cell disease, human immunodeficiency virus resistant embryologic twin gene modification and IBD genes such as Gatm (Glycine amidinotransferase, mitochondrial), nucleotide-binding oligomerization domain-containing protein 2, KRT12 and other genes implicated in adaptive immune convergence pathways have been subjected to gene editing, however there are very few publications. Furthermore, since Crohn's disease and ulcerative colitis have shared disease susceptibility and share genetic gene profile, it is paramount and is more advantageous to use CRISPR technology to maximize impact. Although, currently CRISPR does have its limitations due to limited number of specific Cas enzymes, off-target activity, protospacer adjacent motifs and crossfire between different target sites. However, these limitations have given researchers further insight on how to augment and manipulate enzymes to enable precise gene excision and limit crossfire between target sites.
Collapse
Affiliation(s)
- Viktor Limanskiy
- Department of Surgery, San Joaquin General Hospital, French Camp, CA 95231, United States
| | - Arpita Vyas
- College of Medicine, CNSU, Elk Grove, CA 95757, United States
| | | | - Dinesh Vyas
- Department of Surgery, San Joaquin General Hospital, French Camp, CA 95231, United States
- College of Medicine and College of Pharmacy, California Northstate University, Elk Grove, CA 95757, United States
| |
Collapse
|
229
|
A chance to cut (the genome) is a chance to cure. Blood 2019; 131:1884-1885. [PMID: 29699995 DOI: 10.1182/blood-2018-03-839787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
230
|
Tadić V, Josipović G, Zoldoš V, Vojta A. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Methods 2019; 164-165:109-119. [PMID: 31071448 DOI: 10.1016/j.ymeth.2019.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023] Open
Abstract
Molecular tools for gene regulation and epigenome editing consist of two main parts: the targeting moiety binding a specific genomic locus and the effector domain performing the editing or regulatory function. The advent of CRISPR-Cas9 technology enabled easy and flexible targeting of almost any locus by co-expression of a small sgRNA molecule, which is complementary to the target sequence and forms a complex with Cas9, directing it to that particular target. Here, we review strategies for recruitment of effector domains, used in gene regulation and epigenome editing, to the dCas9 DNA-targeting protein. To date, the most important CRISPR-Cas9 applications in gene regulation are CRISPR activation or interference, while epigenome editing focuses on targeted changes in DNA methylation and histone modifications. Several strategies for signal amplification by recruitment of multiple effector domains deserve special focus. While some approaches rely on altering the sgRNA molecule and extending it with aptamers for effector domain recruitment, others use modifications to the Cas9 protein by direct fusions with effector domains or by addition of an epitope tag, which also has the ability to bind multiple effector domains. A major barrier to the widespread use of CRISPR-Cas9 technology for therapeutic purposes is its off-target effect. We review efforts to enhance CRISPR-Cas9 specificity by selection of Cas9 orthologs from various bacterial species and their further refinement by introduction of beneficial mutations. The molecular tools available today enable a researcher to choose the best balance of targeting flexibility, activity amplification, delivery method and specificity.
Collapse
Affiliation(s)
- Vanja Tadić
- University of Zagreb, Faculty of Science, Department of Biology, Division of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Goran Josipović
- University of Zagreb, Faculty of Science, Department of Biology, Division of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Vlatka Zoldoš
- University of Zagreb, Faculty of Science, Department of Biology, Division of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Aleksandar Vojta
- University of Zagreb, Faculty of Science, Department of Biology, Division of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| |
Collapse
|
231
|
Wu Y, Zeng J, Roscoe BP, Liu P, Yao Q, Lazzarotto CR, Clement MK, Cole MA, Luk K, Baricordi C, Shen AH, Ren C, Esrick EB, Manis JP, Dorfman DM, Williams DA, Biffi A, Brugnara C, Biasco L, Brendel C, Pinello L, Tsai SQ, Wolfe SA, Bauer DE. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med 2019; 25:776-783. [PMID: 30911135 PMCID: PMC6512986 DOI: 10.1038/s41591-019-0401-y] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
Abstract
Re-expression of the paralogous γ-globin genes (HBG1/2) could be a universal strategy to ameliorate the severe β-globin disorders sickle cell disease (SCD) and β-thalassemia by induction of fetal hemoglobin (HbF, α2γ2)1. Previously, we and others have shown that core sequences at the BCL11A erythroid enhancer are required for repression of HbF in adult-stage erythroid cells but are dispensable in non-erythroid cells2-6. CRISPR-Cas9-mediated gene modification has demonstrated variable efficiency, specificity, and persistence in hematopoietic stem cells (HSCs). Here, we demonstrate that Cas9:sgRNA ribonucleoprotein (RNP)-mediated cleavage within a GATA1 binding site at the +58 BCL11A erythroid enhancer results in highly penetrant disruption of this motif, reduction of BCL11A expression, and induction of fetal γ-globin. We optimize conditions for selection-free on-target editing in patient-derived HSCs as a nearly complete reaction lacking detectable genotoxicity or deleterious impact on stem cell function. HSCs preferentially undergo non-homologous compared with microhomology-mediated end joining repair. Erythroid progeny of edited engrafting SCD HSCs express therapeutic levels of HbF and resist sickling, while those from patients with β-thalassemia show restored globin chain balance. Non-homologous end joining repair-based BCL11A enhancer editing approaching complete allelic disruption in HSCs is a practicable therapeutic strategy to produce durable HbF induction.
Collapse
Affiliation(s)
- Yuxuan Wu
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin P. Roscoe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Qiuming Yao
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02129, USA
| | - Cicera R. Lazzarotto
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - M. Kendell Clement
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02129, USA
| | - Mitchel A. Cole
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Cristina Baricordi
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center
| | - Anne H. Shen
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Erica B. Esrick
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - John P. Manis
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David M. Dorfman
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David A. Williams
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alessandra Biffi
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center
| | - Carlo Brugnara
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Luca Biasco
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center
- University College of London, Great Ormond Street Institute of Child Health, Faculty of Population Health Sciences, London, UK
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center
| | - Luca Pinello
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02129, USA
| | - Shengdar Q. Tsai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Scot A. Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
232
|
Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Eur J Pharmacol 2019; 854:398-405. [PMID: 31039344 DOI: 10.1016/j.ejphar.2019.04.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 11/24/2022]
Abstract
Hemoglobinopathies, such as β-thalassemia, and sickle cell disease (SCD) are caused by abnormal structure or reduced production of β-chains and affect millions of people worldwide. Hereditary persistence of fetal hemoglobin (HPFH) is a condition which is naturally occurring and characterized by a considerable elevation of fetal hemoglobin (HbF) in adult red blood cells. Individuals with compound heterozygous β-thalassemia or SCD and HPFH have milder clinical symptoms. So, HbF reactivation has long been sought as an approach to mitigate the clinical symptoms of β-thalassemia and SCD. Using CRISPR-Cas9 genome-editing strategy, we deleted a 200bp genomic region within the human erythroid-specific BCL11A (B-cell lymphoma/leukemia 11A) enhancer in KU-812, KG-1, and K562 cell lines. In our study, deletion of 200bp of BCL11A erythroid enhancer including GATAA motif leads to strong induction of γ-hemoglobin expression in K562 cells, but not in KU-812 and KG-1 cells. Altogether, our findings highlight the therapeutic potential of CRISPR-Cas9 as a precision genome editing tool for treating β-thalassemia. In addition, our data indicate that KU-812 and KG-1 cell lines are not good models for studying HbF reactivation through inactivation of BCL11A silencing pathway.
Collapse
|
233
|
Wienert B, Wyman SK, Richardson CD, Yeh CD, Akcakaya P, Porritt MJ, Morlock M, Vu JT, Kazane KR, Watry HL, Judge LM, Conklin BR, Maresca M, Corn JE. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 2019; 364:286-289. [PMID: 31000663 PMCID: PMC6589096 DOI: 10.1126/science.aav9023] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/23/2019] [Indexed: 12/12/2022]
Abstract
CRISPR-Cas genome editing induces targeted DNA damage but can also affect off-target sites. Current off-target discovery methods work using purified DNA or specific cellular models but are incapable of direct detection in vivo. We developed DISCOVER-Seq (discovery of in situ Cas off-targets and verification by sequencing), a universally applicable approach for unbiased off-target identification that leverages the recruitment of DNA repair factors in cells and organisms. Tracking the precise recruitment of MRE11 uncovers the molecular nature of Cas activity in cells with single-base resolution. DISCOVER-Seq works with multiple guide RNA formats and types of Cas enzymes, allowing characterization of new editing tools. Off-targets can be identified in cell lines and patient-derived induced pluripotent stem cells and during adenoviral editing of mice, paving the way for in situ off-target discovery within individual patient genotypes during therapeutic genome editing.
Collapse
Affiliation(s)
- Beeke Wienert
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94704, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94704, USA
| | - Christopher D Richardson
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94704, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Charles D Yeh
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94704, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Pinar Akcakaya
- Discovery Biology, AstraZeneca, 43150 Gothenburg, Sweden
| | | | | | - Jonathan T Vu
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94704, USA
| | - Katelynn R Kazane
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94704, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hannah L Watry
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94704, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Luke M Judge
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA 94158, USA
- Departments of Medicine, Ophthalmology, and Pharmacology, University of California San Francisco, San Francisco, California 94143, USA
| | | | - Jacob E Corn
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94704, USA.
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
234
|
Leonard A, Bonifacino A, Dominical VM, Luo M, Haro‐Mora JJ, Demirci S, Uchida N, Pierciey FJ, Tisdale JF. Bone marrow characterization in sickle cell disease: inflammation and stress erythropoiesis lead to suboptimal CD34 recovery. Br J Haematol 2019; 186:286-299. [DOI: 10.1111/bjh.15902] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/12/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Alexis Leonard
- Cellular and Molecular Therapeutics Branch NHLBI/NIDDK National Institutes of Health Bethesda MD USA
- Center for Cancer and Blood Disorders Children's National Health System Washington DC USA
| | | | - Venina M. Dominical
- NHLBI Flow Cytometry Core Facility National Institutes of Health Bethesda MD USA
| | - Min Luo
- bluebird bio, Inc. Cambridge MA USA
| | - Juan J. Haro‐Mora
- Cellular and Molecular Therapeutics Branch NHLBI/NIDDK National Institutes of Health Bethesda MD USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch NHLBI/NIDDK National Institutes of Health Bethesda MD USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch NHLBI/NIDDK National Institutes of Health Bethesda MD USA
| | | | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch NHLBI/NIDDK National Institutes of Health Bethesda MD USA
| |
Collapse
|
235
|
Abstract
Designer nucleases are versatile tools for genome modification and therapy development and have gained widespread accessibility with the advent of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology. Prokaryotic RNA-guided nucleases of CRISPR/Cas type, since first being adopted as editing tools in eukaryotic cells, have experienced rapid uptake and development. Diverse modes of delivery by viral and non-viral vectors and ongoing discovery and engineering of new CRISPR/Cas-type tools with alternative target site requirements, cleavage patterns and DNA- or RNA-specific action continue to expand the versatility of this family of nucleases. CRISPR/Cas-based molecules may also act without double-strand breaks as DNA base editors or even without single-stranded cleavage, be it as epigenetic regulators, transcription factors or RNA base editors, with further scope for discovery and development. For many potential therapeutic applications of CRISPR/Cas-type molecules and their derivatives, efficiencies still need to be improved and safety issues addressed, including those of preexisting immunity against Cas molecules, off-target activity and recombination and sequence alterations relating to double-strand-break events. This review gives a concise overview of current CRISPR/Cas tools, applications, concerns and trends.
Collapse
Affiliation(s)
- Petros Patsali
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus.
- Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
236
|
CRISPR/Cas9-modified hematopoietic stem cells-present and future perspectives for stem cell transplantation. Bone Marrow Transplant 2019; 54:1940-1950. [PMID: 30903024 DOI: 10.1038/s41409-019-0510-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 12/23/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a standard therapeutic intervention for hematological malignancies and several monogenic diseases. However, this approach has limitations related to lack of a suitable donor, graft-versus-host disease and infectious complications due to immune suppression. On the contrary, autologous HSCT diminishes the negative effects of allogeneic HSCT. Despite the good efficacy, earlier gene therapy trials with autologous HSCs and viral vectors have raised serious safety concerns. However, the CRISPR/Cas9-edited autologous HSCs have been proposed to be an alternative option with a high safety profile. In this review, we summarized the possibility of CRISPR/Cas9-mediated autologous HSCT as a potential treatment option for various diseases supported by preclinical gene-editing studies. Furthermore, we discussed future clinical perspectives and possible clinical grade improvements of CRISPR/cas9-mediated autologous HSCT.
Collapse
|
237
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
238
|
Jensen TI, Axelgaard E, Bak RO. Therapeutic gene editing in haematological disorders withCRISPR/Cas9. Br J Haematol 2019; 185:821-835. [DOI: 10.1111/bjh.15851] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Rasmus O. Bak
- Department of Biomedicine Aarhus University Aarhus CDenmark
- Aarhus Institute of Advanced Studies (AIAS) Aarhus University Aarhus C Denmark
| |
Collapse
|
239
|
Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. Nat Rev Drug Discov 2019; 18:447-462. [DOI: 10.1038/s41573-019-0020-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
240
|
Affiliation(s)
- Matthew H Porteus
- From the Department of Pediatrics-Stem Cell Transplantation, Stanford University, Stanford, CA
| |
Collapse
|
241
|
Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24:955-970. [PMID: 30849442 DOI: 10.1016/j.drudis.2019.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9), as a powerful genome-editing tool, has revolutionized genetic engineering. It is widely used to investigate the molecular basis of different cancer types. In this review, we present an overview of recent studies in which CRISPR/Cas9 has been used for the identification of potential molecular targets. Based on the collected data, we suggest here that CRISPR/Cas9 is an effective system to distinguish between mutant and wild-type alleles in cancer. We show that several new potential therapeutic targets, such as CD38, CXCR2, MASTL, and RBX2, as well as several noncoding (nc)RNAs have been identified using CRISPR/Cas9 technology. We also discuss the obstacles and challenges that we face for using CRISPR/Cas9 as a therapeutic.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ali Saber
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
242
|
Telen MJ, Malik P, Vercellotti GM. Therapeutic strategies for sickle cell disease: towards a multi-agent approach. Nat Rev Drug Discov 2019; 18:139-158. [PMID: 30514970 PMCID: PMC6645400 DOI: 10.1038/s41573-018-0003-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For over 100 years, clinicians and scientists have been unravelling the consequences of the A to T substitution in the β-globin gene that produces haemoglobin S, which leads to the systemic manifestations of sickle cell disease (SCD), including vaso-occlusion, anaemia, haemolysis, organ injury and pain. However, despite growing understanding of the mechanisms of haemoglobin S polymerization and its effects on red blood cells, only two therapies for SCD - hydroxyurea and L-glutamine - are approved by the US Food and Drug Administration. Moreover, these treatment options do not fully address the manifestations of SCD, which arise from a complex network of interdependent pathophysiological processes. In this article, we review efforts to develop new drugs targeting these processes, including agents that reactivate fetal haemoglobin, anti-sickling agents, anti-adhesion agents, modulators of ischaemia-reperfusion and oxidative stress, agents that counteract free haemoglobin and haem, anti-inflammatory agents, anti-thrombotic agents and anti-platelet agents. We also discuss gene therapy, which holds promise of a cure, although its widespread application is currently limited by technical challenges and the expense of treatment. We thus propose that developing systems-oriented multi-agent strategies on the basis of SCD pathophysiology is needed to improve the quality of life and survival of people with SCD.
Collapse
Affiliation(s)
- Marilyn J Telen
- Division of Hematology, Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, USA.
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology and the Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory M Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
243
|
Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA, Dejene B, Cieniewicz B, Romano R, Lesch BJ, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Weinberg KI, Porteus MH. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 2019; 25:249-254. [PMID: 30692695 PMCID: PMC7199589 DOI: 10.1038/s41591-018-0326-x] [Citation(s) in RCA: 630] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
Abstract
The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases1-6. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes5,7. Given that these two bacterial species infect the human population at high frequencies8,9, we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, expansion, and antigen restimulation. Together, these data demonstrate that there are preexisting humoral and cell-mediated adaptive immune responses to Cas9 in humans, a finding that should be taken into account as the CRISPR-Cas9 system moves toward clinical trials.
Collapse
Affiliation(s)
| | | | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Viktor T Lemgart
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | | | - Liyang Zhang
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | - Nicole M Bode
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | - Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | - Beruh Dejene
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Rosa Romano
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Benjamin J Lesch
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Sruthi Mantri
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
244
|
Kissling L, Monfort A, Swarts DC, Wutz A, Jinek M. Preparation and electroporation of Cas12a/Cpf1-guide RNA complexes for introducing large gene deletions in mouse embryonic stem cells. Methods Enzymol 2019; 616:241-263. [PMID: 30691645 DOI: 10.1016/bs.mie.2018.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CRISPR-Cas12a is a bacterial RNA-guided deoxyribonuclease that has been adopted for genetic engineering in a broad variety of organisms. Here, we describe protocols for the preparation and application of AsCas12a-guide RNA ribonucleoprotein (RNP) complexes for engineering gene deletions in mouse embryonic stem (ES) cells. We provide detailed protocols for purification of an NLS-containing AsCas12a-eGFP fusion protein, design of guide RNAs, assembly of RNP complexes, and transfection of mouse ES cells by electroporation. In addition, we present data illustrating the use of pairs of Cas12a nucleases for engineering large genetic deletions and outline experimental considerations for applications of Cas12a nucleases in ES cells.
Collapse
Affiliation(s)
- Lucas Kissling
- Department of Biochemistry, University of Zurich, Zurich, Switzerland; Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Asun Monfort
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Daan C Swarts
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Anton Wutz
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
245
|
Chung JE, Magis W, Vu J, Heo SJ, Wartiovaara K, Walters MC, Kurita R, Nakamura Y, Boffelli D, Martin DIK, Corn JE, DeWitt MA. CRISPR-Cas9 interrogation of a putative fetal globin repressor in human erythroid cells. PLoS One 2019; 14:e0208237. [PMID: 30645582 PMCID: PMC6333401 DOI: 10.1371/journal.pone.0208237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/14/2018] [Indexed: 01/14/2023] Open
Abstract
Sickle Cell Disease and ß-thalassemia, which are caused by defective or deficient adult ß-globin (HBB) respectively, are the most common serious genetic blood diseases in the world. Persistent expression of the fetal ß-like globin, also known as 𝛾-globin, can ameliorate both disorders by serving in place of the adult ß-globin as a part of the fetal hemoglobin tetramer (HbF). Here we use CRISPR-Cas9 gene editing to explore a potential 𝛾-globin silencer region upstream of the δ-globin gene identified by comparison of naturally-occurring deletion mutations associated with up-regulated 𝛾-globin. We find that deletion of a 1.7 kb consensus element or select 350 bp sub-regions from bulk populations of cells increases levels of HbF. Screening of individual sgRNAs in one sub-region revealed three single guides that caused increases in 𝛾-globin expression. Deletion of the 1.7 kb region in HUDEP-2 clonal sublines, and in colonies derived from CD34+ hematopoietic stem/progenitor cells (HSPCs), does not cause significant up-regulation of 𝛾-globin. These data suggest that the 1.7 kb region is not an autonomous 𝛾-globin silencer, and thus by itself is not a suitable therapeutic target for gene editing treatment of ß-hemoglobinopathies.
Collapse
Affiliation(s)
- Jennifer E Chung
- Innovative Genomics Institute, University of California, Berkeley, CA, United States of America
| | - Wendy Magis
- Children's Hospital Oakland Research Institute, UCSF Benioff Children's Hospital, Oakland, CA, United States of America
| | - Jonathan Vu
- Innovative Genomics Institute, University of California, Berkeley, CA, United States of America
| | - Seok-Jin Heo
- Children's Hospital Oakland Research Institute, UCSF Benioff Children's Hospital, Oakland, CA, United States of America
| | - Kirmo Wartiovaara
- Children's Hospital Oakland Research Institute, UCSF Benioff Children's Hospital, Oakland, CA, United States of America.,Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Clinical Genetics, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| | - Mark C Walters
- Children's Hospital Oakland Research Institute, UCSF Benioff Children's Hospital, Oakland, CA, United States of America.,Blood and Marrow Transplant Program, Division of Hematology, UCSF Benioff Children's Hospital, Oakland, CA, United States of America
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan.,Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, UCSF Benioff Children's Hospital, Oakland, CA, United States of America
| | - David I K Martin
- Children's Hospital Oakland Research Institute, UCSF Benioff Children's Hospital, Oakland, CA, United States of America
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, Berkeley, CA, United States of America.,Department of Molecular and Cellular Biology, University of California, Berkeley, CA, United States of America
| | - Mark A DeWitt
- Innovative Genomics Institute, University of California, Berkeley, CA, United States of America
| |
Collapse
|
246
|
Jayavaradhan R, Pillis DM, Malik P. A Versatile Tool for the Quantification of CRISPR/Cas9-Induced Genome Editing Events in Human Hematopoietic Cell Lines and Hematopoietic Stem/Progenitor Cells. J Mol Biol 2019; 431:102-110. [PMID: 29751014 DOI: 10.1016/j.jmb.2018.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 11/28/2022]
Abstract
The efficient site-specific DNA double-strand breaks (DSB) created by CRISPR/Cas9 has revolutionized genome engineering and has great potential for editing hematopoietic stem/progenitor cells (HSPCs). However, detailed understanding of the variables that influence choice of DNA-DSB repair (DDR) pathways by HSPC is required for therapeutic levels of editing in these clinically relevant cells. We developed a hematopoietic-reporter system that rapidly quantifies the three major DDR pathways utilized at the individual DSB created by CRISPR/Cas9-NHEJ, MMEJ, and HDR-and show its applicability in evaluating the different DDR outcomes utilized by human hematopoietic cell lines and primary human HSPC.
Collapse
Affiliation(s)
- Rajeswari Jayavaradhan
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA; Pathology and Molecular Medicine Program, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Devin M Pillis
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA; Division of Hematology, CBDI, CCHMC, Cincinnati, OH, 45229, USA.
| |
Collapse
|
247
|
Foss DV, Hochstrasser ML, Wilson RC. Clinical applications of CRISPR-based genome editing and diagnostics. Transfusion 2019; 59:1389-1399. [PMID: 30600536 DOI: 10.1111/trf.15126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-driven genome editing has rapidly transformed preclinical biomedical research by eliminating the underlying genetic basis of many diseases in model systems and facilitating the study of disease etiology. Translation to the clinic is under way, with announced or impending clinical trials utilizing ex vivo strategies for anticancer immunotherapy or correction of hemoglobinopathies. These exciting applications represent just a fraction of what is theoretically possible for this emerging technology, but many technical hurdles must be overcome before CRISPR-based genome editing technology can reach its full potential. One exciting recent development is the use of CRISPR systems for diagnostic detection of genetic sequences associated with pathogens or cancer. We review the biologic origins and functional mechanism of CRISPR systems and highlight several current and future clinical applications of genome editing.
Collapse
Affiliation(s)
- Dana V Foss
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California
| | - Megan L Hochstrasser
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California
| | - Ross C Wilson
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California
| |
Collapse
|
248
|
Lattanzi A, Meneghini V, Pavani G, Amor F, Ramadier S, Felix T, Antoniani C, Masson C, Alibeu O, Lee C, Porteus MH, Bao G, Amendola M, Mavilio F, Miccio A. Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem and Progenitor Cells for Therapeutic Genomic Rearrangements. Mol Ther 2019; 27:137-150. [PMID: 30424953 PMCID: PMC6318785 DOI: 10.1016/j.ymthe.2018.10.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
Editing the β-globin locus in hematopoietic stem cells is an alternative therapeutic approach for gene therapy of β-thalassemia and sickle cell disease. Using the CRISPR/Cas9 system, we genetically modified human hematopoietic stem and progenitor cells (HSPCs) to mimic the large rearrangements in the β-globin locus associated with hereditary persistence of fetal hemoglobin (HPFH), a condition that mitigates the clinical phenotype of patients with β-hemoglobinopathies. We optimized and compared the efficiency of plasmid-, lentiviral vector (LV)-, RNA-, and ribonucleoprotein complex (RNP)-based methods to deliver the CRISPR/Cas9 system into HSPCs. Plasmid delivery of Cas9 and gRNA pairs targeting two HPFH-like regions led to high frequency of genomic rearrangements and HbF reactivation in erythroblasts derived from sorted, Cas9+ HSPCs but was associated with significant cell toxicity. RNA-mediated delivery of CRISPR/Cas9 was similarly toxic but much less efficient in editing the β-globin locus. Transduction of HSPCs by LVs expressing Cas9 and gRNA pairs was robust and minimally toxic but resulted in poor genome-editing efficiency. Ribonucleoprotein (RNP)-based delivery of CRISPR/Cas9 exhibited a good balance between cytotoxicity and efficiency of genomic rearrangements as compared to the other delivery systems and resulted in HbF upregulation in erythroblasts derived from unselected edited HSPCs.
Collapse
Affiliation(s)
| | - Vasco Meneghini
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris 75015, France; Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris 75015, France
| | | | | | - Sophie Ramadier
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris 75015, France; Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris 75015, France
| | - Tristan Felix
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris 75015, France; Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris 75015, France
| | - Chiara Antoniani
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris 75015, France; Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris 75015, France
| | - Cecile Masson
- Paris-Descartes Bioinformatics Platform, Imagine Institute, Paris 75015, France
| | - Olivier Alibeu
- Genomic Platform, Imagine Institute, Paris 75015, France
| | - Ciaran Lee
- Department of Bioengineering, Rice University, Houston, TX 77006, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77006, USA
| | | | - Fulvio Mavilio
- Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris 75015, France; Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Annarita Miccio
- Genethon, INSERM UMR951, Evry 91000, France; Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris 75015, France; Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris 75015, France.
| |
Collapse
|
249
|
Abstract
CRISPR, a revolutionizing technology allowing researchers to navigate in and edit the genome, is moving on the fast track toward clinical use for ex vivo correction of disease-causing mutations in stem cells. As we await the first trials utilizing ex vivo CRISPR editing, implementation of CRISPR-based gene editing as an in vivo treatment directly in patients still remains an ultimate challenge. However, quickly accumulating evidence has provided proof-of-concept for efficacious editing in vivo. Attempts to edit genes directly in animals have largely relied on classical vector systems based on virus-based delivery of gene cassettes encoding the Cas9 endonuclease and single guide RNA, the key components of the CRISPR system. However, whereas persistent gene expression has been the primary goal of gene therapy for decades, things may be different in the case of CRISPR delivery. Is short-term presence of the CRISPR components perhaps sufficient for efficacy and ideal for safety?-and are strategies needed for restricting immune recognition of the bacteria-derived editing tool? Here, while answers to these questions still blow in the wind, we review prominent examples of genome editing with focus on targeting of genes with CRISPR in liver, muscles, and eyes of the mouse.
Collapse
|
250
|
CRISPR/Cas9 for Sickle Cell Disease: Applications, Future Possibilities, and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1144:37-52. [PMID: 30715679 DOI: 10.1007/5584_2018_331] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sickle cell disease (SCD) is an inherited monogenic disorder resulting in serious mortality and morbidity worldwide. Although the disease was characterized more than a century ago, there are only two FDA approved medications to lessen disease severity, and a definitive cure available to all patients with SCD is lacking. Rapid and substantial progress in genome editing approaches have proven valuable as a curative option given plausibility to either correct the underlying mutation in patient-derived hematopoietic stem/progenitor cells (HSPCs), induce fetal hemoglobin expression to circumvent sickling of red blood cells (RBCs), or create corrected induced pluripotent stem cells (iPSCs) among other approaches. Recent discovery of CRISPR/Cas9 has not only revolutionized genome engineering but has also brought the possibility of translating these concepts into a clinically meaningful reality. Here we summarize genome engineering applications using CRISPR/Cas9, addressing challenges and future perspectives of CRISPR/Cas9 as a curative option for SCD.
Collapse
|